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Abstract. AdvancementsThe continuous developmentadvancement ofin remote sensing technology hashave 15 

significantlybeen contributed to the improvement ofinstrumental in improving models for estimating terrestrial gross primary 16 

productivity (GPP). However, discrepancies in spatial distribution and interannual variability within GPP datasets pose 17 

challenges to a comprehensive understanding of the terrestrial carbon cycle.However, challenges arise from inconsistent 18 

spatial distributions and interannual variations in GPP datasets, which hinderimpeding our comprehensive understanding of 19 

the entire terrestrial carbon cycle. In contrast to previous models that relyrelying on remote sensing and environmental 20 

variables, we developed a an ensemble model based on random forest, named GPPERF (ERF model). This model usedutilized 21 

the GPP GPP outputs fromof established remote sensing-based models (EC-LUE, GPP-kNDVI, GPP-NIRv, Revised-EC-22 

LUE, VPM, MODIS) as inputs to estimate GPPfor GPP estimatesestimatesestimations. The ERF modelGPPERF 23 

demonstrated superiordemonstratedshoweddemonstrated significant effectiveness by, explaining 83.785.1% of the monthly 24 

GPP variations in GPP acrossat 1710 sites. This performance and surpassing the performance of outperformedsurpassed both 25 

the selected remote sensingGPP models (72.467.7%-77.15%) and an independent random forest model using remote sensing 26 

and environmental variables (7781.75%). Additionally, the ERF model GPPERF also exhibitedshowed the higher improved 27 

the accuracy acrossin each month and variousdifferent subvalues, mitigating the issue improvingwhich improved the 28 

phenomenon of "high value underestimation and low value overestimation" in GPP estimates. Over the period from 2001 to 29 

2022, the global estimated GPP estimated value usingby the ERF modelthe ensemble model based on random forest was 30 

1312.27 PgC yr-1, with an increasing trend of corresponding toexhibiting a trend of 0.452 PgC yr-2, which is comparable to or 31 

slightly better than the accuracy of other mainstream GPP datasets in term of validation results from ChinaFlux . In 32 

additionFurthermore, the evaluation results using theutilizing flux sites fromof ChinaFlux indicated showedindicated that the 33 

dateset exhibited good generalization. In summary, the ERF model offers a reliable alternative for reducing uncertainties in 34 
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GPP estimate, providing a more dependable global GPP estimate.the random forestmachine learning-based ensemble 35 

methodmodel helps to reduce the uncertainty in the estimation of a single remote sensingGPP model and provides a more 36 

reliable estimateestimation of global GPP. 37 

 38 

 39 

 40 

1 Introduction 41 

Gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle, and serves as the primary input of it is 42 

also the input of carbon tointo the terrestrial carbon cycleduring the carbon cycle. Uncertainties in GPP 43 

estimatesestimationthe estimation of GPP will becan further propagated to other carbon flux estimates, making it crucialso it 44 

is important to clarify the spatio-temporal patterns of GPP (Xiao et al., 2019; Ruehr et al., 2023). However, global GPP is 45 

variously estimated fromvariousdifferent studies estimate global GPP to be betweenat 90 PgC yr-1 andto 160 PgC yr-1 across 46 

different studies, with these variations becomingand these uncertainties becomethis uncertainty maycan be  even more 47 

pronounced when scaled down toextended to regional scales or specific ecosystem types,. This variability underscores the 48 

necessity for innovative methodsso it is necessary to develop some new methods to reduce the uncertainty ofin GPP 49 

estimates (Jung et al., 2019; Ryu et al., 2019; Anav et al., 2015). 50 

The light use efficiency (LUE) model is one of the most widely adopted methods used models for estimating GPP, which. It 51 

assumes that GPP is proportional to the photosynthetically active radiation absorbed by vegetation, and optimizes the spatio-52 

temporal pattern of GPP through meteorological constraints such as temperature and water (Pei et al., 2022). However, 53 

variationsthe forms of in these meteorological constraints varies significantlygreatly, and this difference alone can 54 

leadleading toresult in a differences of overmore than 10% in model explanatory power.the explanatory power of the models 55 

(Yuan et al., 2014). Recent studies have proposed some novelnew vegetation indices, which that have been shown to be 56 

effective proxies for GPP through theoretical derivation and observedobservational validation  by observations (Badgley et 57 

al., 2017; Camps-Valls et al., 2021). However, these vegetation indices often use only remote sensing data as an input for 58 

estimating long-term GPP without consideringtaking meteorological factors into account, which has led tocaused some 59 

controversy (Chen et al., 2024; Dechant et al., 2020; Dechant et al., 2022). Both LUE and vegetation index modelsBoth the 60 

LUE model and the vegetation index model use a combination of linear mathematical formulas to estimate GPP. However, 61 

ecosystems are inherentlyhighly complex,, and the biases introduced into a process by these numerical modelsthis numerical 62 

model will increase the uncertainty in the estimates of the final product (GPP) estimates. The mMachineMachine learning 63 

models has been shown great potential for improving GPP estimates in previous studiesin previous studies to havethat it has 64 

great potential for improvingto improve GPP estimates (Jung et al., 2020; Guo et al., 2023). Thisese model areisare trained 65 

by non-physical means directly using GPP observations and selected environmental and vegetation variables, and the 66 
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performance of the model depends onmodel performance is related to the number and quality of the observed data and the 67 

representativeness of the input data. Machine learning has also been widely used in recent years due to its advantages such as 68 

the fact that nono need for parameter calibration is required and the reliable model accuracy. Nevertheless, direct validation 69 

from flux towers of FLUXNET revealshows that these models typically explains only explains about 70% of the monthly 70 

GPP variations in GPP, with similar performance to other GPP models (Wang et al., 2021; Badgley et al., 2019; Zheng et al., 71 

2020; Jung et al., 2020). Due to the deviations ofin the model structure, there is a common limitationissueproblem across 72 

these models is poor estimateestimatione of monthly extreme GPPin these models, that is, the estimation of the monthly 73 

extreme GPP is poor, andleading to the phenomenon of "high value overestimationunderestimate, and low value 74 

overestimateion" occurs (Zheng et al., 2020). Currently, there are several remote sensing data-driven methods to estimate 75 

GPP, including light use efficiency (LUE) models, vegetation index models, machine learning models, and process models . 76 

Direct validation of flux towers from FLUXNET shows that these models usually only explain about 70% of the monthly 77 

variation in GPP . One possible reason is that remote sensing models cannot fully characterize all the processes of 78 

photosynthesis. This is understandable, most of the existing models use linear or nonlinear mathematical formulas to express 79 

a certain process of photosynthesis. However, the ecosystem is highly complex, the bias introduced by such a numerical 80 

model in a process will increase the uncertainty in the final product (GPP) estimates. For example, in the LUE model, the 81 

difference in the meteorological constraints alone can lead to a difference of more than 10% in the explanatory power of the 82 

model . As an important factor affecting photosynthesis, some models consider the effect of CO2 fertilization. However, a 83 

study revealed that the effect of CO2 fertilization showed a significant negative trend in the past 40 years, and this process 84 

may be missing in the model . Limited by the imperfection of the model mechanism, adjusting the model parameters is the 85 

most effective way to improve the simulation accuracy. The usual practice of the modeler is to divide the directly observed 86 

GPP data according to different vegetation types, and randomly select the testset through the cross-validation method to 87 

calibrate and validate the model parameters. However, this method is based on the assumption that the model parameters of 88 

the same vegetation type in different regions are roughly the same. In fact, the photosynthetic characteristics of the same 89 

vegetation type are also quite different in different regions. A typical example is the difference between C3 and C4 crops in 90 

the cropland, the GPP of C4 crops during the growing season may reach 600-800 gC m-2 month-1, accounting for more than 91 

60% of the annual GPP, in contrast, the GPP of C3 crops in the growing season is only 200-300 m-2 month-1, or even lower . 92 

Some other studies have also found that the maximum carboxylation rate (Vcmax) that determines photosynthesis at the leaf 93 

scale not only varies with vegetation types, but also depends on environmental factors . The same vegetation type also has a 94 

difference of 40umol m-2 s-1 in different geographical areas , all of which may lead to uncertainties in GPP estimate. A 95 

widespread problem is that the deviation of model structure and model parameters may lead to poor estimation of GPP in the 96 

monthly extreme value, and the phenomenon of “high value underestimation and low value overestimate” occurs. Especially 97 

for extremely high values, which usually occur during the growing season and largely determine the annual value and inter-98 

annual fluctuationsvariation of GPP, this underestimation may hinder our understanding of the globalentire carbon cycle 99 

process. 100 
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It is challengingdifficult for a single model to provide accurate estimates for all global regionshavegive a good estimate 101 

forestimation in all regions of the worldglobe. Ensemble models have been shown to outperform single models in previous 102 

studies, potentially addressing some inherent issuesPrevious studies have shown that an ensemble model maycan perform 103 

better than a single model, which may improve some potential problems in model estimation  in model estimateestimatione 104 

(Chen et al., 2020; Yao et al., 2014). Traditional multi-model ensemble methods usually use a simple multi-model simple 105 

average or a bayesian weighted bayesian average. However, these methods typically assign fixed weights to each model and 106 

are essentially linear combinations.usually only provide fixed weights for each model, and are essentially linear 107 

combinations between multiple models. RecentSome recent studies have appliedapply machine learning methods to multi-108 

model ensembles to establish nonlinear relationships between multiple simulated target variables and real target variables, 109 

enhancimproving simulation performance, improving the to improve simulation performance (Bai et al., 2021; Yao et al., 110 

2017; Tian et al., 2023). Whether this method can improve some common problems with a single GPP model, such as high 111 

value underestimation and low value overestimation, is not clear and needs to further investigation be further 112 

explored.However, few studies have applied this method to the global GPP estimation, which providesis a novelnew idea for 113 

improvingto improve some common problems of a single remote sensing model (such as high value underestimation and 114 

ground low value overestimation). 115 

In this study, we attempt to use an ensemble model based on the random forest (ERF model)an ensemble model based on 116 

machine learning methods to improve global GPP estimationethe estimation of global GPP. Specifically, the work of this 117 

study includes the following points: (1) After rRe-calibrating the parameters offor each model, and comparing the 118 

performance of fivesevensix remote sensingGPP models and the ERFensemble models wasere compared; (2) Focusing on 119 

the phenomenon of “high value underestimation and low value overestimation” in each model,, and 120 

evaluatingcomparingcompared the performance of each model in differenteach monthss, each vegetation typess and different 121 

sub-values (high value, median value, low value); (3) Developing a global GPP dataset using an ensemblethe ERF modell 122 

based on machine learning methods, and using GPP observations from ChinaFlux as a complementary validation set to test 123 

the generalization of this dataset, i.e. the extent to which the dataset captures changes in GPP in regions where fewer sites are 124 

includedused in the modeling process. and validate its generalization using GPP observations from ChinaFlux. 125 

2 Method 126 

2.1 Data at the global scale 127 

In this study, we selected remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 128 

meteorological data from EAR5-Land to estimate the global GPP (Hersbach et al., 2020). For the remote sensing data, 129 

surface reflectance (red band, near infrared band, blue band  and shortwave infrared band), leaf area Iindex (LAI) and 130 

Ffraction of Pphotosynthetically Aactive Rradiation (FPAR) were used in this study. For meteorological data, we selected 131 

average air temperature, dew point temperature, minimum air temperature, total solar radiation, and direct solar radiation. 132 
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The dDew point temperature and air temperature were used to calculate the saturated vapor pressure difference (VPD) (Yuan 133 

et al., 2019), and the diffuse solar radiation was derivedcalculated as the difference between the total solar radiation and the 134 

direct solar radiation. mMinimum air temperature was obtained from the hourly air temperature. The CO2 data were obtained 135 

fromcomes from the monthly average carbon dioxide levels measured by the Mauna Loa Observatory in Hawaii. Table 1 136 

provides an overview of the datasets used in this study.Table 1 shows the details of these data. 137 

 138 

 139 

 140 

Table 1. Overview of the datasets used in this study. 141 

Variable Dataset Spatial resolution Temporal resolution Temporal coverage 

Surface reflectance (red band and  

near infrared band) 
MCD43C4 0.05° daily 2001-2022 

Surface reflectance (red band, 

near infrared band, blue band and  

shortwave infrared band) 

MOD09CMG 0.05° daily 2001-2022 

LAI MOD15A2H 500m 8d 2001-2022 

FPAR MOD15A2H 500m 8d 2001-2022 

Average Aair temperature (AT) ERA5-land 0.1° Monthly 2001-2022 

Dew point temperature (DPT) ERA5-land 0.1° Monthly 2001-2022 

Minimum air temperature (MINT) ERA5-land 0.1° Monthlyhourly 2001-2022 

Total solar radiation (TSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

Direct solar radiation (DirSR) 

ERA5 monthly 

data on single 

levels 

0.25° Monthly 2001-2022 

CO2 

NOAA’s Earth 

System Research 

Laboratory 

/ Monthly 2001-2022 

Distribution map of C4 crops 

Harvested Area 

and Yield for 175 

Crops 

1/12° Annual 2000 

Land use MCD12C1 0.05° Annual 2010 
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 142 

Previous studies have shown that the photosynthetic capacity of C4 crops is much higher than that of C3 crops (Chen et al., 143 

2014; Chen et al., 2011), so it is necessary to divide the cropland into C3 crops and C4 crops. To estimateWhen estimating 144 

the global GPP, we used the dataset "175 Crop harvested Area and yield" dataset, which describes the global harvested area 145 

and yield of 175 crops in 2000 (Monfreda et al., 2008). We extracted the sum of the area ratios of all C4 crops (corn, corn 146 

feed, sorghum, sorghum feed, sugarcane, millet) at each grid point as the coverage of C4 crops (Figure S1). 147 

Consequently,Therefore, the estimated value of cropland GPP can be expressed as: coverage of C3 crops × simulated GPP 148 

simulated value of C3 crops + coverage of C4 crops × simulated GPP simulated value of C4 crops, which has beenwas used 149 

in a previous study (Guo et al., 2023).  150 

The land use map comeswas derived from the IGBP classification of MCD12Q1, and 2010 was selectedchosen as the 151 

reference year (that is, land use data is unchanged in the simulation of global GPP). In order to meet the requirementsneed of 152 

subsequent research,  the land cover types were combinedgrouped into 9 categories: dDeciduous Broadleaf Forest (DBF), 153 

eEvergreen Needleleavedconiferous fForest (ENF), Evergreen Broadleaf Forest (EBF), Mixed Forest (MF), Grassland 154 

(GRA), Cropland (including CRO-C3 and CRO-C4), Savannah (SAV), Shrub (SHR), Wetland (WET).  155 

FinallyUltimately, for higher resolution data, we gridded the dataset to 0.05° by averaging all pixels whose center fell within 156 

each 0.05° grid cell for upscaling. For lower resolution data, we used the nearest neighbor resampling to 0.05°. all data were 157 

resampled to a spatial resolution of 0.05°, while In addition, MODIS data from MODIS were aggregated to a monthly scale 158 

to ensure spatio-temporalmeet spatiotemporal consistency. 159 

2.2 Observation data at the site scale 160 

The modeling used GPP observations  were sourced from the FLUXNET 2015 dataset, which includes carbon fluxes and 161 

meteorological variables from more than 200 flux sites around the world (Pastorello et al., 2020). GPP cannot be obtained 162 

directly from  the flux sites and usually needs to be obtained by dismantling the Net Ecosystem Exchange. We chose a 163 

month-scalemonthly level GPP based on the nighttime partitioning method and retained only high quality data 164 

(NEE_VUT_REF_QC > 0.8) for every year, ultimatelyand finally selectingselected 1710 sites with 10824932 monthly 165 

values for this study. In addition, we selected monthly average air temperature, total solar radiation and VPD on the monthly 166 

scale were selected. The site observations do not provide direct solar radiation, so we extracted data from the ERA5 covering 167 

the flux tower. The mMonthly minimum air temperature iswas derivedobtained from the hourly air temperature. Since some 168 

required model data arepart of the data required byfor the model is not directly available at the flux sites, surface reflectance, 169 

LAI and FPAR were extractedon at a scale offrom MOD15A2H (500 m) were extracted,, and surface reflectance data (red 170 

band, near infrared band, blue band and shortwave infrared band) wereare derived from MCD43A4 (500 m) and MOD09A1 171 

(500 m). whichThese data are roughly similar to the footprint of the flux site and can represent the land surface of the site 172 

situation (Chu et al., 2021).  173 



7 

 

2.3 GPP estimation modelRemote sensing models and ensemble models for estimating GPP 174 

We selected six independent models to estimate GPP in this study.In this study, fivesevensix independent remote sensing 175 

models were selected to estimate GPP. These models are widely used with few model parameters and have demonstrated 176 

reliable accuracyhave shown reliable model accuracy in previous studies (Zheng et al., 2020; Zhang et al., 2017; Badgley et 177 

al., 2017). The sevensixfive models are EC-LUE, Revised-EC-LUE, NIRv-based linear model, kNDVI-based linear model, 178 

VPM, MODIS and traditional random forest model using remote sensing and environmental variables. The VPM, MODIS 179 

and EC-LUE is aare LUE models based ondriven by remote sensing data and meteorological data. These models assumes 180 

that GPP is proportional to the photosynthetically active radiation absorbed by the canopy, and the seasonal variation of GPP 181 

is corrected by meteorological constraints (Yuan et al., 2007; Running et al., 2004; Xiao et al., 2004);. Recently, Zheng et al. 182 

revised the EC-LUE model and(2020) proposed the Revised-EC-LUE model, which divides the canopy into sunlit and 183 

shaded leaves, and considers long-term changes in CO2 to, improveimprovingd the estimation of global GPP (Zheng et al., 184 

2020). The NIRv and kNDVI are newly proposed vegetation indices, which are calculated from the red and near-infrared 185 

bands of the reflectance spectrum (Badgley et al., 2017; Camps-Valls et al., 2021). Similar to the Ssolar induced chlorophyll 186 

fluorescence (SIF), they exhibitexhibithave  a linear relationship withwithto the GPP and are considered to be effective 187 

proxies for the GPP. Detailed descriptions of all models can be foundare presented in Text S1. The randomRandom forest 188 

(RF) method has beenis widely used in GPP estimation, which usuallyand typically uses meteorological variables and the 189 

vegetation index for modeling . In this study, we used average air temperature, minimum air temperature, VPD, direct solar 190 

radiation, diffuse solar radiationradiation, FPAR and LAI to estimate GPP, similar to the variables selected in some previous 191 

studies.. 192 

To reduce the uncertainty in estimating GPP estimattione from a single model, we also used the an ensemble model based on 193 

the random forest (ERF)a multi-modalmodel ensemble methodERF model, the basic idea of which is to restructurere-model 194 

the simulated values of multiple models. Random forest is an ensemble learning algorithm that combines the outputs of 195 

multiple decision trees to produce a single result, and is commonly used for classification and regression problems. In the 196 

regression problem, the output result of each decision tree is a continuous value, and the average of the output results of all 197 

decision trees is taken as the final result. In this study, an ensemble model based on the random forest  (ERF) method was 198 

used,. In contrast to theUnlike traditional machine learningRF methods, that is, we directly used the random forest 199 

methodERF models to establish the relationship between the GPP simulated by the above foursix models and the GPP 200 

observations.  In addition, for comparison with the ERF model, we also used the random forest (RF) method for modeling. In 201 

this study, we used average air temperature, minimum air temperature, VPD, direct solar radiation, diffuse solar radiation, 202 

FPAR and LAI to estimate GPP. Both models used the random forest method, which has been widely used in previous 203 

studies of GPP estimatione, similar to the variables selected in some previous studies (Jung et al., 2020; Guo et al., 2023). 204 

Random forest is an ensemble learning algorithm that combines the outputs of multiple decision trees to produce a single 205 

result, and is commonly used for classification and regression problems (Belgiu and Drăguţ, 2016). In the regression 206 
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problem, the output result of each decision tree is a continuous value, and the average of the output results of all decision 207 

trees is taken as the final result. An overviewA summary of all models used can be foundis shown in Table 2. 208 

Table 2. Overview of the models used in this study. 209 

ID Model Input data Output 

1 EC-LUE FPAR, VPD, AT, SRAD, CO2 GPPEC 

2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC 

3 kNDVI-GPP Red band and near infrared band GPPkNDVI 

4 NIRv-GPP Red band and near infrared band GPPNIRv 

5 VPM Red band, near infrared band, blue band, 

shortwave infrared band, AT, SRAD 

GPPVPM 

6 MODIS FPAR, SRAD, MINT, VPD GPPMODIS 

57 Traditional rRandom forest model (RF) LAI, FPAR, AT, MINT, VPD, DifSR, 

DirSRSRAD, LAI 

GPPRF 

68 Ensemble model based on random forest 

(ERF) 

GPPEC, GPPREC, GPPkNDVI, GPPNIRv, 

GPPMODIS, GPPVPM 

GPPERF 

 210 

2.4 Model parameter calibration and Vvalidation 211 

FLUXNET only provides GPP observations and meteorological data, lacking direct measurements for LAI, FPAR, and 212 

surface reflectance,while LAI, FPAR and surface reflectanceother data are not provided, so only remote sensing data can be 213 

used. Considering the variety of remote sensing data sources, such as MODIS and AVHRR, it is evident that calibrating the 214 

same GPP model with different remote sensing data can yield varied parameters.However, there are many sources of remote 215 

sensing data available, such as MODIS, AVHRR, etc., so using different remote sensing data to calibrate the same GPP 216 

model may produce different model parameters. In addition, the number of sites used to calibrate model parameters is also 217 

an important influencing factor for model parameters. The original parameters of these models were calibrated with only a 218 

limitedsmall number of sites (e.g., 95 sites were used for Revised EC-LUE and 104 for NIRv) (Wang et al., 2021; Zheng et 219 

al., 2020).. ThereforeDue to the difference between meteorological data and vegetation data, to reduce the impact of the 220 

uncertainty of the model parameters  on simulation results, we did not use originaldefault parameters in the model, but and 221 

conductedcarried out parameter calibration and model validation for all remote sensingGPP models acrossaccording to 222 

different vegetation types. For EC-LUE and, Revised EC-LUE, VPM and MODIS, the Markov chain Monte Carlo method 223 

(MCMC) was used to calibrate the model parameters. Traditionally,TheIn the traditional MCMC method, usually takes the 224 

mean value of the posterior distribution of the parameters is usually taken as the optimal value,. However,while previous 225 

studies have indicatedshown that some model parameters arecannot be not well constrained when calibrating multiple model 226 



9 

 

parameters (Xu et al., 2006; Wang et al., 2017), so we selecteduse the parameter with the smallest root-mean-square error 227 

(RMSE) as the optimal parameter in each iteration. For each vegetation type, we randomly selected 70% of the sites for 228 

parameter calibration, and repeated the process was repeated 200 times. In order to avoid overfitting, we adoptedtookused 229 

the mean of the 200 calibrated parameters as the final model parameters. Similarly, for the two vegetation index models, we 230 

randomly selected 70% of the sites in each vegetation type for parameter calibrationre, peating the process 200 times. The 231 

process was repeated 200 times, and using the mean of the 200 calibrated parameters was used as the final model parameters. 232 

After obtaining GPP estimates from the six four remote sensingGPP models, we evaluatedtested the simulation performance 233 

of the traditional random forestRF model and the random forest-based ensembleERF model respectively. For both models, 234 

we evaluatetestedd the model performance using 5-fold cross-validation, where the process was repeated 200 times, and the 235 

mean of the 200 GPP estimates was considered the final GPP estimatemean of the GPP estimated 200 times aswas the final 236 

GPP estimate. We utilized the determination coefficientGoodness of Ffit (R2) and RMSE as metrics to evaluatewere used to 237 

measure the simulation performance of all models. Additionally, In addition, weWwe used the ratio of GPP simulations to 238 

GPP observations (Sim/Obs) to measure whether the model was overestimateds or underestimateds. 239 

2.5 Global GPP estimation based on ERF model and its uncertainty. 240 

Based on the ERF modelsite-scale model, we estimated global GPP for 2001-2022 (ERF_GPP). The uncertaintiesuncertainty 241 

of ERF_GPP can be attributed to two primary factorsmainly comes from two aspects, one is the influence of the number of 242 

GPP observations, and the other is the influence of the number of features (that is, the simulated GPP) used in the modeling 243 

process. For the first type of uncertaintyFor the first uncertainty, we randomly selected 80% of the data to build a model and 244 

simulate the multi-year average of global GPP. The process was repeated 100 times, yielding 100 setsand 100 groups of 245 

multi-year averages of ERF_GPP were obtained. Their standard deviations were considered asto be the uncertainty of 246 

ERF_GPP caused by the number of GPP observations. For the second type of uncertainty, we selected choose different 247 

number of features to build a models and simulate the multi-year average of global GPP. A total of 56 sets groups of multi-248 

year averages offor ERF_GPP wereare obtained. The standard deviation of different combinations iwas considered to be the 249 

uncertainty of ERF_GPP caused by the number of features.  250 

2.56 Evaluation of the generalization of different GPP datasets 251 

The majority of flux sitesMost of the flux sites in Fluxnet2015FLUXNET are concentratedlocatedconcentrated in Europe 252 

and North America, it is unclearnot clear whether the different GPP estimation methods are suitable for some regions with 253 

sparse flux sites. Recently, ChinaFlux has published GPP observations from severalmultiple sites, offering an opportunity 254 

towhich which providesproviding an opportunity to testevaluate the generalization of the different GPP datasets. However, 255 

the spatial resolution of most GPP datasets is 0.05°, and a direct comparison with GPP observations at flux sites is 256 

challenging. Therefore, we extracted 0.05° MODIS land use covering the flux sites. tower, and wheniIf the vegetation type 257 

of vegetation observed by of the flux sitetower matchedwas consistent with the MODIS land use, the site was used for the 258 
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analysis. Finally, a total of 12 flux sites were selected (Figure S2), and Table S1 shows the information of these sites. The 259 

same procedure was applied todone for  FLUXNET, resulting in the selection of 52 sitesand a total of 52 sites were selected 260 

(Figure S2). It should be noted that due to the absence of meteorological data from some sites in Chinaflux, we did not 261 

validate all GPP models at the site scale (500 m). 262 

Based on site-scale models, we estimated the global GPP for 2001-2022 using an ensemble model based on random 263 

forestERF model (ERF_GPP). We testevaluated the generalization of ERF_GPP onat 12 ChinaFlux sites and 52 FLUXNET 264 

sites. In addition, we selected a number of widely used GPP datasets for comparison, including BESS (Li et al., 2023), 265 

GOSIF (Li and Xiao, 2019), ECGCFLUXCOM (Jung et al., 2020), NIRv (Wang et al., 2021), Revise-EC-LUE (Zheng et al., 266 

2020), MODIS (Running et al., 2004), VPM (Zhang et al., 2017), which arewere generated using different GPP estimation 267 

methods. These GPP productdatasets all have a spatial resolution of 0.05°500 m-0.5°, similar to the resampling process in 268 

section 2.1, we have unified them to 0.05°., avoiding the uncertainty of GPP validation  introduced due to resolution 269 

differences. The common time range for these productdatasets spanned from 2001 to 2018is 2001-2018, and the 270 

temporaltime resolution has beenwas unifiedstandardizedwas unified to monthly to to match thebe consistent with GPP 271 

observations. 272 

3 Result 273 

3.1 Performance of sixGPP models at site scale 274 

Table S2-S57 shows the optimization results of foursix six GPP model parametersparameters of the remote sensingGPP 275 

models parameters. Consistent withSimilar to the previous study, in the EC-LUE model, VPDM and the Revised  EC-LUE 276 

model, the light use efficiency parameter of shade leaves was significantly higher than that of the sunlit leaves (Zheng et al., 277 

2020). It is necessary to divide the cropland into C3 crops and C4 crops. In all models, the light use efficiency parameters of 278 

C4 crops were significantly higher than those of C3 crops, which was particularlyespecially reflected in the two vegetation 279 

index models of GPPkNDVI and GPPNIRv, the slope of the linear regression directly reflectedwas a direct reflection of the 280 

difference in the photosynthetic capacity of the different crops. 281 

Figure 1 shows the performance of all models across differenton the vegetation types. Overall, the performance of the 282 

ensembleERF model was better than that of the remote sensingGPP models. GPPERF always had the highester accuracy 283 

among all models, with R2 between 0.61-0.91 and RMSE between 0.872-3 2.78 gC m-2 d-1. In contrast, in EBF, the LUE and 284 

vegetation index models performed relatively poorly in EBF, with R2 below 0.5.the performance of the two vegetation index 285 

models was relatively poor, especially for evergreen forests, the R2 of GPPkNDVI and GPPNIRv was muchsignificantly lower 286 

than other models. It is worth noting that compared to other vegetation types, the RMSE was highest for croplandof cropland 287 

was the higher, with 5 6 out of 6 8 models infor C4 Ccrop exceeding 3 gC m-2 d-1, which suggestedsuggesting that these 288 

existing GPP models may not properly capture thetrack seasonal changes in cropland GPP.  No significant estimation bias in 289 

vegetation type was found in four remote sensing model with calibration parameters and the ensemble model.Four remote 290 
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sensingSix models with calibration parameters and the ensembleERF model were found to have no significant deviation 291 

acrossin vegetation types. However, GPPRF was significantly underestimated infor C4 crops and significantly overestimated 292 

infor SHR and WET. 293 
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 297 

Figure 1. The performance of the sixeight models on different vegetation types. a, b and c represent R2, RMSE, and Sim/Obs respectively. 298 

We furtheralso counted the simulation performance of the different models at each site. As shown in Figure S3, we averaged 299 

the evaluation indicators of all sites and found that the accuracy of GPPERF was the highest, R2 was 0.75, RMSE was 1.53 gC 300 

m-2 d-1, Sim/Obs was also  the closest to 1, which was 1.04. Combining the results of all flux sites, GPPERF could explained 301 

83.785.1% of the monthly GPP variations, while the fiveseven remote sensingGPP models only explained 72.467.7%-302 

77.781.5% of the monthly GPP variationsvariation in GPP (Figure 2). In order to further prove the robustness of the ERF 303 

model, we also used GPP models with original parameters for modeling and validation. As shown in Figure S3, the 304 

performance of these GPP models decreased significantly, with R2 ranging from 0.570 to 0.719 and RMSE ranging from 305 

2.29 to 3.81 gC m-2 d-1. The phenomenon of "high underestimation" and "low overestimation" was also pronouncedserious. 306 

However, the ERF model maintainedshowed a consistent advantage, with R2 significantly higher than other GPP models 307 
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(0.856). In addition, we tested the effect of the amount of GPP on the accuracy of the ERF model. As shown in Table S8, as 308 

the number of GPP in the ERF model increasesd, the performance gain of the model gradually decreasesd. 309 

 310 

 311 

Figure 2. Comparison between the GPP simulations of the six models and the GPP observations. a-f represents GPPEC, GPPNIRv, GPPkNDVI, 312 
GPPREC, GPPRF, GPPERF, respectively. 313 

In summaryOverall, GPPERF showedexhibited high accuracy in terms of site scale, vegetation type, and the  the ability to 314 

interpret monthly variations in GPP, which also illustrateds the potential of machine learning-based ensembleERF models to 315 

improve in improving GPP estimation. However, it was observedwe also found that most of the GPP simulations 316 

haveexhibited the phenomenon of “high value underestimation and low value overestimationoverestimate”. For example, 317 

GPPEC, GPPREC , and GPPMODIS, and GPPRF showed obvious underestimation in the months when the monthly GPP value 318 

surpassedwas abovegreater than 10 15 gC m-2 d-1 (Figure 2),. Therefore,  it is therefore necessary to evaluate the performance 319 

of different models in each month and  in different subvalues. 320 
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Figure 2. Comparison between the GPP simulations of the sixeight models and the GPP observations. a-f h represents GPPEC, GPPNIRv, 322 
GPPkNDVI, GPPREC, GPPVPM, GPPMODIS, GPPRF, GPPERF, respectively. 323 

 324 

3.2 Performance of sixGPP models in each month and different subvalues 325 

Figure 3 shows the simulation accuracy of the eight six models in each month. The ERF model maintained a higher accuracy 326 

than other GPP models, with GPPERF consistently achieving higher R2 and lower RMSE in most months, and no evident 327 

instances of "high value underestimation and low value overestimation". In contrast, the accuracy of otherthe remote 328 

sensingGPP models was less satisfactory accuracynot satisfactory, especially duringfor winter (most flux sites are 329 
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concentrated in the Northern Hemispherenorthern hemisphere), the LUE models tended to underestimated the GPP per 330 

month, and the Sim/Obs remained at 0.7872-0.961.01, althoughbut R2 values werewas above 0.7,. Meanwhile,while the 331 

vegetation index models overestimated GPP, Sim/Obs remained at 1.34-1.73, and R2 values werewas relatively low, mostly 332 

around 0.6. 333 
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 336 

Figure 3. Performance of the six eight models in each month. a, b and c represent R2, RMSE, and Sim/Obs respectively. 337 

We compared the performance of all models in different subvalues, including high value (GPP > 10 15 gC m-2 d-1), median 338 

value (10 15 gC m-2 d-1 > GPP > 2 gC m-2 d-1), low value (GPP < 2 gC m-2 d-1). ForIn the extreme values, all most models 339 

performed poorly (Figure 4), thewith R2 of thefor remote sensingGPP models fallingwas all below 0.3, and only GPPVPM 340 

showing better performance in the high-value range.while in the high value was relatively good. GPPERF 341 

demonstratedshowed some improvement in both low and high values, with R2 was 0.32 and 0.43, RMSE was of 0.89 and 342 

4.73 gC m-2 d-1, and Sim/Obs was closer to 1, respectively.GPPERF showed a more significantobvious improvement in the 343 

high value, R2 increased to 0.3843, the RMSE decreased to 3.03 gC m-2 d-1, Sim/Obs also increased to 0.82, and only a slight 344 

improvement in the low value. In the median value range, all models performed well, with nowithout significantserious bias 345 

in the GPP estimateionGPP estimation biases. The R2 of the remote sensingGPP models ranged from 0.44 to 0.68was 346 

between 0.434 and 0.68, and the RMSE remained between 1.7182 and 2.154 gC m-2 d-1. Further analysispresentations wereas 347 

made at two typical sites, it iwas obvious that GPPEC, GPPREC and GPPMODIS on CN-Qia exhibitedshowed obvious 348 



22 

 

underestimation during the growing season (Figure S4). On CH_Lae, GPPkNDVI and GPPVPM arewere significantly 349 

overestimated (Figure S5). In contrast, at both sites, GPPERF iwas more consistent with observations, indicatingmeaning that 350 

the superiorgood performance of GPPERF iwas due to the correction on the time series (although not perfectly correctedit 351 

iwas not well corrected at all sites).It could be seen that  there was a large deviation in the estimation of the existing remote 352 

sensingGPP models deviated greatly in the GPP extreme value, and the estimation in the median value was relatively good, 353 

while the ensemble model based on the machine learning methodERF model could improve the simulation accuracy of 354 

extreme valuehigh value, which was of great significance for accurately estimating the annual values and inter-annual 355 

variation of GPP in terrestrial ecosystems. 356 
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 358 

Figure 4. Performance of sixeight models in different subvalues. 359 

3.3 Temporal and spatial characteristics of ERF GPP and its generalization evaluationGlobal GPP estimation based 360 

on ensemble model and its generalization evaluation  361 

Based on remote sensing data and meteorological data, we estimated the global GPP from 2001 to 2022 using the ensemble 362 

model based on random forestERF model. Figure 5a shows the spatial distribution of the multi-year average of ERF_GPP. 363 

The high value of GPP was mainly concentrated in tropical areas, exceeding 10 gC m-2 d-1, and relatively high in 364 

southeastern North America, Europe and southern China, about 4-6 gC m-2 d-1. From 2001-2022, China and India showed 365 

the fastest increase in GPP, mostly at 0.1 gC m-2 d-1 (Figure 5b), similar to a previous study that reported that China and 366 

India led the global greening (Chen et al., 2019). We further investigateestimatedd the annual maximum GPP, as shown in 367 

Figure 5c, and the North American corn belt was by far the global leader in GPP at more than 15 gC m-2 d-1, compared to 368 

only 10 gC m-2 d-1gC m-2 d-1 in most tropical forests. In 2001-2022, the global GPP was 1312.27 ± 3.12.8 PgC yr-1, thewith 369 

a trend wasof 0.452 PgC yr-2,. tThe lowest value was 126.48.6 PgC yr-1 in 2001, and the highest value was 135.96.2 PgC yr-1 370 

in 2020 (Figure 5d). 371 

The results of the two uncertainty analyses consistently indicateshowd that ERF_GPP exhibitpresentsed a high uncertainty in 372 

the tropical regions (Figures S6 and S7), and the uncertainty of ERF_GPPERF caused by the number of GPP observations 373 
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iwas relatively small, the standard deviation of 100 simulations iwas about 0.3 gC m-2 d-1 in the tropics and lower in other 374 

regions, below 0.1 gC m-2 d-1. In contrast, the ERF_GPPERF caused by the number of features iwas much more uncertain, 375 

especially whenif the number of features iwas small. It is worth noting that when the number of features iwas 5, the 376 

uncertainty iwas already substantially less, and the standard deviation iwas generally lower than 0.5 gC m-2 d-1. 377 

 378 
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 380 

Figure 5. Spatial distribution and interannual change of ERF_GPP during 2001-2022. a represents the multi-year average, b represents the 381 
trend, c represents the annual maximum, and d represents the interannual change of GPP. 382 

 383 

As shown in Figure 6, the generalizations of ERF_GPP and other GPP datasets were validated using GPP observations from 384 

ChinaFlux. AmongOf all the models, GPPVPM demonstratedhas the best performance, with R2 of 0.86 and RMSE of 1.34 gC 385 

m-2 d-1.Overall, in China, ERF_GPP also exhibited hasd a high generalization, with R2 of 0.75, RMSE of 1.752 gC m-2 d-1, 386 

there was no “high value underestimation and low value overestimation”, which was comparable to the simulation accuracy 387 

of BESS , ECGC and GOSIF. However, the simulation accuracy of the other two GPP datasets in Chinaflux was relatively 388 

poor, with the R2 of NIRv being only 0.64, while FLUXCOM, MODIS and the Revised EC-LUE wasere significantly 389 

underestimated, with the Sim/Obs being only 0.71-0.820.71. In the validation of FLUXNET, the R2 of FLUXCOM, MODIS, 390 

and Revised EC-LUE ranged from 0.57 to 0.67, and the RMSE ranged from 2.67 to 3.3 gC m-2 d-1, and exhibitshowed 391 

different degrees of underestimation (Figure S38). Other GPP datasets demonstratedshowed similar performance, with 392 

ERF_GPP being the best (R2 = 0.74, RMSE = 2.26 gC m-2 d-1). Notably, in the high values, all models exhibited significant 393 

underestimation, which may be caused by the 0.05° resolution being inconsistent with the flux tower footprint. 394 

 395 

We further examined the different GPP datasets at each site, similar to the results at all sites, the ERF_GPP was relatively 396 

robust, with R2 and RMSE of 0.77 and 1.49 gC m-2 d-1, respectively (Figure S4). The R2 of NIRv and Revised EC-LUE was 397 
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0.68 and 0.69, and Revised EC-LUE also showed a significant underestimate (Sim/Obs at 0.66). It should be noted that from 398 

the perspective of the average simulation accuracy of each site, BESS seemed to overestimate the GPP (Sim/Obs at 1.2). 399 

 400 
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 402 

Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFlux. a-h represents BESS, FLUXCOM, GOSIF, 403 
MODIS, NIRv, VPM, Revise-EC-LUE, ERF_GPP, respectively. 404 

4 Discussion 405 

4.1 Performance analysis of different models  406 

After parameter calibration, both LUE and vegetation index models obtained reliable model accuracy,. However, noticeable 407 

errors persist in different months and subvalues, indicating the prevalent phenomenon of "high value underestimation and 408 

low value overestimation".but there are still obvious errors in different months and different sub-values, that is, the 409 

phenomenon of "high value underestimation and low value overestimation" generally exists (Figures 1-4). With the 410 

continuous development of remote sensing technology and carbon cycle models, the existing models for estimating GPP are 411 

gradually increasing, including LUE models, process models, machine learning models and the newly developed vegetation 412 

index models (such as SIF, NIRV, KNDVI), these "big class" models also include many "small classes". For example, the 413 

differences in the meteorological constraintsenvironmental restriction function in the LUE model are extended to CASA, 414 

VPM, EC-LUE and other models . A recent study collected the response functions of GPP to different environmental 415 

variables, and under the LUE theory, 5600 LUE models could be generated ., Tthese different model structures greatly 416 

increase the uncertainty of global GPP estimation, which make people still confused about the annual value and inter-annual 417 
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trend of global GPP. All models can obtain a reliable model accuracy after calibrating the parameters, but there are still 418 

obvious errors in different vegetation types, different months and different sub-values (Figures 1-4).however none of the 419 

model accuracy is particularly outstanding, so it is urgent to provide a new method to further improve the accuracy of GPP 420 

estimation. 421 

Multi-model ensemble may be a proven approach, and previous studies have shown that even simple multi-model average 422 

can reduce model estimation uncertainty. In this study, we used an ensemble modelsERF model to improve the estimation of 423 

GPP. Compared with the remote sensingother GPP models, the ensembleERF model could indeed show higher accuracy, the 424 

R2 reached 0.83751, which is significantly higher than the accuracy of the machine learningRF model based on 425 

meteorological variables and remote sensing variables (R2=0.777815). Since there are no physical constraints, machine 426 

learning models need to find the relationship between explanatory variables and target variables from a large amount of 427 

training data (such as GPP=f (LAI,T,P, etc.)) , so the reliability of the model usually depends on the representativeness of 428 

training data, such as LAI can explain GPP to a large extent., however, due to the complexity of the surrounding 429 

environment of flux sites, it is difficult to guarantee consistent modeling relationships even for the same vegetation type. The 430 

difference between ensemble models based on machine learningERF model lies in the differences in explanatory variables. 431 

These explanatory variables are the results of multiple model simulations, and these results are usually more representative 432 

and more consistent with the relationship between the target variables, which makes the GPP simulations more accurate. 433 

The simulation results of different models in each months and different subvalues showed that the existing GPP estimation 434 

model widely existed the phenomenon of "high value underestimation and low value overestimate". In addition to MODIS, 435 

the GPP simulated by the other three LUE models is generally underestimated in winter (Figure 3), which may be caused by 436 

biases in the parameters used in the meteorological constraints.For the LUE model, this phenomenon is most obvious in 437 

winter (Figure 3), and the GPP was underestimated by about 20%, which may be due to the deviation in the form of 438 

environmental factor. In the expression form of the temperature constraint adopted by the LUE models, the maximum 439 

temperature, minimum temperature and optimum temperature for limiting photosynthesis are all constants, however these 440 

values may not be fixed (Huang et al., 2019; Grossiord et al., 2020). A Pprevious study has demonstratedshown that the GPP 441 

estimationestimation of GPP couldcan be effectively improved by using dynamic temperature parameters (Chang et al., 442 

2021). MoreoverIn addition, the form of meteorological constraint is also an important influencing factor. Compared with 443 

other LUE models, VPM does not use VPD constraints, but incorporatesuses land surface water index from satellite 444 

observations as constraints (Xiao et al., 2004),  which may be the reason why the model performs better than other models at 445 

high values.which makes the model perform better than other models at high values. Conversely, Tthe two vegetation index 446 

models overestimated GPPwere overestimated in winter, and even overestimated by 70% in December. The vegetation index 447 

model does not consider the meteorological constraintsconstraints of environmental factors.  that They believe that all 448 

environmental impacts on vegetation have been included in the vegetation index (kNDVI, NIRv), ). However, it is a fact that 449 

under high temperatures or low radiation, the vegetation index may still maintain the appearance of high photosynthesis 450 

(greening), while in fact the GPP is low (Doughty et al., 2021; Yang et al., 2018; Chen et al., 2024). Furthermorehowever, 451 
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this aspect is still controversial , andIn addition, the relationship between these vegetation indices and GPP is not robust, and 452 

the vegetation indices based on reflectance may have hysteresis (Wang et al., 2022), and our results also showed that only 453 

using vegetation indices modeling GPP should be carefully considered. In the low value and high value, the effects of all 454 

remote sensing models are not ideal, which may be caused by the model structure itself. Simple mathematical expressions 455 

cannot characterize the entire photosynthesis process, and these models are usually only empirical or semi-empirical. 456 

Although the ensemble model based on machine learning can improve this phenomenon to a certain extent, it still depends 457 

on the reliability of the remote sensing model in the extreme value. Therefore, we believe that in the future model 458 

development, it is necessary to focus on the simulation performance of GPP in the extreme value.. 459 

Compared to other GPP models, the ERF model demonstratedshowed goodbetter performance (R2 = 851). Since there are no 460 

physical constraints, the machine learning model needs to find the relationship between explanatory variables and target 461 

variables from a large amount of training data (such as GPP=f (LAI,T,P, etc.)). Therefore, the reliability of the model usually 462 

depends on the representativeness of the training data. For example, LAI can explain GPP to a large extent, while complex 463 

modeling relationships are still needed from LAI to GPP. The difference between the ERF model and the RF model lies in 464 

theis the difference in explanatory variables. The ERF model leverages multiple GPP simulations that are more 465 

representative and aligned with the target variableThese explanatory variables are the result of multiple model simulations 466 

that are generally more representative and more consistent with the relationship between the target variables, thuswhich 467 

makesmaking the GPP simulations more accurate. In other words, the ERF model does not need to take into account the 468 

uncertainties of the model structure (such as meteorological constraints) and model parameters (such as maximum light use 469 

efficiency), but rather focuses on the uncertainties inherent in the simulated GPPonly the uncertainties of the simulated GPP. 470 

To further clarify the impact of explanatory variables on the ERF model, we conducted a feature importance analysis (Figure 471 

S69). From an average of 200 times, the results of the ERF model did not depend on a single GPP simulation. Even 472 

GPPMODIS, with the highest relative importance, accounted for no more than 25%,which had the highest relative importance, 473 

was no more than 25%, suggesting that the ERF model behaves more like a weighted average of multiple GPP 474 

simulations.so it looks more like a weighted average of multiple GPP simulations.  475 

It is worth noting that in the study of Tian et al. (2023), the ERF model was also used to improve the GPP estimation. Our 476 

research extends this work in several ways.On this basis, our research is further extended. Firstly, parameter calibration was 477 

carried out in our study so that the final validation results arewere comparable, that is, the differences in model performance 478 

wasare mainly due to the uncertainty of the model structure. Secondly, our researchstudy focuses on the phenomenon of 479 

"low value overestimation high value underestimation and high value underestimationlow value overestimation" of the GPP 480 

model, with results indicating that the ERF model performed well across various vegetation types, months, and 481 

subvalues.and the research results show that the ensembleERF model hasd a good performance in different vegetation types, 482 

different months, and different subvalues. Finally, we generated the ERF_GPP dataset the ERF model was used to estimate 483 

the global GPP and validated on it on different observational data sets, which further confirmingproves the robustness of the 484 

ERF model in GPP estimation. 485 
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4.2 Robustness of global GPP estimation based on ensemble modelERF_GPP 486 

In this study, based on site-scale validation, we demonstrate the reliability of the random forest-based ensembleERF model 487 

in GPP estimation. However, further discussion is needed regarding the robustness ofwhat needs to be discussed further is 488 

whether the spatial distribution, spatial trends and global totals of ERF_GPP are reliable. Since the current GPP datasets are 489 

generated based on remote sensing observation, there is a strong similarity in spatial distribution among all GPP datasets.all 490 

GPP datasets are very similar in spatial distribution. Therefore, the validation of GPP observations independent of 491 

FLUXNET2015 isare very crucialimportant. Validation results from GPP observations fromof ChinaFlux indicatedshow that 492 

GPPERF exhibitedshowed good generalization in China (R2=0.75), which was slightly lower than the accuracy of the 5 -fold -493 

cross -validation during modeling, possibly due to the mismatch between the 0.05° GPP and the footprint of the flux tower 494 

(Chu et al., 2021). In addition, the validation of FLUXNET further confirmsshows the reliability of ERF_GPP. Overall, 495 

however, this is comparable to or slightly better than the simulation accuracy of current mainstream GPP datasets. In 496 

addition, wWe also observedfound a clear improvement in the spatial maximum value of ERF_GPP in some corn growing 497 

regions, such as the North American Corn Belt (Figure 5c), which is supported by previous studies showing that C4 crops 498 

have much higher GPP peaks than other vegetation types (Yuan et al., 2015; Chen et al., 2011). 499 

Due to the drought trend, the constrainingconstraint effect of water on vegetation is gradually increasing, and some studies 500 

have reported the decoupling phenomenon of LAI and GPP under some specific conditions (Jiao et al., 2021; Hu et al., 2022). 501 

However, in China and India that two regions with significant greening, GPP ontinues to increaseis still increasing in most 502 

datasets, and ERF_GPP supports this view. This phenomenon may be due to the low drought pressure on farmcroplands in 503 

China and India due to irrigation, which poses less constraint on GPPis less of a constraint on GPP (Ambika and Mishra, 504 

2020; Ai et al., 2020). The global estimate of ERF_GPP wasis 132.7 ± 2.8131.2 PgC yr-1, which is close to estimates from 505 

most previous studies (Wang et al., 2021; Badgley et al., 2019). SomeA studiesy have suggested that the global GPP may 506 

reach 150-175 PgC yr-1 (Welp et al., 2011), however, there is no further evidence to support this view. 507 

  508 

 509 

ERF_GPP exhibitshowsed high uncertainty in the tropical regions, similar reports have been made in previously published 510 

GPP datasets (Badgley et al., 2019; Guo et al., 2023). The scarcity of flux observations in these regions (Pastorello et al., 511 

2020), coupled with the well-known issue of cloud pollution and saturation in remote sensing data in the tropicsThere are 512 

very few observations of flux in these regions, so both in terms of annual totals and long-term trends, and tropical regions are 513 

currently the most controversial areas in global GPP estimates. In addition, the problem of cloud pollution in remote sensing 514 

data in the tropics is well known (Badgley et al., 2019), exacerbates the uncertainty in GPP estimates for these regions. 515 

Therefore, in future studies, on the one hand, more flux observations in tropical regions are needed, and on the other hand, 516 

attempts can be made to combine optical and microwave data to improve the estimation of GPP.which further exacerbates 517 

the uncertainty in GPP estimates for the regions. 518 
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4.3 Limitations and uncertainties 519 

In this study, we improved GPP estimatesion based on the ensembleERF model. However, there are still some limitations 520 

and uncertainties due to the availability of data and methods. First, C4 crop distribution maps were used in our study to 521 

improve estimates of cropland GPP. However, it is important to note that this dataset only represents the spatial distribution 522 

of crops around the year 2000, which may add uncertainty to GPP simulations of cropland in a few C3 and C4 alternating 523 

areas. Secondly,, the ERF model considers six GPP simulationsonly the GPP simulations of four remote sensing models 524 

were considered in our model, and it is not clear whether adding more GPP simulations to the model can further improve the 525 

GPP estimation. Finally, our model did not consider the effect of soil moisture on GPP, and some previous studies have 526 

highlighted the importance of incorporatingconsidering soil moisture in GPP estimates, especially for dry years (Stocker et 527 

al., 2019; Stocker et al., 2018). 528 

5 Conclusion 529 

In this study, we compared the performance of the ERF model with other GPP models at the site scale, especially for the 530 

phenomenon of "high value underestimation and low value overestimation", and further developed the ERF_GPP dataset.In 531 

this study, we evaluated the performance of five remote sensing models and onean ensemble model to simulate GPP. Overall, 532 

GPPERF had higher model accuracy, explaining 83.75.1% of the monthly GPP variations in GPP, and demonstratedshowed 533 

reliable good accuracy in different months, vegetation types and subvaluesdifferent vegetation types, different months and 534 

different extreme regions. Over the period from 2001 to 2022, the global estimate of ERF_GPP was 132.7 ± 2.8 PgC yr-1, 535 

corresponding to a trend of 0.42 PgC yr-2.The global GPP of ERF_GPP for 2001-2022 is 131.2 PgC yr-1. The Validation 536 

results from ChinaFlux indicateshowd that ERF_GPP hasd good generalization. For the current emerging GPP estimation 537 

models, machine learning-based ensemble modelsERF model provides an alternative GPP estimation method that lead to 538 

better model accuracy another method of GPP estimation, and this may lead to higher model accuracy and more reliable 539 

global GPP estimation. 540 

Data and code availability 541 

The global GPP dataset based on the ensemble modelERF_GPP for 2001-2022 is available at 542 

https://doi.org/10.6084/m9.figshare.2441764910.6084/m9.figshare.24417649 (Chen et al., 2023). The spatial resolution of 543 

ERF_GPP is 0.05° and the temporal resolution is monthly. Code is available from the author upon reasonable request. 544 
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