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Summary. This study explores the impact of climatic variability on root zone water storage capacities thus on hydrological 

predictions. Analysing data from 286 areas in Europe and the US, we found that despite some variations in root zone storage 

capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited 

effect on water storage and river flow predictions. 

Abstract. This paper investigates the influence of multi-decadal climatic variability on the temporal evolution of root zone 15 

storage capacities (Sr,max) and its implications for streamflow predictions in the Meuse basin. Through a comprehensive 

analysis of 286 catchments across Europe and the US that are hydro-climatically comparable to the Meuse basin, we construct 

inter-decadal distributions of past deviations in evaporative ratios (IE) from expected values based on catchment aridity (IA). 

These distributions of ΔIE were then used to estimate inter-decadal changes in Sr,max and to quantify the associated 

consequences on stream flow predictions in the Meuse basin. Our findings reveal that while catchments do not strictly adhere 20 

to their specific parametric Budyko curves over time, the deviations in IE are generally very minor, with an average ΔIE = 0.01 

and an interquartile range IQR= -0.01 to 0.03. Consequently, these minor deviations lead to limited inter-decadal changes in 

Sr,max, mostly ranging between -10 and +21 mm (-5% to +10%). When these changes ΔSr,max are accounted for in hydrological 

models, the impact on streamflow predictions in the Meuse basin is found to be marginal, with the most significant shifts in 

monthly evaporation and streamflow not exceeding 4% and 12%, respectively. Our study underscores the utility of parametric 25 

Budyko-style equations for first order estimates of future Sr,max in hydrological models, even in the face of climate change and 

variability. This research contributes to a more nuanced understanding of hydrological responses to changing climatic 

conditions and offers valuable insights for future climate impact studies in hydrology. 

1 Introduction 

Transpiration from vegetation is, on average, the largest water flux that leaves terrestrial hydrological systems (Jasechko, 30 

2018). In spite of some uncertainty (Coenders-Gerrits et al., 2014), its magnitude is controlled by the interplay between sub-
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surface water supply and canopy water demand (Eagleson, 1982; Milly, 1994; Rodriguez-Iturbe et al., 2007; Donohue et al., 

2007; Jaramillo et al., 2018). Both, individual plants but also the composition of plant communities within given spatial 

domains (for brevity hereafter referred to as vegetation), have over the past adapted to local environmental and hydro-climatic 

conditions to ensure continuous and sufficient access to water, nutrients and light which has allowed their survival (Yuan et 35 

al., 2019; Ma et al., 2021). Adaptation strategies include, besides others, the regulation of water use efficiency (e.g. Troch et 

al., 2009; Flo et al., 2021) or the adaptation of the extent of root systems so that roots penetrate large enough subsurface pore 

volumes for water supply to satisfy transpiration demand during dry periods (e.g. Gao et al., 2014; Fan et al., 2017). This 

subsurface pore volume between field capacity and permanent wilting point defines the maximum water volume that is within 

the reach of roots and thus available for plant transpiration, hereafter referred to as root zone storage capacity Sr,max (mm). 40 

Indeed, Sr,max is a core property of terrestrial hydrological systems as it regulates to a large part the partitioning of water fluxes 

into drainage of liquid water, and thus eventually stream flow Q (mm d-1), and vapour released to the atmosphere as 

transpiration ET (mm d-1) and interception/soil evaporation EI (mm d-1) (Savenije and Hrachowitz, 2017).  

At the catchment scale, Sr,max has in the past been quantified with three methods. Firstly, by calibration as parameter of 

hydrological models (e.g. Fenicia et al., 2008; Coxon et al., 2014; Fowler et al., 2020; Bouaziz et al., 2021; Hanus et al., 2021; 45 

Wang et al., 2023), secondly as product from estimates of average root depth, soil porosity and water content at field capacity 

(e.g. Clark et al., 2008; Maxwell et al., 2015) and thirdly by following optimality principles and thus maximizing variables 

such as net primary production, transpiration rates or others (e.g. Kleidon, 2004; Guswa, 2008; Sivandran and Bras, 2012; 

Speich et al., 2020). Although all three methods above are correct in principle, insufficient data often limits their use. For 

example, although there are observations of root-depth of several thousand individual plants worldwide (Guerrero-Ramírez et 50 

al., 2021), it is difficult to meaningfully upscale these values to plant communities with different compositions, ages or 

densities. In addition, these estimates are mostly snapshots in time reflecting past conditions and, similar to the calibration 

method, do not give any indication about the potential future evolution of Sr,max. 

Alternatively, there is increasing evidence that Sr,max can be robustly estimated exclusively based on water balance data, 

i.e. long-term estimates of precipitation P (mm d-1) and actual evaporation EA = ET + EI (e.g. Donohue et al., 2012; Gentine et 55 

al., 2012; Gao et al., 2014, 2016; DeBoer-Euser et al., 2016; Wang-Erlandsson et al., 2016; Dralle et al., 2021; Hrachowitz et 

al, 2021; McCormick et al., 2021; van Oorschot et al., 2021; Stocker et al., 2023). Under the assumption that vegetation 

allocates resources in an efficient way between above- and sub-surface growth (Guswa, 2008; Schymanski et al., 2008), root 

systems and thus Sr,max will not be larger than necessary to guarantee access to sufficient water during dry periods with certain 

return periods. The water volume that in the past has been transpired during the driest periods and that can be estimated via 60 

the water balance must have been accessible to roots and therefore reflect the magnitude of the water volume that was stored 

in the sub-surface and accessible to plants during these dry periods, i.e. Sr,max.  

This approach offers the advantage that an evolution of Sr,max over time, either through natural adaptation to changing 

hydro-climatic conditions (e.g. Jaramillo et al., 2018) or through human interventions such as deforestation (e.g. Nijzink et al., 

2016a; Hrachowitz et al., 2021) and irrigation (van Oorschot et al., 2024), is manifest in changes in dry period transpiration 65 
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ET. This offers an opportunity to not only trace the past evolution of Sr,max over time, but together with projections of future 

hydro-climatic conditions, including P and EP, also to quantify its potential future trajectories and the associated effects of this 

temporal evolution of Sr,max on the hydrological response.    

More specifically, estimating Sr,max from the water balance requires knowledge of EA. For past conditions this can be 

robustly estimated from the water balance by assuming negligible storage change, i.e. dS/dt ~ 0, which is satisfied for the vast 70 

majority of catchments world-wide over time-scales of around 10 years (Han et al., 2020). Climate model projections can 

generate, besides estimates of future P and potential evaporation EP (mm d-1), also estimates of future EA. However, the latter 

are subject to major uncertainties (e.g. van Oorschot et al., 2021). As an alternative method, non-parametric formulations of 

the Budyko hypothesis demonstrate that the long-term partitioning of water fluxes, expressed as the evaporative index IE = 

EA/P = 1 – Q/P (-), and thus the hydrological response of catchments globally is to the first order controlled by the aridity index 75 

IA = EP/P (Schreiber, 1904; Oldekop, 1911; Budyko, 1948). To reduce the scatter around this non-parametric Budyko-style 

curves and to assign catchments a unique position in the IA – IE space, parametric re-formulations as for example the Tixeront-

Fu equation (Tixeront, 1964; Fu, 1981; Zhang et al., 2004) and similar expressions (see Andreassian et al., 2016) were 

developed: 
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where ω (-) [1,∞) is a catchment specific effective parameter, that aggregates all other influences on IE next to IA (Berghuijs 

and Woods, 2016). Higher values of ω indicate higher EA/P. 

As this relationship has emerged from catchment responses, and thus also vegetation, having adapted to past hydro-climatic 

conditions, expressed by IA, it is plausible to assume that the hydrological partitioning IE of a catchment will eventually adapt 85 

to a changing future IA in a corresponding way by moving along its catchment specific curve defined by ω. This reasoning 

then allows to estimate future EA based on future projections of P and EP (Roderick and Farquhar, 2011; Wang et al., 2016; 

Liu et al., 2020). As a consequence, the effects of a changing future EA on the future root zone storage capacity Sr,max can be 

quantified. In contrast to the vast majority of climate impact studies, which in the absence of further information, assume time-

invariant Sr,max even under changing future climate (e.g. Prudhomme et al., 2014; Brunner et al., 2019; Hakala et al., 2020; 90 

Rottler et al., 2020; Hanus et al., 2021), the use of such a time-variant formulation of Sr,max as parameter in hydrological models 

has the potential to provide more reliable predictions of the future hydrological response of catchments, as for example 

demonstrated in a recent proof-of-concept study by Bouaziz et al. (2022) for the Meuse basin in North-West Europe. They 

found with model simulations that the adaptation of Sr,max to future climate conditions, expressed as IA, can cause major shifts 

in seasonal water supply. This involved future increases of Sr,max, and thus increases vegetation-accessible sub-surface water 95 

volumes which lead to increases in Summer EA by up to 15%, which in turn reduced groundwater recharge that resulted in 

10% decreases in late-summer and autumn groundwater storage, eventually causing winter flows that can be up to 20% lower 

as compared to model runs that used constant values of Sr,max estimated from past hydro-climatic conditions. These findings 
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are qualitatively consistent with the results of Speich et al. (2020), who reported significant changes in modelled stream flow 

when replacing a static parameter to describe Sr,max by a forest dynamics model. More generally, Wagener et al. (2003) and 100 

Merz et al. (2011) documented the role of time-variant model parameters including Sr,max (in their papers referred to as root 

constant and FC, respectively) by comparing model calibrations over multiple time windows. In a different approach, the 

importance of time-variable vegetation dynamics was demonstrated by Duethmann et al. (2020), who used remotely sensed 

vegetation indices including NDVI to account for temporal variations in evaporation surface resistance in the Penman equation, 

leading to considerably improved model skill to reproduce observed river flow over multiple decades. 105 

A major assumption underlying the approach of Bouaziz et al. (2022) is that under changing future conditions, catchments 

will indeed follow their specific Budyko curve as defined by the time-invariant parameter ω, which describes the long-term 

average past conditions. The resulting IE is in the following referred to as the expected IE,exp. Several recent studies have pointed 

out that this assumption may not strictly hold and that ω itself may be subject to fluctuations over time (e.g. Berghuijs and 

Woods, 2016; Reaver et al., 2022). While of minor relevance for humid environments, IE, and thus EA, becomes proportionally 110 

more sensitive to fluctuations in ω with increasing aridity IA (Gudmundsson et al., 2016). As a consequence, it has to be 

expected that estimates of future EA and the associated Sr,max, are subject to uncertainties or deviations ΔIE,exp from IE,exp that 

are not accounted for by Bouaziz et al. (2022). 

The overall objectives of this paper are thus to (1) quantify the deviations in IE following changes in IA based on historical 

observations and (2) to analyse how this has in the past propagated further into uncertainties in time-variant estimates of Sr,max 115 

in contrasting environments over multiple decades in a large sample approach using long-term water balance data from 286 

catchments from Great Britain (GB), the US and the Meuse basin. In a direct follow up to Bouaziz et al. (2022), who modelled 

the impact of a changing future climate, without accounting for deviations in IE and thus uncertainties in Sr,max, on the 

hydrological response in several catchments of the Meuse basin, we will then in a third step, using the same model, (3) quantify 

the additional effect of deviations in IE and thus uncertainties in Sr,max on the hydrological response in the Meuse basin and 120 

compare it to previous stream flow predictions in the Meuse basin (Bouaziz et al., 2022), that do not account for these 

uncertainties. Specifically, we will test the hypothesis that inter-decadal evolution of Sr,max, reflecting vegetation adaptation to 

factors other than IA, which is manifest in deviations from the expected future IE,exp and thus from the associated future Sr,max, 

lead to significant changes in the predicted future hydrological response in the Meuse basin and need to be accounted for in 

hydrological climate impact studies.  125 

   

2 Study area & Data 

2.1 Study area 

The hydrological model experiment in this study is done for the Meuse river basin upstream of Borgharen at the border 

between Belgium and the Netherlands (Figure 1), which spans an area of 21,300 km2 in North-West Europe. To a large part 130 
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located in the Ardennes, a rolling hill landscape characterized by ridges and incised valleys, the elevation reaches up to around 

650m.  Approximately 60% of the basin is used for agriculture, while 30% is covered by forests (Bouaziz et al., 2022).  

The Meuse basin is characterized by a temperate humid climate with average annual precipitation of around 920 mm yr-1, 

potential evaporation of around 610 mm yr-1, and streamflow of around 400 mm yr-1. The Meuse is a rain-fed river with a 

response time of several hours up to a few days. Transient snow packs can be present for a few days in some parts of the basin 135 

but are overall of minor importance (Bouaziz et al., 2021). The streamflow has strong seasonality, with summer low flows and 

high winter flows, which are on average four times higher than the summer flow (De Wit et al., 2007). Precipitation falls 

relatively homogenously throughout the year and the seasonality of the streamflow is thus mainly caused by the seasonal 

differences in solar energy input and thus evaporation.  

2.2 Data 140 

To quantify the deviations ΔIE,exp from expected IE,exp, we adopted a large sample strategy using long-term water balance 

data from catchments in contrasting environments.  

For the Meuse river basin, daily precipitation, temperature and radiation was obtained for the 1989 – 2018 period from the 

E-OBS v20.0 dataset (Cornes et al., 2018) and pre-processed as described by Bouaziz et al. (2022). Temperature was 

downscaled using a digital elevation model and a fixed temperature lapse rate, while potential evaporation was estimated using 145 

the Makkink method (Hooghart and Lablans, 1988). This method was chosen to balance availability of the required data with 

its suitability for hydrological model applications (Oudin et al., 2005). Monthly bias correction was applied to address 

underestimation of precipitation. Daily stream flow data was available for 23 catchments within the Meuse basin from water 

authorities in Belgium (Service publique de Wallonie), France (Eau France) and the Netherlands (Rijkswaterstaat) for various 

time periods between 1989 – 2018 (Table 1). Note, that the stream flow data at station Borgharen in the Netherlands is 150 

constructed by combining observations from the nearby stations St. Pieter on the Meuse and Kanne on the Albert Canal (De 

Wit et al., 2007).  

Long-term temporal changes in IE,exp and deviations ΔIE,exp therefrom that can be quantified in the Meuse basin remain 

limited to the 23 catchments that are gauged and stream flow records of 30 years at most. To increase the sample size in space 

and time, and to encompass a broader range of climates, we have in addition included data from catchments in GB and the US, 155 

available through the CAMELS GB (Coxon et al., 2020) and CAMELS US (Addor et al., 2017) databases for the time-periods 

indicated in Table 1. To ensure consistency, potential evaporation across all datasets was recalculated using the Makkink 

equation based on mean daily temperature and shortwave radiation (Hooghart and Lablans, 1988). From the full set of 671 

catchments available in each of the two CAMELS databases, we excluded those from the analysis that exhibited long-term IE 

> IA, indicating that EA exceeds EP and thus the energy limit, which is an indicator of major data errors or significant 160 

unaccounted water export to adjacent catchments for example via groundwater exchange or irrigation water abstraction 

(Bouaziz et al., 2018). This does not imply that catchments retained for our analysis are not subject to data errors or 
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unaccounted water exports. Although the effect of spurious results cannot be completely avoided, removing catchments which 

exhibit clear evidence for water balance deficits can at least reduce the impact of spurious effects.  

 165 

In addition, catchments were excluded from the analysis if they did not meet the criteria of minimal human impact or 

received more than 10% of their annual precipitation as snow. The exclusion of catchments with snowfall was necessary due 

to the temporary water storage capacity of snow, which can lead to inaccurate estimation of root zone storage capacity due to 

delayed water input (Dralle et al., 2021). This resulted in a total of 286 catchments we have used for the subsequent analysis 

(23 – Meuse basin; 94 – CAMELS GB; 169 – CAMELS USA; Figure 2) and which cover a wide range of hydro-climatic 170 

conditions, with the catchments in the Meuse basin being located at an intermediate position between the GB and US 

catchments (Figure 3). Finally, the data were segmented into distinct 10-year periods (Table 1), allowing us to quantify decadal 

changes in IA, IE and the associated Sr,max as well as their decadal deviations from the expected values, i.e.  ΔIE,exp and ΔSr,max,exp.  

 

3 Methods 175 

Following the three specific research objectives as formulated in Section 1, the experiment of this study is executed in 

several subsequent steps, shown in Figure 4: for each of the 286 study catchments (a) estimate IE,obs, and thus ωobs and EA,obs 

from water balance data of multiple past individual decades in the period 1989-2018 (Section 3.1), (b) quantify the distributions 

of deviations ΔIE,exp and thus ΔEA,exp from the expected IE,exp and EA,exp between subsequent decades (Section 3.1), (c) estimate 

Sr,max,obs from past water balance data and thus from EA,obs of multiple past individual decades (Section 3.2), (d) quantify the 180 

distribution of deviations ΔSr,max,exp from the expected Sr,max,exp between subsequent decades based on ΔEA,exp (Section 3.2). For 

the 23 Meuse catchments then (e) for the 2009-2018 decade sample Sr,max,sam from the distribution ΔSr,max,exp (Section 3.2) and 

finally (f) quantify the effect of uncertainties in Sr,max on the hydrological response by using the sampled values Sr,max,sam as 

parameters in multiple runs and compare the results to model runs that assume ΔIE,exp= 0 and thus ΔSr,max,exp = 0 (Section 3.3). 

3.1 Estimate IE, EA and their deviations from expected values over time 185 

For each of the 286 study catchments we estimated for each individual decade i with a data record (see Table 1) the decadal 

average evaporation and the associated decadal average evaporative indices from the observed decadal average balance data: 

 

EA,obs,i = Pobs,i – Qobs,i                                                                                        (2) 

IE,obs,i = EA,obs,i/Pobs,i                                                                                         (3) 190 

 

Together with Pobs,i and EP,obs,i, expressed as aridity index IA,obs,i, we then use EA,obs,i to solve the parametric Tixeront-Fu 

formulation of the Budyko hypothesis (Eq.1) for ωobs,i for each decade for each individual catchment.  
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In a next step, assuming that Pobs,i+1 and EP,obs,i+1 of the following decade i+1 are projections of an unknown future, we solve 

Eq.(1) for IE to “predict” the expected evaporative index of that following decade, i.e. IE,exp,i+1 = EA,exp,i+1/Pobs,i+1, based on 195 

IA,obs,i+1 together with ωobs,i from the current decade, implying that each catchment will follow its specific curve defined by 

ωobs,i. The difference of the expected IE,exp,i+1 to the actually observed IE,obs,i+1 then represents the deviation ΔIE,exp,i+1 and thus 

ΔEA,exp,i+1 for that decade i+1 for each individual catchment. The deviations for all decades of all catchments are then 

aggregated to an individual distribution of deviations for each of the three datasets, i.e. ΔIE,Meuse, ΔIE,GB, ΔIE,US and for one 

distribution of all three data sets combined, i.e. ΔIE. The general procedure is illustrated in Figure 5. 200 

   

3.2 Estimate root zone storage capacity Sr,max and its deviations from expected values over time 

For each study catchment and each decade i with a data record we estimated the root zone storage capacity Sr,max,obs,i. This was 

done on basis of observed decadal water balance data as described elsewhere in detail (e.g. Nijzink et al., 2016a; Bouaziz et 

al., 2020; Hrachowitz et al., 2021).  205 

Briefly, the decadal averages EA,obs,i (Eq.2) of each study catchment were redistributed to daily values EA,obs,i(t) by rescaling 

daily observed values of EP,obs,i(t) according to: 

 

𝐸𝐴,𝑜𝑏𝑠,𝑖(𝑡) =
𝐸𝑃,𝑜𝑏𝑠,𝑖(𝑡)

𝐸𝑃,𝑜𝑏𝑠,𝑖
𝐸𝐴,𝑜𝑏𝑠,𝑖                                                                                   (4) 

 210 

where t is any given day within a decade i. Note, that the rescaling in Eq.4 is based on the simplifying assumption of a constant 

EA /EP ratio. This does not account for the effects of vegetation water stress and may cause inflated Sr,max estimates in regions 

with pronounced dry periods (e.g. van Oorschot et al., 2021). The catchments of the Meuse basin for which Sr,max was estimated 

in this study are characterized by abundant summer precipitation and rather short dry spells. The effect of a constant scaling 

factor on Sr,max is therefore minor.   215 

These daily estimates of evaporation EA,obs,i(t) were then used together with daily observed precipitation Pobs,i(t) to compute 

the time series of daily cumulative storage deficits for a specific year j according to: 

 

𝑆𝐷,𝑗,𝑖(𝑡) = {
∫ (𝑃𝑜𝑏𝑠,𝑖(𝑡) − 𝐸𝐴,𝑜𝑏𝑠,𝑖(𝑡)) 𝑑𝑡,          𝑖𝑓 ∫ (𝑃𝑜𝑏𝑠,𝑖(𝑡) − 𝐸𝐴,𝑜𝑏𝑠,𝑖(𝑡)) 𝑑𝑡

𝑡

𝑡0
≤ 0

𝑡

𝑡0

0,                                                              𝑖𝑓 ∫ (𝑃𝑜𝑏𝑠,𝑖(𝑡) − 𝐸𝐴,𝑜𝑏𝑠,𝑖(𝑡)) 𝑑𝑡
𝑡

𝑡0
> 0

                                          (5) 

 220 

Where t0 is the last preceding day on which the cumulative storage deficit SD,j,i(t) = 0. Note, that the effects of interception 

evaporation EI on the estimation of storage deficits are negligible as demonstrated by Bouaziz et al. (2020) and we therefore 

assumed that EA = ET.  
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The maximum annual storage deficit SD,j,i represents the volume of water that needs to be stored within the reach of roots 

to provide vegetation with continuous access to water in that year j is then obtained as: 225 

 

𝑆𝐷,𝑗,𝑖 = 𝑚𝑎𝑥(|𝑆𝐷,𝑗,𝑖(𝑡)|)                                                                                 (6) 

 

Previous studies suggested that in a wide spectrum of environments vegetation develops root systems that allow access to 

sufficient water to bridge dry spells with return periods of around 20 years (Gao et al., 2014; Nijzink et al., 2016a). The annual 230 

storage deficits SD,j,i of all years j in a specific decade i and catchment were therefore used to fit Generalized Extreme Value 

distribution. This then allowed to estimate the storage deficit with a 20-year return period which here was defined as root zone 

storage capacity for that decade Sr,max,obs,i = SD,20yr,i. Note, that strictly seen, Sr,max is a lower limit of the magnitude of vegetation 

accessible subsurface water volumes. Based on Eq. 2 – 6 it is an estimate of the water volume that was required in the past to 

meet the estimated EA (Eq. 2). In principle, to the total volume of Sr,max could be higher. However, several previous studies 235 

have shown that estimating Sr,max as parameter of a hydrological model calibrated to observed stream flow, leads to very similar 

values of Sr,max in many regions world-wide (e.g. Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016; Hrachowitz 

et al., 2021; Wang et al., 2024). In other words, this is evidence that models can only reproduce observed stream flow if S r,max 

does indeed represent a maximum vegetation accessible water volume and thus an upper limit.  

In a next step, assuming that Pobs,i+1 of the following decade i+1 is a projection of an unknown future, we follow the same 240 

procedure described above by Eqs.(4) – (6) but using ΔEA,exp,i+1 to “predict” the expected root zone storage capacity of the 

following decade Sr,max,exp,i+1. The difference between the expected Sr,max,exp,i+1 and the actually observed Sr,max,obs,i+1 then 

represents the deviation ΔSR,max,exp,i+1 for that specific catchment for decade i+1. The deviations for all decades of all catchments 

are then aggregated to an individual distribution of deviations for each of the three datasets, i.e. ΔS r,max,Meuse, ΔSr,max,GB, and 

ΔSr,max,US. 245 

 

3.3 Effect of ΔSr,max on stream flow 

To isolate and quantify the effect of uncertainties ΔSr,max in predicted Sr,max on predictions of the hydrological response we 

run several simulation scenarios with a process-based model for the 23 study catchments in the Meuse basin.  

3.3.1 Hydrological model 250 

The hydrological model used in this study is wflow-FlexTopo (de Boer-Euser, 2017; Verseveld et al., 2022), a fully 

distributed process-based model designed to represent spatial variability in hydrological processes. The modular model uses 

flexible model structures for selection of Hydrological Response Units (HRUs), which are delineated based on topography and 

land use. See Figure 6 for the a schematic representation of wflow-FlexTopo within one HRU.  
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Briefly, the each HRU consists of several storage components linked by fluxes, similar to comparable process-based models 255 

successfully used in previous studies (e.g. Fenicia et al., 2006; Euser et al., 2015; Gao et al., 2016; Fowler et al., 2020). Here, 

we have defined three HRUs that represent wetlands, hillslopes and plateaus, respectively and which are connected through a 

common groundwater storage (e.g. Hulsman et al., 2021). The HRUs were delineated using the MERIT hydro dataset at 60 m 

x 90 m resolution (Yamazaki et al., 2019), with a threshold of 5.9 m for the height above the nearest drainage (HAND; Renno 

et al., 2008) and a slope threshold of 0.13, following the methodology proposed by Gharari et al. (2011). The hillslopes are 260 

associated with forest and the largest part of plateaus are used for crop cultivation agriculture in the study region, as identified 

using CORINE land cover data (European Environment Agency, 2018). The areal fraction of each of the three HRUs was 

derived for each cell at a model resolution of approximately 600 m x 900 m similar to the sub-grid landscape variability 

implemented by Nijzink et al. (2016b) in the distributed mhM-model. All relevant model equations are given in Table 2. Note 

that Horton ponding and Horton runoff processes (Figure 6) have minor importance in the study region and were therefore 265 

switch-off for the model implementation in this study.  

The model was previously calibrated for at the most downstream gauge at Borgharen (Bouaziz et al., 2022) using a multi-

objective calibration strategy based on the Nash-Sutcliffe efficiencies of flows (ENS) as well as of the logarithm of flows 

(ENS,log), the Kling-Gupta efficiency of flow (EKG) and the monthly runoff coefficients as performance metrics (Bouaziz et al., 

2022). The model was subsequently evaluated for its skill to reproduce stream flow for at all other 22 stream gauges in the 270 

Meuse basin on basis of the same performance metrics.  

 

3.3.2 Scenarios 

The effect of uncertainties ΔSr,max in predicted Sr,max on predictions of the hydrological response in the 23 study catchments 

was then quantified by running the calibrated model for the 2009 – 2018 period  and replacing Sr,max with different “predictions” 275 

thereof for that period. Following the procedure to predict Sr,max and ΔSr,max (Section 3.2) from IE and ΔIE (Section 3.1), we 

have for this experiment used the decadal period 1999 – 2008 (p1) as basis to predict Sr,max and ΔSr,max for the period 2009 – 

2018 (p2) in three scenarios.  

- Baseline scenario (ΔSr,max = 0): estimate ωobs,p1 of the first decade p1 based on observed data Pobs,p1, EP,obs,p1 and Qobs,p1 

of that period. Subsequently, we have used these values together with Pobs,p2 and EP,obs,p2 of the second decade p2 to 280 

predict the expected IE,exp,p2 and finally Sr,max,exp,p2 for that second period p2 in each catchment. The calibrated Sr,max are 

then replaced in the model by the predicted values Sr,max,p2. Re-running the model with Sr,max,p2 for period p2 then 

provides the baseline output of the hydrological response assuming that the catchments follow their specific Budyko 

curves as defined by their individual ωobs,p1 and that therefore ΔIE,p2 = 0 and ΔSr,max,p2 = 0. This scenario is equivalent 

to the approach used by Bouaziz et al. (2022). 285 

- Scenario A (ΔSr,max ≠ 0): the catchments do not follow their specific Budyko curves. In this case, we used the combined 

distributions of historical deviations ΔIE from Meuse, GB and US datasets to determine ΔSr,max,p2. The predicted IE,pred,p2 
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for decade p2 was thus estimated by sampling 100 times from the distribution of deviations ΔIE and adding the sampled 

values to the expected value IE,exp,p2. This sample of 100 values of IE,pred,p2 then allowed to generate a distribution of 

100 values Sr,max,pred,p2 to be used in 100 model re-runs. Thus, each model run represents the effect of an error ΔIE in 290 

the estimation  of IE,exp,p2. The differences in the hydrological responses with respect to the baseline scenario were then 

quantified (Figure 7a). The distributions of ΔIE sampled in this scenario are based on all 286 catchments. They reflect 

a plausible overall distribution of ΔIE in rather cool, humid climates with comparable aseasonal precipitation 

distribution, similar to the Meuse basin.   

- Scenario B (ΔSr,max ≠ 0): the same as Scenario A, with the only difference that the not the full distribution of ΔIE from 295 

all three data sets combined was used. Instead, we have here limited the sampling distribution of deviations to ΔIE,Meuse, 

and thus to historical deviations in the Meuse basin only to account for potential effects of regionally different 

distributions of ΔIE (Figure 7b). 

 

4 Results 300 

4.1 Historical IE and deviations ΔIE from expected values over time 

For historical water balance observations of all three datasets, i.e. Meuse, GB and US, the decadal IE,obs exhibits deviations 

ΔIE from the expected values IE,exp (Figures 8b,d,f, 9), following decadal shifts in IA with medians of between ΔIA = -0.05  – 

0.11 (Figure 8a,c,e; Supplementary Figures S1 –  S3) or ~ -8.03% – 18.12% in relative terms. Overall, the ΔIE remains minor, 

and the distributions largely centre around zero although they do not generally follow Normal distributions as indicated by an 305 

analysis of Q-Q plots and Shapiro-Wilk tests for normality (Shapiro and Wilk, 1965). Differences are evident as indicated by 

non-parametric Wilcoxon rank-sum tests, that suggest significant differences (p < 0.05) in the ΔIE distributions of the different 

data sets and different decades. The median ΔIE,GB for GB is rather stable and varies only between 0 and 0.01 with rather 

narrow spread es shown by the interquartile ranges IQR ~ 0.03. This narrow scatter around zero and the stability over time 

allow balanced and rather robust predictions of IE with this data set. On the other hand, the distributions ΔIE,US for the US 310 

catchments are characterized by stronger fluctuations, with medians changing from -0.01 to 0.04 between the decades, and a 

somewhat wider spread with IQR ~ 0.04.    

The noticeable and significant shift towards higher, i.e. more positive ΔIE,US between these decadal distributions entail 

proportionally higher-than-expected evaporation for the later decade. In contrast, while for the first decade the catchments in 

Meuse basin have a median ΔIE,Meuse ~ 0  that is broadly consistent with the GB and the US catchments, the distribution 315 

experiences a major shift towards lower, i.e. more negative values with a median ΔIE,Meuse ~ -0.06 in the second decade, 

suggesting lower-than-expected proportional evaporation. However, this pattern may be an artefact of the limited sample size, 

consisting of only 9 and 23 catchments, respectively, in the Meuse basin, and should be interpreted with due care to avoid 

misinterpretations.   
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In the deviations ΔIE from the expected IE no apparent geographically pattern can be distinguished from visual analysis 320 

(Supplementary Material Figure S4). In particular for GB, adjacent catchments do frequently display opposing signs in ΔIE, 

indicating positive and negative deviations from expected IE within very close distances. 

Similarly, aggregating the individual distributions of ΔIE of all three data sets and all decades into one full distribution and 

stratifying this distribution in to individual distributions according to their aridity index IA in bins of 0.2 width (Figure 9), also 

does not exhibit systematic differences between the distributions. The median of all five distributions with ΔIE = 0.00 – 0.01 325 

close to zero and the spreads are characterized by only minor differences with values of IQR ~ 0.02 for IA = 0.2 – 0.4 and IQR 

~ 0.06 for IA = 0.8 – 1.0.  

To avoid the need to base the further analysis in the Meuse exclusively on the small sample of ΔIE,Meuse, we initially intended 

to construct more robust estimates of ΔIE in the Meuse by further stratifying the above according hydro-climatic and landscape 

indicators. However, this further attempt to find multi-variate relationships that link ΔIE with hydro-climatic and landscape 330 

indicators did not show clear and consistent results and is not further reported here. As alternative, we therefore decided use 

two extreme cases of distributions to sample ΔIE for the Meuse basins, i.e. Scenario A and Scenario B (Figure 9c; Section 

3.2.2.), in the subsequent modelling experiment. Based on the results above, the rationale behind using Scenario A is that the 

full distribution ΔIE describes a large sample of catchments. In the absence of clear pattern of which distribution of deviations 

ΔIE is more suitable for which type of environments, the full distribution, combing all data allows a conservative perspective 335 

as it contains a wide range of historically observed ΔIE in a wide range of different environments. In addition, note that the full 

distribution of ΔIE from all data with a median ΔIE = 0.01 and IQR = 0.04 is very similar to the distribution associated with 

the IA-bin 0.6 – 0.8 into which most of the Meuse basins fall. The use of the full ΔIE distribution in Scenario A is contrasted 

by Scenario B and its small sample distribution ΔIE,Meuse. The rationale of Scenario B is to conserve potentially relevant regional 

information that contained in ΔIE,Meuse and which may be under-represented in the full distribution due to the differences in the 340 

sample sizes.     

 

4.2 Historical Sr,max and its deviations ΔSr,max from expected values over time 

The general pattern of Sr,max estimated from historical water balance data following the procedure described in Section 3.2, 

is broadly consistent with previous studies (Gao et al., 2014; Wang-Erlandsson et al., 2016; deBoer-Euser et al., 2016; Stocker 345 

et al., 2023) and reflects the overall role of hydro-climatic conditions as control in water storage in the root zone of vegetation 

(Figure 10a). While in catchments in humid regions with low IA root zone storage capacities as low as Sr,max < 100mm are 

predominant, more arid regions with IA > 1 are characterized by significantly higher values of Sr,max > 300mm. In other words, 

vegetation in humid climates has developed smaller root systems due to shorter and less frequent dry spells, which ensure 

more regular rain water supply which can be directly used for transpiration. In contrast, vegetation in arid climates requires 350 

more extensive root systems to access sufficient water throughout the longer and more frequent dry spells. 
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     The changing hydro-climatic conditions between periods p1 and p2, expressed as changes in IA in Fig. 8, resulted in shifts 

in ΔSr,max,obs for p2. Depending on the data set, the median ΔSr,max,obs was between -24.9 for the Meuse data set and 13.6 mm 

for the US data set (Figure 11). The deviations ΔIE (Section 4.1) between p1 and p2 then caused corresponding deviations 

ΔSr,max,exp from the expected Sr,max,exp. The results illustrate that the absolute magnitudes and spreads of the deviations from 355 

expected root zone storage capacities, i.e. ΔSr,max,exp remain in general rather limited and closely centred around zero (Figure 

11), with a median ΔSr,max,exp = 1.39 mm (IQR = 19.2 mm) in GB and slightly more pronounced values of ΔSr,max,exp = 13.6 

mm (IQR = 43.7 mm) in the US. The relative deviations show a similar picture with medians of 0.8% (IQR = 11.9%) in GB 

and 4.8% (IQR = 16.5%) in the US. Reflecting the higher ΔIE,Meuse, ΔSr,max,exp with a median of -24.9 mm is characterized by 

more marked negative deviations in the Meuse basin, suggesting that the expected root zone storage capacity is overestimated 360 

and therefore smaller than expected.  

 As shown in Figure 10, both the absolute and relative magnitudes of ΔSr,max,exp do not show a clear relationship with 

IA. Throughout all types of environments, from humid to arid, most deviations ΔSr,max,exp remain closely confined to the range 

-25 – 25 mm or -5% - 5% in relative terms. The only exception are that the highest positive and negative ΔSr,max,exp occur in 

the aridity 0.75 – 1.0 aridity bin, with values reaching extreme values of -124 mm and + 147 mm, which may however also be 365 

a mere artefact of the considerably larger sample of catchments in this aridity zones than for more humid or more arid regions. 

 

4.3 Effect of ΔSr,max on stream flow predictions 

4.3.1 Overall model performance 

The model calibrated to observed stream flow at station Borgharen at the outlet of the Meuse basin captures the main 370 

features of the hydrological response at that location. Slightly underestimating low flows and overestimating a few peaks, such 

as in January 2011, the model performance at Borgharen was obtained as ENS = 0.85, ENS,log = 0.72 and EKG = 0.88 

(Supplementary Figure S5a). This is mirrored by the model’s ability to reproduce stream flow in the remaining 22 sub-

catchments (Supplementary Figure S5b,c), which largely exhibit only moderately lower performances with median ENS = 0.72, 

ENS,log = 0.75 and EKG = 0.80 (Supplementary Figure S5d). However, for two of the catchments (Modave and Jemelle) the 375 

model could not well reproduce the hydrological response. The underlying geology of these catchments is complex and they 

are likely experiencing major groundwater losses which are not accounted for in this model (Bouaziz et al., 2018). 

  

4.3.2 Changes in the hydrological response due to ΔSr,max –  Scenario A 

Sampling from the full distribution ΔIE of all 286 catchments, as described in Section 3.3.2, and re-running the model for 380 

period p2 with the associated values ΔSr,max the resulting modelled evaporation and stream flow were compared to that of the 

baseline scenario (ΔIE = 0 and  ΔSr,max = 0). Overall, it was found that the modelled annual average evaporation and stream 
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flow was affected only to a minor degree by ΔSr,max with respect to the baseline scenario, with median values of between ΔEA 

< ~ 5 mm yr-1 (< 1%) and ΔQ > ~ -6 mm  yr-1 (-1%) for all catchments.  

However, minor but distinguishable shifts in seasonal re-distribution of water fluxes compared to the baseline scenario 385 

could be observed. Early summer to early autumn EA increases on average by up to ~ 0.5 mm month-1, depending on the 

catchment. In relative terms this is equivalent to increases of up to ~ 0.6%  (Figure 12a). More specifically, at station Borgharen, 

ΔSr,max causes the highest annual change in June with a median ΔEA ~ 0.4 mm month-1 (~0.5% Figure 12b). Similar changes 

can be observed in other catchments (Figure 12c, d and Supplementary Material Figures S9 – S31). Higher summer EA due to 

ΔSr,max is contrasted by reduced winter stream flow, which generally reaches values of ΔQ that do not exceed ±~ -0.3 mm 390 

month-1 (~ -1%; Figure 12e). At Borgharen, the most pronounced changes occur in December with median ΔQ ~ -0.1 mm 

month-1 (~ -1%; Figure 12f). 

Differences between the baseline scenario and Scenario A also remain rather limited in terms of modelled annual maximum 

flow with a median ΔQmax, ~ -0.1 mm d-1 (< -1%) across all 23 study catchments in the Meuse basin, (Figure 13a). The most 

pronounced ΔQmax ~ -0.3 mm d-1 (~ -1%) was observed in the Le Mouzon Circourt-sur-Mouzon catchment, while at Borgharen 395 

ΔQmax ~ -0.1 mm d-1 (~ -1%) was found (Figure 13b). Annual minimum flows experienced only negligible overall increases 

of ΔQmin << 1% caused by ΔSr,max (Figure 13a).  

 

4.3.3 Changes in the hydrological response due to ΔSr,max –  Scenario B 

Alternatively, sampling from the sparse, regional distribution ΔIE,Meuse as described in Section 3.3.2 to estimate ΔSr,max for 400 

model re-runs, provided a perspective on how more extreme, regionally confined distributions of ΔIE may affect the 

hydrological response. Similar to Scenario A, the modelled average annual changes of ΔEA does not exceed ~ -38 mm yr-1 (~ 

-4%) and ΔQ does not exceed ~ 44 mm  yr-1 (~12%), compared to the baseline scenario. The effects of ΔSr,max thus remained 

modest across all study catchments in the Meuse basin, albeit slightly more pronounced than for Scenario A.  

In contrast, major differences were detected in the modelled seasonal water fluxes. On average, catchments experienced a 405 

reduction of summer evaporation, in particular in the months June and July, with ΔEA reaching up to ~ -3 mm month-1 (-4%) 

as shown in Figure 14a. Zooming in to the selected stations Borgharen, Ortho and Chooz, corresponding pattern of ΔEA can 

be found (Figures 14b-d) with the most pronounced ΔEA = -0.56 mm month-1 (-1%) at station La Meuse Goncourt 

(Supplementary Material Figure S28). Seasonal stream flow experienced partly considerable increases. The modelled increases 

ΔQ were, on average, most pronounced in late autumn and early winter across all catchments, with median increases of up to 410 

~ 3 mm month-1 (~12%) in November and ~ 4 mm month-1 (~8%) in December (Figure 14e). Similarly, at Borgharen median 

increases of ΔQ = ~ 1 mm month-1 (~12%) in November accompanied by minor decreases in the summer months were found 

(Figure 14f). 

The modelled annual maximum flows increased through for Scenario B with a median ΔQmax ~ 0.35 mm d-1 (~5%) across 

all study catchments in the Meuse basin (Figure 13a). The most pronounced ΔQmax ~ 1 mm d-1 (~6%) was observed in the La 415 
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Meuse Goncourt catchment, while at Borgharen ΔQmax ~ 0.2 mm d-1 (~5%) was found (Figure 13b). In spite of these partly 

marked increases in Qmax, the effect of ΔSr,max on annual minimum flows in Scenario B remained low and comparable to those 

from Scenario A. For all catchments ΔQmin was found to be close to zero (Figure 13a,b).  

  

5 Discussion 420 

Parametric formulations of the Budyko hypothesis, such as the Tixeront-Fu equation (Eq.1; Tixeront, 1964; Fu, 1981) have 

in the past been used to predict IE and thus future water partitioning based on changes in IA under the assumption that 

catchments follow their specific curves in the IA-IE space, as defined by parameter ω that is obtained from long-term historical 

water balance data (Roderick and Farquhar, 2011; Wang et al., 2016; Liu et al., 2020). Recently, several studies correctly 

observed that catchments do not necessarily follow their specific curves under changing environmental conditions raising the 425 

concern that parametric Budyko-style equations may therefore have little predictive power (Berghuijs and Woods, 2016; 

Reaver et al., 2022; Jaramillo et al., 2022). The absolute decadal fluctuations ΔIA = -0.05  – 0.11 across all data sets in our 

study are rather minor and closely corresponding to those reported by previous studies (e.g. Jaramillo et al., 2022; Ibrahim et 

al., 2024), although the relative changes may be somewhat higher. Following these absolute values ΔIA, our results indeed 

provide further evidence that such deviations ΔIE from expected IE are a widespread phenomenon. However, our results also 430 

illustrate that, although catchments do not strictly follow their specific curves at decadal time scales, the magnitude of 

deviations remains, overall, rather minor with a median of ΔIE = 0.01 and an IQR = -0.01 – 0.03 across all catchments in this 

study (Figure 10). In spite of some differences in detail, the general distributions of ΔIE from different datasets, regions and 

hydro-climatic conditions are broadly similar and no systematic differences linked to catchment properties or hydro-climatic 

conditions could be identified (Figures 9, 10). 435 

The root zone storage capacity Sr,max as a core property of terrestrial hydrological systems and parameter in hydrological 

models, can together with its evolution over time be robustly estimated at the catchment-scale based on water balance data 

(Gao et al., 2014; DeBoer-Euser et al., 2016; Wang-Erlandsson et al., 2016; Dralle et al., 2021; Hrachowitz et al, 2021; 

McCormick et al., 2021; van Oorschot et al., 2021, 2024; Stocker et al., 2023). This offers an opportunity to account for 

vegetation adaptation to changing hydro-climatic conditions with a time-variable parameter Sr,max for predictions with 440 

hydrological models. Bouaziz et al. (2022) were the first to demonstrate the potential of doing that in a recent proof-of-concept 

study. However, they estimated future Sr,max under the assumption that their catchments will strictly follow their specific curves 

in the IA – IE space as determined by parameter ω which was obtained from historical water balance data. In other words, they 

did not account for deviations ΔSr,max that result from deviations ΔIE. In addition, the analysis of Bouaziz et al. (2022), 

predicting future stream flow based on projected future water balance data, remained scenario analyses which they could not 445 

evaluate against actual observations. Sequentially addressing these knowledge gap, we here quantify distributions ΔIE from 

historical observed water balance and used these observed past deviations ΔIE to estimate past deviations ΔSr,max, which was 

not accounted for by Bouaziz et al. (2022). In a first step, we found that for the vast majority of 286 catchments analysed in 



15 

 

this study, characterized by a median historical Sr,max = 239.2 mm, the limited deviations ΔIE also resulted in ΔSr,max that 

remained narrowly confined between ~ -10 – 25 mm or -5 – 10 % (Figure 11), although some few regional outliers can reach 450 

higher values.   

In a second step, using samples of ΔIE from two distinct distributions in Scenarios A and B we estimated ΔSr,max for use as 

parameter in model simulations. Overall it was found with the more balanced Scenario A that ΔSr,max caused shifts in seasonal 

EA and Q, however, characterized by marginal magnitudes with the most pronounced changes ΔEA < 1 %, on average, 

occurring in June and for ΔQ ~ -1% in December, with similar pattern for the annual maximum and minimum flows, ΔQmax 455 

and ΔQmin, respectively.  For Scenario B, an example of a rather extreme, regionally confined ΔIE, the deviations showed 

somewhat higher magnitudes with ΔEA ~ -4 % in July and ΔQ ~ 12% in November and comparable pattern for ΔQmax and 

ΔQmin. 

Notwithstanding the above, it is important to bear in mind that, as in any catchment-scale hydrological experiment, the 

available data may be subject to various types of uncertainties, which can be further exacerbated by decisions in the modelling 460 

process (e.g. Beven, 2016; Nearing et al., 2016; Hrachowitz and Clark, 2017; McMillan et al., 2018) so that results have to be 

interpreted with due care. This is in particular true for the use of long time-series of data records generated by different data 

providers, potentially also using changing observation methods over time and for which, in many cases, homogenization to 

make them comparable is not a trivial task. In this study, the use of E-OBS precipitation data together with stream flow data 

from various data providers in Belgium, France and the Netherlands for the Meuse basin, as well as the CAMELS GB and US 465 

datasets initial analysis illustrated the presence of systematic differences in the water balances between the three individual 

groups of data sets. These differences could in a preliminary analysis here be largely attributed to different methods to estimate 

EP. While for the data record of the Meuse basin, the lack of more detailed consistent long-term data dictated the use of the 

Makkink equation based on temperature and incoming short-wave radiation, EP was estimated using the Penman-Monteith 

method in the CAMELS GB catchments and the Priestley-Taylor method in the CAMELS US catchments, respectively. In an 470 

attempt to homogenize across the data sets we therefore re-estimated EP in the GB and US catchments with the Makkink 

equation. Its simplicity and the exclusion of factors such as vapour pressure deficit or wind speed may have the potential to 

cause a certain level uncertainty, although it has previously been shown to produce plausible estimates of EP for use in 

hydrological models (Oudin et al., 2005).    

Another unresolved issue that emerged from our analysis is the considerable reduction of evaporation in the Meuse basin 475 

between the two study periods p1 (1999 – 2008) and p2 (2009 – 2018), as illustrated by the distribution of ΔIE that is 

characterized by remarkably more negative bias (Figure 9) than in any other study catchment. The origin of this pattern is 

unclear, but similar anomalies in the hydrological response have previously been reported for the mid-20th century by others 

(Fenicia et al., 2009). They put forward the hypothesis that major decadal fluctuations of IE in the Meuse basin may have been 

the result of active, large scale forest management. More specifically, forest rotation and a shift from deciduous to coniferous 480 

forest together with an increase in average forest age towards the end of the 20th century was hypothesized to have caused  IE 

fluctuations observed in the Meuse basin. While the relationship between stand age and evaporation is still under investigation 
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(Teuling and Hoek van Dijke, 2020), there is evidence that young forests tend to evaporate more than mature forests (e.g. 

Vertessy, 2001; Brown et al., 2005). Together with Dirkse and Daamen (2004) who noted that in the Netherlands, changes in 

forest management practices from clear-cutting and increased thinning resulted in a 10-year increase in the average age of 485 

trees between 1980 and 2001, from 43 to 53 years, this may indeed explain at least some of the ΔIE. observed in the Meuse 

basin, although it remains unclear why similar pattern were not observed elsewhere.  

Together, the results of this study suggest that although most catchments do not strictly follow their specific curves in the 

IA – IE space over time, the general magnitudes of deviations ΔIE are in general low enough to cause only very minor deviations 

ΔSr,max in predictions of root zone storage capacities. As a consequence, even under the assumption of rather exceptional ΔIE 490 

and thus ΔSr,max in Scenario B, the effects on the hydrological response remain limited. This further suggests that vegetation 

adaptation to factors other than IA and which are manifest in the deviations ΔIE and eventually in ΔSr,max, does overall not lead 

to major changes in the predicted future hydrological response in the Meuse basin. However, it is plausible to assume that in 

other regions that are characterized by stronger seasonal contrasts in liquid water supply – related to both, seasonal rainfall 

distribution and snow melt – similar deviations in ΔIE may lead to larger ΔSr,max and thus more pronounced effects on 495 

streamflow dynamics. Irrespective of that and in spite of not strictly following their specific curves, catchment estimates of 

future IE, based on changes in future IA may therefore still be considered useful as first order estimates to quantify the future 

evolution of parameter Sr,max in hydrological models for climate impact studies over decadal time scales.  

 

6 Conclusions 500 

In this study we have quantified the cascading effects of uncertainties in decadal predictions of evaporative ratios IE as a 

function of changes in catchment aridity IA on predictions of root zone storage capacities Sr,max and eventually on predictions 

of stream flow. In this study in the Meuse basin it was found (1) that, inferred from  long-term data from 286 catchments in 

Europe and the US that are hydro-climatically similar to the Meuse basin, catchments do not strictly follow their specific 

curves defined by parameter ω in the IA – IE Budyko space over multiple decades, but these deviations are characterized by 505 

limited magnitudes with average ΔIE =  0.01 (0.89%), (2) that the deviations ΔIE have a minor impact on predictions of Sr,max 

with the resulting deviations ΔSr,max ranging mostly between  -10 – 20 mm or -5 – 10 % finally (3) that these uncertainties 

ΔSr,max have only limited effect on the hydrological response in the Meuse basin: in spite of causing shifts in seasonal water 

supply, the magnitudes of these shifts in monthly EA and Q largely remain very minor (< 1%) and do not, even in the 

exceptional Scenario B, exceed 4% (EA) to 12% (Q). Overall, this suggests that uncertainties in predictions of IE based on 510 

parametric Budyko-style equations and the associated uncertainties in predictions of model parameter Sr,max do not cause major 

uncertainties in stream flow predictions in the Meuse basin and can thus be considered useful first order estimates in the 

absence of more detailed information.  
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  740 

(a) (b) 

Figure 1: (a) The location of the Meuse basin in North-West Europe, where the red color indicates the aridity 

index (IA) of the catchment, (b) The elevation range, river trajectory and gauges in the Meuse river basin. 

Gauges are indicated with orange dots. The catchments of Borgharen, Ortho, and Chooz are specifically 

highlighted (with green), as they are separately emphasized in some of the results and analyses. 
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  (a) (b) 

Figure 2: The locations of the catchments that are provided by the large sample datasets (a) CAMELS GB, (b) 

CAMELS USA. The red color indicates the aridity index (IA) of the catchment. 
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Figure 3:  Illustration of the long-term average values for the entire period of data analysis. 
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Figure 4: Overview of the methodological procedure. 
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  750 
Figure 5: The step-by-step process for calculating the error in IE (ΔIE) using data with three decades as an 

example. 

(a) 

(b) 

(c) 
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Figure 6: Schematic representation of the wflow FlexTopo model for a single class model including all storages 

and fluxes (Verseveld et al., 2022). 
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Figure 7: Overview of the scenario structure. p1 is the time period of 1999-2008 and p2 of 2009-2018. 
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Figure 8: Distributions of ΔIA per decade and per dataset CAMELS GB (a), CAMELS USA (c) and Meuse (e), 

and the deviations in estimating IE (ΔIE) for the different datasets CAMELS GB (b), CAMELS USA (d) and 

Meuse (f). 

(a) (c) (e) 

(b) (d) (f) 
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(a) 

(b) (c) 

Figure 9: (a) IE deviations (ΔIE) plotted per aridity index in the Budyko framework, for all datasets combined, 

(b)  Distributions of IE  deviations (ΔIE) corresponding to the aridity index groups from (a), (c) Distributions of 

IE  deviations (ΔIE) for all data combined and Meuse data. 
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(a) 

Figure 10: (a) Root zone storage capacities (Sr,max) in the Budyko framework for Meuse, CAMELS GB, and 

CAMELS USA catchments. (b) and (c) show the error in estimating the root zone storage capacity 

(ΔSr,max,exp) plotted in the Budyko framework by colour scale, in absolute values [mm] and in percentages 

[%] respectively. 

(b) 

(c) 
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Figure 11: The distributions of shifts in (a) ΔSr,max,obs , observed root zone storage capacity and (b) ΔSr,max,exp 

expected root zone storage capacity for the different datasets..  

(a) (b) 
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Figure 12: Change in evaporation and streamflow for scenario A. The change is calculated for every run as the difference between 

the evaporation (a-d) or streamflow (e-h) with the reference run (ΔIE = 0). The output for all years, and runs has been put together. 

The lightly shaded area represents the 90th and 10th percentiles, while the slightly darker shaded area represents the 25th to 75th 

percentiles. The black line represents the median. Images (a) and (e) display all catchments, (b) and (f) Borgharen, (c) and (g) 

Ortho and (d) and (h) Chooz. 

(a) (e) 

(b) (f) 

(c) (g) 

(d) (h) 
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 785 

  

Figure 13: Change in maximum flow (Qmax, left part of the violin) and 7-day minimum flow (Qmin, right part 

of the violin), in percentage of the reference run. The quartiles are indicated with dashed lines, for (a) all 

catchments and (b) Borgharen. 

(a) (b) 
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(a) (e) 

(b) (f) 

(c) (g) 

(d) (h) 

Figure 14: Change in evaporation and streamflow for scenario B. The change is calculated for every run as the 

difference between the evaporation (a-d) or streamflow (e-h) with the reference run (ΔIE = 0). The output for 

all years, and runs has been put together. The lightly shaded area represents the 90th and 10th percentiles, while 

the slightly darker shaded area represents the 25th to 75th percentiles. The black line represents the median. 

Images (a) and (e) display all catchments, (b) and (f) Borgharen, (c) and (g) Ortho and (d) and (h) Chooz. 
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Dataset Data periods (1ST Jan. first year – 31ST dec. last year) 

Camels GB 1971 – 1980 1981 – 1990 1991 – 2000 2001 – 2010  

Camels USA  1981 – 1989 1990 – 1999 2000 – 2009  

Meuse Belgium and The 

Netherlands 

   1999 – 2008 2009 – 2018 

Meuse France   1989 – 1998 1999 – 2008 2009 – 2018 

Table 1: Segmentation of data by 10-year periods, with exception of the CAMELS USA which has two periods of 9 

years. Note the extra time period for the France Meuse data, in comparison with the Belgium/Netherlands data. 
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Storage 

component 

Water balance Constitutive equations 

Snow storage 𝑑𝑆𝑤

𝑑𝑡
= 𝑃S − 𝑄M + 𝑄R 𝑃S = 𝑃 ∗ max(0, min(1,

𝑇thresh − 𝑇

𝑇range

)) 

𝑄M = max(0, 𝑠DDF ∗ 𝑠RF ∗ (𝑇

− 𝑇thresh)) 

𝑄R = 𝑚𝑖𝑛(𝑆𝑊 ∗ 𝑠DDF ∗ 𝑠RF ∗ 

∗ (𝑇thresh − 𝑇)) 

Interception storage d𝑆I/d𝑡 = (𝑃R + 𝑃M) − 𝐸I − 𝑃E 𝑃E = max(0, (𝑆I − 𝐼𝑚𝑎𝑥)/d𝑡) 

𝑃R = 𝑃 − 𝑃S 

𝐸I = min(𝐸P, 𝑆I/d𝑡) 

Root zone storage d𝑆R/d𝑡 = 𝑃𝐸 − 𝐸R − 𝑄R − 𝑄 perc 

+ 𝑄 cap   

𝑄R, direct = max((𝑆R + 𝑃E

− 𝑆Rmax); 0.0) 

𝑄R, in,net = 𝑄HR − 𝑄R, direct  

𝑆R = 𝑆R/𝑆R,max ⬚ 

Table 2: Water balance and flux equations used in the hydrological model, with variables: PS is Snowfall [mm 

t-1], QM is Snowmelt [mm t-1], QR is Refreezing snow [mm t-1], Tthresh is Melting temperature threshold [ºC], 

Trange is the range over which precipitation is partly falling as snow and partly as rainfall [ºC], T is Air 

temperature [ºC], QR,pot is Potential Snowmelt [mm t-1], sDDF is Degree-day factor [mm t-1 ºC], sRF is a coefficient 

of refreezing [-], PR is Rainfall [mm t-1], Imax is Maximum interception storage for each class [mm], EI is 

Interception evaporation [mm t-1], PE is Effective precipitation [mm t-1], LP is Threshold parameter for water 

stress [-], Fmax is Maximum infiltration capacity [mm t-1], Fdec is Decay coefficient [-], SR,max is the root zone 

storage capacity [mm], QR,direct is Direct runoff [mm t-1], QR,in,net is Net infiltration in the root zone storage [mm 

t-1], ER is Evaporation from the root zone storage [mm t-1], QR is Runoff [mm t-1], Qperc is Percolation to the 

slow groundwater [mm t-1], Qcap is Capillary rise from the slow groundwater [mm t-1], Qperc,max is Maximum 

percolation parameter [mm t-1], Qcap,max is Maximum capillary rise flux parameter [mm t-1], QRF is Inflow in the 

fast storage [mm t-1], QF is Fast runoff [mm t-1], KF is Recession constant [t-1], QRS is Preferential recharche 

from the outflow of the root zone storage [mm t-1], QS is Linear outflow from the slow groundwater storage 

[mm t-1], KS is Recession timescale coefficient, QTOT is Total streamflow [mm t-1], Fhrufrac is Fraction of each 

class in a cell [-]. 
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𝐸R = min ((𝐸P − 𝐸I)

⋅ min(𝑆R/𝐿P, 1) , 𝑆R

/d𝑡) 

𝑄R = 𝑄R, in , net ⋅ (1 − (1 − 𝑆R)
𝛽

) 

𝑄perc = 𝑄perc ,max ⬚ ⋅ 𝑆R 

𝑄cap = 𝑄cap ,max ⬚ ⋅ (1 − 𝑆R) 

Fast-responding 

storage 

d𝑆F/d𝑡 = 𝑄RF − 𝑄F  

𝑄RF = 𝑄R ⋅ (1 − 𝑑s) 

𝑄F = 𝐾F ⋅ 𝑆F
𝛼 

Slow-responding 

storage 

d𝑆S/d𝑡 = 𝑄RS + 𝑄perc − 𝑄S − 𝑄cap  𝑄RS = 𝑄R ⋅ 𝑑s 

𝑄S = 𝐾S ⋅ 𝑆S 

𝑄TOT = 𝑄S + ∑ (𝑄F )

𝑛

class =1

⋅ 𝐹ℎ𝑟𝑢𝑓𝑟𝑎𝑐 

 


