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Abstract. The continuous advancement of remote sensing technology has been instrumental in improving models for15
estimating terrestrial gross primary productivity (GPP). However, challenges arise from inconsistent spatial distributions and16
interannual variations in GPP datasets, impeding our comprehensive understanding of the entire terrestrial carbon cycle. In17
contrast to previous models relying on remote sensing and environmental variables, we developed a an ensemble model18
based on random forest named GPPERF. This model utilized the GPP outputs from established remote sensing-based models19
(EC-LUE, GPP-kNDVI, GPP-NIRv, Revised-EC-LUE) as inputs for GPP estimations. GPPERF demonstrated significant20
effectiveness by explaining 83.7% of the monthly variation in GPP across 171 sites. This performance surpassed the selected21
remote sensing models (72.4%-77.1%) and an independent random forest model using remote sensing and environmental22
variables (77.7%). Over the period from 2001 to 2022, the global estimated GPP value using the ensemble model based on23
random forest was 131.2 PgC yr-1, exhibiting a trend of 0.45 PgC yr-2. Furthermore, evaluation results utilizing flux sites24
from ChinaFlux indicated that the dateset exhibited good generalization. In summary, the machine learning-based ensemble25
method helps to reduce the uncertainty in the estimation of a single remote sensing model and provides a more reliable26
estimation of global GPP.27
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1 Introduction31

Gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle, and it is also the input of carbon32
during the carbon cycle. Uncertainties in the estimation of GPP will be further propagated to other carbon flux estimates, so33
it is important to clarify the spatio-temporal pattern of GPP (Xiao et al., 2019; Ruehr et al., 2023). However, different studies34
estimate global GPP to be between 90 PgC yr-1 and 160 PgC yr-1, and this uncertainty may be more pronounced when35
extended to regional scales or specific ecosystem types, so it is necessary to develop some new methods to reduce the36
uncertainty of GPP estimates (Jung et al., 2019; Ryu et al., 2019; Anav et al., 2015).37
Currently, there are several remote sensing data-driven methods to estimate GPP, including light use efficiency (LUE)38
models, vegetation index models, machine learning models, and process models (Sun et al., 2019; Mengistu et al., 2021).39
Direct validation of flux towers from FLUXNET shows that these models usually only explain about 70% of the monthly40
variation in GPP (Wang et al., 2021b; Badgley et al., 2019). One possible reason is that remote sensing models cannot fully41
characterize all the processes of photosynthesis. This is understandable, most of the existing models use linear or nonlinear42
mathematical formulas to express a certain process of photosynthesis. However, the ecosystem is highly complex, the bias43
introduced by such a numerical model in a process will increase the uncertainty in the final product (GPP) estimates. For44
example, in the LUE model, the difference in the meteorological constraints alone can lead to a difference of more than 10%45
in the explanatory power of the model (Yuan et al., 2014). As an important factor affecting photosynthesis, some models46
consider the effect of CO2 fertilization. However, a study revealed that the effect of CO2 fertilization showed a significant47
negative trend in the past 40 years, and this process may be missing in the model (Wang et al., 2020). Limited by the48
imperfection of the model mechanism, adjusting the model parameters is the most effective way to improve the simulation49
accuracy. The usual practice of the modeler is to divide the directly observed GPP data according to different vegetation50
types, and randomly select the testset through the cross-validation method to calibrate and validate the model parameters.51
However, this method is based on the assumption that the model parameters of the same vegetation type in different regions52
are roughly the same. In fact, the photosynthetic characteristics of the same vegetation type are also quite different in53
different regions. A typical example is the difference between C3 and C4 crops in the cropland, the GPP of C4 crops during54
the growing season may reach 600-800 gC m-2 month-1, accounting for more than 60% of the annual GPP, in contrast, the55
GPP of C3 crops in the growing season is only 200-300 m-2 month-1, or even lower (Chen et al., 2014). Some other studies56
have also found that the maximum carboxylation rate (Vcmax) that determines photosynthesis at the leaf scale not only57
varies with vegetation types, but also depends on environmental factors (Wang et al., 2021a). The same vegetation type also58
has a difference of 40umol m-2 s-1 in different geographical areas (Groenendijk et al., 2011), all of which may lead to59
uncertainties in GPP estimate. A widespread problem is that the deviation of model structure and model parameters may lead60
to poor estimation of GPP in the monthly extreme value, and the phenomenon of “high value underestimation and low value61
overestimate” occurs. Especially for extremely high values, which usually occur during the growing season and largely62
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determine the annual value and inter-annual variation of GPP, this underestimation may hinder our understanding of the63
entire carbon cycle process.64
It is difficult for a single model to have good estimation in all regions of the globe. Previous studies have shown that65
ensemble model may perform better than a single model, which may improve some potential problems in model estimation66
(Chen et al., 2020; Yao et al., 2014). Traditional multi-model ensemble methods usually use multi-model simple average or67
bayesian weighted average. However, these methods usually only provide fixed weights for each model, and are essentially68
linear combinations between multiple models. Some recent studies apply machine learning methods to multi-model69
ensembles to establish nonlinear relationships between multiple simulated target variables and real target variables,70
improving the simulation performance (Bai et al., 2021; Yao et al., 2017; Tian et al., 2023). However, few studies have71
applied this method to the global GPP estimation, which provides a new idea for improving some common problems of a72
single remote sensing model (such as high value underestimation and ground value overestimation).73
In this study, we attempt to use an ensemble model based on machine learning methods to improve the estimation of global74
GPP. Specifically, the work of this study includes the following points: (1) After re-calibrating the parameters of each model,75
the performance of five remote sensing models and the ensemble models was compared; (2) Focusing on the phenomenon of76
“high value underestimation and low value overestimation” in each model, and compared the performance of each model in77
each months, each vegetation types and different subvalues (high value, median value, low value); (3) Developing a global78
GPP dataset using an ensemble model based on machine learning methods, and using GPP observations from ChinaFlux as a79
complementary validation set to test the generalization of this dataset, i.e. the extent to which the dataset capture changes in80
GPP in regions where fewer sites are used in the modeling process.81

2 Method82

2.1 Data at the global scale83

In this study, we selected remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and84
meteorological data from EAR5-Land to estimate global GPP. For remote sensing data, surface reflectance, leaf area Index85
(LAI) and Fraction of Photosynthetically Active Radiation (FPAR) were used in this study. For meteorological data, we86
selected air temperature, dew point temperature, total solar radiation, and direct solar radiation. The dew point temperature87
and air temperature were used to calculate the saturated vapor pressure difference (VPD) (Yuan et al., 2019), and the diffuse88
solar radiation was calculated as the difference between the total solar radiation and the direct solar radiation. The CO289
comes from the monthly average carbon dioxide levels measured by the Mauna Loa Observatory in Hawaii. Table 1 shows90
the details of these data.91

92
93
94
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Table 1. Overview of the datasets used in this study.95

Variable Dataset Spatial resolution Temporal resolution Temporal coverage

Surface reflectance MCD43C4 0.05° daily 2001-2022

LAI MOD15AH 500m 8d 2001-2022

FPAR MOD15AH 500m 8d 2001-2022

Air temperature (AT) ERA5 0.1° Monthly 2001-2022

Dew point temperature (DPT) ERA5 0.1° Monthly 2001-2022

Total solar radiation (TSR) ERA5 0.25° Monthly 2001-2022

Direct solar radiation (DirSR) ERA5 0.25° Monthly 2001-2022

CO2

NOAA’s Earth

System Research

Laboratory

/ Monthly 2001-2022

Distribution map of C4 crops

Harvested Area

and Yield for 175

Crops

1/12° Annual 2000

Land use MCD12C1 0.05° Annual 2010

96
Previous studies have shown that the photosynthetic capacity of C4 crops is much higher than that of C3 crops (Chen et al.,97
2014; Chen et al., 2011), so it is necessary to divide the cropland into C3 crops and C4 crops. When estimating the global98
GPP, we used the "175 Crop harvested Area and yield" dataset, which describes the global harvested area and yield of 17599
crops in 2000 (Monfreda et al., 2008). We extracted the sum of the area ratios of all C4 crops (corn, corn feed, sorghum,100
sorghum feed, sugarcane, millet) at each grid point as the coverage of C4 crops (Figure S1). Therefore, the estimated value101
of cropland GPP can be expressed as: coverage of C3 crops × GPP simulated value of C3 crops + coverage of C4 crops ×102
GPP simulated value of C4 crops, which has been used in a previous study (Guo et al., 2023).103
The land use map comes from the IGBP classification of MCD12Q1, and 2010 was selected as the reference year. In order to104
meet the need of subsequent research, the land cover types were combined into 9 categories: deciduous Broadleaf Forest105
(DBF), evergreen coniferous forest (ENF), Evergreen Broadleaf Forest (EBF), Mixed Forest (MF), Grassland (GRA),106
Cropland (including CRO-C3 and CRO-C4), Savannah (SAV), Shrub (SHR), Wetland (WET). Ultimately, all data were107
resampled to a spatial resolution of 0.05°, while data from MODIS were aggregated to a monthly scale to meet108
spatiotemporal consistency.109
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2.2 Observation data at the site scale110

The modeling used GPP observations from the FLUXNET 2015 dataset, which includes carbon fluxes and meteorological111
variables from more than 200 flux sites around the world (Pastorello et al., 2020). GPP cannot be obtained directly from the112
flux site and usually needs to be obtained by dismantling the Net Ecosystem Exchange. We chose a month-scale GPP based113
on the nighttime partitioning method and retained only high quality data (NEE_VUT_REF_QC > 0.8) for every year, and114
finally selected 171 sites with 10824 monthly values for this study. In addition, temperature, radiation and VPD on the115
monthly scale were selected. Since part of the data required by the model is not directly available at the flux site, surface116
reflectance, LAI and FPAR on a scale of 500m were extracted, which are roughly similar to the footprint of the flux site and117
can represent the land surface of the site situation (Chu et al., 2021).118

2.3 Remote sensing models and ensemble models for estimating GPP119

In this study, five independent remote sensing models were selected to estimate GPP. The five models are EC-LUE,120
Revised-EC-LUE, NIRv-based linear model, kNDVI-based linear model and traditional random forest model. EC-LUE is a121
LUE model driven by remote sensing data. The model assumes that GPP is proportional to the photosynthetically active122
radiation absorbed by the canopy, and the seasonal variation of GPP is corrected by meteorological constraints (Yuan et al.,123
2007); Recently, Zheng et al. revised the EC-LUE model and proposed the Revised-EC-LUE model, which divides the124
canopy into sunlit and shaded leaves, and considers long-term changes in CO2 to improve the estimation of global GPP125
(Zheng et al., 2020). NIRv and kNDVI are newly proposed vegetation indices, which are calculated from the red and near-126
infrared bands of the reflectance spectrum (Badgley et al., 2017; Camps-Valls et al., 2021). Similar to SIF, they exhibit a127
linear relationship with GPP and are considered to be effective proxies for GPP. Detailed descriptions of all models are128
presented in Text S1. Random forest method has been widely used in GPP estimation, which usually uses meteorological129
variables and vegetation index for modeling (Jung et al., 2019). In this study, we used air temperature, VPD, radiation and130
LAI to estimate GPP.131
To reduce the uncertainty in estimating GPP from a single model, we also used a multi-modal ensemble method, the basic132
idea of which is to re-model the simulated values of multiple models. In this study, ensemble model based on the random133
forest method was used. Unlike traditional machine learning methods, we directly used random forests to establish the134
relationship between the GPP simulated by the above four models and the GPP observations. A summary of all models used135
is shown in Table 2.136
Table 2. Overview of the models used in this study.137

ID Model Input data Output

1 EC-LUE FPAR, VPD, AT, SRAD, CO2 GPPEC
2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC

3 kNDVI-GPP Red band and near infrared band GPPkNDVI
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4 NIRv-GPP Red band and near infrared band GPPNIRv
5 Traditional random forest model AT, VPD, SRAD, LAI GPPRF

6 Ensemble model based on random forest GPPEC, GPPREC, GPPkNDVI, GPPNIRv GPPERF

138

2.4 Model parameter calibration and Validation139

Due to the difference between meteorological data and vegetation data, we did not use default parameters in the model, but140
carried out parameter calibration and model validation for all remote sensing models according to different vegetation types.141
For EC-LUE and Revised EC-LUE, the Markov chain Monte Carlo method (MCMC) was used to calibrate the model142
parameters. The traditional MCMC method usually takes the mean value of the posterior distribution of parameters as the143
optimal value, while previous studies have shown that some model parameters cannot be well constrained when calibrating144
multiple model parameters (Xu et al., 2006; Wang et al., 2017), so we use the parameter with the smallest root-mean-square145
error (RMSE) as the optimal parameter in each iteration. For each vegetation type, we randomly selected 70% of the sites for146
parameter calibration, and the process was repeated 200 times. In order to avoid overfitting, we took the mean of the 200147
calibrated parameters as the final model parameters. Similarly, for the two vegetation index models, we randomly selected148
70% of the sites in each vegetation type for parameter calibration. The process was repeated 200 times, and the mean of the149
200 calibrated parameters was used as the final model parameters.150
After obtaining GPP estimates from four remote sensing models, we tested the simulation performance of traditional random151
forest model and random forest-based ensemble model respectively. For both models, we tested model performance using 5-152
fold cross-validation, the process was repeated 200 times, and the mean of the GPP estimated 200 times as the final GPP153
estimate. Goodness of Fit (R2) and RMSE were used to measure the simulation performance of all models. In addition, we154
used the ratio of GPP simulations to GPP observations (Sim/Obs) to measure whether the model was overestimated or155
underestimated.156

2.5 Evaluation of the generalization of different GPP datasets157

Most of the flux sites in Fluxnet2015 are concentrated in Europe and North America, it is not clear whether the different158
GPP estimation methods are suitable for some regions with sparse flux sites. Recently, ChinaFlux published GPP159
observations from multiple sites, providing an opportunity to test the generalization of different GPP datasets. However, the160
spatial resolution of most GPP datasets is 0.05°, and direct comparison with GPP observations at flux sites is challenging.161
Therefore, we extracted 0.05° MODIS land use covering the flux tower, and when the type of vegetation observed by the162
flux tower was consistent with the MODIS land use, the site was used for analysis. Finally, a total of 12 flux sites were163
selected (Figure S2), and Table S1 shows the information of these sites.164
Based on site-scale models, we estimated the global GPP for 2001-2022 using an ensemble model based on random forest165
(ERF_GPP). We tested the generalization of ERF_GPP on 12 ChinaFlux sites. In addition, we selected a number of widely166
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used GPP datasets for comparison, including BESS (Li et al., 2023), GOSIF (Li and Xiao, 2019), ECGC (Guo et al., 2023),167
NIRv (Wang et al., 2021b), Revise-EC-LUE (Zheng et al., 2020), which are generated using different GPP estimation168
methods. These GPP products all have a spatial resolution of 0.05°, avoiding the uncertainty of GPP validation introduced169
due to resolution differences. The common time range for these products is 2001-2018, and the time resolution was unified170
to monthly to be consistent with GPP observations.171

3 Result172

3.1 Performance of six models at site scale173

Table S2-S5 shows the optimization results of four remote sensing model parameters. Similar to the previous study, in the174
Revised EC-LUE model, the light use efficiency parameter of shade leaves was significantly higher than that of the sunlit175
leaves (Yuan et al., 2019; Zheng et al., 2020). It is necessary to divide the cropland into C3 crops and C4 crops. In all models,176
the parameters of C4 crops were significantly higher than those of C3 crops, which was especially reflected in the two177
vegetation index models of GPPkNDVI and GPPNIRv, the slope of the linear regression was a direct reflection of the difference178
in photosynthetic capacity of different crops.179
Figure 1 shows the performance of all models on vegetation types. Overall, the performance of the ensemble model was180
better than that of the remote sensing model. GPPERF always had the highest accuracy among all models, with R2 between181
0.6-0.9 and RMSE between 0.8-3 gC m-2 d-1. In contrast, the performance of the two vegetation index models was relatively182
poor, especially for evergreen forests, the R2 of GPPkNDVI and GPPNIRv was significantly lower than other models. It is worth183
noting that compared to other vegetation types, the RMSE of cropland was the higher, with 5 out of 6 models in C4 Crop184
exceeding 3 gC m-2 d-1, which suggested that these existing GPP models may not properly track seasonal changes in cropland.185
No significant estimation bias in vegetation type was found in four remote sensing model with calibration parameters and the186
ensemble model. However, GPPRF was significantly underestimated in C4 crops and significantly overestimated in SHR and187
WET.188
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189
Figure 1. The performance of the six models on different vegetation types. a, b and c represent R2, RMSE, and Sim/Obs respectively.190

We further counted the simulation performance of different models at each site. As shown in Figure S3, we averaged the191
evaluation indicators of all sites and found that the accuracy of GPPERF was the highest, R2 was 0.75, RMSE was 1.53 gC m-2192
d-1, Sim/Obs was also the closest to 1, which was 1.04. Combining the results of all flux sites, GPPERF could explain 83.7%193
of the monthly GPP variation, while the five remote sensing models only explained 72.4%-77.7% of the monthly variation in194
GPP (Figure 2).195
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196
Figure 2. Comparison between the GPP simulations of the six models and the GPP observations. a-f represents GPPEC, GPPNIRv, GPPkNDVI,197
GPPREC, GPPRF, GPPERF, respectively.198

Overall, GPPERF exhibited high accuracy in terms of site scale, vegetation type, and the ability to interpret monthly variation199
in GPP, which also illustrated the potential of machine learning-based ensemble models in improving GPP estimation.200
However, we also found that most of the GPP simulations have the phenomenon of “high value underestimation and low201
value overestimate”. For example, GPPEC, GPPREC and GPPRF showed obvious underestimation in the month when the202
monthly GPP value was greater than 10 gC m-2 d-1 (Figure 2), it is therefore necessary to evaluate the performance of203
different models in each month and in different subvalues.204

3.2 Performance of six models in each month and different subvalues205

Figure 3 shows the simulation accuracy of the six models in each month. The accuracy of the ensemble model was still206
higher than that of the remote sensing model. GPPERF maintained the higher R2 and the lower RMSE in each month, and207
there was no obvious “high value underestimation and low value undervaluation”. In contrast, the accuracy of the remote208
sensing model was not satisfactory, especially for winter (most flux sites are concentrated in the northern hemisphere), the209
LUE models underestimated the GPP per month, and the Sim/Obs remained at 0.78-0.96, but R2 was above 0.7, while the210
vegetation index models overestimated GPP, Sim/Obs remained at 1.34-1.73, and R2 was relatively low, mostly around 0.6.211
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212
Figure 3. Performance of the six models in each month. a, b and c represent R2, RMSE, and Sim/Obs respectively.213

We compared the performance of all models in different subvalues, including high value (GPP > 10 gC m-2 d-1), median214
value (10 gC m-2 d-1 > GPP > 2 gC m-2 d-1), low value (GPP < 2 gC m-2 d-1). In the extreme value, all models performed215
poorly (Figure 4), the R2 of the remote sensing model was all below 0.3, while GPPERF showed a more obvious improvement216
in the high value, R2 increased to 0.38, RMSE decreased to 3.03 gC m-2 d-1, Sim/Obs also increased to 0.82, and only a slight217
improvement in the low value. In the median value, all models performed well without serious GPP estimation biases. The218
R2 of the remote sensing model was between 0.43 and 0.6, and the RMSE remained between 1.71 and 2.1 gC m-2 d-1. It could219
be seen that there was a large deviation in the estimation of the existing remote sensing model in the GPP extreme value, and220
the estimation in the median value was relatively good, while the ensemble model based on the machine learning method221
could improve the simulation accuracy of high value, which was of great significance for accurately estimating the annual222
values and inter-annual variation of GPP in terrestrial ecosystems.223
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224
Figure 4. Performance of six models in different subvalues.225

3.3 Global GPP estimation based on ensemble model and its generalization evaluation226

Based on remote sensing data and meteorological data, we estimated the global GPP from 2001 to 2022 using the ensemble227
model based on random forest. Figure 5a shows the spatial distribution of ERF_GPP. The high value of GPP was mainly228
concentrated in tropical areas, exceeding 10 gC m-2 d-1, and relatively high in southeastern North America, Europe and229
southern China, about 4-6 gC m-2 d-1. From 2001-2022, China and India showed the fastest increase in GPP, mostly at 0.1 gC230
m-2 d-1 (Figure 5b), similar to a previous study that reported that China and India led the global greening (Chen et al., 2019).231
We further estimated the annual maximum GPP, as shown in Figure 5c, and the North American corn belt was by far the232
global leader in GPP at more than 15 gC m-2 d-1, compared to only 10 gC m-2 d-1 in most tropical forests. In 2001-2022, the233
global GPP was 131.2 ± 3.1 PgC yr-1, the trend was 0.45 PgC yr-2, the lowest value was 126.4 PgC yr-1 in 2001, and the234
highest value was 135.9 PgC yr-1 in 2020 (Figure 5d).235
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236
Figure 5. Spatial distribution and interannual change of ERF_GPP during 2001-2022. a represents the multi-year average, b represents the237
trend, c represents the annual maximum, and d represents the interannual change of GPP.238

239
As shown in Figure 6, the generalizations of ERF_GPP and other GPP datasets were validated using GPP observations from240
ChinaFlux. Overall, in China, ERF_GPP has a high generalization, R2 of 0.75, RMSE of 1.75 gC m-2 d-1, there was no “high241
value underestimation and low value overestimation”, which was comparable to the simulation accuracy of BESS, ECGC242
and GOSIF. However, the simulation accuracy of the other two GPP datasets in China was relatively poor, with the R2 of243
NIRv being only 0.64, while the Revised EC-LUE was significantly underestimated, with the Sim/Obs being only 0.71. We244
further examined the different GPP datasets at each site, similar to the results at all sites, the ERF_GPP was relatively robust,245
with R2 and RMSE of 0.77 and 1.49 gC m-2 d-1, respectively (Figure S4). The R2 of NIRv and Revised EC-LUE was 0.68246
and 0.69, and Revised EC-LUE also showed a significant underestimate (Sim/Obs at 0.66). It should be noted that from the247
perspective of the average simulation accuracy of each site, BESS seemed to overestimate the GPP (Sim/Obs at 1.2).248

249
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250
Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFlux. a-f represents BESS, GOSIF, ECGC, NIRv,251
Revise-EC-LUE, ERF_GPP, respectively.252

4 Discussion253

4.1 Performance analysis of different models254

With the continuous development of remote sensing technology and carbon cycle models, the existing models for estimating255
GPP are gradually increasing, including LUE models, process models, machine learning models and the newly developed256
vegetation index models (such as SIF, NIRV, KNDVI), these "big class" models also include many "small classes". For257
example, the differences in the environmental restriction function in the LUE model are extended to CASA, VPM, EC-LUE258
and other models (Xiao et al., 2004; Potter et al., 1993; Yuan et al., 2007). A recent study collected the response functions of259
GPP to different environmental variables, and under the LUE theory, 5600 LUE models could be generated (Bao et al.,260
2022). These different model structures greatly increase the uncertainty of global GPP estimation, which make people still261
confused about the annual value and inter-annual trend of global GPP. All models can obtain a reliable model accuracy after262
calibrating the parameters, however none of the model accuracy is particularly outstanding, so it is urgent to provide a new263
method to further improve the accuracy of GPP estimation.264
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Multi-model ensemble may be a proven approach, and previous studies have shown that even simple multi-model average265
can reduce model estimation uncertainty. In this study, we used an ensemble models to improve the estimation of GPP.266
Compared with the remote sensing model, the ensemble model could indeed show higher accuracy, the R2 reached 0.837,267
which is significantly higher than the accuracy of the machine learning model based on meteorological variables and remote268
sensing variables (R2=0.777). Since there are no physical constraints, machine learning models need to find the relationship269
between explanatory variables and target variables from a large amount of training data (such as GPP=f (LAI,T,P, etc.))270
(Tramontana et al., 2016; Jung et al., 2019), so the reliability of the model usually depends on the representativeness of271
training data, such as LAI can explain GPP to a large extent, however, due to the complexity of the surrounding environment272
of flux sites, it is difficult to guarantee consistent modeling relationships even for the same vegetation type. The difference273
between ensemble models based on machine learning lies in the differences in explanatory variables. These explanatory274
variables are the results of multiple model simulations, and these results are usually more representative and more consistent275
with the relationship between the target variables, which makes the GPP simulations more accurate.276
The simulation results of different models in each months and different subvalues showed that the existing GPP estimation277
model widely existed the phenomenon of "high value underestimation and low value overestimate". For the LUE model, this278
phenomenon is most obvious in winter (Figure 3), and the GPP was underestimated by about 20%, which may be due to the279
deviation in the form of environmental factor. In the expression form of the temperature constraint adopted by the LUE280
model, the maximum temperature, minimum temperature and optimum temperature for limiting photosynthesis are all281
constants, however these values may not be fixed (Huang et al., 2019; Grossiord et al., 2020). The two vegetation index282
models were overestimated in winter, and even overestimated by 70% in December. The vegetation index model does not283
consider the constraints of environmental factors. They believe that all environmental impacts on vegetation have been284
included in the vegetation index (kNDVI, NIRv), however, this aspect is still controversial (Wu et al., 2020; Dechant et al.,285
2022), and the relationship between these vegetation indices and GPP is not robust, and the vegetation indices based on286
reflectance may have hysteresis (Wang et al., 2022), and our results also showed that only using vegetation indices modeling287
GPP should be carefully considered. In the low value and high value, the effects of all remote sensing models are not ideal,288
which may be caused by the model structure itself. Simple mathematical expressions cannot characterize the entire289
photosynthesis process, and these models are usually only empirical or semi-empirical. Although the ensemble model based290
on machine learning can improve this phenomenon to a certain extent, it still depends on the reliability of the remote sensing291
model in the extreme value. Therefore, we believe that in the future model development, it is necessary to focus on the292
simulation performance of GPP in the extreme value.293

4.2 Robustness of global GPP estimation based on ensemble model294

In this study, based on site-scale validation, we demonstrate the reliability of the random forest-based ensemble model in295
GPP estimation. However, what needs to be discussed further is whether the spatial distribution, spatial trends and global296
total of ERF_GPP are reliable. Since the current GPP datasets are generated based on remote sensing observation, all GPP297
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datasets are very similar in spatial distribution. Therefore, the validation of GPP observations independent of298
FLUXNET2015 are very important. Validation results from GPP observations from ChinaFlux show that GPPERF showed299
good generalization in China (R2=0.75), which was slightly lower than the accuracy of the 5 fold cross validation during300
modeling, possibly due to the mismatch between the 0.05° GPP and the footprint of the flux tower (Chu et al., 2021). Overall,301
however, this is comparable to or slightly better than the simulation accuracy of current mainstream GPP datasets. In302
addition, we also found a clear improvement in the spatial maximum value of ERF_GPP in some corn growing regions, such303
as the North American Corn Belt (Figure 5c), which is supported by previous studies showing that C4 crops have much304
higher GPP peaks than other vegetation types (Yuan et al., 2015; Chen et al., 2011).305
Due to the drought trend, the constraint effect of water on vegetation is gradually increasing, and some studies have reported306
the decoupling phenomenon of LAI and GPP under some specific conditions (Jiao et al., 2021; Huang et al., 2019). However,307
in China and India that two regions with significant greening, GPP is still increasing in most datasets, and ERF_GPP308
supports this view. This phenomenon may be due to the low drought pressure on farmland in China and India due to309
irrigation, which is less of a constraint on GPP (Ambika and Mishra, 2020; Ai et al., 2020). The global estimate of ERF_GPP310
was 131.2 PgC yr-1, which is close to estimates from most previous studies (Wang et al., 2021b; Badgley et al., 2019). Some311
studies have suggested that the global GPP may reach 150-175 PgC yr-1 (Welp et al., 2011), however, there is no further312
evidence to support this view.313

4.3 Limitations and uncertainties314

In this study, we improved GPP estimates based on the ensemble model. However, there are still some limitations and315
uncertainties due to the availability of data and methods. First, C4 crop distribution maps were used in our study to improve316
estimates of cropland GPP. However, it is important to note that this dataset only represents the spatial distribution of crops317
around the year 2000, which may add uncertainty to GPP simulations of cropland in a few C3 and C4 alternating areas.318
Secondly, only the GPP simulations of four remote sensing models were considered in our model, and it is not clear whether319
adding more GPP simulations to the model can further improve the GPP estimation. Finally, our model did not consider the320
effect of soil moisture on GPP, and some previous studies have highlighted the importance of considering soil moisture in321
GPP estimates, especially for dry years (Stocker et al., 2019; Stocker et al., 2018).322

5 Conclusion323

In this study, we evaluated the performance of five remote sensing models and one ensemble model to simulate GPP.324
Overall, GPPERF had higher model accuracy, explaining 83.7% of the monthly variation in GPP, and showed good accuracy325
in different vegetation types, different months and different extreme regions. The global GPP of ERF_GPP for 2001-2022 is326
131.2 PgC yr-1. The results from ChinaFlux show that ERF_GPP has good generalization. For the current emerging GPP327
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estimation models, machine learning-based ensemble models provide another method of GPP estimation, and this may lead328
to higher model accuracy and more reliable global GPP estimation.329

Data and code availability330

The global GPP dataset based on the ensemble model for 2001-2022 is available at331
https://doi.org/10.6084/m9.figshare.24417649 (Chen et al., 2023). The spatial resolution of ERF_GPP is 0.05° and the332
temporal resolution is monthly. Code is available from the author upon reasonable request.333
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