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Abstract. This study investigates the contributions of the ocean’s chaotic intrinsic variability (CIV) and atmospherically-

forced variability on the interannual fluctuations of the North Atlantic Subtropical Mode Water (STMW) properties. Utilizing

a 1/4° regional 50-member ocean/sea-ice ensemble simulation driven by an original surface forcing method and perturbed

initially, the forced variability of STMW properties is estimated from ensemble mean fluctuations, while CIV is determined

from deviations around the ensemble mean within each member. The model successfully captures the main features of STMW,5

showing correct agreement with observation-based ARMOR3D data in terms of location, seasonality, mean temperature and

volume, and interannual variance of its main properties. CIV significantly impacts STMW, explaining 10-13 and 28-44 % of

the interannual variance of its geometric and thermohaline mean properties, respectively, with a maximum imprint on STMW

temperature. Observation-based and simulated intrinsic-to-total variance ratios are mostly consistent, dispelling concerns about

a signal-to-noise paradox. This study also illustrates the advantages of ensemble simulations over single simulations in under-10

standing oceanic fluctuations and attributing them to external drivers, while also cautioning against overreliance on individual

simulations assessments.

1 Introduction

The North Atlantic Subtropical Mode Water (STMW), also called Eighteen Degree Water (EDW), is an abundant water mass

located in the North Atlantic subtropical gyre. It is a weakly stratified, homogeneous water mass sitting on top of the permanent15

pycnocline with constant temperature near 18oC (Worthington, 1958; Feucher et al., 2016). The STMW plays a notable role

in climate and ecosystems, most notably because it is a significant heat and anthropogenic carbon reservoir (e.g. Dong and

Kelly, 2004; Bates et al., 2002; Bates, 2007; Kelly et al., 2010; Pérez et al., 2013) that further supply or deplete oxygen

and nutrients to the subtropical gyre and the Western boundary current system (e.g. Jenkins and Doney, 2003; Palter et al.,

2005). Worthington (1958) first described a possible formation mechanism for STMW, later completed in Worthington (1976):20

surface buoyancy loss during the winter deepens the mixed layer in the Gulf Stream area. Part of this newly formed water

mass is advected eastward by the North Atlantic Current, but most of it is subducted in spring to the south and isolated from

the atmosphere below the summer thermocline. This subduction process forms the weakly stratified core of STMW, which is
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partially renewed each year. Maze et al. (2009); Forget et al. (2011); Billheimer and Talley (2013, 2016); Joyce et al. (2013) and

Joyce (2013) among others have shown that the seasonal fluctuations of STMW are governed by air-sea fluxes that form the25

deep winter mixed layer feeding the STMW reservoir, and vertical diffusion together with isopycnal eddy-driven mixing to the

south of the Gulf Stream that erode the STMW reservoir. More recently, Wenegrat et al. (2018) have shown that submesoscale

eddies through near-surface restratification (mixed layer instability) can significantly erode the STMW reservoir. However,

Sinha et al. (2023) have shown that mesoscale-resolving numerical simulations can capture this impact without fully-resolved

submesoscales (i.e. buoyancy fluxes insensitive to finer grid resolution).30

Mode waters are associated with minima in Ertel Potential Vorticity (PV), where relative vorticity ζ is generally omitted

when the available data have coarse spatial resolution. Forget et al. (2011) and Joyce (2013) have noted that while PV minima

are very often used to detect STMW, there is no unique definition of this water mass in the literature. Depending on their avail-

able data, authors use working definitions that identify STMW well enough for their purposes. Drawing on the impermeability

theorem laid out by Haynes and McIntyre (1990), Marshall et al. (2001) showed that there can be no PV flux across isopycnals35

within the water column, and that any PV flux along isopycnals can only take place at the air-sea interface or at the interface

with topography. Since STMW is formed in the winter mixed layer, it is visible as a pool of low PV relative to its surroundings

once isolated from the atmosphere below the seasonal thermocline, and any erosion of this low PV pool must be isopycnal.

Using 3-dimensional data obtained from observations or numerical simulations, it is possible to combine PV and density to

identify and describe the STMW (e.g. Maze and Marshall (2011)).40

Kwon and Riser (2004) have shown that the observed interannual-to-decadal fluctuations of STMW properties are strongly

correlated to the North Atlantic Oscillation index. Dong and Kelly (2013) used a combination of observations and proxies for

key processes (e.g. Gulf Stream path length for mixing) to further investigate these low-frequency fluctuations and highlighted

the dominant role of surface heat fluxes, Ekman advection playing a smaller but non-negligible role. Evans et al. (2017) and

Li et al. (2022) further demonstrated that STMW interannual volume variations are indeed driven by a combination of diabatic45

and adiabatic atmospheric forcing, but that the NAO-related adiabatic forcing (Ekman-driven) is a key player to explain local

extreme anomalies.

However, model studies have shown that STMW interannual fluctuations are not fully explained by the atmospheric variabil-

ity when oceanic non-linearities are explicitly simulated. Hazeleger and Drijfhout (2000) showed from shallow-water eddying

simulations that the horizontal distribution of the STMW thickness exhibits modes of interannual variability under climato-50

logical atmospheric forcing devoid of interannual fluctuations. Dewar (2003) further showed from quasi-geostrophic eddying

simulations that interannual to multidecadal modes of variability also emerge under stochastic atmospheric forcing in the re-

gion of the STMW. These low-frequency modes emerge in the absence of any low-frequency atmospheric variability and may

thus be labelled intrinsic. More realistic, primitive equation ocean simulations confirmed the emergence and persistence in the

eddying regime of substantial low-frequency intrinsic variability under seasonal forcing (Penduff et al., 2011), with marked55

imprints on the North Pacific STMW as well (Douglass et al., 2012). Various non-linear oceanic processes have been invoked

to explain this phenomenon. Sérazin et al. (2018) for instance showed that an inverse cascade of kinetic energy from mesoscale

turbulence towards larger scales can drive intrinsic variability up to interannual timescales, regardless of the atmospheric vari-
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ability; Hochet et al. (2020) showed from eddying simulations that large-scale baroclinic instabilities may also directly generate

interannual-to-decadal intrinsic variability with no direct contribution of mesoscale turbulence. However, Penduff et al. (2011)60

and Grégorio et al. (2015) showed that the interannual-to-multidecadal intrinsic variability becomes negligible when the reso-

lution of their global ocean model is coarsened from 1
4

◦ to 2◦.

The large ensemble of global ocean/sea-ice simulations performed during the OceaniC Chaos – ImPacts, strUcture, pre-

dicTability (OCCIPUT) project (Penduff et al., 2014) has shown that at 1
4

◦ resolution, intrinsic variability can compete with,

and locally exceed, its atmospherically-forced counterpart at interannual-to-decadal timescales, with substantial imprints on65

many large scale oceanic indices: Atlantic Meridional Overturning Circulation (Leroux et al., 2018), global Meridional Heat

Transport (Zanna et al., 2019), latitude and velocity of the Kurushio extension (Fedele et al., 2021), Southern Ocean eddy

kinetic energy (Hogg et al., 2022), Ocean Heat Content variability and long-term trends (Sérazin et al., 2017; Llovel et al.,

2022), etc. These studies highlight the random phase of intrinsic ocean fluctuations developing within individual ensemble

members around the atmospherically-paced ensemble mean evolution. This nonlinearly-driven random ocean variability will70

thus be referred to here as Chaotic Intrinsic Variability (CIV).

Since Hazeleger and Drijfhout (2000) and Dewar (2003), no study has been published on the North Atlantic STMW chaotic

intrinsic variability. During the last 20 years however, model studies have confirmed in idealized and realistic setups that mid-

latitude ocean dynamics are strongly impacted by low-frequency CIV in particular within western boundary current systems

and their associated recirculation gyres, where STMW is found. The major contribution of non-linear and mesoscale processes75

in STMW formation and erosion is also well established. It is thus time to revisit and quantify the relative contributions of

CIV and of atmospheric fluctuations in the interannual STMW variability; this is the aim of the present study, performed with

a primitive equation ensemble simulation, whose realism will be assessed against an observational reference.

Section 2 describes the simulated and observation-based datasets used in this study, our definitions of STMW and of its

features, and the methods we used to process the data. Section 3 compares the simulated and observation-based STMW in-80

terannual variabilities, and assesses their forced and chaotic intrinsic components with a highlight on ensemble simulation

benefits. Our results are summarized and discussed in Section 4.

2 Datasets and processing

2.1 The OCCIPUT regional ocean/sea-ice ensemble simulation

2.1.1 Ensemble modelling strategy85

Our 5-daily model dataset was produced during the OCCIPUT project using a 50-member regional ensemble of forced oceanic

hindcasts performed with the NEMO v3.5 ocean/sea-ice model implemented on the North Atlantic with 1/4° horizontal reso-

lution and 46 vertical levels. This regional ensemble simulation, referred to as NATL025-GSL301 in the OCCIPUT database,

is similar to the E-NATL025 simulation described in Bessières et al. (2017) with two differences: its size (50 members instead

of 10) and its atmospheric forcing function, as described below. Its southern and northern boundaries at 20°S and 80°N are90
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treated as solid walls with 28-gridpoint buffer zones where simulated tracers are restored to monthly climatological condi-

tions (Levitus et al., 1998), with a restoring coefficient decreasing inwards toward zero; intrinsic variability is therefore solely

generated inside the domain without any influence coming from the surrounding ocean, and damped in the buffer zones.

The 50 ensemble members are initialized on January 1st, 1993 from the final state of a single-member 19-year spin-up, and

are further integrated for 20 years until the end of 2012. The ensemble dispersion is triggered by applying a slight stochastic95

perturbation within each member during 1993; this perturbation scheme is described in Brankart (2013) and is designed to

simulate the impact of subgrid-scale uncertainty on geostrophic velocities. The perturbations are turned off at the end of 1993,

and the spread that they have introduced is then fully controlled by nonlinear ocean processes during the rest of the run. The

realistic Drakkar Forcing Set DFS5.2 described in Dussin et al. (2016) is used between 1993 and 2012 to derive the atmospheric

forcing, which is applied identically on all ensemble members: the (atmospherically-)forced variability is thus estimated from100

the variability of the ensemble mean, and the CIV is given by deviations around the ensemble mean within each ensemble

member. The technical implementation of OCCIPUT ensembles is described in more detail in Bessières et al. (2017).

2.1.2 The ensemble-averaged forcing function and its impact on ensemble statistics

Besides its regional extension and shorter duration, this simulation differs from the 56-year global OCCIPUT ensemble de-

scribed in earlier papers (e.g. Bessières et al., 2017) by its surface forcing: all members are forced by identical air-sea fluxes105

in our regional ensemble, rather than identical atmospheric conditions in the global ensemble. At each timestep, bulk formulae

are used within each of the 50 regional members to compute air-sea fluxes based on the current DFS5.2 atmospheric state and

on each member’s surface state. The ensemble average of these air-sea fluxes is then computed at each time step, and applied

uniformly on all members in order to compute the next time step.

Figure 1 compares in the STMW pool the behaviour of the present ensemble with ensemble-averaged air-sea fluxes with a110

smaller 10-member ensemble, where each member was driven by air-sea fluxes computed from its own surface state; the latter

10-member ensemble run was referred to as E-NATL025 and described in Bessières et al. (2017). The left panel in Figure

1 shows that the shallowest maximum of model stratification (in ensemble and temporal average) sits at the depth (about 50

m) of the seasonal pycnocline, and above the pool of weakly stratified STMW found between about 150 and 300 m. The

second stratification maximum locates the permanent pycnocline at about 450 m on average, and the stratification decreases115

towards greater depths. This profile is not only consistent with the observed mean stratification of the region (e.g. Feucher

et al., 2016, 2019), but is almost identical in both ensembles: these two results show the equal consistency and realism of both

forcing methods regarding the main STMW structure, and of the ensemble mean (forced) long-term model state.

The vertical profile of interannual intrinsic variance of temperature (varT (z), right panel in Figure 1) has the same general

shape as the averaged stratification in both ensembles, with the shallowest varT maximum sitting slightly below the seasonal120

pycnocline. However, varT at the surface increases by a factor of 5 when member-specific air-sea fluxes are replaced by

ensemble-averaged fluxes; this factor is about 1.75 near the seasonal pycnocline1. In other words, using ensemble-averaged

1varT below about 800 m and the full-depth stratification remain insensitive to the forcing method, but member-specific fluxes increase varT by about

20% near the permanent pycnocline. This increase may be associated with the excessive damping of intrinsic baroclinic modes that account for SST fluctuations

4



Figure 1. Vertical profiles of the time- and ensemble-averaged Brunt-Väisälä frequency (left), and of the time-average of the ensemble

variance of yearly mean temperature (right). Results are shown for the run where ensemble-averaged air-sea fluxes are applied to all members

(thick line), and for the run where member-specific air-sea fluxes are applied to each member (dashed line). All profiles are taken at the same

location within the formation zone of STMW.

instead of member-specific air-sea fluxes does not adversely affect the atmospherically-forced oceanic state and evolution, and

enhances the ensemble dispersion of yearly temperatures in the upper 300 m. We explain this latter enhancement and argue

that this ensemble-averaged forcing method is preferable, as follows.125

The classical (member-specific) computation of turbulent air-sea fluxes through bulk formulae in ocean-only simulations

induces an implicit relaxation of sea-surface temperature (SST) toward a prescribed and fluctuating equivalent air temperature

Ta, with a time scale on the order of 40 days in our region of interest (see Fig. 6 in Barnier et al., 1995). This relaxation is

arguably overestimated in such simulations where the heat capacity of the atmosphere is assumed infinite despite its being

much smaller than that of the ocean in nature. In an ensemble simulation driven with member-specific fluxes, this results in130

SSTs being over-relaxed toward the same Ta within all members; this in turns yields an excessive damping of ensemble SST

dispersion at these long timescales in particular, and of intrinsic variability in general. Indeed, previous 1/4°-resolution NEMO

simulations driven by classical (member-specific) forcing have been shown to underestimate surface intrinsic variability at all

scales compared to observations (see e.g. Penduff et al., 2010). The use of ensemble averaged fluxes enhances surface intrinsic

variability and compensates for this bias.135

at the surface, and a subsequent enhancement of the baroclinic modes that explain temperature variability near the pycnocline. This hypothesis is currently

under examination.
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The ensemble-averaged forcing method avoids this excessive damping of surface CIV and lets intrinsic temperature anoma-

lies reach up to the surface. Such a behavior is arguably expected in coupled ocean-atmosphere simulations, where the ocean’s

thermal inertia overwhelms that of the atmosphere; estimating the strength of interannual CIV in eddying coupled models

would help verify this hypothesis. Nevertheless, the use of ensemble-averaged instead of member-specific fluxes removes this

unphysical imbalance between the oceanic and atmospheric heat capacities, and compensates the lack of simulated intrinsic140

variability.

Intrinsic thermal anomalies are not damped with the ensemble averaged forcing approach; such anomalies in the real ocean

may be slightly damped by air-sea interactions, but much less strongly than in the member-specific approach. We thus hypoth-

esize that the amplitude of upper-ocean temperature interannual CIV in nature sits between those simulated with both forcing

strategies, and argue that the ensemble-averaged forcing method lets it evolve in a more physically-consistent and realistic way.145

2.2 The ARMOR3D gridded observational product

We use ARMOR3D over its first 34 vertical levels (i.e. down to about 800 m) to assess the model simulation over our region

of interest and the whole simulation period. ARMOR3D is a global analysis based on observational datasets including satellite

sea surface temperature (SST), altimeter-derived sea surface height, in-situ temperature/salinity profiles from the Argo array,

CTD and XBT profiles. These observations were processed to provide temperature (T), salinity (S), and geostrophic velocity150

(u,v) fields on a 3-D grid at 1/4° resolution using optimal interpolation and multiple linear regression methods as explained

in Guinehut et al. (2012) and Mulet et al. (2012). This latter study presents how gridded T and S fields are used to provide

consistent 3-D velocity fields via the thermal wind relation, with a surface reference level where geostrophic velocities are

derived from altimetry.

ARMOR3D has some uncertainties and limitations, as any gridded product constrained by observations. Episodic spurious155

density inversions have been detected in ARMOR3D near the surface (E. Pauthenet, personal communication), but these

artifacts do not affect the subsurface where most of the STMW is found. The interannual variability (in particular of salinity)

is also known to be somewhat underestimated in ARMOR3D (Guinehut et al., 2012), partly since the coverage of in-situ data

is relatively coarse and since optimal interpolation has a tendency to smooth solutions.

The ARMOR3D dataset also has strengths despite its limitations, and it was chosen as our observation-based reference for160

three main reasons, the first two of which are documented in Balmaseda et al. (2015): [i] ARMOR3D compares well with

independent observations at local and large-scale in our region of interest, with a skill that is similar to ocean reanalyses. [ii]

The ARMOR3D fields are independent of multiple and complex modelling choices, which produce substantial differences

between reanalyses. [iii] Perhaps more decisively, ARMOR3D is the only available model-independent T,S,u,v dataset that

yields the full Ertel PV (including ζ) at a spatiotemporal resolution that is close to that of our model. As in all comparisons165

between simulations and any observation-based gridded dataset, the specificities of ARMOR3D will be taken into account in

the comparisons discussed below.
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2.3 ARMOR3D and simulated mean seasonal STMW structure

Ertel PV (Ertel, 1942) is defined as Q= 1
ρ0
(ζ + f) · ∂ρ

∂z , where f is the Coriolis parameter, ρ is potential density, ρ0 is a

reference density, and ζ is relative vorticity; given the relatively fine resolution (1/4°) of our multivariate datasets, we do not170

neglect this latter term. In the rest of this paper, figures and numerical values express PV as ρ0Q (in kgm−4 s−1), which is Ertel

PV normalised by ρ0 = 1020 kgm−3. Figures 2 and 3 show meridional sections of seasonally-averaged PV in one randomly

chosen ensemble member and in ARMOR3D. We verified that the behavior of this particular member is representative of all

members in the ensemble, and that the following is robust.

Two mean biases appear in these sections: the simulated STMW is about 80 m shallower and 0.4 kgm−3 lighter than in175

ARMOR3D, and its density range is wider (i.e. its PV is larger). This may be explained by a 0.4 psu fresh bias in the simulated

STMW in temporal and ensemble average, and by the usual tendency of this class of models to overestimate vertical mixing.

However, multi-year animations of these fields in various ensemble members and in ARMOR3D confirm that in both datasets

the wintertime deepening of the mixed layer feeds the STMW reservoir, which is then shielded from the atmosphere in summer.

The main features of the simulated STMW seasonal cycle (location, properties, time of formation and subduction, etc) in the180

simulation are thus consistent with ARMOR3D and with those described in e.g. Maze et al. (2009); Kelly and Dong (2013);

Billheimer and Talley (2016) and many other studies.

2.4 STMW definitions and properties

STMW identification criteria Reference

Temperature in the 17-19 °C range Worthington (1958)

Density within a certain range Speer and Tziperman (1992)

Salinity in a certain range Joyce (2013)

Potential vorticity below a maximum threshold Forget et al. (2011), Maze and Marshall (2011)

Vertical gradient of temperature below a maximum threshold Kwon and Riser (2004)

Geographic boundaries Worthington (1976)

Table 1. Criteria used in the literature to define STMW and associated references. This list is non-exhaustive since similar criteria are used

in other studies.

As mentioned in the introduction, various authors define STMW in different ways given the data available to them, typically

using one or a combination of the criteria listed in Table 1. In the present study, simulated and ARMOR3D STMW are defined185

using three criteria: PV maximum, geographic boundaries, and density range (see Table 2). This definition is commonly used,

see e.g. Forget et al. (2011). The PV maximum and geographical boundaries select weakly stratified waters in the region of

interest, and the density range excludes those located outside the layer located between the seasonal and main thermoclines.

The PV maximum and density range have different values in the model ensemble and the observational product to account for

their differences (see Section 2.3). The ARMOR3D gridding algorithm also yields some uncertainty as to which exact criteria190
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Figure 2. Sections at 65°W (left) and 50°W (right) of the winter Ertel PV, averaged over February-March-April from 1993 to 2012, in one

ensemble member (top) and in ARMOR3D (bottom). Yellow, orange, and red lines show the 17, 18, and 19°C isotherms, respectively. White

lines show the STMW density bounds in the model (25.2 ≤ γ ≤ 26.4 kgm−3) and in ARMOR3D (25.8 ≤ γ ≤ 26.4 kgm−3). Black lines

show the STMW PV upper bound in the model (PV < 1.7 ·10−7kgm−4 s−1) and in ARMOR3D (PV < 1.2 ·10−7kgm−4 s−1).

should be chosen to identify STMW. This uncertainty was evaluated using various sets of values for PV and density: three of

these are presented here, defined in Table 2 as A, B and C, with increasingly larger bounds. Section 3 evaluates the effect of

the different values used in setting the boundaries of STMW in both datasets.

2.5 Computation and processing of STMW property time series

The above criteria are used within both datasets to label grid cells corresponding to STMW; their individual volumes are195

summed up at each time step to estimate the time-varying enclosed volume of STMW in Svyr (i.e. volume arising from a 1

Sv flux sustained for 1 year: 31.536·1012m3). Model and ARMOR3D fields at labelled grid cells are then averaged to estimate
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Figure 3. same as Figure 2 but for summer months (July-August-September).

ARMOR3D Ensemble simulation

Geographic boundaries 13 - 55°N, 36 - 82°W 13 - 55°N, 36 - 82°W

Neutral density range (γ in kg ·m−3) A: 25.8 - 26.4 / B: 25.74 - 26.46 / C: 25.68 - 26.54 25.2 - 26.4

Maximum PV (10−7kg ·m−4·s−1) A:1.2 / B: 1.32 / C: 1.44 1.7

Table 2. Definition of STMW in the present study. A, B, and C correspond to sensitivity choices in ARMOR3D.

the volume-weighted mean temperature (T), salinity (S), neutral density (γ), and PV of the simulated and ARMOR3D STMW.

The mean depth of the water mass is finally given by the volume-weighted average of the immersions of labelled grid points.

The resulting time evolution of these 6 STMW properties may exhibit geophysical trends and variability at periods greater200

than the 20 years of available data, and potential numerical trends in the case of the simulation. Variability at periods longer

than 20 years and possible trends were finally removed from each ensemble member and from ARMOR3D over the 20-year
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period using the LOWESS non-linear detrending method (Cleveland, 1979), yielding the evolution of STMW properties over

the range of timescales T that is properly resolved in the datasets (10 d < T < 10 yr).

These 50+1 time series of each STMW property were further split over 2 ranges of time scales; [i] interannual time series (18205

m < T < 10 yr) were obtained by removing the mean seasonal cycle from the 51 time series and applying a low-pass Lanczos

filter with a cut-off period of 18 months; [ii] so-called subannual time series (10 d < T < 18 m, including seasonal cycles) were

obtained by subtracting the interannual time series from the detrended time series.

2.6 Total, forced, and chaotic intrinsic variances

We hereafter focus on the contributions of the atmospherically-forced and chaotic intrinsic components of the STMW total210

interannual variability. The forced, intrinsic, and total variances (σ2
F , σ2

I and σ2
T , respectively) of any variable X are computed

as in Leroux et al. (2018):

σ2
F = vart(⟨Xm(t)⟩) (1)

σ2
I = varm(Xm(t)) (2)

σ2
T = ⟨vart(Xm(t))⟩ (3)215

In the latter expressions, ·= 1
T

∑T
t=1 is the temporal average over T time steps, ⟨·⟩= 1

M

∑M
m=1 is the ensemble average

of M members, varm(Xm(t)) = 1
M

∑M
m=1 (Xm(t)−⟨Xm(t)⟩)2 is the ensemble variance at time t, and vart(Xm(t)) =

1
T

∑T
t=1

(
Xm(t)−Xm(t)

)2

is the temporal variance for member m. It can be shown that with this choice of biased variance

estimates, σ2
T = σ2

F +σ2
I if Xm(t) = 0; this property is very well verified in our case since |σ

2
T−(σ2

F+σ2
I )

σ2
T

|< 10−3. Finally, we

estimate the intrinsic fraction of the total variance of STMW properties from the ratio Rσ = 100% ·σ2
I/σ

2
T .220

3 Results

The interannual anomalies of integrated STMW properties defined in Section 2.5 are shown in Figure 4 for both datasets. The

ensemble-and-temporal mean values of the STMW properties are given at the bottom of each panel for the simulation, and

for each of the three definitions in the observational product. Definition B in the observational product (green) yields a mean

volume of 28 Sv.y that is very close to the 30.5 Sv.y in the ensemble, and will thus be retained in the following to identify225

STMW in ARMOR3D. The colored lines in this figure also show that in ARMOR3D, the 3 definitions of the STMW yield

very similar interannual evolutions: this confirms the robustness of our criteria despite their partial arbitrariness.

Simulated STMW properties vary around their ensemble mean within individual ensemble members, due to the random

phase of intrinsic variability in the 50 realizations. Throughout most of the integration period, the ARMOR3D-derived STMW

interannual variability remains within the simulated envelope, providing a first indication of correct model-ARMOR3D agree-230

ment in terms of variability, which is assessed more precisely in the following.
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Figure 4. Interannual evolution of the six STMW property anomalies. Thin grey lines shows individual ensemble members, thick grey lines

ensemble averages. Thin black lines show the maximum and minimum values of the entire ensemble at each time step. The coloured lines

show the same quantities in ARMOR3D using the 3 definitions given in Section 2.2: criteria A, B, and C correspond to red, green, and blue

lines, respectively. The text at the bottom gives the 1993-2012 mean value of STMW properties computed before detrending and filtering in

the ensemble mean (black), and in the ARMOR3D data (same three colors as above).

3.1 Forced and chaotic intrinsic components of the STMW variability

3.1.1 Intrinsic fraction of STMW properties’ simulated variance

Using the definitions outlined in Section 2.4, we computed the intrinsic fraction Rσ of the variances of each simulated STMW

property within the 3 ranges of timescales introduced in Section 2.5: all resolved periods (10 days to 10 years) and an-235

nual+subannual periods (10 days to 18 months), both of which include seasonal cycles, and interannual periods (18 months to

10 years). Results are shown in Table 3.
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Temperature Salinity Density Volume PV Depth

10 d < T < 10 yr 13.0 3.52 10.8 1.70 1.38 0.829

10 d < T < 18 m 4.94 1.71 3.53 0.333 0.471 0.261

18 m < T < 10 yr 44.1 24.8 38.4 13.2 10.6 13.0

Table 3. Intrinsic fraction of interannual variances (percentage Rσ = 100% ·σ2
I/σ

2
T ) of STMW properties in three ranges of time scales T .

When all resolved timescales are considered (10 d < T < 10 yr), the contribution of intrinsic processes to the variance

of STMW properties reaches a modest maximum of 13% for temperature. This intrinsic fraction is even smaller at an-

nual+subannual timescales with a maximum of 4.94% for temperature; the atmospheric forcing thus explains most of the240

variability of STMW properties at these relatively short timescales, consistently with the large control exerted by the atmo-

spheric annual cycle on STMW (see Section 1).

Nonetheless, the intrinsic fraction gets much larger at interannual timescales. Even the smallest contributions of CIV (10.6

% for PV and about 13 % for volume and depth) cannot be neglected for 18 m < T < 10 yr. Interannual fluctuations of STMW

thermohaline properties are most strongly impacted by CIV: about one fourth, one third, and one half of the interannual245

variance of STMW salinity, density, and temperature, respectively, is controlled by intrinsic processes and is random in phase.

Explaining why interannual CIV has a weaker impact on "geometric" STMW properties (volume, PV and depth) would require

additional analyses, which are left for future studies.

3.1.2 Simulated and ARMOR3D STMW fluctuations

STMW interannual fluctuations simulated in each member are compared to their ARMOR3D counterparts using Taylor dia-250

grams (Taylor, 2001) in Figure 5. The reference for each simulated STMW property is the corresponding ARMOR3D interan-

nual anomaly (based on definition B, see section 2.4): comparisons between each ensemble member and this reference yield

50 black dots in each panel.

The center of gravity (COG, blue square) of the black dots in the top left subpanel of Figure 5 sits very close to the unit radius

circle: the ensemble-averaged total interannual STD of STMW volume compares very well with its ARMOR3D counterpart.255

In other words, the model remarkably simulates the interannual STD of the STMW volume in ARMOR3D in an ensemble

averaged sense.

For the 5 other simulated STMW properties, ensemble-averaged interannual STDs exceed their ARMOR3D counterparts

by a factor of 1.2 for depth to 4.2 for PV. That our 1/4° ensemble may overestimate STMW fluctuations would come as a

surprise, since most NEMO simulations at this resolution rather tend to underestimate interannual fluctuations (see e.g. Penduff260

et al., 2010). In fact, interannual fluctuations of simulated STMW properties are more in line than ARMOR3D estimates with

previous observational studies (see e.g. Fig. 2 and Fig. 2+S1 in Kwon and Riser, 2004; Stevens et al., 2020, respectively). It

is therefore very likely that we found here an illustration of ARMOR3D underestimating STMW fluctuations (especially for
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PV), which is consistent with the fact that ARMOR3D is known to substantially underestimate the actual interannual ocean

variability (Guinehut et al., 2012).265

We now focus on the ensemble dispersion of black dots around their COG in these panels. By design, all ensemble mem-

bers are driven by the same atmospheric evolution and simulate equally likely evolutions of STMW properties: inter-member

differences in STMW evolutions and in their agreement with ARMOR3D are thus due to different CIV realisations. Accord-

ingly, Figure 5 reveals a substantial angular dispersion of black dots with respect to the x axis, corresponding to differences in

correlations of individual ensemble members with ARMOR3D time series. For STMW volume for instance, certain ensemble270

members have good phase agreement with the observational reference (up to 0.75 correlation) and almost the same interannual

STD, while other members have poorer correlations (as low as 0.4) and under- or over-estimate by 20% the ARMOR3D STD.

The CIV-related diversity of correlations and STD ratios is even larger for STMW temperature, whose interannual variance is

the most affected by CIV (Section 3.1): member-ARMOR3D correlations range from -0.45 to 0.79 and their STD ratios from

1.2 to 2.6.275

These large dispersions indicate that slightly different initial conditions can strongly affect the skill of eddying ocean simu-

lations driven by the same realistic forcing for decades, yielding a wide range of model-ARMOR3D correlations of either sign

depending on the member considered. This demonstrates a specific value of ensemble experiments for model evaluation: this

approach gives a direct measure of the CIV-related uncertainty in simulated time series, and allows for a much more robust

model skill assessment.280

For the six STMW properties under consideration, the green circles indicate how the ensemble mean (forced) variability

compares with the ARMOR3D reference. These circles show that the forced variability has smaller STD but is better correlated

with the reference than individual members in ensemble average (ensemble COG, blue squares). This is consistent with the

fact that the phase of CIV-related "noise" is random within each ensemble member: this noise is strongly attenuated in the

ensemble mean evolution, hence explaining the position of green dots relative to blue squares. On the other hand, the phase285

of CIV in certain members may happen to correlate favorably (resp. defavorably) with the observational reference, explaining

that certain black dots sit right (resp. left) of the green lines; the same behavior was reported by Leroux et al. (2018) from the

analysis of AMOC fluctuations in the global OCCIPUT ensemble.

These results globally show relatively good agreement between the simulated and ARMOR3D data. The average and STD

of STMW volume is very similar in both datasets, other variables have an STD within the same order of magnitude (giving290

the probable underestimation of ARMOR3D-derived estimates), and most ensemble means of STMW properties are in correct

phase agreement with ARMOR3D.

3.1.3 Possibility of a "signal-to-noise paradox"

We finally assess whether the simulated variability of STMW properties are affected by the so-called "Signal-to-Noise para-

dox", as discussed in Leroux et al. (2018). This concept has been proposed to characterize ensemble climate simulations where295

ensemble mean fluctuations are strongly correlated to observations, while most individual members are more closely corre-

lated to other members than to observations (see e.g. Eade et al., 2014; Scaife and Smith, 2018; Christiansen, 2019). When this
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paradox is met, the ensemble mean (forced) variability is correctly simulated but the model is over-dispersive (overestimated

contribution of CIV).

Figure 6 exhibits an overlap between the distributions of member-ARMOR3D correlations (blue) and member-member300

correlations (grey) for most interannual STMW properties. Member-ARMOR3D and member-member correlations overlap

over the range 0.5–0.75 for STMW volume for instance, and over much wider ranges for STMW thermohaline properties.

In particular, member-member correlations do not largely fall below member-ARMOR3D correlations, suggesting that the

ensemble is not clearly over-dispersive. The opposite is however found for STMW depth, for which the ensemble seems

to be under-dispersive. Besides this main exception though, we conclude that it is unlikely that a signal-to-noise paradox305

contaminates the statistics of STMW properties in our simulation. In other words, the simulated partition between forced and

intrinsic interannual variabilities of STMW properties are consistent with their counterparts in ARMOR3D.

4 Discussion and conclusion

We have investigated the contributions of the ocean’s chaotic intrinsic variability (CIV) and of the atmospherically-forced

variability in the interannual fluctuations of the North Atlantic Subtropical Model Water (STMW) main properties. We made310

use of a 1/4° regional 50-member ocean/sea-ice ensemble simulation with perturbed initial conditions, and of the ARMOR3D

observation-based product. The forced variability of simulated STMW properties was estimated from the fluctuations of the

ensemble mean, and its chaotic intrinsic variability from the deviations around the ensemble mean within each ensemble

member. This regional ensemble simulation is driven through bulk formulae by a realistic atmospheric evolution, each member

being forced by the same time-varying air-sea fluxes computed online via an ensemble average. We showed that this forcing315

approach avoids an excessive damping of the interannual CIV (i.e. ensemble spread) of upper ocean temperature, without

impacting the mean state and forced variability.

Following the literature (Table 1), we identified the STMW in all ensemble members and in ARMOR3D using the same

combination of physical criteria, i.e. all water parcels with low potential vorticity values within a geographical area and a den-

sity range. Parameters were adjusted to fit differences between the ARMOR3D and simulated mean states (Table 2). Geometric320

(volume, Ertel potential vorticity, depth) and thermohaline (temperature, salinity, density) properties of the STMW core were

estimated from the simulation and from ARMOR3D over the period 1993-2012. We found that although slightly more buoyant,

the main features of the simulated STMW are in correct agreement with ARMOR3D, in particular its location, seasonality,

mean temperature, mean volume and interannual volume variance (Figures 2 and 3).

The CIV contribution to the STMW properties’ variance was estimated in different frequency bands via the intrinsic fraction325

Rσ . We found that STMW is substantially impacted by interannual CIV, which explains in particular 44 % of its low-frequency

temperature variance. Explaining why thermohaline STMW properties are more impacted by interannual CIV than geometric

STMW properties (Rσ = 28-44% vs. 10-13%, Table 3) would require a detailed analysis of the atmospheric and oceanic

processes that control the water mass interannual evolution, which lies beyond the scope of the present paper and is left for

the future. These results nevertheless provide a new context for the attribution of observed STMW fluctuations to external330
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(atmospheric) and internal (oceanic) drivers: a non-negligible part (10-44 %) of STMW fluctuations is ocean-driven, random

in phase, and cannot be explained by atmospheric fluctuations only.

We verified at interannual timescales that our analysis is not plagued by the so-called signal-to-noise paradox, such that

intrinsic-to-total variance ratios are compatible in the ensemble simulation and in ARMOR3D (except for STMW depth, whose

sensitivity to CIV may be underestimated in the model). These findings suggest that the contribution of CIV in the variance of335

real STMW properties is genuine, and globally consistent with its simulated contribution.

Building upon a few earlier studies (e.g. Leroux et al., 2018; Fedele et al., 2021), our present analysis illustrates the benefit

of ensemble simulations over single hindcasts for model evaluation in the eddying regime. The random phase of CIV "noise"

can result in either high, small or even negative model-ARMOR3D correlations (from -0.45 to 0.8 for STMW temperature)

depending on the ensemble member. Assessing a single eddying ocean simulation against observational references should thus340

be done with care, all the more since such references also contain random components, with an amplitude that is specific to the

object of study.

The quantitative results of the present study may somewhat depend on certain model parameters and on our analysis tech-

nique. In particular, it is difficult to predict whether a finer model resolution may enhance STMW’s intrinsic fractions Rσ (as

found for sea level, see Sérazin et al., 2015) or barely impact them (as shown for AMOC, see Grégorio et al., 2015). We also345

made the classical assumption that the forced and intrinsic variabilities of STMW properties may be separated and quantified

using ensemble means and ensemble anomalies; other approaches have been recently proposed to avoid this separation (see

e.g. Fedele et al., 2021). More generally, alternative ensemble simulations and diagnostics could help refine the present results.

The impacts of CIV on STMW properties at eddy-permitting resolution are likely to exist as well in coupled ocean-

atmosphere simulations, although experimental strategies allowing to quantify CIV impacts in a coupled context are not clear350

yet. In the meantime, prescribing the atmospheric forcing of an eddying ocean ensemble simulation as done here provides a

natural and efficient means to study forced and intrinsic variabilities. In this forced ocean modelling context, the ensemble-

mean forcing technique that we propose is designed to let CIV behave as freely as it may in an eddying ocean model coupled

to the atmosphere, by removing an excessive damping of upper-ocean thermal intrinsic variability up to long timescales.

Previous studies have shown that beyond STMW properties, the interannual-to-multidecadal variability of several other355

climate-relevant oceanic indices are influenced by oceanic CIV, which is strongly underestimated in coarse-resolution ocean

models such as those used in most CMIP-class climate models. The physical consistency of climate models may thus be

improved by taking CIV into account, either explicitly by using higher resolution ocean components, or by parameterizing the

impacts of CIV in coarse ocean components.

Data availability. The OCCIPUT simulation outputs are available upon reasonable request at Thierry.Penduff@cnrs.fr. This study has been360

conducted using E.U. Copernicus Marine Service Information https://doi.org/10.48670/moi-00052: these ARMOR3D (Multi Observation

Global Ocean ARMOR3D L4 analysis) data were extracted on October 21, 2021.
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Figure 5. Taylor diagrams comparing the interannual fluctuations of STMW properties in the reference (ARMOR3D time series) and in

each ensemble member (total variabilities, black dots), and in their ensemble mean (forced variabilities, green circles). Blue squares show

the center of gravity of black dots. The distance between each dot and the origin gives the ratio of simulated and reference STDs; the

angle between the latter line and the horizontal axis gives the temporal correlation between simulated and reference time series; the distance

between dots and the (1,0) point gives the RMS difference between the latter time series. Thick black lines show unity STD ratios; grey

dotted lines show the range of correlations and STD ratios for black dots; blue and green dotted lines show the coordinates of blue squares

and green circles. 21



Figure 6. Distributions of various correlation coefficients using the interannual fluctuations of STMW properties in the 50 ensemble members

as references. The distributions show their correlations with the corresponding time series in all other ensemble members (grey), and in

ARMOR3D (blue).
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