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Abstract. Advancements in remote sensing technology have significantly contributed to the improvement of models for 15 

estimating terrestrial gross primary productivity (GPP). However, discrepancies in spatial distribution and interannual 16 

variability within GPP datasets pose challenges to a comprehensive understanding of the terrestrial carbon cycle. In contrast 17 

to previous models that rely on remote sensing and environmental variables, we developed an ensemble model based on 18 

random forest (ERF model). This model used the GPP outputs of established models (EC-LUE, GPP-kNDVI, GPP-NIRv, 19 

Revised-EC-LUE, VPM, MODIS) as input to estimate GPP. The ERF model demonstrated superior, explaining 85.1% of the 20 

monthly GPP variations at 170 sites and surpassing the performance of both selected GPP models (67.7%-77.5%) and an 21 

independent random forest model using remote sensing and environmental variables (81.5%). Additionally, the ERF model  22 

improved the accuracy across each month and various subvalues, mitigating the issue of "high value underestimation and low 23 

value overestimation" in GPP estimates. Over the period from 2001 to 2022, the global GPP estimated by the ERF model was 24 

132.7 PgC yr-1, with an increasing trend of 0.42 PgC yr-2, which is comparable to or slightly better than the accuracy of other 25 

mainstream GPP datasets in term of validation results from ChinaFlux  In summary, the ERF model offers a reliable 26 

alternative for reducing uncertainties in GPP estimate, providing a more dependable global GPP estimate. 27 

 28 

 29 

1 Introduction 30 

Gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle, and serves as the primary input of 31 

carbon into the terrestrial carbon cycle. Uncertainties in GPP estimates can propagated to other carbon flux estimates, making 32 
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it crucial to clarify the spatio-temporal patterns of GPP (Xiao et al., 2019; Ruehr et al., 2023). However, global GPP is variously 33 

estimated from 90 PgC yr-1 to 160 PgC yr-1 across different studies, with these variations becoming more pronounced when 34 

scaled down to regional scales or specific ecosystem types. This variability underscores the necessity for innovative methods 35 

to reduce the uncertainty in GPP estimates (Jung et al., 2019; Ryu et al., 2019; Anav et al., 2015). 36 

The light use efficiency (LUE) model is one of the most widely adopted methods for estimating GPP. It assumes that GPP is 37 

proportional to the photosynthetically active radiation absorbed by vegetation, and optimizes the spatio-temporal pattern of 38 

GPP through meteorological constraints such as temperature and water (Pei et al., 2022). However, variations in these 39 

constraints varies significantly, leading to differences of over 10% in model explanatory power. (Yuan et al., 2014). Recent 40 

studies have proposed some novel vegetation indices that have been shown to be effective proxies for GPP through theoretical 41 

derivation and observed validation (Badgley et al., 2017; Camps-Valls et al., 2021). However, these vegetation indices often 42 

use only remote sensing data as an input for estimating long-term GPP without considering meteorological factors, which has 43 

led to some controversy (Chen et al., 2024; Dechant et al., 2020; Dechant et al., 2022). Both LUE and vegetation index models 44 

use a combination of linear mathematical formulas to estimate GPP. However, ecosystems are inherently complex, and the 45 

biases introduced by these numerical models increase the uncertainty in the estimates of the final product (GPP). Machine 46 

learning models has shown great potential for improving GPP estimates in previous studies (Jung et al., 2020; Guo et al., 2023). 47 

These model are trained by non-physical means directly using GPP observations and selected environmental and vegetation 48 

variables, and the performance of the model depends on the number and quality of observed data and the representativeness 49 

of input data. Nevertheless, direct validation from flux towers of FLUXNET reveals that these models typically explain only 50 

about 70% of monthly GPP variations, with similar performance to other GPP models (Wang et al., 2021; Badgley et al., 2019; 51 

Zheng et al., 2020; Jung et al., 2020). Due to deviations in the model structure, a common limitation across these models is 52 

poor estimate of monthly extreme GPP, leading to the phenomenon of "high value overestimation and low value 53 

overestimation" (Zheng et al., 2020). Especially for extremely high values, which usually occur during the growing season and 54 

largely determine the annual value and interannual fluctuations of GPP, this underestimation may hinder our understanding of 55 

the global carbon cycle. 56 

It is challenging for a single model to provide accurate estimates for all global regions. Ensemble models have been shown to 57 

outperform single models in previous studies, potentially addressing some inherent issues in model estimate (Chen et al., 2020; 58 

Yao et al., 2014). Traditional multi-model ensemble methods usually use simple multi-model average or a weighted bayesian 59 

average. However, these methods typically assign fixed weights to each model and are essentially linear combinations. Recent 60 

studies have applied machine learning methods to multi-model ensembles to establish nonlinear relationships between multiple 61 

simulated target variables and real target variable, improving simulation performance (Bai et al., 2021; Yao et al., 2017; Tian 62 

et al., 2023). Whether this method can improve some common problems with a single GPP model, such as high value 63 

underestimation and low value overestimation, is not clear and needs to further investigation. 64 

In this study, we attempt to use an ensemble model based on the random forest (ERF model) to improve global GPP estimate. 65 

Specifically, the work of this study includes the following: (1) Recalibrating the parameters for each model, and comparing 66 
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the performance of six GPP models and the ERF model; (2) Focusing on the phenomenon of “high value underestimation and 67 

low value overestimation” in each model, and evaluating the performance of each model in different months, vegetation types 68 

and subvalues (high value, median value, low value); (3) Developing a global GPP dataset using the ERF model and validate 69 

its generalization using GPP observations from ChinaFlux. 70 

2 Method 71 

2.1 Data at the global scale 72 

In this study, we selected remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 73 

meteorological data from EAR5 to estimate global GPP (Hersbach et al., 2020). For the remote sensing data, surface reflectance 74 

(red band, near infrared band, blue band and shortwave infrared band), leaf area index (LAI) and fraction of photosynthetically 75 

active radiation (FPAR) were used. For meteorological data, we selected average air temperature, dew point temperature, 76 

minimum air temperature, total solar radiation and direct solar radiation. Dew point temperature and air temperature were used 77 

to calculate saturated vapor pressure difference (VPD) (Yuan et al., 2019), and diffuse solar radiation was derived as the 78 

difference between total solar radiation and direct solar radiation. Minimum air temperature was obtained from the hourly air 79 

temperature. CO2 data were obtained from the monthly average carbon dioxide levels measured by the Mauna Loa Observatory 80 

in Hawaii. Table 1 provides an overview of the datasets used in this study. 81 

 82 

Table 1. Overview of the datasets used in this study. 83 

Variable Dataset Spatial resolution Temporal resolution Temporal coverage 

Surface reflectance (red band and  

near infrared band) 
MCD43C4 0.05° daily 2001-2022 

Surface reflectance (red band, near 

infrared band, blue band and  

shortwave infrared band) 

MOD09CMG 0.05° daily 2001-2022 

LAI MOD15A2H 500m 8d 2001-2022 

FPAR MOD15A2H 500m 8d 2001-2022 

Average air temperature (AT) ERA5-land 0.1° Monthly 2001-2022 

Dew point temperature (DPT) ERA5-land 0.1° Monthly 2001-2022 

Minimum air temperature (MINT) ERA5-land 0.1° Monthly 2001-2022 

Total solar radiation (TSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 
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Direct solar radiation (DirSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

CO2 

NOAA’s Earth 

System Research 

Laboratory 

/ Monthly 2001-2022 

Distribution map of C4 crops 

Harvested Area 

and Yield for 175 

Crops 

1/12° Annual 2000 

Land use MCD12C1 0.05° Annual 2010 

 84 

Previous studies have shown that the photosynthetic capacity of C4 crops is much higher than that of C3 crops (Chen et al., 85 

2014; Chen et al., 2011), so it is necessary to divide the cropland into C3 crops and C4 crops. To estimate the global GPP, we 86 

used the dataset "175 Crop harvested Area and yield", which describes the global harvested area and yield of 175 crops in 87 

2000 (Monfreda et al., 2008). We extracted the sum of the area ratios of all C4 crops (corn, corn feed, sorghum, sorghum feed, 88 

sugarcane, millet) at each grid as the coverage of C4 crops (Figure S1). Consequently, the estimated value of cropland GPP 89 

can be expressed as: coverage of C3 crops × simulated GPP value of C3 crops + coverage of C4 crops × simulated GPP value 90 

of C4 crops, which was used in a previous study (Guo et al., 2023).  91 

The land use map was derived from the IGBP classification of MCD12Q1, and 2010 was chosen as the reference year (that is, 92 

land use data is unchanged in the simulation of global GPP). In order to meet the requirements of subsequent research, land 93 

cover types were grouped into 9 categories: Deciduous Broadleaf Forest (DBF), Evergreen Needleleaved Forest (ENF), 94 

Evergreen Broadleaf Forest (EBF), Mixed Forest (MF), Grassland (GRA), Cropland (including CRO-C3 and CRO-C4), 95 

Savannah (SAV), Shrub (SHR), Wetland (WET).  96 

Finally, for higher resolution data, we gridded the dataset to 0.05° by averaging all pixels whose center fell within each 0.05° 97 

grid cell for upscaling. For lower resolution data, we used the nearest neighbor resampling to 0.05°. In addition, MODIS data 98 

were aggregated to a monthly scale to ensure spatio-temporal consistency. 99 

2.2 Observation data at the site scale 100 

GPP observations were sourced from the FLUXNET 2015 dataset, which includes carbon fluxes and meteorological variables 101 

from more than 200 flux sites around the world (Pastorello et al., 2020). GPP cannot be obtained directly from flux sites and 102 

usually needs to be obtained by dismantling the Net Ecosystem Exchange. We chose a monthly level GPP based on the 103 

nighttime partitioning method and retained only high quality data (NEE_VUT_REF_QC > 0.8) for every year, ultimately 104 

selecting 170 sites with 10932 monthly values for this study. In addition, we selected monthly average air temperature, total 105 

solar radiation and VPD. The site observations do not provide direct solar radiation, so we extracted data from the ERA5 106 
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covering the flux tower. Monthly minimum air temperature was derived from hourly air temperature. Since some required 107 

model data are not directly available at flux sites, LAI and FPAR were extracted from MOD15A2H (500 m), and surface 108 

reflectance data (red band, near infrared band, blue band and shortwave infrared band) were derived from MCD43A4 (500 m) 109 

and MOD09A1 (500 m). These data are roughly similar to the footprint of the flux site and can represent the land surface of 110 

the site (Chu et al., 2021).  111 

2.3 GPP estimation model 112 

We selected six independent models to estimate GPP in this study. These models are widely used with few model parameters 113 

and have demonstrated reliable accuracy in previous studies (Zheng et al., 2020; Zhang et al., 2017; Badgley et al., 2017). The 114 

six models are EC-LUE, Revised-EC-LUE, NIRv-based linear model, kNDVI-based linear model, VPM, MODIS. The VPM, 115 

MODIS and EC-LUE are LUE models based on remote sensing data and meteorological data (Yuan et al., 2007; Running et 116 

al., 2004; Xiao et al., 2004). Recently, Zheng et al. (2020) proposed the Revised-EC-LUE model, which divides the canopy 117 

into sunlit and shaded leaves, improving the estimation of global GPP (Zheng et al., 2020). The NIRv and kNDVI are newly 118 

proposed vegetation indices calculated from the red and near-infrared bands of the reflectance spectrum (Badgley et al., 2017; 119 

Camps-Valls et al., 2021). Similar to solar induced chlorophyll fluorescence, they exhibit a linear relationship with GPP and 120 

are considered effective proxies for GPP. Detailed descriptions of all models can be found in Text S1.  121 

To reduce uncertainty in GPP estimate from a single model, we used the ERF model, the basic idea of which is to restructure 122 

the simulated values of multiple models. In this study, we directly used the ERF model to establish the relationship between 123 

the GPP simulated by the above six models and GPP observations. In addition, for comparison with the ERF model, we also 124 

used the random forest (RF) method for modeling. In this study, we used average air temperature, minimum air temperature, 125 

VPD, direct solar radiation, diffuse solar radiation, FPAR and LAI to estimate GPP. Both models used the random forest 126 

method, which has been widely used in previous studies of GPP estimate (Jung et al., 2020; Guo et al., 2023). Random forest 127 

is an ensemble learning algorithm that combines the outputs of multiple decision trees to produce a single result, and is 128 

commonly used for classification and regression problems (Belgiu and Drăguţ, 2016). In the regression problem, the output 129 

result of each decision tree is a continuous value, and the average of the output results of all decision trees is taken as the final 130 

result. An overview of all models used can be found in Table 2. 131 

Table 2. Overview of the models used in this study. 132 

ID Model Input data Output 

1 EC-LUE FPAR, VPD, AT, SRAD, CO2 GPPEC 

2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC 

3 kNDVI-GPP Red band and near infrared band GPPkNDVI 

4 NIRv-GPP Red band and near infrared band GPPNIRv 

5 VPM Red band, near infrared band, blue band, GPPVPM 
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shortwave infrared band, AT, SRAD 

6 MODIS FPAR, SRAD, MINT, VPD GPPMODIS 

7 Random forest model (RF) LAI, FPAR, AT, MINT, VPD, DifSR, DirSR GPPRF 

8 Ensemble model based on random forest 

(ERF) 

GPPEC, GPPREC, GPPkNDVI, GPPNIRv, GPPMODIS, 

GPPVPM 

GPPERF 

 133 

2.4 Model parameter calibration and validation 134 

FLUXNET only provides GPP observations and meteorological data, lacking direct measurements for LAI, FPAR, and surface 135 

reflectance, so only remote sensing data can be used. Considering the variety of remote sensing data sources, such as MODIS 136 

and AVHRR, it is evident that calibrating the same GPP model with different remote sensing data can yield varied parameters. 137 

In addition, the number of sites used to calibrate model parameters is also an important influencing factor for model parameters. 138 

The original parameters of these models were calibrated with only a limited number of sites (e.g., 95 sites for Revised EC-139 

LUE and 104 for NIRv) (Wang et al., 2021; Zheng et al., 2020). Therefore, to reduce the impact of the uncertainty of model 140 

parameters on simulation results, we did not use original parameters and conducted parameter calibration for GPP models 141 

across different vegetation types. For EC-LUE, Revised EC-LUE, VPM and MODIS, the Markov chain Monte Carlo method 142 

was used to calibrate model parameters. Traditionally, the mean of the posterior distribution of parameters is taken as the 143 

optimal value. However, previous studies have indicated that some model parameters are not well constrained when calibrating 144 

multiple model parameters (Xu et al., 2006; Wang et al., 2017), so we selected the parameter with the smallest root-mean-145 

square error (RMSE) as the optimal parameter in each iteration. For each vegetation type, we randomly selected 70% of the 146 

sites for parameter calibration, and repeated the process 200 times. In order to avoid overfitting, we adopted the mean of the 147 

200 calibrated parameters as the final model parameters. Similarly, for the two vegetation index models, we randomly selected 148 

70% of the sites in each vegetation type for parameter calibration, peating the process 200 times and using the mean of the 200 149 

calibrated parameters as the final model parameters. 150 

After obtaining GPP estimates from the six GPP models, we evaluated the simulation performance of the RF model and the 151 

ERF model respectively. For both models, we evaluated the model performance using 5-fold cross-validation, where the 152 

process was repeated 200 times, and the mean of the 200 GPP estimates was considered the final GPP estimate. We utilized 153 

the determination coefficient (R2) and RMSE as metrics to evaluate the simulation performance of all models. Additionally, 154 

we used the ratio of GPP simulations to GPP observations (Sim/Obs) to measure whether the model overestimates or 155 

underestimates. 156 

2.5 Global GPP estimation based on ERF model and its uncertainty. 157 

Based on the ERF model, we estimated global GPP for 2001-2022 (ERF_GPP). The uncertainties of ERF_GPP can be 158 

attributed to two primary factors, one is the influence of the number of GPP observations, and the other is the influence of the 159 
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number of features (that is, the simulated GPP). For the first type of uncertainty, we randomly selected 80% of the data to build 160 

a model and simulate the multi-year average of global GPP. The process was repeated 100 times, yielding 100 sets of multi-161 

year averages of ERF_GPP. Their standard deviations were considered as the uncertainty of ERF_GPP caused by the number 162 

of GPP observations. For the second type of uncertainty, we selected different number of features to build a model and simulate 163 

the multi-year average of global GPP. A total of 56 sets of multi-year averages for ERF_GPP were obtained. The standard 164 

deviation of different combinations was considered to be the uncertainty of ERF_GPP caused by the number of features.  165 

2.6 Evaluation of the generalization of different GPP datasets 166 

The majority of flux sites in FLUXNET are concentrated in Europe and North America, it is unclear whether the different GPP 167 

estimation methods are suitable for regions with sparse flux sites. Recently, ChinaFlux has published GPP observations from 168 

several sites, offering an opportunity to evaluate the generalization of different GPP datasets. However, the spatial resolution 169 

of most GPP datasets is 0.05°, and a direct comparison with GPP observations at flux sites is challenging. Therefore, we 170 

extracted 0.05° MODIS land use covering the flux sites. If the vegetation type of the flux site matched the MODIS land use, 171 

the site was used for the analysis. Finally, a total of 12 flux sites were selected (Figure S2), and Table S1 shows the information 172 

of these sites. The same procedure was applied to FLUXNET, resulting in the selection of 52 sites (Figure S2). It should be 173 

noted that due to the absence of meteorological data from some sites in Chinaflux, we did not validate all GPP models at the 174 

site scale (500 m). 175 

We evaluated the generalization of ERF_GPP at 12 ChinaFlux sites and 52 FLUXNET sites. In addition, we selected a number 176 

of widely used GPP datasets for comparison, including BESS (Li et al., 2023), GOSIF (Li and Xiao, 2019), FLUXCOM (Jung 177 

et al., 2020), NIRv (Wang et al., 2021), Revise-EC-LUE (Zheng et al., 2020), MODIS (Running et al., 2004), VPM (Zhang et 178 

al., 2017), which were generated using different GPP estimation methods. These GPP datasets all have a spatial resolution of 179 

500 m-0.5°, similar to the resampling process in section 2.1, we have unified them to 0.05°. The common time range for these 180 

datasets spanned from 2001 to 2018, and the temporal resolution was unified to monthly to match the GPP observations. 181 

3 Result 182 

3.1 Performance of GPP models at site scale 183 

Table S2-S7 show the optimization results of six GPP model parameters. Consistent with the previous study, in the Revised 184 

EC-LUE model, the light use efficiency parameter of shade leaves was significantly higher than that of sunlit leaves (Zheng 185 

et al., 2020). It is necessary to divide the cropland into C3 crops and C4 crops. In all models, the light use efficiency parameters 186 

of C4 crops were significantly higher than those of C3 crops, which was particularly reflected in the two vegetation index 187 

models of GPPkNDVI and GPPNIRv, the slope of the linear regression directly reflected the difference in the photosynthetic 188 

capacity of the different crops. 189 
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Figure 1 shows the performance of all models across different vegetation types. Overall, the performance of the ERF model 190 

was better than that of the GPP models. GPPERF had the higher accuracy among all models, with R2 between 0.61-0.91 and 191 

RMSE between 0.72-2.78 gC m-2 d-1. In contrast, the LUE and vegetation index models performed relatively poorly in EBF, 192 

with R2 below 0.5. It is worth noting that compared to other vegetation types, the RMSE was highest for cropland, with 6 out 193 

of 8 models for C4 crop exceeding 3 gC m-2 d-1, suggesting that these existing GPP models may not properly capture the 194 

seasonal changes in cropland GPP. Six models with calibration parameters and ERF model were found to have no significant 195 

deviation across vegetation types. However, GPPRF was significantly underestimated for C4 crops and overestimated for SHR. 196 
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Figure 1. The performance of the eight models on different vegetation types. a, b and c represent R2, RMSE, and Sim/Obs respectively. 198 

Combining the results of all flux sites, GPPERF explained 85.1% of the monthly GPP variations, while the seven GPP models 199 

only explained 67.7%-81.5% of the monthly GPP variations (Figure 2). In order to further prove the robustness of the ERF 200 

model, we also used GPP models with original parameters for modeling and validation. As shown in Figure S3, the 201 

performance of these GPP models decreased significantly, with R2 ranging from 0.570 to 0.719 and RMSE ranging from 2.29 202 

to 3.81 gC m-2 d-1. The phenomenon of "high underestimation and low overestimation" was also pronounced. However, the 203 

ERF model maintained a consistent advantage, with R2 significantly higher than other GPP models (0.856). In addition, we 204 

tested the effect of the amount of GPP on the accuracy of the ERF model. As shown in Table S8, as the number of GPP in the 205 

ERF model increased, the performance gain of the model gradually decreased. 206 

In summary, GPPERF showed high accuracy in terms of vegetation type and the ability to interpret monthly variations in GPP, 207 

which also illustrates the potential of ERF model to improve GPP estimation. However, it was observed that most GPP 208 

simulations exhibited the phenomenon of “high value underestimation and low value overestimation”. For example, GPPEC, 209 

GPPREC, GPPMODIS and GPPRF showed obvious underestimation in the months when the monthly GPP value surpassed 15 gC 210 

m-2 d-1 (Figure 2). Therefore, it is necessary to evaluate the performance of different models in each month and different 211 

subvalues. 212 
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 213 

Figure 2. Comparison between the GPP simulations of the eight models and the GPP observations. a-h represents GPPEC, GPPNIRv, GPPkNDVI, 214 
GPPREC, GPPVPM, GPPMODIS, GPPRF, GPPERF, respectively. 215 

 216 

3.2 Performance of GPP models in each month and different subvalues 217 

Figure 3 shows the simulation accuracy of the eight models in each month. The ERF model maintained a higher accuracy than 218 

other GPP models, with GPPERF consistently achieving higher R2 and lower RMSE in most months, and no evident instances 219 

of "high value underestimation and low value overestimation". In contrast, the accuracy of other GPP models was less 220 

satisfactory accuracy, especially during winter (most flux sites are concentrated in the Northern Hemisphere), the LUE models 221 
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tended to underestimate GPP, and the Sim/Obs remained at 0.72-1.01, although R2 values were above 0.7. Meanwhile, the 222 

vegetation index models overestimated GPP, Sim/Obs remained at 1.34-1.73, and R2 values were relatively low, mostly around 223 

0.6. 224 
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Figure 3. Performance of the eight models in each month. a, b and c represent R2, RMSE, and Sim/Obs respectively. 226 

We compared the performance of all models in different subvalues, including high value (GPP > 15 gC m-2 d-1), median value 227 

(15 gC m-2 d-1 > GPP > 2 gC m-2 d-1), low value (GPP < 2 gC m-2 d-1). For extreme values, most models performed poorly 228 

(Figure 4), with R2 for GPP models falling below 0.3, and only GPPVPM showing better performance in the high-value range. 229 

GPPERF demonstrated some improvement in both low and high values, with R2 0.32 and 0.43, RMSE of 0.89 and 4.73 gC m-2 230 

d-1, and Sim/Obs closer to 1, respectively. In the median value range, all models performed well, with no significant bias in 231 

the GPP estimation. The R2 of GPP models ranged from 0.44 to 0.68, and the RMSE remained between 1.82 and 2.54 gC m-2 232 

d-1. Further analysis was made at two typical sites, it was obvious that GPPEC, GPPREC and GPPMODIS on CN-Qia exhibited 233 

obvious underestimation during the growing season (Figure S4). On CH_Lae, GPPkNDVI and GPPVPM were significantly 234 

overestimated (Figure S5). In contrast, at both sites, GPPERF was more consistent with observations, indicating that the superior 235 

performance of GPPERF was due to the correction on the time series (although not perfectly corrected at all sites). 236 

  237 

Figure 4. Performance of eight models in different subvalues. 238 
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3.3 Temporal and spatial characteristics of ERF GPP and its generalization evaluation  239 

Figure 5a shows the spatial distribution of the multi-year average of ERF_GPP. The high value of GPP was mainly 240 

concentrated in tropical areas, exceeding 10 gC m-2 d-1, and relatively high in southeastern North America, Europe and southern 241 

China, about 4-6 gC m-2 d-1. From 2001-2022, China and India showed the fastest increase in GPP, mostly at 0.1 gC m-2 d-1 242 

(Figure 5b), similar to a previous study that reported that China and India led the global greening (Chen et al., 2019). We 243 

further investigated the annual maximum GPP, as shown in Figure 5c, and the North American corn belt was the global leader 244 

in GPP at more than 15 gC m-2 d-1, compared to only 10 gC m-2 d-1 in most tropical forests. In 2001-2022, the global GPP was 245 

132.7 ± 2.8 PgC yr-1, with a trend of 0.42 PgC yr-2. The lowest value was 128.6 PgC yr-1 in 2001, and the highest value was 246 

136.2 PgC yr-1 in 2020 (Figure 5d). 247 

The results of the two uncertainty analyses consistently indicated that ERF_GPP exhibited a high uncertainty in tropical regions 248 

(Figures S6 and S7), and the uncertainty of ERF_GPP caused by the number of GPP observations was relatively small, the 249 

standard deviation of 100 simulations was about 0.3 gC m-2 d-1 in the tropics and lower in other regions, below 0.1 gC m-2 d-1. 250 

In contrast, the ERF_GPP caused by the number of features was much more uncertain, especially when the number of features 251 

was small. It is worth noting that when the number of features was 5, the uncertainty was already substantially less, and the 252 

standard deviation was generally lower than 0.5 gC m-2 d-1. 253 

 254 

 255 
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Figure 5. Spatial distribution and interannual change of ERF_GPP during 2001-2022. a represents the multi-year average, b represents the 256 
trend, c represents the annual maximum, and d represents the interannual change of GPP. 257 

 258 

As shown in Figure 6, ERF_GPP and other GPP datasets were validated using GPP observations from ChinaFlux. Among all 259 

the models, GPPVPM demonstrated the best performance, with R2 of 0.86 and RMSE of 1.34 gC m-2 d-1. ERF_GPP also 260 

exhibited high generalization, with R2 of 0.75, RMSE of 1.72 gC m-2 d-1, there was no “high value underestimation and low 261 

value overestimation”, which was comparable to the accuracy of BESS and GOSIF. However, the simulation accuracy of the 262 

other GPP datasets in Chinaflux was relatively poor, with the R2 of NIRv being only 0.64, while FLUXCOM, MODIS and 263 

Revised EC-LUE were significantly underestimated, with the Sim/Obs being only 0.71-0.82. In the validation of FLUXNET, 264 

the R2 of FLUXCOM, MODIS, and Revised EC-LUE ranged from 0.57 to 0.67, and the RMSE ranged from 2.67 to 3.3 gC m-265 

2 d-1, and exhibited different degrees of underestimation (Figure S8). Other GPP datasets demonstrated similar performance, 266 

with ERF_GPP being the best (R2 = 0.74, RMSE = 2.26 gC m-2 d-1). 267 

 268 

 269 

 270 
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 271 

Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFlux. a-h represents BESS, FLUXCOM, GOSIF, 272 
MODIS, NIRv, VPM, Revise-EC-LUE, ERF_GPP, respectively. 273 

4 Discussion 274 

4.1 Performance analysis of different models  275 

After parameter calibration, both LUE and vegetation index models obtained reliable model accuracy. However, noticeable 276 

errors persist in different months and subvalues, indicating the prevalent phenomenon of "high value underestimation and low 277 

value overestimation". (Figures 1-4). In addition to MODIS, the GPP simulated by the other three LUE models is generally 278 

underestimated in winter (Figure 3), which may be caused by biases in the parameters used in the meteorological constraints. 279 
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In the expression form of the temperature constraint adopted by the LUE models, the maximum temperature, minimum 280 

temperature and optimum temperature for limiting photosynthesis are all constants, however these values may not be fixed 281 

(Huang et al., 2019; Grossiord et al., 2020). A previous study has demonstrated that the GPP estimation could be effectively 282 

improved by using dynamic temperature parameters (Chang et al., 2021). Moreover, the form of meteorological constraint is 283 

also an important influencing factor. Compared with other LUE models, VPM does not use VPD constraints, but incorporates 284 

land surface water index from satellite observations as constraints (Xiao et al., 2004), which may be the reason why the model 285 

performs better than other models at high values. Conversely, the two vegetation index models overestimated GPP in winter, 286 

and even overestimated by 70% in December. The vegetation index model does not consider meteorological constraints that 287 

believe that all environmental impacts on vegetation have been included in the vegetation index (kNDVI, NIRv). However, it 288 

is a fact that under high temperatures or low radiation, the vegetation index may still maintain the appearance of high 289 

photosynthesis (greening), while in fact the GPP is low (Doughty et al., 2021; Yang et al., 2018; Chen et al., 2024). Furthermore, 290 

the relationship between these vegetation indices and GPP is not robust, and the vegetation indices based on reflectance may 291 

have hysteresis (Wang et al., 2022). 292 

Compared to other GPP models, the ERF model demonstrated better performance (R2 = 851). Since there are no physical 293 

constraints, the machine learning model needs to find the relationship between explanatory variables and target variable from 294 

a large amount of training data (such as GPP=f (LAI,T,P, etc.)). Therefore, the reliability of the model usually depends on the 295 

representativeness of the training data. For example, LAI can explain GPP to a large extent, while complex modeling 296 

relationships are still needed from LAI to GPP. The difference between the ERF model and the RF model lies in the explanatory 297 

variables. The ERF model leverages multiple GPP simulations that are more representative and aligned with the target variable, 298 

thus making the GPP simulations more accurate. In other words, the ERF model does not need to take into account the 299 

uncertainties of the model structure (such as meteorological constraints) and model parameters (such as maximum light use 300 

efficiency), but rather focuses on the uncertainties inherent in the simulated GPP. To further clarify the impact of explanatory 301 

variables on the ERF model, we conducted a feature importance analysis (Figure S9). From an average of 200 times, the results 302 

of the ERF model did not depend on a single GPP simulation. Even GPPMODIS, with the highest relative importance, accounted 303 

for no more than 25%, suggesting that the ERF model behaves more like a weighted average of multiple GPP simulations. 304 

It is worth noting that in the study of Tian et al. (2023), the ERF model was also used to improve the GPP estimation. Our 305 

research extends this work in several ways. Firstly, parameter calibration was carried out in our study so that the final validation 306 

results are comparable, that is, differences in model performance are mainly due to the uncertainty of the model structure. 307 

Secondly, our study focuses on the phenomenon of "high value underestimation and low value overestimation" of GPP model, 308 

with results indicating that the ERF model performed well across various vegetation types, months, and subvalues. Finally, we 309 

generated the ERF_GPP dataset and validate it on different observational datasets, further confirming the robustness of the 310 

ERF model in GPP estimation. 311 
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4.2 Robustness of ERF_GPP 312 

In this study, based on site-scale validation, we demonstrate the reliability of the ERF model in GPP estimation. However, 313 

further discussion is needed regarding the robustness of the spatial distribution, spatial trends and global totals of ERF_GPP. 314 

Since the current GPP datasets are generated based on remote sensing observation, there is a strong similarity in spatial 315 

distribution among all GPP datasets. Therefore, the validation of GPP observations independent of FLUXNET is crucial. 316 

Validation results from GPP observations of ChinaFlux indicated that GPPERF exhibited good generalization in China 317 

(R2=0.75), which was slightly lower than the accuracy of 5-fold-cross-validation during modeling, possibly due to the 318 

mismatch between the 0.05° GPP and the footprint of the flux tower (Chu et al., 2021). In addition, the validation of FLUXNET 319 

further confirms the reliability of ERF_GPP. Overall, this is comparable to or slightly better than the simulation accuracy of 320 

current mainstream GPP datasets. We also observed a clear improvement in the spatial maximum value of ERF_GPP in some 321 

corn growing regions, such as the North American Corn Belt (Figure 5c), which is supported by previous studies showing that 322 

C4 crops have much higher GPP peaks than other vegetation types (Yuan et al., 2015; Chen et al., 2011). 323 

Due to the drought trend, the constraining effect of water on vegetation is gradually increasing, and some studies have reported 324 

the decoupling phenomenon of LAI and GPP under some specific conditions (Jiao et al., 2021; Hu et al., 2022). However, in 325 

China and India that two regions with significant greening, GPP ontinues to increase in most datasets, and ERF_GPP supports 326 

this view. This phenomenon may be due to the low drought pressure on croplands in China and India due to irrigation, which 327 

poses less constraint on GPP (Ambika and Mishra, 2020; Ai et al., 2020). The global estimate of ERF_GPP is 132.7 ± 2.8 PgC 328 

yr-1, which is close to estimates from most previous studies (Wang et al., 2021; Badgley et al., 2019). A study have suggested 329 

that the global GPP may reach 150-175 PgC yr-1 (Welp et al., 2011), however, there is no further evidence to support this view. 330 

ERF_GPP exhibited high uncertainty in tropical regions, similar reports have been made in previously published GPP datasets 331 

(Badgley et al., 2019; Guo et al., 2023). The scarcity of flux observations in these regions (Pastorello et al., 2020), coupled 332 

with the well-known issue of cloud pollution and saturation in remote sensing data in the tropics (Badgley et al., 2019), 333 

exacerbates the uncertainty in GPP estimates for these regions. Therefore, in future studies, on the one hand, more flux 334 

observations in tropical regions are needed, and on the other hand, attempts can be made to combine optical and microwave 335 

data to improve the estimation of GPP. 336 

4.3 Limitations and uncertainties 337 

In this study, we improved GPP estimation based on the ERF model. However, there are still some limitations and uncertainties 338 

due to the availability of data and methods. First, C4 crop distribution maps were used in our study to improve estimates of 339 

cropland GPP. However, it is important to note that this dataset only represents the spatial distribution of crops around the year 340 

2000, which may add uncertainty to GPP simulations of cropland in a few C3 and C4 alternating areas. Secondly, the ERF 341 

model considers six GPP simulations, and it is not clear whether adding more GPP simulations to the model can further improve 342 

the GPP estimation. Finally, our model did not consider the effect of soil moisture on GPP, and some previous studies have 343 
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highlighted the importance of incorporating soil moisture in GPP estimates, especially for dry years (Stocker et al., 2019; 344 

Stocker et al., 2018). 345 

5 Conclusion 346 

In this study, we compared the performance of the ERF model with other GPP models at the site scale, especially for the 347 

phenomenon of "high value underestimation and low value overestimation", and further developed the ERF_GPP dataset. 348 

Overall, GPPERF had higher model accuracy, explaining 85.1% of the monthly GPP variations, and demonstrated reliable 349 

accuracy in different months, vegetation types and subvalues. Over the period from 2001 to 2022, the global estimate of 350 

ERF_GPP was 132.7 ± 2.8 PgC yr-1, corresponding to a trend of 0.42 PgC yr-2. Validation results from ChinaFlux indicated 351 

that ERF_GPP had good generalization. For the current emerging GPP estimation models, ERF model provides an alternative 352 

GPP estimation method that lead to better model accuracy. 353 
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