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Abstract. Advancements in remote sensing technology have significantly contributed to the improvement of models for 15 

estimating terrestrial gross primary productivity (GPP). However, discrepancies in the spatial distribution and interannual 16 

variability within GPP datasets pose challenges to a comprehensive understanding of the terrestrial carbon cycle. In contrast 17 

to previous models that rely on remote sensing and environmental variables, we developed an ensemble model based on the 18 

random forest (ERF model). This model used the GPP outputs fromof established models (EC-LUE, GPP-kNDVI, GPP-NIRv, 19 

Revised-EC-LUE, VPM, MODIS) as inputs to estimate GPP. The ERF model demonstrated superior performance, explaining 20 

85.1% of the monthly GPP variations at 170 sites and, surpassing the performance of both selected GPP models (67.7%-77.5%) 21 

and an independent random forest model using remote sensing and environmental variables (81.5%). Additionally, the ERF 22 

model  improved the accuracy across each month and various subvalues, mitigating the issue of "high value underestimation 23 

and low value overestimation" in GPP estimates. Over the period from 2001 to 2022, the global GPP estimated by the ERF 24 

model was 132.7 PgC yr-1, with an increasing trend of 0.42 PgC yr-2, which is comparable to or slightly better than the accuracy 25 

of other mainstream GPP datasets in term of validation results of GPP observations independent of FLUXNET 26 

(ChinaFlux)from ChinaFlux. Importantly, for the growing number of GPP datasets, our study provides a way to integrate these 27 

GPP datasets, which may lead to a more reliable estimate of global GPP.In summary, the ERF model offers a reliable 28 

alternative for reducing uncertainties in GPP estimate, providing a more dependable global GPP estimate. 29 

 30 

 31 
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1 Introduction 32 

Gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle, and serves as the primary input of 33 

carbon into the terrestrial carbon cycle. Uncertainties in GPP estimates can propagated to other carbon flux estimates, making 34 

it crucial to clarify the spatio-temporal patterns of GPP (Xiao et al., 2019; Ruehr et al., 2023). However, global GPP is variously 35 

estimated from 90 PgC yr-1 to 160 PgC yr-1 across different studies, with these variations becoming more pronounced when 36 

scaled down to regional scales or specific ecosystem types. This variability underscores the necessity for innovative methods 37 

to reduce the uncertainty in GPP estimates (Jung et al., 2019; Ryu et al., 2019; Anav et al., 2015). 38 

The light use efficiency (LUE) model is one of the most widely adopted methods for estimating GPP. It assumes that GPP is 39 

proportional to the photosynthetically active radiation absorbed by vegetation, and optimizes the spatio-temporal pattern of 40 

GPP through meteorological constraints such as temperature and moisturewater (Pei et al., 2022). However, variations in these 41 

constraints varies significantly, leading to differences of over 10% in model explanatory power. (Yuan et al., 2014). Recent 42 

studies have proposed some novel vegetation indices that have been shown to be effective proxies for GPP through theoretical 43 

derivation and observed validation (Badgley et al., 2017; Camps-Valls et al., 2021). However, these vegetation indices often 44 

use only remote sensing data as an input for estimating long-term GPP without considering meteorological factors, which has 45 

led to some controversy (Chen et al., 2024; Dechant et al., 2020; Dechant et al., 2022). Both LUE and vegetation index models 46 

use  a combination of linear mathematical formulas to estimate GPP., However,but ecosystems are inherently complex, and 47 

the biases introduced by these numerical models increase the uncertainty in theof GPP estimates of the final product (GPP). 48 

Machine learning models hasve shown great potential for improving GPP estimates in previous studies (Jung et al., 2020; Guo 49 

et al., 2023). These model are trained by non-physical means directly using GPP observations and selected environmental and 50 

vegetation variables, and the performance of the models depends on the number and quality of observed data and the 51 

representativeness of input data. Nevertheless, direct validation from flux towers of FLUXNET reveals that these models 52 

typically explain only about 70% of monthly GPP variations, with similar performance to other GPP models (Wang et al., 53 

2021; Badgley et al., 2019; Zheng et al., 2020; Jung et al., 2020). Due to deviations in the model structure, a common limitation 54 

across these models is the poor estimate of monthly extreme GPP, leading to the phenomenon of "high value overestimation 55 

and low value overestimation" (Zheng et al., 2020). Especially for extremely high values, which usually occur during the 56 

growing season and largely determine the annual totalsvalue and interannual fluctuations of GPP, this underestimation may 57 

hinder our understanding of the global carbon cycle. 58 

It is challenging for a single model to provide accurate estimates for all global regions. Ensemble models have 59 

outperformedhave been shown to outperform individualsingle models in previous studies, potentially addressing some inherent 60 

issues in model estimate (Chen et al., 2020; Yao et al., 2014). Traditional multi-model ensemble methods usually use a simple 61 

multi-model average or a weighted bBayesian average. However, these methods typically assign fixed weights to each model 62 

and are essentially linear combinations. Recent studies have incorporatedapplied machine learning techniquesmethods to 63 

multi-model ensembles to establish nonlinear relationships between multiple simulated target variables and real target variable, 64 
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improving simulation performance (Bai et al., 2021; Yao et al., 2017; Tian et al., 2023). Whether this method can improve 65 

some common problems with individual GPP modelsa single GPP model, such as high value underestimation and low value 66 

overestimation, is not clear and needs to further investigation. 67 

In this study, we attempt to use an ensemble model based on the random forest (ERF model) to improve global GPP estimate. 68 

Specifically, the work of this study includes the following: (1) Recalibrating the parameters for each model, and comparing 69 

the performance of six GPP models and the ERF model; (2) Focusing on the phenomenon of “high value underestimation and 70 

low value overestimation” in each model, and evaluating the performance of each model acrossin different months, vegetation 71 

types and subvalues (high value, median value, low value); (3) Developing a global GPP dataset using the ERF model and 72 

validatingvalidate its generalization using GPP observations from ChinaFlux. 73 

2 Method 74 

2.1 Data at the global scale 75 

In this study, we selected remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 76 

meteorological data from EAR5 to estimate global GPP (Hersbach et al., 2020). For the remote sensing data, surface reflectance 77 

(red band, near infrared band, blue band and shortwave infrared band), leaf area index (LAI) and fraction of photosynthetically 78 

active radiation (FPAR) were used. For meteorological data, we selected average air temperature, dew point temperature, 79 

minimum air temperature, total solar radiation and direct solar radiation. Dew point temperature and air temperature were used 80 

to calculate saturated vapor pressure difference (VPD) (Yuan et al., 2019), and diffuse solar radiation (DifSR) was derived as 81 

the difference between total solar radiation and direct solar radiation. Minimum air temperature was obtained from the hourly 82 

air temperature. CO2 data were obtained from the monthly average carbon dioxide levels measured by the Mauna Loa 83 

Observatory in Hawaii. Table 1 provides an overview of the datasets used in this study. 84 

 85 

Table 1. Overview of the datasets used in this study. 86 

Variable Dataset Spatial resolution Temporal resolution Temporal coverage 

Surface reflectance (red band and  

near infrared band) 
MCD43C4 0.05° daily 2001-2022 

Surface reflectance (red band, near 

infrared band, blue band and  

shortwave infrared band) 

MOD09CMG 0.05° daily 2001-2022 

LAI MOD15A2H 500m 8d 2001-2022 

FPAR MOD15A2H 500m 8d 2001-2022 

Average air temperature (AT) ERA5-land 0.1° Monthly 2001-2022 
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Dew point temperature (DPT) ERA5-land 0.1° Monthly 2001-2022 

Minimum air temperature (MINT) ERA5-land 0.1° Monthly 2001-2022 

Total solar radiation (TSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

Direct solar radiation (DirSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

CO2 

NOAA’s Earth 

System Research 

Laboratory 

/ Monthly 2001-2022 

Distribution map of C4 crops 

Harvested Area 

and Yield for 175 

Crops 

1/12° Annual 2000 

Land use MCD12C1 0.05° Annual 2010 

 87 

Previous studies have shown that the photosynthetic capacity of C4 crops is much higher than that of C3 crops (Chen et al., 88 

2014; Chen et al., 2011), so it is necessary to divide the cropland into C3 crops and C4 crops. To estimate the global GPP, we 89 

used the dataset "175 Crop harvested Area and yield" dataset, which describes the global harvested area and yield of 175 crops 90 

in 2000 (Monfreda et al., 2008). We extracted the sum of the area ratios of all C4 crops (corn, corn feed, sorghum, sorghum 91 

feed, sugarcane, millet) at each grid as the coverage of C4 crops (Figure S1). Consequently, the estimated value of cropland 92 

GPP can be expressed as: coverage of C3 crops × simulated GPP value of C3 crops + coverage of C4 crops × simulated GPP 93 

value of C4 crops, which has been usedwas used in a previous study (Guo et al., 2023).  94 

The land use map was derived from the IGBP classification of MCD12QC1, and 2010 was chosen as the reference year (that 95 

is, land use data is unchanged in the simulation of global GPP). In order to meet the requirements of subsequent research, land 96 

cover types were grouped into 9 categories: Deciduous Broadleaf Forest (DBF), Evergreen Needleleaved Forest (ENF), 97 

Evergreen Broadleaf Forest (EBF), Mixed Forest (MF), Grassland (GRA), Cropland (including CRO-C3 and CRO-C4), 98 

Savannah (SAV), Shrub (SHR), Wetland (WET).  99 

Finally, for higher resolution data, we gridded the dataset to 0.05° by averaging all pixels whose center fell within each 0.05° 100 

grid cell for upscaling. For lower resolution data, we used the nearest neighbor resampling method to 0.05°. In addition, 101 

MODIS data were aggregated to a monthly scale to ensure spatio-temporal consistency. 102 
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2.2 Observation data at the site scale 103 

GPP observations were sourced from the FLUXNET 2015 dataset, which includes carbon fluxes and meteorological variables 104 

from more than 200 flux sites around the world (Pastorello et al., 2020). GPP cannot be obtained directly from flux sites and 105 

usually needs to be obtained by dismantling the Net Ecosystem Exchange. We chose a monthly level GPP based on the 106 

nighttime partitioning method and retained only high quality data (NEE_VUT_REF_QC > 0.8) for every year, ultimately 107 

selecting 170 sites with 10932 monthly values for this study. In addition, we selected monthly average air temperature, total 108 

solar radiation and VPD. The site observations do not provide direct solar radiation, so we extracted data from the ERA5 109 

covering the flux tower. Monthly minimum air temperature was derived from hourly air temperature. Since some required 110 

model data are not directly available at flux sites, LAI and FPAR were extracted from MOD15A2H (500 m), and surface 111 

reflectance data (red band, near infrared band, blue band and shortwave infrared band) were derived from MCD43A4 (500 m) 112 

and MOD09A1 (500 m). These data are roughly similar to the footprint of the flux site and can represent the land surface of 113 

the site (Chu et al., 2021).  114 

2.3 GPP estimatione model 115 

We selected six independent models to estimate GPP in this study. These models are widely used with few model parameters 116 

and have demonstrated reliable accuracy in previous studies (Zheng et al., 2020; Zhang et al., 2017; Badgley et al., 2017). The 117 

six models are EC-LUE, Revised-EC-LUE, NIRv-based linear model, kNDVI-based linear model, VPM, MODIS. The VPM, 118 

MODIS and EC-LUE are LUE models based on remote sensing data and meteorological data (Yuan et al., 2007; Running et 119 

al., 2004; Xiao et al., 2004). Recently, Zheng et al., (2020) proposed the Revised-EC-LUE model, which divides the canopy 120 

into sunlit and shaded leaves, improving the estimatione of global GPP (Zheng et al., 2020). The NIRv and kNDVI are 121 

newlynovel proposed vegetation indices calculated from the red and near-infrared bands of the reflectance spectrum (Badgley 122 

et al., 2017; Camps-Valls et al., 2021). Similar to solar induced chlorophyll fluorescence, they exhibit a linear relationship 123 

with GPP and are considered effective proxies for GPP. Detailed descriptions of all models can be found in Text S1.  124 

To reduce uncertainty in GPP estimates from a single model, we used the ERF model, the basic idea of which is to restructure 125 

the simulated values of multiple models. In this study, we directly used the ERF model to establish the relationship between 126 

the GPP simulated by the above six models and GPP observations. In addition, for comparison with the ERF model, we also 127 

used the random forest (RF) method for modeling. In this study, we used average air temperature, minimum air temperature, 128 

VPD, direct solar radiation, diffuse solar radiation, FPAR and LAI to estimate GPP. Both models used the random forest 129 

method, which has been widely used in previous studies of GPP estimate (Jung et al., 2020; Guo et al., 2023). Random forest 130 

is an ensemble learning algorithm that combines the outputs of multiple decision trees to produce a single result, and is 131 

commonly used for classification and regression problems (Belgiu and Drăguţ, 2016). In the regression problem, the output 132 

result of each decision tree is a continuous value, and the average of all decision tree outputsthe output results of all decision 133 

trees is taken as the final result. An overview of all models used can be found in Table 2. 134 
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Table 2. Overview of the models used in this study. 135 

ID Model Input data Output 

1 EC-LUE FPAR, VPD, AT, SRAD, CO2 GPPEC 

2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC 

3 kNDVI-GPP Red band and near infrared band (MCD43) GPPkNDVI 

4 NIRv-GPP Red band and near infrared band (MCD43) GPPNIRv 

5 VPM Red band, near infrared band, blue band, 

shortwave infrared band (MOD09), AT, SRAD 

GPPVPM 

6 MODIS FPAR, SRAD, MINT, VPD GPPMODIS 

7 Random forest model (RF) LAI, FPAR, AT, MINT, VPD, DifSR, DirSR GPPRF 

8 Ensemble model based on random forest 

(ERF) 

GPPEC, GPPREC, GPPkNDVI, GPPNIRv, GPPMODIS, 

GPPVPM 

GPPERF 

 136 

2.4 Model parameter calibration and validation 137 

FLUXNET only provides GPP observations and meteorological data, lacking direct measurements for LAI, FPAR, and surface 138 

reflectance, so only remote sensing data is needed.can be used. Considering the variety of remote sensing data sources, such 139 

as MODIS and AVHRR, it is evident that calibrating the same GPP model with different remote sensing data can yield varied 140 

parameters. In addition, the number of sites used to calibrate model parameters is also an important influencing factor for 141 

model parameters. The original parameters of these models were calibrated with only a limited number of sites (e.g., 95 sites 142 

for Revised EC-LUE and 104 for NIRv) (Wang et al., 2021; Zheng et al., 2020). Therefore, to reduce the impact of the 143 

uncertainty of model parameters on simulation results, we did not use original parameters and conducted parameter calibration 144 

for GPP models across different vegetation types. For EC-LUE, Revised EC-LUE, VPM and MODIS, the Markov chain Monte 145 

Carlo method was used to calibrate model parameters. Traditionally, the mean of the posterior distribution of parameters is 146 

taken as the optimal value. However, previous studies have indicated that some model parameters are not well constrained 147 

when calibrating multiple model parameters (Xu et al., 2006; Wang et al., 2017), so we selected the parameter with the smallest 148 

root-mean-square error (RMSE) as the optimal parameter in each iteration. For each vegetation type, we randomly selected 149 

70% of the sites for parameter calibration, and repeated the process 200 times. In order to avoid overfitting, we adopted the 150 

mean of the 200 calibrated parameters as the final model parameters. Similarly, for the two vegetation index models, we 151 

randomly selected 70% of the sites in each vegetation type for parameter calibration, repeatingpeating the process 200 times 152 

and using the mean of the 200 calibrated parameters as the final model parameters. 153 

After obtaining GPP estimates from the six GPP models, we evaluated the simulation performance of the RF model and the 154 

ERF model respectively. For both models, we evaluated the model performance using 5-fold cross-validation, where the 155 
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process was repeated 200 times, and the mean of the 200 GPP estimates was considered the final GPP estimate. In addition, 156 

we used a second validation method where 70% of the data was selected for modeling and only the remaining 30% was 157 

validated, a process that was repeated 200 times. We utilized the determination coefficient (R2) and RMSE as metrics to 158 

evaluate the simulation performance of all models. Additionally, we used the ratio of GPP simulations to GPP observations 159 

(Sim/Obs) to measure whether the model overestimates or underestimates. 160 

2.5 Global GPP estimatione based on ERF model and its uncertainty. 161 

Based on the ERF model, we estimated global GPP for 2001-2022 (ERF_GPP). It is important to note that in this process, we 162 

used all the site data to build the model. The uncertainties of ERF_GPP can be attributed to two primary factors,: one is the 163 

influence of the number of GPP observations, and the other is and the influence of the number of features (that is, the simulated 164 

GPP). For the first type of uncertainty, we randomly selected 80% of the data to build a model and simulate the multi-year 165 

average of global GPP. The process was repeated 100 times, yielding 100 sets of multi-year averages of ERF_GPP. Their 166 

standard deviations were considered as the uncertainty of ERF_GPP caused by the number of GPP observations. For the second 167 

type of uncertainty, we selected different number of features to build a model and simulate the multi-year average of global 168 

GPP. A total of 56 sets of multi-year averages offor ERF_GPP were obtained. The standard deviation of different combinations 169 

was considered to be the uncertainty of ERF_GPP caused by the number of features.  170 

2.6 Evaluation of the generalization of different GPP datasets 171 

The majority of flux sites in FLUXNET are concentrated in Europe and North America, it is unclear whether the different GPP 172 

estimateion methods are suitable for regions with sparse flux sites. Recently, ChinaFlux has published GPP observations from 173 

several sites, offering an opportunity to evaluate the generalization of different GPP datasets. However, the spatial resolution 174 

of most GPP datasets is 0.05°, and a direct comparison with GPP observations at flux sites is challenging. Therefore, we 175 

extracted 0.05° MODIS land use covering the flux sites. If the vegetation type of the flux site matched the MODIS land use, 176 

the site was used for the analysis. Finally, a total of 12 flux sites were selected (Figure S2), and Table S1 shows the information 177 

of these sites. The same procedure was applied to FLUXNET, resulting in the selection of 52 sites (Figure S2). It should be 178 

noted that due to the absence of meteorological data from some sites in Chinaflux, we did not validate all GPP models at the 179 

site scale (500 m). 180 

We evaluated the generalization of ERF_GPP at 12 ChinaFlux sites and 52 FLUXNET sites. In addition, we selected a number 181 

of widely used GPP datasets for comparison, including BESS (Li et al., 2023), GOSIF (Li and Xiao, 2019), FLUXCOM: 182 

random Fforest-based version (FLUXCOM-RF) and ensemble version (FLUXCOM-ENS) (Jung et al., 2020), NIRv (Wang et 183 

al., 2021), Revise-EC-LUE (Zheng et al., 2020), MODIS (Running et al., 2004), VPM (Zhang et al., 2017), which were 184 

generated using different GPP estimatione methods. These GPP datasets all have a spatial resolution of 500 m-0.5°, similar to 185 

the resampling process in section 2.1, we have unified them to 0.05°. The common time range for these datasets spanned from 186 

2001 to 2018, and the temporal resolution was unified to monthly to match the GPP observations. 187 



8 

 

3 Result 188 

3.1 Performance of GPP models at site scale 189 

Table S2-S7 show the optimization results of the six GPP model parameters. Consistent with the previous study, in the Revised 190 

EC-LUE model, the light use efficiency parameter of shade leaves was significantly higher than that of sunlit leaves (Zheng 191 

et al., 2020). It is necessary to divide the cropland into C3 crops and C4 crops. In all models, the light use efficiency parameters 192 

of C4 crops were significantly higher than those of C3 crops, which was particularly reflected in the two vegetation index 193 

models of GPPkNDVI and GPPNIRv, the slope of the linear regression directly reflected the difference in the photosynthetic 194 

capacity of the different crops. 195 

Figure 1 shows the performance of all models across different vegetation types. Overall, the performance of the ERF model 196 

was better than that of the other GPP models. GPPERF had the higher accuracy among all models, with R2 between 0.61-0.91 197 

and RMSE between 0.72-2.78 gC m-2 d-1. In contrast, the LUE and vegetation index models performed slightly 198 

weaker,relatively poorly especially in EBF, where R2 was both below 0.5.in EBF, with R2 below 0.5. It is worth noting that 199 

compared to other vegetation types, the RMSE was highest for cropland, with 6 out of 8 models for C4 crop exceeding 3 gC 200 

m-2 d-1, suggesting that these existing GPP models may not properly capture the seasonal changes in cropland GPP. The Ssix 201 

models with calibration parameters and ERF model were found to have no significant deviation across vegetation types. 202 

However, GPPRF was significantly underestimated for C4 crops and overestimated for SHR. 203 
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Figure 1. The performance of the eight models on different vegetation types. a, b and c represent R2, RMSE, and Sim/Obs respectively. 205 

Combining the results of all flux sites, GPPERF explained 85.1% of the monthly GPP variations, while the seven GPP models 206 

only explained 67.7%-81.5% of the monthly GPP variations (Figure 2). Another validation method also showed similar results 207 

(Figure S3). In order to further prove the robustness of the ERF model, we also used GPP models with original parameters for 208 

modeling and validation. As shown in Figure S3S4, the performance of these GPP models decreased significantly, with R2 209 

ranging from 0.570 to 0.719 and RMSE ranging from 2.29 to 3.81 gC m-2 d-1. The phenomenon of "high value underestimation 210 

and low value overestimation" was also pronounced. However, the ERF model maintained a consistent advantage, with R2 211 

significantly higher than other GPP models (0.856). In addition, we tested the effect of the amount number of GPP models on 212 

the accuracy of the ERF model. As shown in Table S8, as the number of GPP in the ERF model increased, the performance 213 

gain of the model gradually decreased. 214 

In summary, GPPERF showed high accuracy in terms of vegetation type and the ability to interpret monthly variations in GPP, 215 

which also illustrates the potential of the ERF model to improve GPP estimatione. However, it was observed that most GPP 216 

simulations exhibited the phenomenon of “high value underestimation and low value overestimation”. For example, GPPEC, 217 

GPPREC, GPPMODIS and GPPRF showed obvious underestimation in the months when the monthly GPP value surpassed 15 gC 218 

m-2 d-1 (Figure 2). Therefore, it is necessary to evaluate the performance of different models in each month and different 219 

subvalues. 220 
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 221 

Figure 2. Comparison between the GPP simulations of the eight models and the GPP observations. a-h represents GPPEC, GPPNIRv, GPPkNDVI, 222 
GPPREC, GPPVPM, GPPMODIS, GPPRF, GPPERF, respectively. 223 

 224 

3.2 Performance of GPP models in each month and different subvalues 225 

Figure 3 shows the simulation accuracy of the eight models in each month. The ERF model maintained a higher accuracy than 226 

other GPP models, with GPPERF consistently achieving higher R2 and lower RMSE in most months, and no evident 227 

phenomenonsinstances of "high value underestimation and low value overestimation". In contrast, the accuracy of other GPP 228 

models was less satisfactory accuracy, especially during winter (most flux sites are concentrated in the Northern Hemisphere), 229 
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the LUE models tended to underestimate GPP, and the Sim/Obs remained at 0.72-1.01, although R2 values were above 0.7. 230 

Meanwhile, the vegetation index models overestimated GPP, Sim/Obs remained at 1.34-1.73, and R2 values were relatively 231 

low, mostly around 0.6. 232 
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Figure 3. Performance of the eight models in each month. a, b and c represent R2, RMSE, and Sim/Obs respectively. 234 

We compared the performance of all models in different subvalues, including high value (GPP > 15 gC m-2 d-1), median value 235 

(15 gC m-2 d-1 > GPP > 2 gC m-2 d-1), low value (GPP < 2 gC m-2 d-1). For extreme values, most models performed poorly 236 

(Figure 4), with R2 for GPP models falling below 0.3, and only GPPVPM showing better performance in the high- value range. 237 

GPPERF demonstrated some improvement in both low and high values, with R2 0.32 and 0.43, RMSE of 0.89 and 4.73 gC m-2 238 

d-1, and Sim/Obs closer to 1, respectively. In the median value range, all models performed wellbetter, with no significant bias 239 

in the GPP estimatione. The R2 of GPP models ranged from 0.44 to 0.68, and the RMSE remained between 1.82 and 2.54 gC 240 

m-2 d-1. Further analysis was made at two typical sites, it was obvious that GPPEC, GPPREC and GPPMODIS on CN-Qia exhibited 241 

obvious underestimation during the growing season (Figure S4S5). On CH_Lae, GPPkNDVI and GPPVPM were significantly 242 

overestimated (Figure S5S6). In contrast, at both sites, GPPERF was more consistent with observations, indicating that the 243 

superior performance of GPPERF was due to the corrections on the time series. 244 

  245 

Figure 4. Performance of eight models in different subvalues. 246 
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3.3 Temporal and spatial characteristics of ERF GPP and its generalization evaluation  247 

Figure 5a shows the spatial distribution of the multi-year average of ERF_GPP. The high values of GPP waswere mainly 248 

concentrated in tropical areas, exceeding 10 gC m-2 d-1, and relatively high in southeastern North America, Europe and southern 249 

China, about 4-6 gC m-2 d-1. From 2001-2022, China and India showed the fastest increase in GPP, mostly at 0.1 gC m-2 d-1 250 

(Figure 5b), similar to a previous study that reported that China and India led the global greening (Chen et al., 2019). We 251 

further investigated the annual maximum GPP, as shown in Figure 5c, and the North American corn belt was the global leader 252 

in GPP at more than 15 gC m-2 d-1, compared to only 10 gC m-2 d-1 in most tropical forests. In 2001-2022, the global GPP was 253 

132.7 ± 2.8 PgC yr-1, with aan increasing trend of 0.42 PgC yr-2 (Figure 5d). The lowest value was 128.6 PgC yr-1 in 2001, and 254 

the highest value was 136.2 PgC yr-1 in 2020 (Figure 5d). 255 

The results of the two uncertainty analyses consistently indicated that ERF_GPP exhibited a higher uncertainty in tropical 256 

regions (Figures S6 S7 and S7S8), and the uncertainty of ERF_GPP caused by the number of GPP observations was relatively 257 

small, the standard deviation of 100 simulations was about 0.3 gC m-2 d-1 in the tropics and lower in other regions, below 0.1 258 

gC m-2 d-1. In contrast, the uncertainty of ERF_GPP caused by the number of features was more pronouncedmuch more 259 

uncertain, especially when fewer features were included in the models the number of features was small. It is worth noting that 260 

when the number of features was 5five, the uncertainty was already substantially less, and the standard deviation was generally 261 

lower than 0.5 gC m-2 d-1. 262 

 263 



16 

 

264 



17 

 

 265 

Figure 5. Spatial distribution and interannual changes of ERF_GPP during 2001-2022. a represents the multi-year average, b represents the 266 
trend, c represents the annual maximum, and d represents the interannual change of GPP. 267 

 268 

As shown in Figure 6, ERF_GPP and other GPP datasets were validated using GPP observations from ChinaFlux. Among all 269 

the models, GPPVPM demonstrated the best performance, with R2 of 0.86 and RMSE of 1.34 gC m-2 d-1. ERF_GPP also 270 

exhibited high generalization, with R2 of 0.75, RMSE of 1.72 gC m-2 d-1, there was no “high value underestimation and low 271 

value overestimation”, which was comparable to the accuracy of BESS and GOSIF. However, the simulation accuracy of the 272 

other GPP datasets in Chinaflux was relatively poor, with the R2 of NIRv being only 0.64, while FLUXCOM-ENS, 273 

FLUXCOM-RF, MODIS and Revised EC-LUE were significantly underestimated, with the Sim/Obs being only 0.71-0.829. 274 

In the validation of FLUXNET, the R2 of FLUXCOM-ENS, MODIS, and Revised EC-LUE ranged from 0.57 to 0.67, and the 275 

RMSE ranged from 2.67 to 3.3 gC m-2 d-1, and exhibited different degrees of underestimation (Figure S8S9). Other GPP 276 

datasets demonstrated similar performance, with ERF_GPP being the best (R2 = 0.74, RMSE = 2.26 gC m-2 d-1). 277 
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 282 

Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFlux. a-hi represents BESS, FLUXCOM-ENS, 283 
FLUXCOM-RF, GOSIF, MODIS, NIRv, VPM, Revise-EC-LUE, ERF_GPP, respectively. 284 

4 Discussion 285 

4.1 Performance analysis of different models  286 

After parameter calibration, both LUE and vegetation index models obtainedobtained reliable model accuracy. However, 287 

noticeable errors persist in different months and subvalues, indicating the prevalent phenomenon of "high value 288 

underestimation and low value overestimation". (Figures 1-4). In addition to MODIS, the GPP simulated by the other three 289 

LUE models is generally underestimated in winter (Figure 3), which may be caused by biases in the parameters used in the 290 
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meteorological constraints. In the expression form of the temperature constraint adopted by the LUE models, the maximum 291 

temperature, minimum temperature and optimum temperature for limiting photosynthesis are all constants, however these 292 

values may not be fixed (Huang et al., 2019; Grossiord et al., 2020). A previous study has demonstrated that the GPP 293 

estimatione could be effectively improved by using dynamic temperature parameters (Chang et al., 2021). Moreover, the form 294 

of meteorological constraint is also an important influencing factor. Compared with other LUE models, VPM does not use 295 

VPD constraints, but incorporates land surface water index from satellite observations as constraints (Xiao et al., 2004), which 296 

may be the reason why the model performs better than other models at high values (Figure 4). Conversely, the two vegetation 297 

index models overestimated GPP in winter, and even overestimated by 70% in December. The vegetation index model does 298 

not consider meteorological constraints that believe that all environmental impacts on vegetation have been included in the 299 

vegetation index (kNDVI, NIRv). However, it is a fact that under high temperatures or low radiation, the vegetation index may 300 

still maintain the appearance of high photosynthesis (greening), while in fact the GPP is low (Doughty et al., 2021; Yang et 301 

al., 2018; Chen et al., 2024). Furthermore, the relationship between these vegetation indices and GPP is not robust, and the 302 

vegetation indices based on reflectance may have hysteresis (Wang et al., 2022). 303 

Compared to other GPP models, the ERF model demonstrated better performance (R2 = 851). Since there are no physical 304 

constraints, the machine learning model needs to find the relationship between explanatory variables and target variable from 305 

a large amount of training data (such as GPP=f (LAI,T,P, etc.)). Therefore, the reliability of the model usually depends on the 306 

representativeness of the training data. For example, LAI can explain GPP to a large extent, while complex modeling 307 

relationships are still needed from LAI to GPP. The difference between the ERF model and the RF model lies in the explanatory 308 

variables. The ERF model leverageuses multiple GPP simulations that are more representative and aligned with the target 309 

variable, thus making the GPP simulations more accurate. In other words, the ERF model does not need to take into account 310 

the uncertainties of the model structure (such as meteorological constraints) and model parameters (such as maximum light 311 

use efficiency), but rather focuses on the uncertainties inherent in the simulated GPP. To further clarify the impact of 312 

explanatory variables on the ERF model, we conducted a feature importance analysis (Figure S9S10). From an average of 200 313 

times, the results of the ERF model did not depend on a single GPP simulation. Even GPPMODIS, with the highest relative 314 

importance, accounted for no more than 25%, suggesting that the ERF model behaves more like a weighted average of multiple 315 

GPP simulations. In addition, it is important to emphasize that the accuracy of the ERF model is still robust even for GPP 316 

simulations of original parameters (Figure S4), which means that we can try to use this method to integrate the currently 317 

published GPP data sets to obtain a more accurate global GPP estimate. 318 

It is worth noting that in the study of Tian et al. (2023), the ERF model was also used to improve the GPP estimatione. Our 319 

researchstudy extends this work in several ways. Firstly, parameter calibration was carried out in our study so that the final 320 

validation results are comparable, that is, differences in model performance are mainly due to the uncertainty of the model 321 

structure. Secondly, our study focusesed on the phenomenon of "high value underestimation and low value overestimation" of 322 

GPP model, with results indicating that the ERF model performed well across various vegetation types, months, and subvalues. 323 
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Finally, we generated the ERF_GPP dataset and validated it on different observational datasets, further confirming the 324 

robustness of the ERF model in GPP estimatione. 325 

4.2 Robustness of ERF_GPP 326 

In this study, based on site-scale validation, we demonstrate the reliability of the ERF model in GPP estimation. However, 327 

further discussion is needed regarding the robustness of the spatial distribution, spatial trends and global totals of ERF_GPP. 328 

Since the current GPP datasets are generated based on remote sensing observationand FLUXNET GPP observations, there is 329 

a strong similarity in spatial distribution among all GPP datasets. Therefore, the validation of GPP observations independent 330 

of FLUXNET is crucial. Validation results from GPP observations of ChinaFlux indicated that GPPERFERF_GPP exhibited 331 

good generalization in China (R2=0.75), which was slightly lower than the accuracy of 5-fold-cross-validation during modeling, 332 

possibly due to the mismatch between the 0.05° GPP estimate and the footprint of the flux tower (Chu et al., 2021). In addition, 333 

the validation of FLUXNET further confirms the reliability of ERF_GPP. Overall, this is comparable to or slightly better than 334 

the simulation accuracy of current mainstream GPP datasets. We also observed a clear improvement in the spatial maximum 335 

value of ERF_GPP in some corn growing regions, such as the North American Corn Belt (Figure 5c), which is supported by 336 

previous studies showing that C4 crops have much higher GPP peaks than other vegetation types (Yuan et al., 2015; Chen et 337 

al., 2011). 338 

Due to the increasing trend of droughtdrought trend, the constraining effect of water on vegetation is gradually increasing, and 339 

some studies have reported the decoupling phenomenon of LAI and GPP under some specific conditions (Jiao et al., 2021; Hu 340 

et al., 2022). However, in China and India that two regions with significant greening, GPP ontinues to increase in most datasets, 341 

and ERF_GPP supports this view. This phenomenon may be attributed todue to the low drought pressure on croplands in China 342 

and India due to irrigation, which poses less constraint on GPP (Ambika and Mishra, 2020; Ai et al., 2020). The global estimate 343 

of ERF_GPP is 132.7 ± 2.8 PgC yr-1, which is close to estimates from most previous studies (Wang et al., 2021; Badgley et 344 

al., 2019). A study have suggested that the global GPP may reach 150-175 PgC yr-1 (Welp et al., 2011), however, there is no 345 

further evidence to support this view. 346 

ERF_GPP exhibited higher uncertainty in tropical regions, similar reports have been made in previously published GPP 347 

datasets (Badgley et al., 2019; Guo et al., 2023). The scarcity of flux observations in these regions (Pastorello et al., 2020), 348 

coupled with the well-known issue of cloud pollution and saturation in remote sensing data in the tropics (Badgley et al., 2019), 349 

exacerbates the uncertainty in GPP estimates for these regions. Therefore, in future studies, on the one hand, more flux 350 

observations in tropical regions are needed, and on the other hand, attempts can be made to combine optical and microwave 351 

data to improve the estimation of GPP estimate. 352 

4.3 Limitations and uncertainties 353 

In this study, we improved GPP estimatione based on the ERF model. NonethelessHowever, there are still some limitations 354 

and uncertainties due to the availability of data and methods. First, C4 crop distribution maps were used in our study to improve 355 
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estimates of cropland GPP. However, it is important to note that this dataset only represents the spatial distribution of crops 356 

around the year 2000, which introduce uncertainty intomay add uncertainty to GPP simulations of cropland in a few C3 and 357 

C4 alternating areas. Secondly, the ERF model considers six GPP simulations, and it is not clear whether adding more GPP 358 

simulations to the model can further improve the GPP estimatione. Finally, our model did not consider the effect of soil 359 

moisture on GPP, and some previous studies have highlighted the importance of incorporating soil moisture in GPP estimates, 360 

especially for dry years (Stocker et al., 2019; Stocker et al., 2018). 361 

5 Conclusion 362 

In this study, we compared the performance of the ERF model with other GPP models at the site scale, especially for the 363 

phenomenon of "high value underestimation and low value overestimation", and further developed the ERF_GPP dataset. 364 

Overall, GPPERF had higher model accuracy, explaining 85.1% of the monthly GPP variations, and demonstrated reliable 365 

accuracy in different months, vegetation types and subvalues. Over the period from 2001 to 2022, the global estimate of 366 

ERF_GPP was 132.7 ± 2.8 PgC yr-1, corresponding to an increasinga trend of 0.42 PgC yr-2. Validation results from ChinaFlux 367 

indicated that ERF_GPP had good generalization. For the current emerging GPP estimatione models, the ERF model provides 368 

an alternative GPP estimation method that lead to better model accuracy. 369 
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