
Response to CC1
A Framework for Automated Supraglacial Lake Detection and Depth Retrieval in
ICESat-2 Photon Data Across the Greenland and Antarctic Ice Sheets

Philipp Sebastian Arndt1 and Helen Amanda Fricker1

1Scripps Polar Center, University of California San Diego, 8885 Biological Grade, La Jolla, CA 92037, USA

Correspondence:
Philipp Sebastian Arndt (parndt@ucsd.edu)

Discussion: https://doi.org/10.5194/egusphere-2024-1156

Comments from the reviewers are given in black.
Our responses are given in red.
Quotes from the submitted manuscript are given in bold red.
Proposed amendments or additions to the revised manuscript are given in blue in the Times New Roman font.

References that were already included in the original manuscript are cited in-text only, in the same format as in
the submitted manuscript. New references are added to the end of this document in full.

Community Comment 1 (Bert Wouters)
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Notes:
- B. Wouters, H.A. Fricker and P. Arndt are all co-authors of Fricker et al. (2021);
- P. Arndt was a referee for Datta and Wouters (2021).

I agree with the two other reviewers that this is a well-written and important contribution, presenting an elegant
method to derive supraglacial lake bathymetry. Nevertheless, I would like to comment on the two statements
below, in the Introduction and Summary sections:

● L47-53: Previous ICESat-2 studies have been limited to applying depth estimation methods to a handful
of manually picked lakes or data granules, with no clear pathway to large-scale computational
implementation across the ATL03 data catalog, which comprises hundreds of terabytes of unstructured
point cloud data (Neumann et al., 2023b). To address this challenge, we have created a fully automated
and scalable algorithm for lake detection and depth determination from ICESat-2 data.

● L646-651: ICESat-2 data had not previously been used at scale for this purpose because its
photon-level product comprises hundreds of terabytes of unstructured point cloud data along spatially
discrete ground tracks, which makes it difficult to integrate the data with spatially continuous data in
existing workflows. To address this challenge, we have presented the fully automated, two-step
FLUID/SuRRF algorithm for the detection and depth determination of supraglacial lakes on the ice
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sheets in ICESat-2 photon data, and proposed a computational framework that allows for its large-scale
implementation across any desired ice sheet drainage basins and melt seasons.

Whereas it is true that other methods have not been used at such a large scale as in the manuscript, the Watta
algorithm (Datta and Wouters, 2021) is fully automated (i.e. it detects potential lake locations based on a
flatness criterion and then estimates the bathymetry, similar to the framework presented in this manuscript) and
it is designed to be run in parallel, allowing large-scale application at any location or time period. The reason
Watta hasn’t been applied at large scale is a lack of computational infrastructure.

It would be nice to acknowledge that the automated and scalable nature of the method, while advantageous, is
not a unique selling point. This doesn’t take away that there is plenty of novelty in the manuscript to merit
publication. Emphasizing these specific innovations would strengthen the manuscript, in my view.

Thanks very much Bert for your positive and constructive comment, and for bringing this particular issue to our
attention. First off, we would like to express our appreciation for the scientific contributions that you made in
Datta and Wouters (2021) and acknowledge that the results you published had a large impact on motivating
our own study and informing our opinion that it is crucial to retrieve and publicly share as many ICESat-2 water
depth estimates as possible, to improve our ability to continuously monitor supraglacial meltwater volumes
across the ice sheets. We explain this in the later paragraphs.

Thank you for pointing out that automation and scalability are selling points that are not unique to our
algorithm. We agree that this should be pointed out in the manuscript. We will explain that other automated and
scalable algorithms exist for this purpose, and that the new contribution of our study is the fact that in addition
to developing another such algorithm, we also propose a computational framework for applying it at
ice-sheet-wide scale and then demonstrate that it works in practice.

For completeness, we would like to note here that in our own experience, the task of computationally scaling
up FLUID-SuRRF was hugely more time- and work-intensive than developing the initial algorithm. At the time,
we already considered it to be automated because it ran smoothly on a few dozen granules that we had used
to develop empirical thresholds and tune parameters. It is amazing that multiple automated and scalable
algorithms have been proposed for this purpose, and in Fricker et al. (2021) we pointed out that ensemble
estimates from various different algorithms outperformed any single algorithm on the small number of lakes
presented in that case study. However, just because such automated and theoretically scalable algorithms
exist, does not mean that it is easy at all to use them to generate large, comprehensive data products. This is
why we spent three years since the initial algorithm was presented in Fricker et al. (2021) working on actually
implementing FLUID-SuRRF at scale.

We would like to make it clear we are in no way trying to diminish the scientific significance of Watta. In Datta
and Wouters (2021) you are showing many other significant and very impressive scientific results that go well
beyond what we are presenting in our manuscript. In fact, our own study is largely motivated by the fact that
you successfully demonstrated that depths and volumes of supraglacial lakes can be accurately estimated by
combining along-track depth measurements from Watta/ICESat-2 with concurrent imagery from various
passive optical sensors. As we explain in the manuscript, this is absolutely necessary for using ICESat-2 to
improve estimates for continuously monitoring melt lake volumes through space and time. In Datta and
Wouters (2021), you use imagery to extrapolate depths along ICESat-2 segments to the full lake basins that
these segments intersect. You convincingly showed that this indeed works very well, and these results inspired
us to attempt to go one step further: To be able to use ICESat-2 to empirically estimate depths/volumes of
supraglacial lakes in locations and at times where/when ICESat-2 measurements are not directly available, it is
necessary to rely on statistical methods that can generalize the depth-reflectance relationship for a particular



passive optical sensor independently of the availability training data that is closeby in space and time. For this
to work, the data that are used to train statistical learning models capable of multiple non-linear regression for
representing this depth-reflectance relationship need to adequately cover the parameter space defined by the
combination of predictors that are included.

If instead we attempted to train a model to learn the relationship between Sentinel-2 reflectance and water
depth from the lake segments provided in Datta and Wouters (2021), the training data would be limited to
estimates based on five ICESat-2 tracks from five different dates, all of which cluster closely together near
Sermeq Kujalleq and Sarqardliup Sermia. This means that we would sample associated Sentinel-2 data from
only a handful of satellite overpasses, which would likely be acquired under similar conditions (e.g., sun
angles). If we now show the model unseen Sentinel-2 data that originated under different conditions and ask it
to estimate water depth, it will likely not be able to extrapolate well. Since ICESat-2 observations are
fundamentally quite sparse, we believe that it is necessary to obtain as many ICESat-2 depth estimates from
different locations and times to be able to effectively use ICESat-2 to improve monitoring of meltwater volumes
across the ice sheets: in this case, we argue that “more data is always better”. We hope that this explains why
we considered it to be so important to take on the task to scale up ICESat-2 lake detection on depth
determination algorithms, and to share the resulting data.

For reference, see Domingos (2012) for an explanation of how more data usually improves statistical / machine
learning models. This article also mentions the need for models to generalize, as well as the benefits of using
ensemble methods. While somewhat outdated for such a fast-moving field, the article does a great job at
explaining the fundamental principles.

We propose the following changes:

● It seems that we have not detailed our motivation for large-scale extraction of ICESat-2 melt lake
depths (based on promising recent results from combining ICESat-2 depths with imagery / fundamental
principles of statistical learning) clearly enough. We therefore propose to rewrite the corresponding
section in the introduction in its own paragraph:
“While ICESat-2 data alone cannot be used to continuously monitor melt lake volumes, several case studies have
shown that ICESat-2 depth measurements can be used to constrain parameters in models that estimate lake
volumes from satellite imagery (Datta and Wouters, 2021; Leeuwen, 2023; Lutz et al., 2024). For instance, Datta
and Wouters demonstrated that it is possible to accurately extrapolate depths along ICESat-2's ground track
segments to the full lake basins that these segments intersect. To be able to use ICESat-2 to improve depth
estimates of supraglacial lakes in locations where (and at times when) ICESat-2 measurements are not directly
available, it will be necessary to rely on statistical methods that can generalize the relationship between water
depth and reflectance for a particular passive optical sensor under a wide variety of conditions and independently
of the availability training data that is close-by in space and time (Hastie et al., 2009). For this to work effectively,
the data that are used to train statistical learning models capable of multiple non-linear regression for representing
a complex depth-reflectance relationship need to adequately cover the parameter space defined by the
combination of predictors that are included (Markham and Rakes, 1998; Wang et al., 2022). Since ICESat-2
observations of melt lakes are relatively sparse, it is therefore crucial to to obtain as many ICESat-2 depth
estimates as possible from different locations and times (and thus under a wide variety of environmental
conditions) to be able to effectively use ICESat-2 to improve monitoring of meltwater volumes across the ice
sheets. This suggests that large-scale extraction of accurate supraglacial lake depths from a wide range of
ICESat-2 photon-level data in combination with concurrent optical satellite imagery can provide a labeled training
data set enabling the application of machine learning methods (e.g., Leeuwen, 2023) capable of generating a
well-constrained data-driven model for ice-sheet-wide lake volume estimation (Melling et al., 2023).”



● L47-53: We had to restructure the entire paragraph to make sure we are not misleading the reader by
making it sound like automation and scalability are unique selling points of our algorithm. Here are our
proposed changes:
“While automated and scalable algorithms for lake detection and depth retrieval in ATL03 photon data have been
proposed (e.g., Datta and Wouters, 2021; Xiao et al., 2023), in practice no previous ICESat-2 studies have applied
supraglacial lake depth estimation methods to more than a handful of manually picked lake segments or data
granules, or presented a straightforward pathway to large-scale computational implementation across the ATL03
data catalog, which comprises hundreds of terabytes of unstructured point cloud data (Neumann et al., 2023b). To
address this challenge, we present a framework for ice-sheet-wide implementation of our own fully automated and
scalable algorithm for along-track lake segment detection and depth determination from ICESat-2 data. Here, we
present this algorithm, apply it to two entire drainage basins in Greenland and Antarctica (Sect. 3.5, Fig. 2) using
distributed high-throughput computing, and demonstrate its performance for two full melt seasons.”

● L646-651: We believe that by now it should be sufficiently clear to the reader that other automated and
scalable algorithms do exist, but have not been applied at scale. However, we propose to switch the
sentence structure to make it more clear that we are “addressing this challenge” primarily by taking on
the actual implementation rather than by proposing an additional automated algorithm:
“ICESat-2 data had not previously been used at scale for this purpose because its photon-level product comprises
hundreds of terabytes of unstructured point cloud data along spatially discrete ground tracks, which makes it
difficult to integrate the data with spatially continuous data in existing workflows. To address this challenge, we
have proposed a computational framework that allows users to detect lake segments and determine their water
depths across all available ICESat-2 data for any desired ice sheet drainage basins and melt seasons. Using
distributed high-throughput computing, this framework applies the fully automated, two-step FLUID/SuRRF
algorithm to large numbers of ICESat-2 ATL03 photon data granules in parallel. To test our method, we applied
FLUID-SuRRF to all available ICESat-2 data over two drainage basins, one on the Antarctic Ice Sheet and one on
the Greenland Ice Sheet, for a high-melt and a low-melt summer.”
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