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Abstract. Scale analysis based on coarse-graining has been proposed recently as an alternative to Fourier analysis. It is now

broadly used to analyze energy spectra and energy transfers in eddy-resolving ocean simulations. However, for data from

unstructured-mesh models it requires interpolation to a regular grid. We present a high-performance Python implementation

of an alternative coarse-graining method which relies on implicit filters using discrete Laplacians. This method can work on

arbitrary (structured or unstructured) meshes and is applicable to the direct output of unstructured-mesh ocean circulation5

atmosphere models. The computation is split into two phases: preparation and solving. The first one is specific only to the

mesh. This allows for auxiliary arrays that are then computed to be reused, significantly reducing the computation time. The

second part consists of sparse matrix algebra and solving linear system. Our implementation is accelerated by GPUs to achieve

excellent performance and scalability. This results in processing data based on meshes with more than 10M surface vertices in

a matter of seconds. As an illustration, the method is applied to compute spatial spectra of ocean currents from high-resolution10

FESOM2 simulations.

1 Introduction

Atmospheric and oceanic motions span a wide range of spatial scales, each contributing differently to kinetic and available

potential energy, energy generation, dissipation, and energy transfer across scales. Key questions include understanding how

energy moves between scales, such as gyres, mesoscale, and submesoscale motions in ocean dynamics. These processes are15

often described using the concept of an energy spectrum or cross-spectrum.

The most common technique to extract a spatial spectrum is the Fourier transform. However, when working with the output

of Ocean General Circulation Models (OGCM) direct application of the Fourier transform is rarely possible as it requires

data (samples) to be equally spaced as well as the domain to be in a rectangular shape (in global atmospheric configurations

spherical harmonics are generally used). New convolution (coarsening)-based approaches to this problem have been proposed20

(Aluie et al. (2018); Sadek and Aluie (2018); Aluie (2019); Zhao and Aluie (2025)) and there already are multiple practical

contributions showing the utility and significance of the proposed approach (see, e.g. Schubert et al. (2020); Rai et al. (2021);

Storer et al. (2023); Buzzicotti et al. (2023)). While they solve some of the problems, like domain shape, they require data to

be on a regular longitude-latitude grid. For vector fields in spherical geometry the procedure requires preliminary calculation

of the Helmholtz decomposition.25
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Several recent OGCMs such as MPAS-Ocean (Ringler et al. (2013)), FESOM2 (Danilov et al. (2017)) and ICON-o (Korn

(2017)) are based either on unstructured triangular meshes, or their dual, quasi-hexagonal meshes. The use of the aforemen-

tioned coarse-graining method for the output of such models would require interpolation of the output data from native un-

structured mesh to a regular mesh. This means additional computations. More importantly, the horizontal divergence of the

interpolated velocities may show marked differences compared to the divergence on the original meshes.30

These issues can be avoided if coarse-graining is done on the original meshes. Recently a method has been proposed by

Danilov et al. (2023) that solves this task. The method is using implicit filters based on discrete Laplacians. The discrete

Laplacian operators can be constructed for arbitrary meshes and data placement on these meshes. This method can therefore

work on any mesh and can be applied directly to the output of unstructured-mesh models.

In this paper a high performance Python implementation of the implicit filter method is presented and practical examples35

of its usage are given. We use simulations performed with FESOM2 to illustrate the performance of the method. The discrete

Laplacians depend on the mesh and data placement. For convenience, in section 2 we recapitulate some mathematical details

of the method and discretizations. The remaining part of this section discusses implementation. The results obtained with

the implicit filters are compared with those produced by convolution based methods using velocity fields from simulation

performed with FESOM2 on a global mesh with the resolution of 1 km in the Arctic Ocean in sections 3 and 4. The performance40

overview of the implementation is presented in the following section 5.

2 Implicit filter

2.1 Mathematical introduction

Let ϕ(x) be a scalar field, with x lying in some domain D. The goal is to find the distribution of the second moment of this

field over spatial scales. This can be achieved using a coarse-graining, akin to the methods presented by Aluie et al. (2018)45

and Sadek and Aluie (2018). However, coarse-graining will rely on implicit filters, as proposed by Danilov et al. (2023). The

coarsened field ϕℓ(x) is found by solving:

(1+ γ(−ℓ2∆)n)ϕℓ = ϕ, (1)

where ∆ is the Laplacian, the smoothing scale is parameterized by ℓ, and γ is a parameter that tunes the relation of 1/ℓ to

wavenumbers. Spectra can be computed using low-pass solutions as

Eℓ =
d

kℓ
⟨|ϕℓ|2⟩,

where the angular brackets denote spatial averaging and kℓ = 1/ℓ. An alternative method has been proposed recently by Zhao

and Aluie (2025) which relies on high-pass filtering

Eℓ =− d

kℓ
⟨|ϕ−ϕℓ|2⟩.
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Below we will take γ = 1/2 for the low-pass method and γ = 2 for the high-pass method. As explained in Danilov et al.

(2023), for the low-pass method kℓ = 1/ℓ has the sense of wavenumber for γ = 1/2, and the wavelength is λ= 2πℓ. Such ℓ50

is related to the scale of box filter ℓbox approximately as ℓbox/ℓ= 3.5. The integer n defines the order of the implicit filter,

as discussed in Guedot et al. (2015). For the high-pass method, analysis similar to that in Danilov et al. (2023) shows that the

same interpretation of kℓ and ℓ is preserved if γ = 2. Such ℓ is related to the scale of box filter used with high-pass method

approximately as ℓbox/ℓ= 6.1.

The implicit coarsening procedure can be applied to a vector field u as55

(1+ γ(−ℓ2∆)n)uℓ = u. (2)

In this case ∆ is the vector Laplacian, which includes metric terms in spherical geometry. In both cases of scalar and vec-

tor fields, equations (1) and (2) are complemented by the boundary conditions of no normal flux (for n= 1) and additional

conditions of no higher-order normal fluxes for n > 1.

The discrete Laplacian operator, used in this coarsening method, can be formulated for any computational mesh, whether60

it is structured or unstructured, or mesh geometry, whether it is flat or spherical. For unstructured meshes, Laplacians can be

discretized through finite volume or finite element methods. Although mathematical details and discretizations were presented

in Danilov et al. (2023), we briefly overview them here for convenience. Since discretizations of Laplacians on structured

meshes are generally known, we focus below in this section on unstructured meshes.

Figure 1 presents schematics of several unstructured-grid discretizations in 2D view. In FESOM2, scalar degrees of freedom65

are placed at vertices, and median-dual control volumes are used. They are obtained by connecting centroids of triangles with

mid-edge points, as shown in panel (a). The discrete horizontal velocities are placed on centroids of triangles (panel (c)). The

placement of scalars in MPAS-Ocean differs by using the control volumes obtained by connecting circumcenters of triangles

(panel (b)). These control volumes are Voronoi quasi-hexagonal polygons of the dual mesh (and vice versa, a triangular mesh

can be considered as dual of the hexagonal one). The vector degrees of freedom are in this case the components of velocity70

normal to the edges of the scalar cells. In ICON-o, scalar degrees of freedom are placed at the circumcenters of triangles, and

normal velocities are at mid-edges (panel (d)). The discretization of Laplacians depend on the placement of the degrees of

freedom.

2.1.1 Scalar Laplacians

For median-dual control volumes, we use the finite element method, assuming first n= 1. The weak formulation of (1) is

obtained by multiplying (1) by a sufficiently smooth function w(x) and integrating over the domain D. This leads to∫
D

(wϕℓ + γℓ2∇w · ∇ϕℓ)dS =

∫
D

wϕdS.

The boundary term appearing after in the integration is zero by virtue of the boundary conditions. The discrete fields are

expanded in series ϕℓ =
∑

v′ ϕv′Nv′(x) and ϕ=
∑

v′ ϕv′Nv′(x), where Nv(x) is a P1 piecewise linear basis function. This

function equals 1 at the position of vertex v (see Fig. 1), decays to 0 at vertices connected to v by edges (like v′ and v′′), and is
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Figure 1. Schematics of several unstructured-grid discretizations: (a) Median-dual control volumes around vertices are obtained by connect-

ing centroids with mid-edge points (gray lines); (b) A dual quasi-hexagonal mesh is obtained by connecting the circumcenters of triangles

(on orthogonal meshes). The gray lines are perpendicular to edges; (c) Centroids of triangles are used; (d) Circumcenters of triangles are

used.

zero outside the stencil of nearest triangles. The continuous Galerkin approximation is obtained by requiring the weak equation

above be valid for w =Nv for any v. This results in

(Mvv′ + γD̃vv′)ϕv′ =Mvv′ϕv′ .

Here, the summation over repeating v′ is implied; Mvv′ =
∫
NvNv′dS is the mass matrix and D̃vv′ =

∫
ℓ2∇Nv · ∇Nv′dS.75

Keeping the full mass matrix in this case does not improve the accuracy and it can be replaced by its diagonally lumped

approximation ML
vv′ =AvIvv′ , where Av is the area of control volume associated with v. Note that the system matrix S=

ML +(1/2)D̃ is symmetric and positive definite.

In the biharmonic case, S=ML+γD̃(ML)−1D̃. The derivation procedure consists of two steps. One writes ∆∆ϕℓ =∆ψℓ,

with ψℓ =∆ϕℓ. Using the weak form of the last equality and expanding ψℓ in the same set of basis functions one gets80

4



ML
vv′ψv′ = D̃vv′ϕv′ . On the second step one applies the finite element method to ϕℓ + γ∆ψℓ = ϕ. The flux terms that would

appear in the weak equations are omitted by virtue of boundary conditions. The procedure can be generalized to higher-order

filters.

The procedure above can be given a finite volume treatment. Turning to Fig. 1 (a), we first compute ∇ϕℓ on triangles using

three vertex values (v,v′ and v′′ for triangle c1) and then combine fluxes through the segments of boundary (for edge vv′ there85

are two segments with area vectors sl and sr taken with gradients at c1 and c2 respectively. Such treatment will lead to the

same result.

For the quasi-hexagonal control volumes the −ℓ2∆ operator is expressed in a finite volume way as

Av(Dϕℓ)v = ℓ2
∑

v′∈N(v)

ϕv −ϕv′

dvv′
lvv′ , (3)

where dvv′ is the length of edge vv′ and lvv′ is the distance between circumcenters c1 and c2 on both sides of edge vv′ (see90

Fig. 1 (b)). The system matrix is

Svv′ϕv′ =Avϕv, Svv′ =AvIvv′ + γAvDvv′ (4)

with Ivv′ being the identity matrix. The summation over repeating index v′ is implied. On uniform meshes, (ML)−1D̃= D.

The matrix of the biharmonic operator can be obtained by applying the procedure used for D twice,

Svv′′ =AvIvv′′ +v Dvv′Dv′v′′ . (5)95

For scalars at triangle circumcenters, the expression is similar to (3)

Ac(Dϕℓ)c= ℓ2
∑

c′∈N(c)

ϕc −ϕc′

dcc′
lcc′ , (6)

where Ac is the area of triangle c, N(c) is the set of neighboring triangles, lvv′ is the length of edge vv′ and dvv′ is the distance

between the circumcenters of triangles with common edge vv′ (see Fig. 1 (d)). The biharmonic case is similar to the previous

case. In the last two cases the expressions for Laplacians are simplified because of the orthogonality of the lines connecting100

centroids to edges.

2.1.2 Vector Laplacians

For the discretization of FESOM2 the easiest method is to seek for uℓ at vertices even though the discrete u are at centroids. One

reason is that the number of vertices is twice smaller, leading to matrix problem of smaller dimension. Due to the appearance

of metric terms, equations for both components of uℓ are coupled, as explained in Danilov et al. (2023). The resulting matrix

problem is S2 =M2+γD2 for the Laplacian filter, and S2 =M2+γD2(M
L
2 )

−1D2 for the biharmonic filter. It acts on the vector

({uv},{vv})T . Here

D2 =

 D̃ T

−T D̃

 , M2 =

M 0

0 M

 .
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The entries of matrix T are computed as Tvv′ = ℓ2
∫
m(−Nv′∂xNv +Nv∂xNv′)dS. It is the operator accounting for metric

terms linear in the metric factor m=R−1
e tanθ, where Re is Earth radius, which is taken constant on triangles, and θ is the

latitude. Compared to the scalar case, the entries of D̃ are also modified by the metric terms as D̃vv′ = ℓ2
∫
(∇Nv · ∇Nv′ +105

(R−2
e +m2)NvNv′)dS. Finally, the right hand side is obtained by projecting from cell to vertices: uv = Rvcuc, where Rvc =∫
NvMcdS, and Mc is the indicator function on triangle c. Summation is implied over repeating indices in matrix-vector

products.

There are several options to do the filtering keeping uℓ at cells. For the stencil of nearest triangles (see Fig. 1 (c)) the

lines connecting the centroids on general meshes are not perpendicular to edges. For this stencil, there is no universally valid110

discretization for Laplacian. We use a simplified expression instead of true −ℓ2∆

Ac(Du)c =Aℓ2
∑

c′∈C(c)

(uc −uc′) (7)

which works stable in practice. One gets a valid discretization for −ℓ2∆ taking A= 1 on uniform quadrilateral meshes and

A=
√
3 on uniform triangular meshes composed of equilateral triangles. On a triangular mesh obtained by splitting regular

squares it corresponds to −∂xx − ∂yy ± ∂xy for A= 3/2, with the sign dependent on the direction the quadrilateral cells are115

split. The appearance of mixed derivatives is caused by the low symmetry of the mesh (only to rotations by 180 degrees). Such

meshes will make scale analysis essentially anisotropic, however all operators on such meshes have a similar mesh imprint. The

operator (7) is symmetric and positive semidefinite. In spherical geometry, the unit zonal and meridional vectors are different at

c and c′ locations. The account for this difference leads to metric terms that include the derivatives of unit directional vectors.

Other options for cell-based filtering of velocities will rely on a much larger stencil. Based on triangles c′, c′′ and c′′′ (see120

Fig. 1 (c)) one can estimate ∇uℓ on triangle c. Combining such estimates on c and c′, the gradient will be estimated on edge

vv′′ and similarly on other edges, and then the divergence of such gradients will be computed at c. On uniform meshes this will

involve a stencil of 10 triangles. Yet another method is to use the vector invariant form ∆=∇∇ ·−curlcurl. For centroidal

velocities both the discrete divergence and vorticity are naturally computed on vertices, through the cycle over the boundary of

median-dual control volumes. The operation of gradient and second curl will involve three vertex values and return the result125

to cells. In this case the stencil will occupy 13 triangles on uniform meshes. In can be shown that such Laplacians are not more

accurate than the vertex-based Laplacian, but will lead to more expensive matrix vector multiplications in the solver procedure.

We therefore did not try these Laplacians thus far.

For the C-grid type of discretization of MPAS-Ocean and ICON-o the vector invariant form of Laplacians presents the main

interest. The locations of normal velocities is given by small red circles in Fig. 1 (b) and (d). The divergence will be computed130

at vertices for the hex-C grid and at triangles for triangular C-grid, and vice versa for relative vorticies. On uniform meshes 11

normal velocities will be involved in computations. These operators are not implemented yet, but this might be done in future.

2.2 Implementation

The computational process is divided into two phases: initialisation and solution. The initialisation stage is independent of

the filtering scale and involves precomputing auxiliary arrays that are reused during the solution phase. This optimization135
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strategy significantly reduces the overall computational time, particularly for large-scale problems. Python 3 was chosen as the

primary programming language due to its widespread adoption in the Earth Sciences community and its extensive ecosystem

of libraries. The implementation is publicly available as open-source software on GitHub.

2.2.1 Initialisation

The implementation of the implicit filter method involves precomputing several auxiliary arrays based on the mesh connectiv-140

ity matrix. These arrays are independent of the filtering scale and can be reused for multiple filter applications. The non-zero

coefficients of the D operator are determined using equations (3) and can be efficiently computed using sparse matrix algebra.

To further enhance the computational performance, JAX’s just-in-time compilation and vectorization capabilities were em-

ployed, resulting in a speedup of approximately 100x compared to a pure NumPy implementation. The precomputed auxiliary

arrays can be saved to disk to reduce the computational overhead for subsequent filter applications. This approach leverages145

NumPy’s file I/O capabilities and promotes efficient reuse of precomputed data across multiple filter scales. The time required

for precomputation is approximately several minutes. In case of high-resolution data (see Sec. 3) it took 15m 40s.

2.2.2 Solving linear system

After computing the coefficients of the D operator, they are assembled into a sparse matrix using SciPy’s implementation of

compressed sparse column (CSC) matrices. The S operator is then calculated based on either equation 4 or 5. Following the150

suggestion of Guedot et al. (2015), the product of S and ϕ is subtracted from ϕ to simplify the solution of the linear system (1).

The resulting modified ϕ is then used by the conjugate gradient solver along with S. A solver tolerance of 10−9 was used for

convergence.

Several alternative solvers, including the generalized minimal residual method (GMRES), were tested, but the conjugate

gradient method consistently exhibited the best performance. The use of a preconditioner (incomplete LU factorization) was155

also investigated, but it did not lead to significant performance improvements.

To harness the parallel processing capabilities offered by GPUs, the CuPy library was employed. CuPy provides an identical

interface to SciPy and requires minimal modifications to the method implementation. This library is optimized for NVIDIA

GPUs but also supports graphics cards from other vendors, such as AMD. By utilizing CuPy, the algorithm maintains indepen-

dence from both the operating system and hardware vendors.160

2.3 Convolution filter

To make a comparison with the explicit filter, it is necessary to implement the box filter method proposed by Aluie et al. (2018).

The crucial aspect involves defining the convolution kernel. Following formula was used for low-pass method:

G(x) =A(1− tanh(c(|x| − 1.75/kℓ)/a)) (8)

Here A is a normalising factor, ensuring that
∫
Gdx= 1, c is the filter sharpness factor set to 1.5 and a is a mesh resolution.165

The combination 1.75/kℓ corresponds to ℓbox/2. It is replaced by 3.05/kℓ for the high-pass method.
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To implement this method, JAX was used to create the kernel matrix, while SciPy (in case of CPU) and CuPy (in case of

GPU) were employed to apply the matrix to the data.

3 Data

The model data used was generated by the Finite-Element/volumE Sea ice-Ocean Model version 2 (FESOM2) simulation.170

FESOM2 is a multi-resolution sea ice-ocean model that solves the ocean primitive equations on unstructured meshes (Danilov

et al. (2017)). The sea ice module, that is part of the model, is formulated on the same meshes as the ocean module. Configu-

ration of the model has horizontal resolution of 1 km in the entire Arctic ocean which smoothly coarsens to 30 km in the rest

of the global ocean. There are 70 z-levels in the vertical direction, with 5-meter spacing within the upper 100 meters. ERA5

atmospheric reanalysis fields (Hersbach et al. (2020)) were used to force the model. The model was initialized from the PHC3175

climatology (Steele et al. (2001)) and run for 11 years starting from 2010. The first four years were considered as a spinup.

The realizations of velocity field from the last seven years (2014–2020) were used in this work.

In order to be able to directly use the box filter on this dataset it was interpolated to a regular rectangular grid with 0.01

degree resolution. Prior to interpolation, the coordinate transform has been performed such that the Arctic Ocean corresponds

to the equatorial region in new coordinates. Using this rotation minimizes the error caused by using a regular longitude/latitude180

grid, since it ensures that the grid cells are very close to squares. Linear interpolation was used. As this is a very costly process,

the domain was restricted to areas north of 73 degrees latitude on the original mesh. The final mesh had dimension of 3200 by

3200 cells, resulting in 10.240.000 cell mesh.

4 Results

Figure 2 illustrates the application of the implicit filter for high-pass filtering of the velocity field. The left panel shows a185

snapshot of the absolute value of velocity at 70 m depth. Together with eddies and jet flows it shows a region with smoothed

velocities, presumably caused by the sea-ice drift. The velocity field in the right panel is obtained by subtracting the velocity

field coarse grained with the scale of 100 km, which leaves only the small scales. Using the implicit filter allows one to perform

this operation on the native mesh and on the spherical Earth surface, without the need of regridding the data. The continental-

break currents are rather strong and carry a significant part of kinetic energy. As is seen comparing the panels of Fig. 2, they190

contribute very substantially into large-scale part of the flow. One can expect therefore that energy spectra computed for the

entire Arctic Ocean will have an elevated spectral density at large scales.

Figure 3 presents kinetic energy spectra obtained with the implicit Laplacian filter using the original data (on the original

triangular mesh) (red line) and interpolated data (blue). They are compared with the spectrum obtained by coarse-graining

with the explicit box filter (green). The later is computed ignoring the Earth curvature (the cosine of latitude is replaced with195

1), enabling the convolution via the Fourier transform. The implicit filter allows us to compute the spectra of the interpolated

data on both the longitude-latitude mesh and on its flat geometry approximation. Although the coarse-grained velocities show
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Figure 2. A snapshot of ocean currents at 70 m depth (logarithmic scale). The left panel shows the simulated results, while the right panel

shows the results of high-pass filtering with the scale of 100 km. The implicit Laplacian filter has been used over data on native unstructured

grid, taking into account spherical geometry.

some small differences (25% at the largest scale) in these two cases, the energy spectra turn out to be almost identical, which

substantiates the approach taken for the box filter.

As seen in Fig 3, the implicit Laplacian filter and the explicit box filter provide matching results (1% difference at the largest200

scale). The largest wavenumber is π/h≈= 4 cycle/km where h is the height of triangles of the original mesh. One can note

that for larger scales there is a small shift between the results computed on original and regular meshes. We guess that this is

related to the effect of no-flux boundary conditions (Danilov et al. (2023)) which are applied along the boundary between water

and land on the original mesh, but along the boundary of interpolation mesh in the other case. Interestingly, for the interpolated

data, the spectra for the implicit and box filter are very close despite the difference in boundary conditions. Note that the spectra205

obtained using the implicit Laplacian filter are smoother than spectra based on the box filter. This correlates with better spectral

sensitivity of the latter, which is, however, worse than the sensitivity of the biharmonic filter.

In Fig. 4 we compare the spectra computed with harmonic and biharmonic filters. For the biharmonic filters conjugate

gradient algorithm requires more iterations to achieve required tolerance. This results in longer computation and on large

scales it might not converge, so we stopped on the wavenumber kℓ ≈ 0.025 cycle/km, which corresponds to the wavelength210

of 250 km. While the spectra are close on the wavelength larger than approximately 12 km, they start to deviate at smaller

wavelengths. This could have numerical explanation at wavelengths that correspond to grid scales, as discrete Laplacians
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Figure 3. Wavenumber spectra for entire Arctic Ocean. Red line corresponds to the implicit harmonic filter applied to the data on the

original grid. The blue and green lines correspond to the implicit harmonic and explicit box filter applied to the interpolated data. The highest

wavenumber is π/h, where h is the height of triangles of the original grid.

deviate from their continuous counterpart at grid scales, and this deviation is larger in biharmonic operators. However, the

spectra in Fig. 4 disagree also at larger scales, which is an indication that the real spectra have a slope steeper than −3 at these

scales. We give elementary illustrations in section 6.215

5 Performance benchmarks

To facilitate the computational demands of this study, extensive computational resources were generously provided by the

Jülich Supercomputing Centre (JSC). As the primary computing environment, a single node from the JUWELS Booster Module

was used. This nodes was made of two AMD EPYC Rome 7402 CPUs, 512 GB of DDR4 RAM, and four NVIDIA A100 GPUs,

each equipped with 40 GB of HBM2e memory. To optimise computational efficiency and resource utilisation, only a single220

GPU was employed for the duration of this study.

The performance evaluation of the implicit filter method focuses on its computational efficiency, assessed by measuring

the execution time required to process data. However, data access from disk can introduce substantial overhead, potentially

influencing the overall execution time. To isolate the computational efficiency of the method, IO time, representing the dura-

tion spent reading and writing data to disk, is excluded from the execution time measurements. To ensure the accuracy and225

consistency of time measurements, each configuration is executed ten times, and the mean value is taken.
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Figure 4. Comparison between the spectra computed with the box filter and the implicit harmonic filter applied to data on native grid and

interpolated to regular grid.

As evident from Figure 5, the performance of the implicit filter method exhibits a linear relationship with mesh size above

106 nodes. Furthermore, the method effectively handles meshes with over 11 million nodes, achieving processing times of

approximately 5 seconds for a 100-kilometer filter scale. Such remarkable efficiency is attributed to the method’s inherent

scalability, enabling it to process data efficiently on increasingly large meshes without performance degradation.230

This capability to handle large meshes is essential for analyzing real-world datasets, which often cover vast areas and demand

high-resolution meshes for accurate representation. The implicit filter’s scalability ensures its effectiveness in processing these

large datasets, making it suitable not only for current state-of-the-art meshes but also for future generations of increasingly

high-resolution meshes.

For the benchmarks, a fully unstructured mesh was used, which has 11538465 surface nodes. The measured results of235

the execution time, as shown in Fig. 6, exhibit a close-to-linear dependency with filter scale for those larger than 50 km. In

particular, computation for a filter scale up to approximately 100 km is done within 6 s, even for a mesh with more than

10 million nodes and resolution about 1 km in the focus area. As this is the range of scales that is of the most interest, it

shows remarkable performance. Convergence becomes more challenging for larger scales, and results diverge from a linear

dependency. The scales where those issues arise depends on specific data, but it’s typically larger than 1000 km.240
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Figure 5. Execution time of implicit filter on synthetic data. Presenting both data on a Cartesian and spherical mesh. Filter size of 100 km

was used at all cases. Dashed lines illustrate fitted linear functions.

Figure 6. Execution time of implicit filter on FESOM2 output. Results show computation time of both vector and scalar data on 11 M node

mesh (see Sec. 3). Dashed lines illustrate fitted linear functions.
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6 Some comments

The present implementation supports triangular meshes of FESOM2 and produces coarse-grained fields at mesh vertices. Since

the original discrete horizontal velocities in FESOM2 are at the centers of triangles, computation of coarse-grained velocities

at triangles was also tried and found to lead to a very close results as concerns kinetic energy spectra. Vertex computations

should therefore be preferred, as they require smaller matrices. Nevertheless, triangle-based computations might be required245

if dissipation is studied, as the dissipation tendency is noisy. They are under implementation and are based on the simplified

Laplacian (7). The support of C-grid type discretization for ICON-o discretization (scalar Laplacians for data on circumcenters

of triangles and vector-invariant Laplacians for velocities normal to edges) and the support of regular quadrilateral C-grids will

be added in the nearest future. Our aim is a tool supporting different meshes.

The calculation of spectra can be based on the low-pass method, as proposed by Sadek and Aluie (2018) and used in Danilov250

et al. (2023). A new method, based on high-pass filtering, was proposed recently by Zhao and Aluie (2025), after this paper

has been submitted. The method only modifies the calculations of spectra, but relies on the same coarse-grained fields as the

low-pass method. We added it to our implementation, which required minor updates. According to the analysis by Zhao and

Aluie (2025), the new method can handle much steeper spectra than the low-pass method, and we illustrate some points here.

As discussed in Danilov et al. (2023), the low-pass method based on implicit Laplacian filter can handle spectra which are not255

steeper than k−3. The use of implicit biharmonic filter extends this range to k−5. Based on the analysis of Zhao and Aluie

(2025), these ranges extend to k−5 and k−7 respectively with the high-pass method.

In Fig. 7 we present the spectra computed using the implicit filters of different order given the Fourier spectrum Ek ∼
k−2/(1+(k/k∗)2), with k∗ = 30kmin, where kmin corresponds to the domain wavelength taken as 2048 km. The spectra were

computed using the analytical expression for the form factor and the Fourier symbol of one-dimensional discrete Laplacian260

given in Danilov et al. (2023). The dark and light blue (thick black and gray) curves correspond, respectively, to the Laplacian

and biharmonic filters used with the low-pass (high-pass) method.

While one expects that the Laplacian filter will fail for large k in the case of low-pass method, the dark blue line has a

slope flatter than −3 over a range of wavenumbers where the real slope is −4. One can erroneously interpret this interval as

a true spectrum (since it is flatter than −3). This behavior is caused by aliasing from the side of small wavenumbers where265

the spectral energy density is much larger. With the high-pass method the spectrum is much closer to the Fourier spectrum

even for the Laplacian filter (thick black line), and is only slightly worse than the result with biharmonic filter for the low-pass

method. Increasing the order of filter leads to very accurate behavior (gray curve). Thus, while the high-pass method should be

a preferred one, there are also arguments in favor of higher-order filters.

The illustration in Fig. 7 stresses the fact that one generally needs to test the results obtained by sequential filtering if they270

show spectral slopes approaching their critical limits. In any case, as mentioned by Zhao and Aluie (2025), this is a strong

argument in favor of high-pass method or higher-order filters. Guided by this fact, the behavior shown in Fig. 4, and the

possibility to compute the Fourier spectrum for the interpolated data, we compare the spectra obtained with implicit harmonic

and biharmonic filters with the Fourier spectrum in Fig. 8. The spectrum obtained with the harmonic filter deviates from the
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Figure 7. Theoretical energy spectra obtained using Laplacian (dark blue), bi-Laplacian (light blue) implicit filters with low-pass method.

The thick black and gray curves show the same, but for the high-pass method. The Fourier spectrum is shown by thin red line and the straight

black line corresponds to a slope of −3.

Fourier spectrum, but the biharmonic filter follows the Fourier spectrum very closely. This issue for harmonic filter filter can be275

eased using high-pass filter method, resulting in spectra with a slope steeper than −3, without the need for additional compute

required by biharmonic filter.

The use of the biharmonic filter is computationally more expensive, and even worse, the convergence can be lost for large

ℓ which correspond to wavelengths of domain size in the case of very fine meshes if the conjugate gradient solver is used. At

present, we rely on the conjugate gradient solver available in python, and we work on preconditioners and solution methods280

that will remove these difficulties. The improved convergence for biharmonic filter is important, as it opens up perspectives of

using filters of higher order, as explained in Guedot et al. (2015) and Danilov et al. (2023).

It is reminded that the wavenumber scale kℓ = 1/ℓ used by us corresponds to the wavenumber of the Fourier spectrum. This

means that ℓ corresponds to λ/(2π), with λ the wavelength. This requires care when comparing our approach to that based on

other filters, as their meaning of ℓ might be different. For the box-type filter, ℓbox ≈ 3.5ℓ or 6.1ℓ for the low-pass and high-pass285

method.
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Figure 8. Fourier energy spectrum compared to the spectra obtained with implicit harmonic and biharmonic filters for the data interpolated

to a regular grid. For harmonic filter both low-pass and high-pass method were used.

7 Conclusions

This work presents a high performance implementation of a novel method for extracting spatial spectra from unstructured mesh

data, offering a compelling alternative to conventional methods. The open-access code and elementary documentation can be

found at GitHub (https://github.com/FESOM/implicit_filter) and Zenodo (Nowak and Danilov (2024)). Unlike its predecessors,290

the implicit filter method directly operates on unstructured meshes, such as triangular and quasi-hexagonal meshes, eliminat-

ing the need for computationally expensive interpolation to regular grids. This capability makes the implicit filter directly

applicable to the output of unstructured-mesh ocean circulation models, surpassing the limitations of traditional methods.

To enhance practical applicability, the implicit filter method is implemented in Python using a high-performance algorithm

that employs a two-phase approach to optimize computational efficiency. The first phase involves precomputing mesh-specific295

data, significantly reducing the computational load during the actual filtering process. This optimization strategy ensures ef-

ficient resource utilization and minimizes overall execution time. The second phase can use GPU-accelerated sparse matrix

algebra. Depending on the conditions, use of the GPU reduce computation time by up to two orders of magnitude. This compu-

tational prowess enables the processing of high-resolution data from meshes with millions of surface vertices within seconds.

The efficacy of the implicit filter method is demonstrated by applying it to compute spatial spectra of ocean currents from300

high-resolution General Circulation Model output. The results obtained from the proposed method exhibit agreement with

those obtained using traditional methods, such as box filter, validating its accuracy and robustness. Furthermore, the method’s
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ability to handle unstructured meshes directly provides a more comprehensive analysis compared to traditional methods that

require interpolation to a regular grid. However one needs to note that for spectra with slopes steeper than −3 it is needed to

use biharmonic filter.305
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