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Abstract. Advancements in remote sensing technology have significantly contributed to the improvement of models for 15 

estimating terrestrial gross primary productivity (GPP). However, discrepancies in the spatial distribution and interannual 16 

variability within GPP datasets pose challenges to a comprehensive understanding of the terrestrial carbon cycle. In contrast 17 

to previous models that rely on remote sensing and environmental variables, we developed an ensemble model based on the 18 

random forest (ERF model). This model used GPP outputs from established models (EC-LUE, GPP-kNDVI, GPP-NIRv, 19 

Revised-EC-LUE, VPM, MODIS) as inputs to estimate GPP. The ERF model demonstrated superior performance, explaining 20 

85.1% of the monthly GPP variations at 170 sites, surpassing the performance of selected GPP models (67.7%-77.5%) and an 21 

independent random forest model using remote sensing and environmental variables (81.5%). Additionally, the ERF model 22 

improved accuracy across each month and various subvalues, mitigating the issue of "high value underestimation and low 23 

value overestimation" in GPP estimates. Over the period from 2001 to 2022, the global GPP estimated by the ERF model was 24 

132.7 PgC yr-1, with an increasing trend of 0.42 PgC yr-2, which is was comparable to or slightly better than the accuracy of 25 

other mainstream GPP datasets in term of validation results of GPP observations independent of FLUXNET (ChinaFlux). 26 

Importantly, for the growing number of GPP datasets, our study provides a way to integrate these GPP datasets, which may 27 

lead to a more reliable estimate of global GPP. 28 

 29 

 30 
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1 Introduction 31 

Gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle, and serves as the primary input of 32 

carbon into the terrestrial carbon cycle. Uncertainties in GPP estimates can propagate to other carbon flux estimates, making 33 

it crucial to clarify the spatio-temporal patterns of GPP (Ruehr et al., 2023; Xiao et al., 2019). However, global GPP is variously 34 

estimated from 90 PgC yr-1 to 160 PgC yr-1 across different studies, with these variations becoming more pronounced when 35 

scaled down to regional scales or specific ecosystem types (Anav et al., 2015; Jung et al., 2020; Ryu et al., 2019). This 36 

variability underscores the necessity for innovative methods to reduce uncertainty in GPP estimates . 37 

The light use efficiency (LUE) model is one of the most widely adopted methods for estimating GPP. It assumes that GPP is 38 

proportional to the photosynthetically active radiation absorbed by vegetation, and optimizes the spatio-temporal pattern of 39 

GPP through meteorological constraints such as temperature and moisture (Pei et al., 2022). However, variations in these 40 

constraints varies significantly, leading to differences of over 10% in model explanatory power. (Yuan et al., 2014). Recent 41 

studies have proposed some novel vegetation indices that have been shown to be effective proxies for GPP through theoretical 42 

derivation and observed validation (Badgley et al., 2017; Camps-Valls et al., 2021). However, these vegetation indices often 43 

use only remote sensing data as an input for estimating long-term GPP without considering meteorological factors, which has 44 

led to some controversy (Chen et al., 2024; Dechant et al., 2022; Dechant et al., 2020). Both LUE and vegetation index models 45 

use linear mathematical formulas to estimate GPP, but ecosystems are inherently complex, and the biases introduced by these 46 

numerical models increase the uncertainty of GPP estimates. Machine learning models have shown great potential for 47 

improving GPP estimates in previous studies (Guo et al., 2023; Jung et al., 2020). These models are trained by non-physical 48 

means directly using GPP observations and selected environmental and vegetation variables, and the performance of the 49 

models depends on the number and quality of observed data and the representativeness of input data. Nevertheless, direct 50 

validation from flux towers of FLUXNET reveals that these models typically explain only about 70% of monthly GPP 51 

variations, with similar performance to other GPP estimate models (Badgley et al., 2019; Jung et al., 2020; Wang et al., 2021; 52 

Zheng et al., 2020). Due to deviations in the model structure, a common limitation across these models is the poor estimate of 53 

monthly extreme GPP, leading to the phenomenon of "high value underestimationoverestimation and low value 54 

overestimation" (Zheng et al., 2020). Especially for extremely high values, which usually occur during the growing season and 55 

largely determine the annual totals and interannual fluctuations of GPP, this underestimation may hinder our understanding of 56 

the global carbon cycle. 57 

It is challenging for a single model to provide accurate estimates for all global regions. Ensemble models have outperformed 58 

individual models in previous studies, potentially addressing some inherent issues in model estimatePrevious studies have 59 

shown that ensemble models perform significantly better than single models and can handle some inherent issues in single 60 

models (Chen et al., 2020; Yao et al., 2014). Traditional multi-model ensemble methods usually use a simple multi-model 61 

average or a weighted Bayesian average. However, these methods typically assign fixed weights to each model and are 62 

essentially linear combinations. Recent studies have incorporated machine learning techniques to multi-model ensembles to 63 
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establish nonlinear relationships between multiple simulated target variables and real target variable, improving simulation 64 

performance (Bai et al., 2021; Tian et al., 2023; Yao et al., 2017). Whether this method can improve some common problems 65 

with individual GPP estimate models, such as high value underestimation and low value overestimation, is not clear and needs 66 

to further investigation. 67 

In this study, we attempt to use an ensemble model based on the random forest (ERF model) to improve global GPP estimate. 68 

Specifically, the work of this study includes the following: (1) Recalibrating parameters for each model, and comparing the 69 

performance of six GPP estimate models and the ERF model; (2) Focusing on the phenomenon of “high value underestimation 70 

and low value overestimation” in each model, and evaluating the performance of each model across different months, 71 

vegetation types and subvalues (high value, median value, low value); (3) Developing a global GPP dataset using the ERF 72 

model and validating its generalization using GPP observations from ChinaFlux. 73 

2 Method 74 

2.1 Data at the global scale 75 

In this study, we selected remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 76 

meteorological data from EAR5 to estimate global GPP (Hersbach et al., 2020). For the remote sensing data, surface reflectance 77 

(red band, near infrared band, blue band and shortwave infrared band), leaf area index (LAI) and fraction of photosynthetically 78 

active radiation (FPAR) were used. For meteorological data, we selected average air temperature, dew point temperature, 79 

minimum air temperature, total solar radiation and direct solar radiation. Dew point temperature and average air temperature 80 

were used to calculate saturated vapor pressure difference (VPD) (Yuan et al., 2019), and diffuse solar radiation (DifSR) was 81 

derived as the difference between total solar radiation and direct solar radiation. Minimum air temperature was obtained from 82 

the hourly air temperature. CO2 data were obtained from the monthly average carbon dioxide levels measured by the Mauna 83 

Loa Observatory in Hawaii. Table 1 provides an overview of the datasets used in this study. 84 

 85 

Table 1. Overview of the datasets used in this study. 86 

Variable Dataset Spatial resolution Temporal resolution Temporal coverage 

Surface reflectance (red band and  

near infrared band) 
MCD43C4 0.05° daily 2001-2022 

Surface reflectance (red band, near 

infrared band, blue band and  

shortwave infrared band) 

MOD09CMG 0.05° daily 2001-2022 

LAI MOD15A2H 500m 8d 2001-2022 

FPAR MOD15A2H 500m 8d 2001-2022 
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Average air temperature (AT) ERA5-land 0.1° Monthly 2001-2022 

Dew point temperature (DPT) ERA5-land 0.1° Monthly 2001-2022 

Minimum air temperature (MINT) ERA5-land 0.1° Monthly 2001-2022 

Total solar radiation (TSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

Direct solar radiation (DirSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

CO2 

NOAA’s Earth 

System Research 

Laboratory 

/ Monthly 2001-2022 

Distribution map of C4 crops 

Harvested Area 

and Yield for 175 

Crops 

1/12° Annual 2000 

Land use MCD12C1 0.05° Annual 2010 

 87 

Previous studies have shown that the photosynthetic capacity of C4 crops is much higher than that of C3 crops (Chen et al., 88 

2014; Chen et al., 2011), so it is necessary to divide the cropland into C3 crops and C4 crops. To estimate the global GPP, we 89 

used the "175 Crop harvested Area and yield" dataset, which describes the global harvested area and yield of 175 crops in 90 

2000 (Monfreda et al., 2008). We extracted the sum of the area ratios of all C4 crops (corn, corn feed, sorghum, sorghum feed, 91 

sugarcane, millet) at each grid as the coverage of C4 crops (Figure S1). Consequently, the estimated value of cropland GPP 92 

can be expressed as: coverage of C3 crops × simulated GPP value of C3 crops + coverage of C4 crops × simulated GPP value 93 

of C4 crops, which has been used in a previous study (Guo et al., 2023).  94 

The land use map was derived from the IGBP classification of MCD12C1, and 2010 was chosen as the reference year (that is, 95 

land use data is unchanged in the simulation of global GPP). In order to meet the requirements of subsequent research, land 96 

cover types were grouped into 9 categories: Deciduous Broadleaf Forest (DBF), Evergreen Needleleaved Forest (ENF), 97 

Evergreen Broadleaf Forest (EBF), Mixed Forest (MF), Grassland (GRA), Cropland (including CRO-C3 and CRO-C4), 98 

Savannah (SAV), Shrub (SHR), Wetland (WET).  99 

Finally, for higher resolution data, we gridded the dataset to 0.05° by averaging all pixels whose center fell within each 0.05° 100 

grid cell for upscaling. For lower resolution data, we used the nearest neighbor resampling method to 0.05°. In addition, 101 

MODIS data were aggregated to a monthly scale to ensure spatio-temporal consistency. 102 
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2.2 Observation data at the site scale 103 

GPP observations were sourced from the FLUXNET 2015 dataset, which includes carbon fluxes and meteorological variables 104 

from more than 200 flux sites around the world (Pastorello et al., 2020). GPP cannot be obtained directly from flux sites and 105 

usually needs to be obtained by dismantling the Net Ecosystem Exchange. We chose a monthly level GPP based on the 106 

nighttime partitioning method and retained only high quality data (NEE_VUT_REF_QC > 0.8) for every year, ultimately 107 

selecting 170 sites with 10932 monthly values for this study. In addition, we selected monthly average air temperature, total 108 

solar radiation and VPD. The site observations do not provide direct solar radiation, so we extracted data from ERA5 covering 109 

the flux tower. Monthly minimum air temperature was derived from hourly air temperature. Since some required model data 110 

are not directly available at flux sites, LAI and FPAR were extracted from MOD15A2H (500 m), and surface reflectance data 111 

(red band, near infrared band, blue band and shortwave infrared band) were derived from MCD43A4 (500 m) and MOD09A1 112 

(500 m). These data are roughly similar to the footprint of the flux site and can represent the land surface of the site (Chu et 113 

al., 2021).  114 

2.3 GPP estimate model 115 

We selected six independent models to estimate GPP in this study. These models are widely used with few model parameters 116 

and have demonstrated reliable accuracy in previous studies (Badgley et al., 2017; Zhang et al., 2017; Zheng et al., 2020). The 117 

six models are EC-LUE, Revised-EC-LUE, NIRv-based linear model, kNDVI-based linear model, VPM, MODIS. The VPM, 118 

MODIS and EC-LUE are LUE models based on remote sensing data and meteorological data (Running et al., 2004; Xiao et 119 

al., 2004; Yuan et al., 2007). Zheng et al., (2020) proposed the Revised-EC-LUE model, which divides the canopy into sunlit 120 

and shaded leaves, improving the estimate of global GPP (Zheng et al., 2020). The NIRv and kNDVI are novel vegetation 121 

indices calculated from the red and near-infrared bands of the reflectance spectrum (Badgley et al., 2017; Camps-Valls et al., 122 

2021). Similar to solar induced chlorophyll fluorescence, they exhibit a linear relationship with GPP and are considered 123 

effective proxies for GPP. Detailed descriptions of all models can be found in Text S1.  124 

To reduce uncertainty in GPP estimates from a single model, we used the ERF model, the basic idea of which is to restructure 125 

the simulated values of multiple models. In this study, we directly used the ERF model to establish the relationship between 126 

the GPP simulated by the above six models and GPP observations. In addition, for comparison with the ERF model, we also 127 

used the random forest (RF) method for modeling. In this study, we used average air temperature, minimum air temperature, 128 

VPD, direct solar radiation, diffuse solar radiation, FPAR and LAI as explanatory variables.to estimate GPP. Both models 129 

used the random forest method, which has been widely used in previous studies of GPP estimate (Guo et al., 2023; Jung et al., 130 

2020). Random forest is an ensemble learning algorithm that combines the outputs of multiple decision trees to produce a 131 

single result, and is commonly used for classification and regression problems (Belgiu and Drăguţ, 2016). In the regression 132 

problem, the output result of each decision tree is a continuous value, and the average of all decision tree outputs is taken as 133 

the final result. An overview of all models used can be found in Table 2. 134 
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Table 2. Overview of the models used in this study. 135 

ID Model Input data Output 

1 EC-LUE FPAR, VPD, AT, SRAD, CO2 GPPEC 

2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC 

3 kNDVI-GPP Red band and near infrared band (MCD43) GPPkNDVI 

4 NIRv-GPP Red band and near infrared band (MCD43) GPPNIRv 

5 VPM Red band, near infrared band, blue band, 

shortwave infrared band (MOD09), AT, SRAD 

GPPVPM 

6 MODIS FPAR, SRAD, MINT, VPD GPPMODIS 

7 Random forest model (RF) LAI, FPAR, AT, MINT, VPD, DifSR, DirSR GPPRF 

8 Ensemble model based on random forest 

(ERF) 

GPPEC, GPPREC, GPPkNDVI, GPPNIRv, GPPMODIS, 

GPPVPM 

GPPERF 

 136 

2.4 Model parameter calibration and validation 137 

FLUXNET only provides GPP observations and meteorological data, lacking direct measurements for LAI, FPAR, and surface 138 

reflectance, so remote sensing data is needed. Considering the variety of remote sensing data sources, such as MODIS and 139 

AVHRR, it is evident that calibrating the same GPP estimate model with different remote sensing data can yield varied 140 

parameters. In addition, the number of sites used to calibrate model parameters is also an important influencing factor for 141 

model parameters. The original parameters of these models were calibrated with only a limited number of sites (e.g., 95 sites 142 

for Revised EC-LUE and 104 for NIRv-GPP) (Wang et al., 2021; Zheng et al., 2020). Therefore, to reduce the impact of the 143 

uncertainty of model parameters on simulation results, we did not use original parameters and conducted parameter calibration 144 

for GPP estimate models across different vegetation types. For EC-LUE, Revised EC-LUE, VPM and MODIS, the Markov 145 

chain Monte Carlo method was used to calibrate model parameters. Traditionally, the mean of the posterior distribution of 146 

parameters is taken as the optimal value. However, previous studies have indicated that some model parameters are not well 147 

constrained when calibrating multiple model parameters (Wang et al., 2017; Xu et al., 2006), so we selected the parameter 148 

with the smallest root-mean-square error (RMSE) as the optimal parameter in each iteration. For each vegetation type, we 149 

randomly selected 70% of the sites data for parameter calibration, and repeated the process 200 times. In order to avoid 150 

overfitting, we adopted the mean of the 200 calibrated parameters as the final model parameters. Similarly, for the two 151 

vegetation index models, we randomly selected 70% of the datasites in each vegetation type for parameter calibration, repeating 152 

the process 200 times and using the mean of the 200 calibrated parameters as the final model parameters. 153 

After obtaining GPP estimates from the six GPP models, we evaluated the simulation performance of the RF model and the 154 

ERF model respectively. For both models, we evaluated the model performance using 5-fold cross-validation, where the 155 
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process was repeated 200 times, and the mean of the 200 GPP estimates was considered the final GPP estimate. In addition, 156 

we used a second validation method, in which all data from 70% of the sites were selected for modeling and only all data from 157 

the remaining 30% of the sites were validated, a process that was repeated 200 times. This validation will further illustrate the 158 

generalization of the model, i.e. its potential for estimating sitesGPP without GPP observations.In addition, we used a second 159 

validation method where 70% of the data was selected for modeling and only the remaining 30% was validated, a process that 160 

was repeated 200 times. We utilized the determination coefficient (R2) and RMSE as metrics to evaluate the simulation 161 

performance of all models. Additionally, we used the ratio of GPP simulations to GPP observations (Sim/Obs) to measure 162 

whether the model overestimates or underestimates. 163 

2.5 Global GPP estimate based on ERF model and its uncertainty. 164 

Based on the ERF model, we estimated global GPP for 2001-2022 (ERF_GPP). It is important to note that in this process, we 165 

used all the site data to build the model. The uncertainties of ERF_GPP can be attributed to two primary factors: the influence 166 

of the number of GPP observations and the influence of the number of features (that is, the simulated GPP). For the first type 167 

of uncertainty, we randomly selected 80% of the data to build a model and simulated the multi-year average of global GPP. 168 

The process was repeated 100 times, yielding 100 sets of multi-year averages of ERF_GPP. Their standard deviations were 169 

considered as the uncertainty of ERF_GPP caused by the number of GPP observations. For the second type of uncertainty, we 170 

selected different number of features to build a model and simulated the multi-year average of global GPP. A total of 56 sets 171 

of multi-year averages of ERF_GPP were obtained. The standard deviation of different combinations was considered to be the 172 

uncertainty of ERF_GPP caused by the number of features.  173 

2.6 Evaluation of the generalization of different GPP datasets 174 

The majority of flux sites in FLUXNET are concentrated in Europe and North America, it is unclear whether the different GPP 175 

estimate methods are suitable for regions with sparse flux sites. Recently, ChinaFlux has published GPP observations from 176 

several sites, offering an opportunity to evaluate the generalization of different GPP datasets. However, the spatial resolution 177 

of most GPP datasets is 0.05°, and a direct comparison with GPP observations at flux sites is challenging. Therefore, we 178 

extracted 0.05° MODIS land use covering the flux sites. If the vegetation type of the flux site matched the MODIS land use, 179 

the site was used for the analysis. Finally, a total of 12 flux sites were selected (Figure S2), and Table S1 shows the information 180 

of these sites. The same procedure was applied to FLUXNET, resulting in the selection of 52 sites (Figure S2). It should be 181 

noted that due to the absence of meteorological data from some sites in Chinaflux, we did not validate all GPP estimate models 182 

at the site scale (500 m). 183 

We evaluated the generalization of ERF_GPP at 12 ChinaFlux sites and 52 FLUXNET sites. In addition, we selected a number 184 

of widely used GPP datasets for comparison, including BESS (Li et al., 2023), GOSIF (Li and Xiao, 2019), FLUXCOM: 185 

random forest-based version (FLUXCOM-RF) and ensemble version (FLUXCOM-ENS) (Jung et al., 2020), NIRv (Wang et 186 

al., 2021), Revise-EC-LUE (Zheng et al., 2020), MODIS (Running et al., 2004), VPM (Zhang et al., 2017), which were 187 
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generated using different GPP estimate methods. These GPP datasets all have a spatial resolution of 500 m-0.5°, similar to the 188 

resampling process in section 2.1, we have unified them to 0.05°. The common time range for these datasets spanned from 189 

2001 to 2018, and the temporal resolution was unified to monthly to match the GPP observations. 190 

3 Result 191 

3.1 Performance of GPP estimate models at site scale 192 

Table S2-S7 show the optimization results of the six GPP estimate model parameters. Consistent with previous study, in the 193 

Revised EC-LUE model, the light use efficiency parameter of shade leaves was significantly higher than that of sunlit leaves 194 

(Zheng et al., 2020). It is necessary to divide cropland into C3 crops and C4 crops. In all models, the light use efficiency 195 

parameters of C4 crops were significantly higher than those of C3 crops, which was particularly reflected in the two vegetation 196 

index models of GPPkNDVI and GPPNIRv, the slope of the linear regression directly reflected the difference in photosynthetic 197 

capacity of the different crops. 198 

Figure 1 shows the performance of all models across different vegetation types. Overall, the performance of the ERF model 199 

was better than that of the other GPP estimate models. GPPERF had the higher accuracy among all models, with R2 between 200 

0.61-0.91 and RMSE between 0.72-2.78 gC m-2 d-1. In contrast, the LUE and vegetation index models performed slightly 201 

weaker, especially in EBF, where R2 was both below 0.5. It is worth noting that compared to other vegetation types, the RMSE 202 

was highest for cropland, with 6 out of 8 models for C4 crops exceeding 3 gC m-2 d-1, suggesting that these existing GPP 203 

estimate models may not properly capture the seasonal changes in cropland GPP. The six models with calibration calibrated 204 

parameters and ERF model were found to have no significant deviation across vegetation types. However, GPPRF was 205 

significantly underestimated for C4 crops and overestimated for SHR. 206 
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Figure 1. The performance of the eight models on different vegetation types. a, b and c represent R2, RMSE, and Sim/Obs respectively. 208 

Combining the results of all flux sites, GPPERF explained 85.1% of the monthly GPP variations, while the seven GPP estimate 209 

models only explained 67.7%-81.5% of the monthly GPP variations (Figure 2). Another validation method also showed similar 210 

results, the average R2 and RMSE of 200 validation results of ERF model were 0.822 and 1.68 gC m-2 d-1, which were 211 

obviously better than other models Another validation method also showed similar results (Figure S3). In order to further prove 212 

the robustness of the ERF model, we also used GPP estimate models with original parameters for modeling and validation. As 213 

shown in Figure S4, the performance of these GPP models decreased significantly, with R2 ranging from 0.570 to 0.719 and 214 

RMSE ranging from 2.29 to 3.81 gC m-2 d-1. The phenomenon of "high value underestimation and low value overestimation" 215 

was also pronounced. However, the ERF model maintained a consistent advantage, with R2 significantly higher than other 216 

GPP estimate models (0.856). In addition, we tested the effect of the number of GPP estimate models on the accuracy of the 217 

ERF model. As shown in Table S8, as the number of GPP in the ERF model increased, the performance gain of the model 218 

gradually decreased. 219 

In summary, GPPERF showed high accuracy in terms of vegetation type and the ability to interpret monthly variations in GPP, 220 

which also illustrates the potential of the ERF model to improve GPP estimate. However, it was observed that most GPP 221 

simulations exhibited the phenomenon of “high value underestimation and low value overestimation”. For example, GPPEC, 222 

GPPREC, GPPMODIS and GPPRF showed obvious underestimation in the months when the monthly GPP value surpassed 15 gC 223 

m-2 d-1 (Figure 2). Therefore, it is necessary to evaluate the performance of different models in each month and different 224 

subvalues. 225 



11 

 

 226 

Figure 2. Comparison between the GPP simulations of the eight models and the GPP observations. a-h represents GPPEC, GPPNIRv, GPPkNDVI, 227 
GPPREC, GPPVPM, GPPMODIS, GPPRF, GPPERF, respectively. 228 

 229 

3.2 Performance of GPP estimate models in each month and different subvalues 230 

Figure 3 shows the simulation accuracy of the eight models in each month. The ERF model maintained a higher accuracy than 231 

other GPP estimate models, with GPPERF consistently achieving higher R2 and lower RMSE in most months, and no evident 232 

phenomenons of "high value underestimation and low value overestimation". In contrast, the accuracy of other GPP estimate 233 

models was less satisfactory accuracy, especially during winter (most flux sites are concentrated in the Northern Hemisphere), 234 
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the LUE models tended to underestimate GPP, and the Sim/Obs remained at 0.72-1.01, although R2 were above 0.7. Meanwhile, 235 

the vegetation index models overestimated GPP, Sim/Obs remained at 1.34-1.73, and R2 were relatively low, mostly around 236 

0.6. 237 
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Figure 3. Performance of the eight models in each month. a, b and c represent R2, RMSE, and Sim/Obs respectively. 239 

We further compared the performance of all models in different subvalues, including high value (GPP > 15 gC m-2 d-1), median 240 

value (15 gC m-2 d-1 > GPP > 2 gC m-2 d-1), low value (GPP < 2 gC m-2 d-1). For extreme values, most models performed poorly 241 

(Figure 4), with R2 for GPP estimate models falling below 0.3, and only GPPVPM showing better performance in the high value. 242 

GPPERF demonstrated some improvement in both low and high values, with R2 0.32 and 0.43, RMSE of 0.89 and 4.73 gC m-2 243 

d-1, and Sim/Obs closer to 1, respectively. In the median value, all models performed better, with no significant bias in the 244 

GPP estimate. The R2 of GPP estimate models ranged from 0.44 to 0.68, and the RMSE remained between 1.82 and 2.54 gC 245 

m-2 d-1. Further analysis was made at two typical sites, it was obvious that GPPEC, GPPREC and GPPMODIS on CN-Qia exhibited 246 

obvious underestimation during the growing season (Figure S5). On CH_Lae, GPPkNDVI and GPPVPM were significantly 247 

overestimated (Figure S6). In contrast, at both sites, GPPERF was more consistent with observations, indicating that the superior 248 

performance of GPPERF was due to the corrections on the time series.. 249 

  250 

Figure 4. Performance of eight models in different subvalues. 251 
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3.3 Temporal and spatial characteristics of ERF ERF_GPP and its generalization evaluation  252 

Figure 5a shows the spatial distribution of the multi-year average of ERF_GPP. The high values of GPP were mainly 253 

concentrated in tropical areas, exceeding 10 gC m-2 d-1, and relatively high in southeastern North America, Europe and southern 254 

China, about 4-6 gC m-2 d-1. From 2001-2022, China and India showed the fastest increase in GPP, mostly at 0.1 gC m-2 d-1 255 

(Figure 5b), similar to a previous study that reported that China and India led the global greening (Chen et al., 2019). We 256 

further investigated the annual maximum GPP, as shown in Figure 5c, and the North American corn belt was the global leader 257 

in GPP at more than 15 gC m-2 d-1, compared to only 10 gC m-2 d-1 in most tropical forests. In 2001-2022, the global GPP was 258 

132.7 ± 2.8 PgC yr-1, with an increasing trend of 0.42 PgC yr-2 (Figure 5d). The lowest value was 128.6 PgC yr-1 in 2001, and 259 

the highest value was 136.2 PgC yr-1 in 2020. 260 

The results of the two uncertainty analyses consistently indicated that ERF_GPP exhibited higher uncertainty in tropical 261 

regions (Figures S7 and S8), and the uncertainty of ERF_GPP caused by the number of GPP observations was relatively small, 262 

the standard deviation of 100 simulations was about 0.3 gC m-2 d-1 in the tropics and lower in other regions, below 0.1 gC m-2 263 

d-1. In contrast, the uncertainty of ERF_GPP caused by the number of features was more pronounced, especially when fewer 264 

features were included in the models. It is worth noting that when the number of features was five, the uncertainty was already 265 

substantially less, and the standard deviation was generally lower than 0.5 gC m-2 d-1. 266 

 267 

 268 
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Figure 5. Spatial and temporal characteristics of ERF_GPP during 2001-2022.Spatial distribution and interannual changes of ERF_GPP 269 
during 2001-2022. a represents the multi-year average, b represents the trend, c represents the multi-year average of the annual maximumthe 270 
annual maximum, and d represents the interannual change of GPP. 271 

 272 

As shown in Figure 6, ERF_GPP and other GPP datasets were validated using GPP observations from ChinaFlux. Among all 273 

models, GPPVPM VPM demonstrated the best performance, with R2 of 0.86 and RMSE of 1.34 gC m-2 d-1. ERF_GPP also 274 

exhibited high generalization, with R2 of 0.75, RMSE of 1.72 gC m-2 d-1, there was no “high value underestimation and low 275 

value overestimation”, which was comparable to the accuracy of BESS and GOSIF. However, the simulation accuracy of the 276 

other GPP datasets in Chinaflux was relatively poor, with the R2 of NIRv being only 0.64, while FLUXCOM-ENS, 277 

FLUXCOM-RF, MODIS and Revised EC-LUE were significantly underestimated, with the Sim/Obs being only 0.71-0.89. In 278 

the validation of FLUXNET, the R2 of FLUXCOM-ENS, MODIS, and Revised EC-LUE ranged from 0.57 to 0.67, and the 279 

RMSE ranged from 2.67 to 3.30 gC m-2 d-1, and exhibited different degrees of underestimation (Figure S9). Other GPP datasets 280 

demonstrated similar performance, with ERF_GPP being the best (R2 = 0.74, RMSE = 2.26 gC m-2 d-1). 281 

 282 

 283 

 284 
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 285 

Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFlux. a-i represents BESS, FLUXCOM-ENS, 286 
FLUXCOM-RF, GOSIF, MODIS, NIRv, VPM, Revise-EC-LUE, ERF_GPP, respectively. 287 

4 Discussion 288 

4.1 Performance analysis of different models  289 

After parameter calibration, both LUE and vegetation index models obtained reliable model accuracy. However, noticeable 290 

errors persist in different months and subvalues, indicating the prevalent phenomenon of "high value underestimation and low 291 

value overestimation" (Figures 1-4). In addition to MODIS, the GPP simulated by the other three LUE models is generally 292 

underestimated in winter (Figure 3), which may be caused by biases in the parameters used in meteorological constraints. In 293 
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the expression form of the temperature constraint adopted by LUE models, the maximum temperature, minimum temperature 294 

and optimum temperature for limiting photosynthesis are all constants, however these values may not be fixed (Grossiord et 295 

al., 2020; Huang et al., 2019). A previous study has demonstrated that the GPP estimate could be effectively improved by 296 

using dynamic temperature parameters (Chang et al., 2021). Moreover, the form of meteorological constraint is also an 297 

important influencing factor. Compared with other LUE models, VPM does not use VPD constraints, but incorporates land 298 

surface water index from satellite observations as constraints (Xiao et al., 2004), which may be the reason why the model 299 

performs better than other models at high value (Figure 4). Conversely, the two vegetation index models overestimated GPP 300 

in winter, and even overestimated by 70% in December. The vegetation index model does not consider meteorological 301 

constraints that believe that all environmental impacts on vegetation have been included in the vegetation indicesindex (kNDVI, 302 

NIRv). However, it is a fact that under high temperature or low radiation, the vegetation index may still maintain the appearance 303 

of high photosynthesis (greening), while in fact the GPP is low (Chen et al., 2024; Doughty et al., 2021; Yang et al., 2018). 304 

Furthermore, the relationship between these vegetation indices and GPP is not robust, and the vegetation indices based on 305 

reflectance may have hysteresis (Wang et al., 2022). 306 

Compared to other GPP estimate models, the ERF model demonstrated better performance (R2 = 851). Since there are no 307 

physical constraints, the machine learning model needs to find the relationship between explanatory variables and target 308 

variable from a large amount of training data (such as GPP=f (LAI, T, P, etc.)) (Guo et al., 2023; Jung et al., 2020). Therefore, 309 

the reliability of the model usually depends on the representativeness of the training data. For example, LAI can explain GPP 310 

to a large extent, while complex modeling relationships are still needed from LAI to GPP. The difference between the ERF 311 

model and the RF model lies in the explanatory variables. The ERF model uses multiple GPP simulations that are more 312 

representative and aligned with the target variable, thus making the GPP simulations more accurate. In other words, the ERF 313 

model does not need to take into account the uncertainties of the model structure (such as meteorological constraints) and 314 

model parameters (such as maximum light use efficiency), but rather focuses on the uncertainties inherent in the simulated 315 

GPP. To further clarify the impact of explanatory variables on the ERF model, we conducted a feature importance analysis 316 

(Figure S10). From an average of 200 times, the results of the ERF model did not depend on a single GPP simulation. Even 317 

GPPMODIS, with the highest relative importance, accounted for no more than 25%, suggesting that the ERF model behaves 318 

more like a weighted average of multiple GPP simulations. In addition, it is important to emphasize that the accuracy of the 319 

ERF model is still robust even for GPP simulations of original parameters (Figure S4), which means that we can try to use this 320 

method to integrate the currently published GPP data sets to obtain a more accurate global GPP estimate. 321 

It is worth noting that in the study of Tian et al. (2023), the ERF model was also used to improve the GPP estimate. Our study 322 

extends this work in several ways. Firstly, parameter calibration was carried out in our study so that the final validation results 323 

are comparable, that is, differences in model performance are mainly due to the uncertainty of the model structure. Secondly, 324 

our study focused on the phenomenon of "high value underestimation and low value overestimation" of GPP estimate models, 325 

with results indicating that the ERF model performed well across various vegetation types, months, and subvalues. Finally, we 326 
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generated the ERF_GPP dataset and validated it on different observational datasets, further confirming the robustness of the 327 

ERF model in GPP estimate. 328 

4.2 Robustness of ERF_GPP 329 

Due to the inherent advantages of the RF method, the accuracy of the model was comparable to that of the ERF model, even 330 

if we use a very simple model that used longitude, latitude, month, and year as explanatory variables (Figure S11 a). However, 331 

the global GPP estimated by this model iswas not reliable (Figure S11 b). This means that it is unknown whether site-scale 332 

models can be fully applied to global GPP estimates. ERF model can overcome this limitation well. On the one hand, the 333 

explanatory variables used in the model are derived from GPP simulation in which contain a lot of remote sensing information, 334 

which can ensure that the global GPP estimated by the model is reliable. On the other hand, the second validation method also 335 

further shows that the ERF model has good generalization and has greater potential than other models in estimating global 336 

GPP. 337 

Since the current GPP datasets are generated based on remote sensing data and FLUXNET GPP observations, there is a strong 338 

similarity in spatial distribution among all GPP datasets. Therefore, the validation of GPP observations independent of 339 

FLUXNET is crucial. Validation results from GPP observations of ChinaFlux indicated that ERF_GPP exhibited good 340 

generalization in China (R2=0.75), which was slightly lower than the accuracy of 5-fold-cross-validation during modeling, 341 

possibly due to the mismatch between the 0.05° GPP estimate and the footprint of the flux tower (Chu et al., 2021). In addition, 342 

the validation of FLUXNET further confirms the reliability of ERF_GPP. Overall, this is comparable to or slightly better than 343 

the simulation accuracy of current mainstream GPP datasets. We also observed a clear improvement in the spatial maximum 344 

value of ERF_GPP in some corn growing regions, such as the North American Corn Belt (Figure 5c), which is supported by 345 

previous studies showing that C4 crops have much higher GPP peaks than other vegetation types (Chen et al., 2011; Yuan et 346 

al., 2015). 347 

Due to the increasing trend of drought, the constraining effect of water on vegetation is gradually increasing, and some studies 348 

have reported the decoupling phenomenon of LAI and GPP under some specific conditions (Hu et al., 2022; Jiao et al., 2021). 349 

However, in China and India with significant greening, GPP continues to increase in most datasets, and ERF_GPP supports 350 

this view. This phenomenon may be attributed to the low drought pressure on croplands in China and India due to irrigation, 351 

which poses less constraint on GPP (Ai et al., 2020; Ambika and Mishra, 2020). The global estimate of ERF_GPP is 132.7 ± 352 

2.8 PgC yr-1, which is close to estimates from most previous studies (Badgley et al., 2019; Wang et al., 2021). A study have 353 

suggested that global GPP may reach 150-175 PgC yr-1 (Welp et al., 2011), however, there is no further evidence to support 354 

this view. 355 

ERF_GPP exhibited higher uncertainty in tropical regions, similar reports have been made in previously published GPP 356 

datasets (Badgley et al., 2019; Guo et al., 2023). The scarcity of flux observations in these regions (Pastorello et al., 2020), 357 

coupled with the well-known issue of cloud pollution and saturation in remote sensing data in the tropics (Badgley et al., 2019), 358 

exacerbates the uncertainty in GPP estimates for these regions. Therefore, in future studies, on the one hand, more flux 359 
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observations in tropical regions are needed, and on the other hand, attempts can be made to combine optical and microwave 360 

data to improve GPP estimate. 361 

4.3 Limitations and uncertainties 362 

In this study, we improved GPP estimate based on the ERF model. Nonetheless, there are still some limitations and 363 

uncertainties due to the availability of data and methods. First, C4 crop distribution maps were used in our study to improve 364 

estimates of cropland GPP. However, it is important to note that this dataset only represents the spatial distribution of crops 365 

around the year 2000, which introduce uncertainty into GPP simulations of cropland in a few C3 and C4 alternating areas. 366 

Secondly, the ERF model considers six GPP simulations, and it is not clear whether adding more GPP simulations to the model 367 

can further improve the GPP estimate. Finally, our model did not consider the effect of soil moisture on GPP, and some 368 

previous studies have highlighted the importance of incorporating soil moisture in GPP estimates, especially for dry years 369 

(Stocker et al., 2018; Stocker et al., 2019). 370 

5 Conclusion 371 

In this study, we compared the performance of the ERF model with other GPP estimate models at the site scale, especially for 372 

the phenomenon of "high value underestimation and low value overestimation", and further developed the ERF_GPP dataset. 373 

Overall, GPPERF had higher model accuracy, explaining 85.1% of the monthly GPP variations, and demonstrated reliable 374 

accuracy in different months, vegetation types and subvalues. Over the period from 2001 to 2022, the global estimate of 375 

ERF_GPP was 132.7 ± 2.8 PgC yr-1, corresponding to an increasing trend of 0.42 PgC yr-2. Validation results from ChinaFlux 376 

indicated that ERF_GPP had good generalization. For the current emerging GPP estimate models, the ERF model provides an 377 

alternative method that lead to better model accuracy. 378 
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