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We would like to thank the Editor, the reviewers and the community members for their careful and thoughtful
comments about our paper. We really appreciate the time and effort that has gone into their reviews. The
comments of the reviewer (RC2) have been considered as detailed below.

A detailed answer to the comments can be found in the following pages and all the reference.

Response to reviewer (RC2)

Comment 1

The authors present a novel method to estimate the Instrument Spectral Response Function (ISRF)
of pushbroom-like spectrometers using a data driven approach. They propose to model the ISRF as
sparse linear combination of an over-complete set (dictionary) of basis functions (atoms) derived from
laboratory characterization measurements. The proposed method is applied to estimate the ISRF of
one ground-based (Avantes) and 5 space-borne imaging spectrometers (OMI, TROPOMI, GOME-2,
OCO-2 and MicroCarb) designed for remote sensing of the Earth’s atmospheric composition. The
results obtained for these spectrometers are compared to a state-of-the-art reference ISRF model (fit of
a generalized Gaussian). The proposed new algorithm outperforms the reference method in all cases
presented by the authors.

Accurate post-launch ISRF estimation is a prerequisite for the delivery of accurate atmospheric remote
sensing products and the proposed approach is a novel and creative contribution which should be of
interest to the community. The presented investigation seems thorough and the main ideas are presented
clearly. Despite some minor issues in some equations, the mathematical basis is outlined sufficiently well.
The results shown generally support the authors’ claims.

Response:

We thank the reviewer for his/her appreciation of our work.
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Comment 2

There are two major issues, which need to be addressed in my opinion:
Firstly, the authors claim (quite correctly), that a continuous post-launch monitoring of the ISRF is
required, because instruments change over time (e.g. due to thermal breathing) and because the ISRF
is usually scene dependent, because an inhomogeneous along-track illumination of the spectrometer en-
trance slit leads to a different effective ISRF than the one typically measured during on-ground pre-flight
characterization with a homogeneous along track illumination. However, according to my understanding,
the training data set used to compile the dictionary of atoms suggested by the authors consists exclu-
sively of laboratory measurements obtained under homogeneous illumination conditions in the laboratory
(except for a very limited study for the MicroCarb instrument in chapter 5.4.3). As such, I would expect
these measurements to neither contain effects caused by thermal drift nor those caused by inhomogeneous
along track illumination (within one pixel). As the usefulness of the proposed method greatly depends
on its behavior under these typical conditions, I would recommend to add results obtained with synthetic
data (e.g. by changing the FWHM of the ISRFs of the simulated spectra) to analyze the performance of
the proposed algorithm under real-world conditions.

Response:

We thank the reviewer for this comment. It is true that thermal variations have not been
simulated for the data considered in this work. However, it was observed for the MicroCarb
mission that the shape of the ISRFs is not very dependent on thermal variations (test at 160K,
165K). Conversely, ISRF variations due to luminance (spectral axis - along track) or according
to the observed scene are much more significant and were considered in our work. The proposed
methods could thus be applied in the presence of thermal variations.

The effect of inhomogeneous scenes along the track illumination on the MicroCarb instrument
is considered in Sect. 5.4.3 of the manuscript. Note that several ISRFs on the spectral axis
should be affected by this error, not just one pixel. If, as suggested, an error is made within a
pixel, it is assumed to be an error in the instrument’s detector, and the main assumption that
the ISRF does not change much in a small observation window no longer holds (the variation of
ISRF shapes in the window is too far from 1%). A more detailed study of this observation has
been added in Sect. 5.4 of the manuscript, where a different ISRF has been generated for a given
pixel. As displayed in figure 1, the variation of ISRF shapes in the sliding window of Nobs = 80
observations in two scenarios. The first scenario does not introduce any errors in the ISRF shape
leading to small ISRF variations in the sliding window. In the second scenario, a different ISRF
has been generated for the pixel l = 500. As shown in Fig. 2, the introduction of an erroneous
ISRF within the sliding window results in an increase of the estimation error. This observation
indicates that it is no longer feasible to estimate the erroneous ISRF with a low error. Note that
the estimation error and the associated residuals still provide insight into the underlying issue,
which is an inherent inaccuracy in the instrument’s detector. This sparse representation-based
approach can thus also be used to detect instrument-related errors. All in all, the conclusion of
this work is that, as long as the observation window assumption is valid and the dictionary is
sufficiently diverse, methods based on sparse representation outperform those based on parametric
models.
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Figure 1: Results obtained for the mean variations of the ISRF shape within the sliding window of 80 observations
in the nominal scenario (i.e. no ISRF error) (top) and in case of a detector pixel error (bottom).
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Figure 2: Residuals (top) and ISRF estimation errors (bottom) for the scenario of a dectector pixel error (bottom
of Fig. 1) using the different methods (Gauss, Super-Gauss, SVD/KSVD and OMP/LASSO.
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Comment 3

Secondly, I have difficulties understanding, how exactly the training data set was obtained from the
laboratory measurements and how the spectra used for validation were generated. Simply stating that
the ISRFs were "obtained by spline interpolation" is not sufficient in my opinion without explaining in
which dimension and at which nodes the interpolation was carried out.

Response:

We thank the reviewer for this comment and have clarified this point as follows. For each
instrument, the associated ISRFs were recovered with the corresponding wavelengths. How-
ever, the number of ISRFs retrieved, when the ISRFs associated with bad pixels is removed,
is less than the number of pixels. Therefore, to identify the ISRF at the remaining nominal
wavelengths, a linear interpolation between two specified nominal wavelengths was employed, as
recommended in the OMI slit function product (https://www.knmiprojects.nl/projects/ozone-
monitoring-instrument/data-products/omslit). The ISRF value at λl between two given nominal
wavelengths λa and λb is defined by

Il = λl − λa

λb − λa
Ib + λb − λl

λb − λa
Ia.

The ISRFs associated with a wavelength inferior to the first wavelength of the given ISRF or
superior to the last wavelength are not retrieved. This information on the generation of the data
have been included in Sect. 4 of the revision, when presenting the instrument.

Comment 4

Additionally, I am not sure, whether the ISRFs chosen for the validation were part of the training data
(modulo noise) or whether additional changes were introduced (e.g. those mentioned above, leading to
shapes and FWHMs typically not encountered during on-ground CAL). As I would expect the behavior
of the proposed algorithm to depend strongly on the choice of training data (see chapter 5.4.3), this is a
critical issue which has to be addressed before publication in my opinion as one strength of the reference
(Gaussian) model is its independence of prior knowledge in this regard. Consequently, a fair comparison
should investigate these scenarios, which are of high practical importance.

Response:

As pointed out by the reviewer, the behavior of the developed method indeed depends on
the choice of the training method. In the case of scenes that exhibit minimal variation in ISRFs
(e.g., desert scenes), a dictionary constructed from ISRFs associated with these uniform scenes
can be employed to identify them. To construct this dictionary, only 10% of the total number of
ISRFs are used. The process becomes more intricate when the scenes are no longer uniform since
the ISRF shapes are more diverse, including asymmetric variations, as illustrated in Sect. 5.4.3.
However, our results demonstrate that incorporating just three additional ISRFs associated with
these non-uniform scenes yields quite accurate estimations.

Finally, the statement that the Gaussian and Super-Gaussian models do not require any as-
sumptions regarding the shape of the ISRFs is somewhat misleading to the authors’ opinion.
Indeed, when using these parametric models, there is a strong prior assumption on the shape
of the ISRF (given by the definition of these parametric models), which is, as demonstrated in
the article, not always correct. Furthermore, the parametric models yield inferior results in the
uniform scenarios, which suggests that their performance in non-uniform scene scenarios may also
be limited. The proposed method makes it possible to remove the assumption of Gaussian shape
for the ISRFs and to adapt to the shape of the ISRFs in a non-parametric way.
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Comment 5

Additionally, it is my impression, that the authors have a very comprehensive knowledge of the Micro-
Carb mission, which clearly emerges when discussing results related to this specific instrument. Maybe
it is worth considering whether the suggested publication could be dedicated entirely to MicroCarb?
Demonstrating that the proposed ISRF retrieval method works under a broad variety of conditions for
this instrument alone would convince me of its value. I feel, that the studies presented for the other
instruments add little substance to an already convincing demonstration in this regard. This might also
help to shorten the manuscript and allow to add currently incomplete or ambiguous information.

Response:

Our work proposes a new methodology for estimating ISRFs that can be applied to various
instruments. Yet, in order to better balance the length and focus of the manuscript, we mainly
concentrate our analysis on the MicroCarb instrument, as suggested by the reviewer, and have
included only the additional results obtained for a single additional instrument (OCO-2). Since
the potential applicability of the proposed method to other instruments (and other designs) is
also a significant contribution and a key aspect of this work, showing that it can be employed and
outperform parametric models also in other contexts without additional prior information on the
instrument or its design, we have moved the results related to the instruments Avantes, GOME-2,
OMI and TROPOMI into a supplementary material.

Comment 6

2/4: The optical layout described here is basically a pushbroom spectrometer. In principle, other
designs are in use as well (e.g. FTIR), which have to be treated differently. Maybe clarify to which
spectrometer types your method applies.

Response:

It is true that the spectrometers used in this study are passive pushbroom spectrometers
(mainly hyperspectral dispersive spectrometers). Indeed alternative designs, such as FTIR, are
also employed in practice and are presented in a footnote of Sect. 4.1 (Instruments, datasets
& preprocessing) of the paper. These instruments employ a Michelson interferometer, and the
ISRFs can be obtained through the inverse Fourier transform. However, this inversion is applied
when the optical path difference (OPD) is assumed to be constant, which is not always the case
since the OPD may vary depending on the position (rendering the use of the Fourier transform
to find the ISRF no longer applicable). Moreover, in certain applications, undersampling may be
necessary. In such cases, applying the Fourier transform becomes more challenging. The issue
can then be modeled using a linear inverse model, such as the one considered in this study, and
the proposed ISRF estimation process can be used. In summary, the proposed method is not
limited to specific types of instruments and does not require many details about the instrument.
A contribution of this work is that it can be applied to any instrument as long as the problem
can be formulated as an inverse problem and the following hypotheses hold:

1. A sufficient number of measurements associated with the same ISRF are available (either
because the ISRFs do not vary much in a small observation window, in the spectral or spatial
domain, or because observations from several reference spectra can be obtained for the same
ISRF).

2. A sufficient amount and variety of ISRFs have been identified and characterized on the
ground to construct the dictionary.
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Comment 7

2/4: Additionally, the telescope creating the virtual image in the slit does not necessarily image the
spectrally dispersed scene on the detector (MicroCarb is rather an exception than the rule in this regard).
Maybe add a sketch showing the essential principle design you are investigating?

Response:

As suggested by the reviewer, the design of the MicroCarb instrument, obtained from [1], was
added to the paper as displayed in Fig. 3.

Figure 3: Principle design of the MicroCarb instrument.

Comment 8

4/1-4: What exactly do you consider similar w.r.t. the ISRF and how do you formalize this mathe-
matically? The following unnumbered equation seems to suggest that neighboring ISRFs are assumed to
be equal (not just similar) inside a window of Nobs bands. Within an accuracy of 1% I would challenge
this assumption for the instruments under consideration.

Response:

We thank the reviewer for this comment and have clarified this point in the manuscript. The
proposed model is indeed applied to ISRFs, which exhibit slight variations along the spectral
axis. It is expected that the mean ISRF variation 1

Nobs

∑Nobs/2
p=−Nobs/2

∑N/2
n=−N/2 |Il(n∆) − Ip(n∆)|

for each sliding window Wl will be below 1 %. It can therefore be stated that, in accordance with
this hypothesis, the ISRFs are assumed to be equal. However, the larger this variation, the more
important the discrepancies in ISRF shapes. This hypothesis is therefore clearly not valid for the
whole set of wavelengths. Therefore, we are proposing to define a sliding window whose size has
to be adjusted in order to solve the ISRF estimation problem. Alternatively, observations from
Nobs reference spectra could be used when available. This equation has been added to formalize
the similarity w.r.t. the ISRF in Sect. 5.4.2..
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Comment 9

Additionally, could you simply solve this problem (a constant ISRF for multiple bands) using Fourier
Transform / Wiener Filter without further assumption on the shape of the ISRF ?

Response:

Indeed, for some spectrometers (e.g., FTIR), it is possible to use the Fourier Transform or the
Wiener Filter to retrieve the ISRFs. However, in the present case, this is not possible because
each observation is associated with a single point from a convolution with different portions of the
spectrum. Moreover, the number of observations is smaller than the number of unknown ISRF
points (N > Nobs). The methodology for addressing this type of problem is to either assume a
parametric model (e.g., Gaussian or Super-Gaussian models) or a non-parametric model with a
sufficiently small number of unknown parameters to be estimated. Our proposed approach solves
this problem by making use of sparse representations in a dictionary, which yield competitive
results with respect to Gaussian and super-Gaussian models.

Comment 10

Why do you need one equation per band (l) instead of a single equation / matrix including all bands
simultaneously ?

Response:

The OMP algorithm inherently requires independent ISRF estimations, thus leads to solving
Nλ independent inverse problems (one problem per band). In principle, the problem could also be
formulated using a single equation, for all bands jointly. However, this would lead to a significantly
more complicated problem and estimation algorithm, which is left for future work. We will outline
possible research directions related to this perspective in the manuscript, stating that a prospect
for research could be to estimate all the ISRFs simultaneously by introducing or learning a new
regularization term to account for the ISRF variation along the wavelengths.

Comment 11

4/24-26: It is not obvious to me, why an ISRF model of two (generalized) Gaussians with slightly
shifted center wavelengths would be insufficient to model the displayed ISRF. Please elaborate.

Response:

The study of an ISRF model using two generalized Gaussians is an interesting suggestion.
Based on the reviewer’s comment, we have included new results into Section 5.3 of the manuscript:
As displayed in Fig. 4, this novel parametric approach yields enhanced outcomes as compared
to the classic Gaussian and Super-Gaussian methods. However, the performance of these models
is not competitive with respect to sparse representation-based methods. One potential avenue
for further investigation would be the use of a mixture of Gaussians and Super-Gaussians for
the construction of the dictionary. However, this represents an alternative formulation of the
problem that has not yet been explored, and to the best of our knowledge, has not been previously
investigated. This perspective will be included in the conclusion of the paper.
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Figure 4: Results obtained using the different methods (Gauss, Super-Gauss, OMP, LASSO and SVD, K-SVD)
and a combination of two Super-Gaussian.

Comment 12

4/24-26: Are the shown ISRFs obtained under homogeneous illumination or are they part of the
"ISRF Scene" examples shown in fig. 9? I would suggest to specify the band / channel / geom. pixel
combination for all shown ISRFs to eliminate ambiguity.

Response:

We thank the reviewer and we agree that more details about the ISRF presented in Fig. 9 were
required. This figure illustrates how the ISRFs can vary depending on the variety of scene types
and illuminations. The left ISRFs are representative of uniform scenes, whereas the right ISRFs
correspond to non-uniform scenes (the slit was not uniformly illuminated during the integration
time). The caption of the figure has been clarified to "Examples of ISRFs from uniform scenes
(ISRF IN - left) and from different non-uniform scenes displayed in Fig. 10 and FOVs (ISRF
scene - right) (MicroCarb band B1).".
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Comment 13

Entire Chapter 4: I think more details regarding the generation of the reference spectra is required
here:

Which parameters are chosen for the radiative transfer simulations (trace gas concentration profiles,
aerosols, scattering, surface albedo, ...)? Which SNR was assumed to generate the noise? Does the SNR
change with sensor and/or wavelength? (ref. section 5.4.1) Except from adding noise, are you only using
ISRFs included in the training data set (dictionary) or are you also creating reference spectra with ISRFs
slightly narrower or wider than the training data (e.g. to simulate sharpening or blurring caused by
thermal breathing of the instrument)? If so, how are those modeled ? Do the simulations include the
effect of (along-track) surface albedo inhomogeneity within one pixel ? If so, on which length scale /
sampling distance ?

Response:

We thank the reviewer for this remark. The description of the methodology employed in the
generation of the reference spectra have been detailed and clarified: The profiles originate from
the Thermodynamical Initial Guess Retrieval (TIGR) database, which is hosted by Aeris data
(https://www.aeris-data.fr/en/projects/thermodynamical-initial-guess-retrieval-tigr/). A sample
from the database is selected for the generation of the reference spectra. The measured spectra
are obtained by convolving the reference spectra with the ISRFs. In order to assess the impact
of different types of noise on the measured spectra, a series of Gaussian noise simulations were
conducted, the results of which are presented in Section 5.4.1. It would have been possible to
model the noise using Poisson noise associated with the luminance and to add an acquisition
noise. However, the objective here was to analyze the sensitivity of the different methods to noise.
In practice, the method is applied to measured spectra from which the noise has already been
reduced (using spatial binning, preliminary estimation).

Comment 14

How exactly (along which dimension and at which sampling points) do you interpolate the ISRFs for
each instrument? Why does Nλ differ from the number of spectral bands for some instruments?

Response:

For each instrument, some pixels are referred to as bad pixels or have high errors. The
associated ISRFs are thus discarded. Then, as explained in Comment 4, the ISRFs are interpolated
between two given nominal wavelengths λa and λb for all wavelengths λl using the following
interpolation formula Il = λl−λa

λb−λa
Ib + λb−λl

λb−λa
Ia. For some instruments, Nλ differs from the number

of spectral bands because no extrapolation was made to retrieve the ISRFs outside the nominal
wavelengths.
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Comment 15

I think the description of each instrument in a separate sub-section does not add a lot of relevant infor-
mation beyond what can be found in the cited literature. Have you considered summarizing the relevant
information (number of spectral bands, source for the ISRFs, reference citation for the instrument/mis-
sion) in a table (and remove sections 4.2 to 4.7)? I think this might enhance clarity and readability of
the manuscript.

Response:

As suggested, only the OCO-2 instrument will be studied in addition to the MicroCarb in-
strument in the manuscript (see also our answer to Comment 5). The results obtained for the
other instruments have been included in a supplementary material. In the proposed revision and
in this supplementary material, a table summarizing the information on the different instruments
are provided to enhance clarity and readability.

Comment 16

10/second equation: Why are you including the entire sliding window into the error measure? Would
it not be sufficient and more meaningful to compute the difference between measured spectrum s and
simulated spectrum r Î at the center wavelengths λl of each channel l? The Nobs nodes left and right
of λl are only used as computational aid as far as I understand and may e.g. increasingly suffer from
boundary effects when approaching the limits of the window. Why do you include these effects into
the error measure? In order to support a direct comparison with the assumed SNR, I think a relative
measure would be desirable as well (ref table 1).

Response:

We thank the reviewer and agree that the information presented in the results section (Sect.
5.3) was not sufficiently explained. The second figure simultaneously shows the absolute differ-
ences between the normalized spectral measurements and their normalized approximations (in
logarithmic form, second rows) and the corresponding mean residual, represented by the symbol
ρ. To enhance clarity, for each spectrometer, the proposed figures now show the measured spec-
trum reconstruction, the difference between the measured spectrum and the estimated one, the
residuals for each wavelength, which allows the reader to visualize the function which is mini-
mized, the ISRF approximation error and the mean ISRF approximation error versus the number
of selected atoms as displayed in Fig. 5. In this study, the ISRF estimation process is conducted
through the minimization of an objective function which is defined using the Nobs observations.
Displaying the results of the minimization process is important to our opinion for comparison
with the outcomes of the alternative methods.
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Figure 5: Illustrations of the measured spectrum reconstruction (fig. 1), the difference between the measured
spectrum and the reconstructed ones (fig. 2), the residuals for each wavelength (fig. 3), the ISRF
approximation error versus the wavelength (fig. 4) and the mean ISRF approximation error versus the
number of selected atoms (fig. 5) for the band B1 of the MicroCarb instrument.
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Comment 17

12/fig(3e): How is it possible, that the Gaussian (as special case of the super-Gaussian) fits the data
that much better than the super-Gaussian here? Are you sure the fit converged properly?

Response:

It is indeed unexpected that the Gaussian distribution outperforms the Super-Gaussian. The
initial insight for answering this question is that, with regard to this particular spectrometer,
the ISRFs (illustrated in Fig. 3c) appear to be more Gaussian than the ISRFs of the other
spectrometers, allowing a better convergence for the Gaussian model. The second insight is that
the problem that is solved, using either the Gaussian or the Super-Gaussian parameterisation,
can be described as a nonlinear least-square problem. To address this issue, we employ a simplex-
based optimization method (MATLAB function fminsearch) to minimize the residuals between
the measured and estimated spectra using the parametric models. The super-Gaussian method
is initialized using the results obtained with the Gaussian model. This method usually provides
better performance than the Gaussian model. However, the simplex-based optimization method
does not always converge to the optimal solution, which is the case in this example.

Comment 18

How are the ISRFs in this figure normalized (not unit area) ?

Response:

In all results, the ISRFs have been normalized to unit area.

Comment 19

Chapter 5.2 and 5.3.x: Lacking the information listed above, I feel I cannot comment on the authors’
claims here in a meaningful way, as it is of fundamental importance how the reference spectra were chosen
and whether they are included in the training data or not.

Response:

The authors hope that the information provided on the reference spectra in previous comments
(Comment 13, which profiles are obtained using the TIGR database) will help the reader to better
understand and appreciate our claims. However, one significant contribution of this work is that
as long as the reference spectrum is known, it is possible to estimate the ISRFs with high accuracy.
The reference spectrum is supposed well-known (obtained from well-known scenes such as desert,
moon, solar scenes) and this spectrum is not included in the training (only ISRFs characterized
on the ground are). It is in principle possible to use any known reference spectra with sufficient
local variations in its spectral content.
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Comment 20

Chapter 5.4.1:
Does SNR=50 dB imply SNR=100 000? (which seems quite high to me). In this case I would expect

a log10 residual for a "perfect fit" around -5 if sufficiently many atoms are chosen, but the values in fig.
6 (b) are significantly higher. Could you elaborate on this? Looking at table 1, it seems to me that the
SPIRIT approach works significantly less effective for SNR = 100 (20 dB), which is not uncommon for
many earth observing instruments. Could you comment on the usability of SPIRIT in these scenarios?
Chapter 5.4.3: Why do you choose across-track binning into these exact pixel groups? Are the ISRFs for
the bands in these geometric regions similar?

Response:

The noise considered in our experiments has been generated for different SNR levels. We
agree that there is no discernible difference in the results obtained with SNRs of 80dB and 120
dB. Consequently, all results obtained with SNR=120dB have been removed in the revision. In
practice, a spatial binning is typically employed to enhance the signal-to-noise ratio (SNR). This
binning involves the arbitrary division of the imaged area on Earth into distinct field of views
(FOVs) (3 for instance for MicroCarb). The measured spectrum for each FOV is obtained as an
average of the measured spectra within that FOV. This is achieved through the application of
the following formula: s(λl) = 1

C

∑C
c=1 sc(λl), where sc(λl) is the value of the measured spectrum

associated with the wavelength λl at the spatial pixel c in the FOV. It is indeed assumed in this
study that the ISRFs do not change much in across-track (spatial axis) as compared to along track
(spectral axis). In the case of the MicroCarb mission, the binning represents a compromise between
the objective of achieving a satisfactory signal-to-noise ratio (SNR) and that of maintaining a
suitable ground grid, which has a resolution of 13.5 km in ACT and 9 km along the track. These
comments about the SNR and the binning have been included in Sect. 5.4.1 of the revision, where
the robustness to noise is evaluated.

Comment 21

How exactly are the ISRFs for inhomogeneous scenes obtained? Any simulation would require knowl-
edge of the ISRFs for an inhomogeneously illuminated pixel/slit I presume. Is this knowledge inferred
from measurements or simulations based on an optical instrument model?

Response:

For a given reference spectrum, non-uniform scenes are generated using asymmetric ISRFs.
In practice, there is no information available regarding the non-uniformity of a given scene from
the measured spectra. It is only during the inversion process, when estimating the ISRFs, that it
becomes apparent that these ISRFs have been modified. More details can be found in [2].

Comment 22

1/2-3: optical elements "induce errors in the measurement"? Then why not leave them out ;-)? Maybe
rephrase?

Response:

We thank the reviewer for pointing us to this ambiguous phrase. The sentence "Spectrometers
are composed of different optical elements that can induce errors in the measurements and there-
fore need to be modeled as accurately as possible" was modified by "Spectrometers are composed
of different optical elements that must be modeled as accurately as possible. In the absence of
such precision, the retrieval of trace gas concentrations can be significantly compromised".
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Comment 23

2/9: Is an ISRF not rather associated with a channel than a wavelength? The (center) wavelength
of said channel can then be chosen based on (mean, max or median of) the ISRF?

Response:

Indeed, the ISRF is associated with a given pixel, designated by the index "l". The wavelength
associated with the pixel is then obtained as the center (maximum, median, or barycenter) of the
ISRF at the given pixel. However, there are some effects, such as the smile (in ACT) or some gaps
in our knowledge about the wavelengths (in along track), that can result in spectral shifts, which
can degrade the estimation of ISRFs. The reason behind stating that each pixel is associated
with a single ISRF and wavelength is that the influence of these various factors is still under
investigation and not accounted for in this work. Consequently, we assume that the wavelength is
known and address the ISRF estimation problem by solving an inverse problem. This observation
was incorporated in Sect. 2.1 during the ISRF estimation problem as a footnote and the potential
impact of spectral shifts was outlined as a future objective of the research.

Comment 24

2/14: ... "ISRF wavelength variations exceed this threshold" ? Which wavelength varies here? How
does this affect the ISRF error budget ?

Response:

This sentence was in fact misleading. The sentence "For some missions, ISRFs are expected to
be known with a normalized error less than 1%, which is a challenge since the ISRF wavelength
variations exceed this threshold" was modified to "For some missions, ISRFs are expected to be
known with a normalized error less than 1%, which represents a significant challenge given that
the variations in ISRF shape across the entire band frequently exceed this threshold."

Comment 25

2/17: I would argue, that all pushbroom instruments are susceptible to effective ISRF changes if the
illumination varies within a pixel (along-track), as partial illumination of the spectrometer entrance slit
is equivalent to a narrower slit and thus (usually) a smaller FWHM. Unless optically mitigated (e.g. by
means of a slit homogenizer or optical fibers), this effect has to be taken into account in the error budget.
Does the 1%-requirement include the associated uncertainties?

Response:

It is evident that the ISRF’s dependence on the scene can impact a multitude of instruments.
This represents a design choice for the instruments. It might have been feasible, for example, for
the MicroCarb mission to defocus the instrument in order to avoid this dependence on the slit
illumination. However, the introduction of a defocus can potentially compromise the precision of
the instrument, and thus it was ultimately decided to exclude this option. The performance of
1% on the ISRF knowledge is a consequence of the MicroCarb mission’s necessity for an accurate
determination of CO2 concentrations. This performance is an objective of the mission, but it
can indeed be challenging to achieve in practice using real data. The 1% requirement accounts
for uncertainty, acquisition noise of ISRFs and interpolation. In this study, however, the 1%
requirement is a defined threshold for the maximum of the ISRF approximation error.
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Comment 26

3/9: Technically each channel / geometric pixel combination has an individual ISRF. This ISRF can
then be used to define a center wavelength for each channel of each geometric pixel. Have you considered
associating each ISRF with the number (l) of a channel instead of the center wavelength? This might
simplify the notation in many equations in my opinion.

Response:

As discussed in Comment 24, we could define the ISRF using the number (l) of the channel
instead of the associated wavelength. However, we wanted to model the problem at first sight by
being as close as possible to the physical phenomenon behind (in Eq. (1) : s(λl) = (r ∗ Il)(λl)),
which implies the use of a wavelength. Afterward, the ISRF is defined as a vector using the
number l only.

Comment 27

3/eq(1): The convolution is usually defined over the entire space of real numbers. Also, the ISRF I
is mirrored along the wavelength axes in this notation, as I(u) is the sensitivity to the wavelength λl - u,
which might be unexpected for many readers. It has no practical effect on your results of course.

Response:

Based on the reviewer comment, we have changed the notation accordingly.

Comment 28

3/eq(2): I think a ∆ is missing in front of the sum. Also: Does λl − n∆ equal λl−n ? If not: How do
you choose ∆?

Response:

It is possible that a misunderstanding has occurred. It is assumed that the ISRFs are defined
on a regular grid of wavelengths centered at 0. The associated wavelength gap between two ISRF
measurements is designated as ∆. The expression λl −n∆ is thus not equal to λl−n given that the
space between two points in the ISRF is smaller than that between two points in the measured
spectrum. The sentence following Eq. (2) "where ∆ is the wavelength sampling interval for the
ISRFs, which is assumed to be regularly sampled." has been modified to: "where ∆ represents the
sampling period between two consecutive points of the ISRF, which is assumed to be regularly
sampled." and a footnote has been added: "The wavelength grid ∆ represents the points at which
the ISRFs are defined".

Comment 29

3/21: "A major difficulty with the inverse problem ...": Maybe also mention another very fundamental
problem: Eq. 1 is a Fredholm equation, the solution of which is the classical example of an ill-posed
problem. Additionally the constraint of a single measurement could be removed experimentally using
e.g. the sun and a spectrally tunable on-board calibration source, albeit at extra cost.

Response:

This information has been included in the revision next to the denoted sentence.
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Comment 30

4/eqs(3 & 4): Why x ∈ ∆ (i.e. the sampling interval) ? Could you not use any real number for x?
(For most atmospheric spectrometers the sampling ratio is greater 2, so the FWHM exceeds one sampling
interval in most cases.)

Response:

It is true that ∆ is the sampling interval. However, ∆ also represents the wavelength grid,
i.e., the points where the ISRFs are defined. The equation: "∆ = [− N

2 ∆, ..., N
2 ∆]" was not correct

and has been replaced by: "∆ = {− N
2 ∆, ..., N

2 ∆}"

Comment 31

4/eq(5): I think there is one superfluous equation symbol following the summation symbol and the
summation index n should probably occur somewhere in the equation (unless the summation is part of
the higher dimensional 2-norm)?

Response:

Corrected as suggested.

Comment 32

10/5: "carbon" without trailing "e"

Response:

Corrected as suggested.

Comment 33

10/first equation: If the ISRFs are normalized to unit area, can the denominator have values different
from one?

Response:

We thank the reviewer for the remark, this equation is the usual expression used to assess the
performance of the ISRF estimation method. However, the ISRFs are indeed normalized to unit
area. The denominator has been erased and the following has been added next to the equation:
"For the selected instrument, the ISRFs are assumed to be normalized to unit area."

Comment 34

12/fig(3): The font is barely legible and my aging eyes can hardly discriminate the two LASSO
variants. Please increase the size of these plots. The Avantes SVD/K-SVD fits seem to have linear
segments, which I would not expect in a "real" ISRF. Are these linear interpolation artifacts? Maybe
add markers at the computational nodes for clarity?

Response:

The size of the plot has been increased and some markers have been added for SVD/K-SVD
fits.
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Comment 35

13/fig(4): Even at a zoom level of 190 % I can barely read this figure! Please increase the size of this
figure and the font size.

Response:

We apologize for the lack of readability. The size of the figure has been increased accordingly.

Comment 36

20/fig(9): Please indicate for which band / channel / pixel combination these ISRFs are valid.

Response:

Figure 9 is composed of two distinct sets of ISRFs. The first set, displayed in the left figure,
comprises ISRFs from uniform scenes, randomly selected from the total set of 1024 ISRFs. The
second set displayed in the right figure comprises ISRFs from non-uniform scenes, randomly
selected from the total set of eight scenes and three FOVs. The figure caption has been modified
from "Examples of ISRFs IN, scene and NU (MicroCarb band 1)" to "Examples of ISRFs from
uniform scenes (ISRF IN - left) and from different non-uniform scenes displayed in Fig. 10 and
FOVs (ISRF scene - right) (MicroCarb band B1)."

Comment 37

20/fig(10): Do the figures on the left-hand side show a single pixel IFOV in along-track / across-track
direction? Otherwise please indicate the pixel limits. How do these images enter into the ISRFs shown
on the right? Are these ISRFs simulated or measured ?

Response:

The image displayed in Fig. 10 shows a scene that is directly observed by the spectrometer’s
slit and subsequently recorded by the instrument’s detector during the integration period. This
image is then obtained in the ACT direction. From this image, a cut is made along the ACT
direction into three equal parts, resulting in three FOVs. The resulting ISRFs have been simulated.

Comment 38

17/table 1: I think it would be helpful to indicate the expected minimum error for a given SNR.
Considering an ideal Gaussian with synthetic noise at an assumed SNR of 1000 I would e.g. expect a
mean residual error of approx. 0.1 %, but I do not observe a relation of this kind in the data. Could you
elaborate on the relationship between SNR and normalized approximation error a little bit more in the
text?

Response:

As suggested by the reviewer, the anticipated minimum error for a specified SNR has been
identified in the revision. However, regardless of the method employed, the ISRFs are estimated
by using a model. Thus, it is inevitable that their estimation will not be perfect, even in the
absence of noise. In the table, the term "normalized approximation error" refers to the discrepancy
between the approximated and the actual ISRFs. In order to avoid any confusion, "Normalized
approximation error," has been changed to "Mean ISRF approximation error."
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Comment 39

18/fig(7) & 19/fig(8): Considering the limited range of the error values, I would recommend a linear
scale for the y-axis.

Response:

Modified as suggested.

Comment 40

21/fig(11): This figure is also quite small. Maybe also consider a linear scale. Is it necessary to resolve
differences smaller than the noise level?

Response:

The size of the figure has been increased. However, it was decided to keep the scale in log10
as for the other results in order to see the differences in the ISRF approximation errors.
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