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We would like to thank the Editor and the referees and community members for their careful and thoughtful
comments about our paper. We really appreciate the time and effort that has gone into their reviews. All the
comments have been considered as detailed below. A detailed answer to the comments can be found in the
following pages.

Response to Community Comment (CC1)

Comment 1

The use of an iterative and dictionary-based based approach for estimating ISRFs is a rather original
solution.

Response:

We thank the community member for his/her positive appreciation of our work.

Comment 2

The fact that the most simple method, SVD + OMP, eventually leads to the best performance is a very
good, yet somehow surprising, news, and could be further commented: has this to do with a particular
choice of the hyper-parameter in (8) or with a lack of discrimination of the L1 norm constraint?

Response:

There is, indeed, no theoretical reason for the method SVD + OMP to lead to superior perfor-
mance when compared to working with the ℓ1 norm penalty. In our study, the hyperparameters
for the algorithms have been chosen in order to achieve the best results. However, the OMP and
LASSO algorithms address two distinct problems. Indeed, when the OMP algorithm provides an
approximate solution to the problem with the ℓ0 penalty, the LASSO algorithm solves the prob-
lem using the ℓ1 penalty, hence gives the solution of an alternative, different problem. Certains
limitations of the LASSO algorithm have been highlighted in numerous publications, including
[1], and may be at the origin of our observations.
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Comment 3

The iterations between dictionary estimates and sparse approximation represent an important aspect
of the study, and could be further described.

Response:

Thank you for pointing this out. The following pseudo-codes have been added as an Appendix
A in the revision of the manuscript:

• A1. The generation of the matrix of theoretical spectrum.

• A2. The construction of the dictionary.

• A3. The description of the OMP algorithm.

• A4. The description of the LASSO algorithm (for which the MATLAB lasso function is
used).

• A5. The description of the K-SVD algorithm, which is based on the algorithm defined in
[2].

Algorithm 1 Generation of the theoretical spectrum matrix.
Input: Theoretical spectrum r, wavelengths of the theoretical spectrum λr, wavelengths associated with the measured spectrum
λ, wavelength associated with the ISRF ∆
Output: Theoretical spectrum matrix for all wavelengths R.
1: for l = 1, ..., Nλ do
2: λl = λ(l)
3: λresp = λl + ∆
4: R(l, :) = interp(λr, r, λresp)
5: end for
6: return R

Algorithm 2 Construction of the dictionary.
Input: Matrix of selected ISRFs I, size of the dictionary Nobs
Output: Dictionary of ISRFs Φ.
1: [U , Γ, V ∗] = SVD(I)
2: Φ = V (:, 1 : Nobs)
3: return Φ

Algorithm 3 Orthogonal Matching ¨Pursuit (OMP) algorithm.
Input: Measured spectrum sl, theoretical spectrum matrix Rl, dictionary of ISRFs Φ, sparsity parameter K
Output: Sparse vector αl.
1: Ψl = RlΦ
2: U1 = sl

3: for k = 1, ..., K do
4: Find Ψγk ∈ Ψl that maximize the scalar product |⟨Uk, Ψγk /||Ψγk ||⟩|
5: Find [αγ1 , ..., αγk ] ∈ αl that solves arg minα ||Uk −

∑k

k′=1 αγk′ Ψγk′ ||22
6: Uk+1 = sl −

∑k

k′=1 αγk′ Ψγk′
7: end for
8: return αl
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Algorithm 4 LASSO algorithm.
Input: Measured spectrum sl, theoretical spectrum matrix Rl, dictionary of ISRFs Φ, sparsity parameter K, mininimum value of
the LASSO sparsity parameter µmin, maximum value of the LASSO sparsity parameter µmax
Output: Sparse vector αl.
1: Ψl = RlΦ
2: αresp = lasso(Ψl, sl, ’lambda’, µmax, ’Alpha’, 1)
3: while sparsity( αresp) ̸= K do
4: µ = µmin+µmax

2
5: αresp = lasso(Ψl, sl, ’lambda’, µ, ’Alpha’, 1)
6: if sparsity(αresp) < K then
7: µmax = µ
8: else
9: µmin = µ

10: end if
11: end while
12: Find the non-zero components in αresp to form the vector [γ1, ..., γK ]
13: Re-estimate the non-zero sparse coefficients: Find [αγ1 , ..., αγk ] ∈ αl that solves arg minα ||sl −

∑k

k′=1 αγk′ Ψγk′ ||22
14: return αl

Algorithm 5 Construction of the dictionary using the K-SVD algorithm.
Input: Matrix of selected ISRFs I, number of selected ISRFs L, size of the dictionary Nobs, Dictionary Φ obtained using SVD in
Algorithm (2), sparsity parameter K
Output: New dictionary of ISRFs Φ.
1: while not convergence do
2: Sparse coding step: xl = OMP(Il, Φ, K) ∀ l = 1, ..., L
3: Dictionary update:
4: for j = 1, ..., Nobs do
5: Define the group of examples that uses the j-th colum of the dictionary j, wj = {l|1 ≤ l ≤ N, xj

T (l) ̸= 0}
6: Compute the overall representation error matrix, Ej = I −

∑
i ̸=j

ϕix
i
T

7: Build ER
j from Ej using the columns corresponding to wj

8: SVD decomposition [U , Γ, V ∗] = SVD(ER
j )

9: Update the dictionary column ϕj as the first column of U and the vector xj
R as the first column of V Γ(1, 1).

10: end for
11: end while
12: return Φ

3



Comment 4

The adaptation to calibration errors, and temporal drifts of the feature represent high potential
perspectives for this work.

Response:

Thank you for this important suggestion. We are indeed planning to study how our method
could be adapted to calibrations errors, and temporal drifts, and will elaborate on this in the
Conclusions and Perspectives of the article.
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