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Abstract. Geodetic surface mass balance calculations rely on satellite radar altimeters such as CryoSat-2 to understand 

elevation and volume changes of the Greenland Ice Sheet (GrIS). However, the impact of varying GrIS shallow subsurface 

stratigraphic conditions on Level 2 CryoSat-2 elevation products is poorly understood. We investigate the reliability of the 

Offset Center of Gravity (OCOG) and University College London Land-Ice elevation (ULI) retracking algorithms through the 30 

analysis of, and comparison with, Level 1B waveform-derived Leading-Edge Width (LeW). We generate a 2010 to 2021 LeW 

time series using temporal clustering and Bayesian Model averaging and compare with Level 2 OCOG and ULI elevation time 

series. This workflow is performed at Summit Station, NEEM, and Raven Camp, chosen to represent the upper and lower 

bounds of the dry-snow zone, and percolation zone respectively. We note that melting event, snowpack recovery, and 

potentially anomalous snow accumulation and high-speed winds signatures are evident in Summit Station’s LeW time series. 35 

We find that Level 1B LeW has a significant inverse relationship with the ULI Level 2 elevations at NEEM and Summit Station, 

and likely the entire dry snow zone. The ULI Level 2 elevations at Raven Camp, and likely the entire percolation zone, have 

no clear elevation bias associated with significant melt events. The OCOG retracked elevations showed no significant 

association with LeW at any site. Future work is needed to understand the impacts of GrIS high-speed wind events and snow 

accumulation on elevation products, as well as to create retracking algorithms that are more resilient to abrupt changes in the 40 

shallow subsurface. 

1. Introduction 

The Greenland Ice Sheet (GrIS) contains 6-7 m of global sea-rise equivalent of ice (Cuffey & Marshall, 2000) and is predicted 

to contribute between 30-170 mm to sea-level rise by 2100 (Shepherd et al., 2019). GrIS elevation and mass balance products 

need to be as accurate as possible given its climatological significance in the face of warming temperatures. A valuable tool in 45 

developing such products is ESA’s CryoSat-2 radar altimeter, SIRAL (European Space Agency, 2010). Unlike NASA’s 

ICESat-2 laser elevation instrument ATLAS, SIRAL can penetrate the GrIS shallow subsurface (Neumann et al., 2019; Nilsson 

et al., 2015; Simonsen & Sørensen, 2017; Vermeer et al., 2022). CryoSat-2 elevation retrievals can be influenced by local and 

regional effects of surface melting and snowpack processes, as noted around NEEM from 2011 to 2014 (Nilsson et. al 2015). 

However, the impact of melt on radar waveforms and thus surface elevation retrievals is not uniform across the ice sheet.   50 

 

As anthropogenic climate change accelerates the GrIS surface melt (Sellevold & Vizcaíno, 2020) and increases interannual 

variability in surface mass balance (Fyke et al., 2014), melt-induced CryoSat-2- derived elevation biases are likely to remain 

significant. Therefore, the relationship between these elevation biases and changing shallow subsurface GrIS dynamics needs 

to be fully understood. Here, we analyze changes in the shallow subsurface and its influence on perceived retracked-derived 55 
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elevations from 2010-2021, and across locations dominated by different glaciological regimes in the dry-snow and percolation 

zones (Benson, 1996; Nghiem et al., 2001, 2012; Polashenski et al., 2014; Rizzoli et al., 2017). 

2. Background  

Researchers can choose from two supported retracking algorithms when analyzing SIRAL Level 2 Elevations across the 

contiguous Greenland Ice Sheet (GrIS): Offset Center of Gravity (OCOG) and UCL Land-Ice elevation (ULI). The ULI 60 

retracker fits incoming waveform data to a Brown - Hayne Model adapted to the CryoSat-2 instrument (European Space 

Agency, 2019), which assumes that the data are a convolution of a point target response, the effective area illuminated versus 

time, and the ocean surface roughness function (Garcia et al., 2014). The retracker then infers the location of the significant 

surface return through the slope of the waveform’s leading edge (LeS) (Schlembach et al., 2020) (Figure 1). The LeS has an 

inverse relationship with the waveform’s Leading-edge width (LeW), assuming a constant amplitude (Figure 1). The OCOG 65 

retracker, in comparison, is an empirical threshold retracker that relies on shape of the overall width of the waveform to 

locate the significant wave surface (Ferraro & Swift, 1995), (Tourian et al., 2012).   
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Figure 1: Idealized CryoSat-2 radar waveform (Modified from Simonsen, S. B., & Sorensen, L. S. (2017)). The Leading 
Edge Width (LeW) is defined as the time or distance it takes for the returning radar waveform to reach peak amplitude from 
baseline, and the Leading Edge Slope (LeS) is defined as the slope of the waveform during the bins corresponding to the 
LeW. LeW and LeS have an inverse relationship when the waveform’s amplitude remainst constant. The UCL-Land Ice  85 
(ULI) Retracker models the location of the significant surface height based on the LeS (Schlembach et al., 2020). The 
OCOG retracker, in comparison, relies on shape of the overall width of the waveform to locate the significant wave surface 
(Ferraro & Swift, 1995), (Tourian et al., 2012).   
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While in many cases the choice of retracker is inconsequential, UCL-Land Ice’s dependence on LeW, which itself can change 

based on the surface conditions of the targeted surface (Ashcraft & Long, 2005; Legrésy & Rémy, 1997; Nghiem et al., 2001; 

Nilsson et al., 2015; Simonsen & Sørensen, 2017), may cause inconsistencies if applied uniformly across the GrIS where 

surface conditions differ across glacial regimes (Benson, 1996; Nghiem et al., 2001, 2012; Polashenski et al., 2014; Rizzoli et 95 

al., 2017). 

 

It has been shown, for instance, that the 2012 Melting Event created a Level 2 elevation bias of 89±49 cm at the North 

Greenland Eemian Drilling Project (NEEM) by artificially decreasing the surrounding waveform’s LeW and radar penetration 

depth in the creation of a more specular melt layer (Nilsson et al. 2015).  Since the OCOG Retracker empirically fits a rectangle 100 

across the waveform to estimate the amplitude (Ferraro & Swift, 1995) (Tourian et al., 2012) and is not as dependent on LeS 

as in the ULI retracker, this paper hypothesizes that it should generate a truer elevation trend regardless of shallow subsurface 

changes such as superficial melting.   

 

3. Methodology 105 

We created a framework to calculate and evaluate Level 1B Baseline D LeW and Level 2 elevation time series at any given 

location on the GrIS within CryoSat-2’s Low Resolution Mode (LRM) zone (Ronan et al., 2024). This study in particular 

focuses on NEEM and Summit Station in the dry-snow zone and Raven Camp in the percolation zone (Benson, 1996; Nghiem 

et al., 2001, 2012; Polashenski et al., 2014; Rizzoli et al., 2017) (Figure 2). The framework begins by ingesting Level 1B 

waveforms that were collected within a 20 km radius of NEEM, Summit Station, or Raven Camp, assuming homogeneity 110 

within the shallow subsurface across a 125.6 km2 area (Ronan et al., 2024). Atypical 1B waveforms lacking a characteristic 

rise to a distinct peak are filtered out, and we calculate the LeW of those remaining. We then produced a time series of one-

week average LeW from 2010 to 2021 (Ronan et al., 2024). 

 

The framework generates an elevation plane of best-fit from a monthly aggregation of Level 2 elevations within the 125.6 km2 115 

area, and evaluates the plane at the study location. Level 2 elevations are aggregated monthly as there are not enough collections 

weekly for a robust multiple regression (Ronan et al., 2024).  
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Figure 2: Study sites, elevation (Howat et al., 2015) and mean annual snow melt (Noël et al., 2019) within the LRM Boundary. 
Raven experiences three orders of magnitude more melt than Summit and two orders of magnitude more melt than NEEM 
(Noël et al., 2019). Mean annual snow melt is derived from 1958 to 2019 RACMO2.3p2 time series (Noël et al., 2019). 
 130 

 

 

The aggregated time series for both Level 1B LeW and Level 2 elevations are analyzed using the Bayesian Estimator for 

Abrupt Seasonality and Trend (BEAST) algorithm (Zhao et al. 2019), using a 1/8th year interval to derive trends within the 

clustered time series (Ronan et al., 2024). One outlier cluster was removed from each site’s elevation time series (2010-09-13 135 

at Summit Station and 2021-08-24 at Raven Camp). Such clusters were removed for containing elevations greater or less than 

six standard deviations from the mean of the remaining clusters in the time series. The resulting trends are used to characterize 

and analyse Level 1B LeW and Level 2 elevation values.  

 

To account for the difference in aggregation period and allow for separate correlation analysis, Level 1 LeW values are finally 140 

interpolated in time to the same dates as Level 2 Elevations (Ronan et al., 2024). 

4. Results 

4.1. NEEM 

LeW at NEEM increases negligibly from 2010.62 to 2012.5 by 1.99% (6.97 m to 7.12 m) (Figure 3A). From 2012.5 to 2012.62, 

the LeW abruptly decreased by 46.6% to 4.43 m, and then steadily increased back to 6.20 m (33.4%) and slightly decreases to 145 

5.67 m (-9%) in 2012.62 (Figure 3A). The LeW at NEEM is inversely related to ULI retracked Level 2 elevations (TTT, 𝛼 =

0.05, r = -0.53, p < 0.0001), and not significantly correlated to the OCOG retracked Level 2 elevations (TTT, 𝛼 = 0.05, r = 

0.03, p = 0.81084). It is noted that the elevation derived from the OCOG retracker at NEEM is on average ~1 m higher than 

corresponding elevations from the ULI retracker (Figure 3B,3C). 
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Figure 3: NEEM OCOG, UCL-Land Ice Level 2 retracked elevations, and Level 1B LeW. The LeW at NEEM is inversely 
related to ULI retracked Level 2 elevations (TTT, α=0.05, r = -0.53, p < 0.0001), and not significantly correlated to the OCOG 165 
retracked Level 2 elevations (TTT, α=0.05, r = 0.03, p = 0.81084). OCOG derived elevations are on average ~1 m higher than 
corresponding elevations from the ULI retracker. 

 

 

4.2. Summit Station 170 

ULI retracker derived elevation trends contain an abrupt increase in July of 2012, followed by a linear decrease in elevation 

until ~2018. LeW at Summit increased from 2010.5 to 2012.38 by 36.1% (5.91 m to 8.52 m) (Figure 4A). From 2012.38 to 

2012.5, the LeW abruptly decreased by 49.2% to 5.15 m, and then steadily increased to 8.36 m in 2018.99 (Figure 4A). The 

LeW ultimately decreased down to 7.22 m in 2019.58 (-15.8%) and recovered back to 7.92 m in 2021.62 (Figure 4A). The 

LeW at Summit Station are inversely related to ULI retracked Level 2 elevations (TTT, 𝛼 = 0.05, r = -0.71 p < 0.0001), and 175 

not significantly correlated to the OCOG retracked Level 2 elevations (TTT, 𝛼 = 0.05, r = -0.06, p = 0.59046). It is noted 

that the elevation derived from the OCOG retracker at Summit Station is on average ~2 m higher than corresponding 

elevations from the ULI retracker (Figure 4B, 4C). 
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Figure 4: Summit Station OCOG, UCL-Land Ice Level 2 retracked elevations, and Level 1B LeW. The LeW at Summit Station 
are inversely related to ULI retracked Level 2 elevations (TTT, α=0.05, r = -0.71 p < 0.0001), and not significantly correlated 185 
to the OCOG retracked Level 2 elevations (TTT, α=0.05, r = -0.06, p = 0.59046). OCOG derived elevations are on average ~2 
m higher than corresponding elevations from the ULI retracker. 
 

 

4.3. Raven Camp 190 

Unlike NEEM and Summit Station, where there are significant changes in LeW over time (Figure 3A, 4A), the LeW time 

series at Raven Camp remains constant (Figure 5a).  We note that the average LeW at Raven is a full 2 m wider than the 

largest LeW cluster at Summit (Figure 5C, 5C) (see Discussion for more information). In addition, the LeW time series from 

Summit Station and NEEM shows a single large and abrupt LeW decrease during the July 2012 melt event (Figure 5A), but 

no such abrupt change is found in the corresponding LeW time series at Raven Camp. Finally, the elevation estimates from 195 

the two retrackers at Raven camp follow a different pattern than at Summit Station: the variability of elevations derived from 
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the Land-Ice Retracker is comparable to that of OCOG, and their means are comparable to each other (Figure 5B, 5C). 

Unlike at Summit Station, the ULI Retracker shows no significant trends during the study period (Figure 5B) or noticeable 

bias associated with the LeW (TTT, 𝛼 = 0.05, r = -0.02 p =0.82634). The OCOG (Figure 5C) behaves the same as in 

Summit Station, with no noticeable bias associated with the LeW (TTT, 𝛼 = 0.05, r = -0.071 p =0.48564). 200 

 

 
Figure 5: Raven Camp OCOG, UCL-Land Ice Level 2 retracked elevations, and Level 1B LeW. The ULI retracker shows no 
significant trends during the study period (Figure 4C) or noticeable bias associated with the LeW (TTT, α=0.05, r = -0.02 p 
=0.82634). OCOG derived elevations have no noticeable bias associated with the LeW (TTT, α=0.05, r = -0.071 p =0.48564). 205 
 

5. Discussion 

This study asserts that changes in dry snow zone Level 2 ULI elevations are artifacts of a changing LeW, which in turn are 

caused by inter and intra seasonal changes in the shallow subsurface. Previous research has demonstrated that when corrected 

for downslope advection and seasonal variations, the surface elevation at Summit Station is increasing by 0.019 ma-1 (p 210 

<0.0001, ICESAT-2 Track 412) from at least 2008 to 2018 and is mostly dominated by snow accumulation (Hawley et al., 

2020). Given this near-constant trend at Summit Station and concurrence with Nilsson (2015), the ~2 m elevation variation 

calculated in this study using the ULI elevations at Summit Station and NEEM are unlikely to represent actual elevation change 
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and is likely an artifact of the waveform’s changing LeW. Laser altimetry measurements further corroborate this conclusion 

as they indicate that the range of surface elevation change within the time frame is one order of magnitude smaller than the 215 

elevation changes indicated by the ULI retracker (Kuipers Munneke et al., 2015). Unlike OCOG derived elevations, which 

remain statistically uncorrelated with LeW at NEEM and Summit Station, ULI derived elevations are found to have an inverse 

relationship with LeW. Such a relationship can be explained through the inner mechanics of the ULI retracker itself; a 

decreased LeW will result in an increased LeS and decreased noise floor, which, when ingested into the Brown – Hayne Model, 

will find a retracked point in the waveform earlier, which ultimately decreases the calculated time-of-flight of the radar signal 220 

and results in an artificially high surface elevation.   

 

Given the OCOG-derived elevations are ~1m higher than in the ULI algorithm at NEEM and Summit, we assess that the 

OCOG behaves as a low-threshold retracker. The OCOG algorithm places the retracked points earlier in the waveform which 

results in a decreased time-of-flight of the radar signal. As such, OCOG derived elevations escape most artifacts from a 225 

changing LeW that hinder the ULI retracker.  

 

Consistent with Nilsson (2015), we also note significant drops in LeW at NEEM (-46.6%) and Summit Station (-49.2%) 

corresponding to the July 2012 Melting Event. We assert that an influx of refrozen meltwater during the 2012 Melting Event 

on the surface and in the immediate shallow subsurface resulted in a more specular surface and reduction in radar waveform 230 

penetration depth (Nilsson et al., 2015), which significantly increased the surface to volume scattering ratio. Such a dramatic 

increase in this ratio results in a sharp decrease in a waveform’s LeW. As the melting event subsides and more climatologically 

average weather conditions return, the LeW increases as the melt layer is buried and the surface to volume scattering ratio 

moves back towards pre-melt values. We see that the LeW at Summit has a higher recovery rate than NEEM, which can be 

explained by Summit’s higher average snow accumulation rates (Noël et al., 2019). 235 

 

This study also notes a second abrupt decrease in LeW at Summit in Winter 2019 and NEEM in Winter 2020, with no reported 

melting event. This may be due to a period of elevated surface wind speeds that, through wind packing, created wind slabs and 

crusts (Sommer et al., 2018; Sommer, 2018) and/or removed an upper layer of the loosely layered snowpack. Wind slabs and 

crusts would result in a decreased LeW through the same mechanism as the melting crust generated from the 2012 Melting 240 

Event. We also note that Summit’s LeW is rising at the beginning of the dataset up until the 2012 Melting Event (Figure 4A); 

it is possible that there was another melting or wind event pre-2010 from which the LeW is recovering. More research is 

needed to investigate the impacts of wind events on the LeW, and to determine the cause of the increasing LeW up until July 

2012. 

 245 

Whereas NEEM and Summit Station within the dry snow zone experience shallow subsurface changes resulting in LeW 

changes and therefore changes in ULI-derived elevations, no such processes are observed at Raven Camp. Raven experiences 
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three orders of magnitude more melt than at Summit and two orders of magnitude more melt per year than at NEEM (Noël et 

al., 2019), and as such, Raven’s shallow subsurface contains vastly more melt layers. We assess that these melt layers keep 

Raven’s LeW high (~2 m higher in Raven than in NEEM or Summit) through the decrease in penetration depth, and keep the 250 

volume to surface scattering ratio low. Such a low ratio suppresses the LeW signal from snow accumulation and minimizes 

the effect of any high-profile melting crust, and perhaps wind slabs and crusts. 

 

6. Conclusion 

We analyzed ten-year trends in Level 2 OCOG and UCI retracked GrIS surface elevations, as well as Level 1B LeW from 255 

2010 to 2021. We assess that abrupt 1st order LeW changes within the dry snow zone are a function of large-scale melting 

events and perhaps wind packing events, whereas 2nd order trends are a function of snowpack recovery. We provide supporting 

evidence to the assertion of Nilsson et al. (2015) that climatological events impact elevations derived from CryoSAT-2’s 

SIRAL instrument. We find that the ULI retracker becomes biased within the dry snow zone during periods of intense melt, 

changing snowpack, and potentially wind events. This is apparent in changes in Level 1B LeW which result in a changing 260 

position of the retracked point in the Brown-Hayne Model.  

 

The results from this study indicate that future satellite radar altimeters covering the GrIS dry snow zone must take into 

consideration climatologically significant events, such as melting events and potentially high-speed wind events and snow 

accumulation patterns, when analyzing elevations derived from model retracking algorithms. 265 
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