Supplementary Materials for

Formation of Reactive Nitrogen Species Promoted by Iron Ions Through the Photochemistry of Neonicotinoid Insecticide

6

Zhu Ran^{1,2}, Yanan Hu^{1,2,3*}, Yuanzhe Li^{1,2}, Xiaoya Gao^{1,2}, Can Ye⁴, Shuai Li⁵, Xiao Lu⁵,
 Yongming Luo^{1,2,3}, Sasho Gligorovski ^{6,7,8*}, Jiangping Liu^{1,2*}

- 9
- 10

¹¹ ¹Faculty of Environmental Science and Engineering, Kunming University of Science and Technology,

12 Kunming 650500, China;

13 ²The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of

14 Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds

15 Pollutants Control of Yunnan Province, Kunming 650500, China;

³Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500,
 China;

⁴Faculty of Environmental Science and Engineering, Peking University, Beijing 100871, China;

⁵School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering

20 Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China;

21 ⁶State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of

22 Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese

23 Academy of Sciences, Guangzhou 510 640, China;

⁷Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and

25 Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China;

²⁶ ⁸Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.

27

Correspondence: (Sasho Gligorovski) gligorovski@gig.ac.cn; (Jiangping Liu) liujiangping18@
 mails.ucas.ac.cn; (Yanan Hu) huyanan0917@163.com

- 30
- 31

33 Supplementary Text

34 Text S1. Ionic analysis at different Fe³⁺ concentrations

35 As depicted in Figure S2, the direct photolysis of NPM produced a large amount of NO₃⁻ and NO₂⁻ in the absence of Fe³⁺, and in the presence of Fe³⁺ restricted NO₃⁻ and NO₂⁻ production occurred, which was 36 37 consistent with the change of the photolysis rate constant of NPM. NO₂ produced by direct photolysis of 38 NPM is hydrolyzed in aqueous media to form NO₂⁻ and NO₃⁻, and nitrogenous species are partially 39 dissolved during their release from the liquid to the gas phase. The reaction of NOx with O_2 radicals will 40 also produce NO_2^- and NO_3^- . The presence of Fe³⁺ provides a strong acid environment (Table S1) and the 41 protonation of NO_2^- will lead to the release of HONO (Lu et al., 2015; Wang et al., 2021). Upon irradiation at $\lambda > 300$ nm, Fe³⁺ species (monomeric and dimeric) are known to undergo a redox process 42 43 giving rise to Fe(II) and •OH radicals (Bai et al., 2023). Fe²⁺ cannot coexist with NO₃⁻, and NO₂ gas will be produced by redox reaction. In short, the addition of Fe^{3+} promotes the conversion of NO_3^{-} and NO_2^{-} 44 to HONO and NOx. In the presence of high Fe³⁺ concentration, the photolysis rate of NPM showed an 45 46 increasing trend, and \cdot OH and O₂ produced under light irradiation were more elevated than those 47 produced under low concentration of Fe^{3+} (Figure 2), which slightly promoted the generation of NO₃-48 and NO₂⁻.

49 Text S2. Global simulation of NOx and HONO fluxes

50 We developed the global inventory of the NPM-emitted NO_x and HONO fluxes. Gridded and hourly 51 downward solar radiation data are obtained from the Modern-Era Retrospective analysis for Research 52 and Application version 2 (MERRA-2) assimilated meteorological fields. We calculated the emission 53 flux for each model grid at a horizontal resolution of 0.5°×0.625° (consistent with MERRA2 radiation 54 dataset) following Eq-S1, but assuming that the environmental NPM concentration is three orders smaller 55 than the experimental conditions of 0.5 mg L⁻¹. We examined the relationship between HONO and NOx 56 formation and light intensity from the experimental results, at a fixed NPM concentration level (Figure 57 S5-S6). The parameterization of HONO and NOx productions from NPM photolysis at Fe³⁺ 58 concentration of 0.025 mg ml⁻¹ used in our estimation is based on Eq-S1:

 $59 \qquad Y_{HONO} = 1.58595 * 10^{^{6}9} X - 1.19123 * 10^{^{5}11}, \quad Y_{NO2} = 6.58261 * 10^{^{8}8} X - 1.81889 * 10^{^{5}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}8} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{8}10} X - 1.81889 * 10^{^{1}10}, \quad Y_{NO} = 2.58054 * 10^{^{1}10} X - 1.81889 \times 10^{^{1}1$

60 1.41507*10^{^10} Eq-S1

61 where y represents the HONO/NOx fluxes, X represents the light density.

Table S1. Measured Photolysis Rate Constants (k) and Half-time (T_{1/2}) of NPM in aqueous solution at different Fe³⁺

63	concentrations.

The concentration of Fe^{3+} / mg.ml ⁻¹	Kinetic equation	Rate Constants (k)/min ⁻¹	Half-time (T _{1/2})/min	R ²	Initial pH value
0	$C_t = 0.501 e^{-0.00427t}$	0.00427	162.3	0.99438	7.3
0.1	$C_t = 0.477 e^{-0.00382t}$	0.00382	181.5	0.98757	3.4
0.25	$C_t = 0.520e^{-0.00310t}$	0.00310	223.6	0.98065	2.9
0.5	$C_t = 0.514e^{-0.00346t}$	0.00346	200.3	0.98869	2.6
0.8	$C_t = 0.513e^{-0.00513t}$	0.00513	135.1	0.99064	2.4

Figure S1. The absorption spectra of NPM (0.05 mg ml-1) in the absence of Fe³⁺ (dark line), and in the presence of
different concentrations of Fe³⁺: 0.01 mg ml⁻¹ (red line), 0.025 mg ml⁻¹ (blue line), 0.05 mg ml⁻¹ (green line) and
0.08 mg ml⁻¹ (purple line). Comparison of the spectral irradiance of the Xenon lamp (Fluorescent light blueed line)
and the spectral irradiance of the sunlight (fluorescent light green line) measured by the spectroradiometer
(HP350UVP, China). The spectral irradiance is determined for Kunming (latitude 24.85285, longitude 102.86016)
on July 26 2022 at noon.

Figure S2. The temporal changes of NO₂, HONO and NO during the photolysis of NPM (0.5 mg ml⁻¹) in the absence of Fe³⁺ (dark line), and in the presence of different concentrations of Fe³⁺: 0.1 mg ml⁻¹ (blue line), 0.25 mg ml⁻¹ (red line), 0.5 mg ml⁻¹ (orange line) and 0.8 mg ml⁻¹ (purple line). Reaction conditions: irradiation intensity of 169.4 W m⁻² at 300-400 nm, temperature of 298 K.

Figure S3. Proposed mechanism of NPM photolysis in the presence of iron ions leading to HONO and NOxformation.

Figure S4. The nitrate and nitrite ions concentrations of NPM (0.5 mg ml⁻¹) by 2 hours photolysis at different
 concentrations of Fe³⁺.

89 Figure S5. HONO flux from NPM photolysis under different light intensity. Conditions: NPM concentration of 0.05

92

93

Figure S6. NOx flux from NPM photolysis under different light intensity. Conditions: NPM concentration of 0.05
 mg ml⁻¹, Fe³⁺ concentration of 0.025 mg ml⁻¹, irradiation time of 60 min, temperature of 298 K.

References

100

Lu, Z., Challis, J. K., and Wong, C. S.: Quantum Yields for Direct Photolysis of Neonicotinoid Insecticides in Water: Implications for Exposure to Nontarget Aquatic Organisms, Environ. Sci. Technol. Lett., 2, 188-192, doi:10.1021/acs.estlett.5b00136, 2015.

- Wang, Y., Huang, D. D., Huang, W., Liu, B., Chen, Q., Huang, R., Gen, M., Mabato, B. R. G., Chan, C. K., Li, X., Hao, T., Tan, Y., Hoi, K. I., Mok, K. M., and Li, Y. J.: Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics, Environ. Sci. Technol. Lett., 55, 15694-15704, doi:10.1021/acs.est.1c04642, 2021.
- 105 Bai, X., Yang, Q., Guo, Y., Hao, B., Zhang, R., Duan, R., and Li, J.: Alkyl halide formation from degradation of carboxylic acids in the presence of Fe(III) and halides under light irradiation, Water. Res., 235, doi:10.1016/j.watres.2023.119842, 2023.