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Abstract. Nitrous acid (HONO) and nitrogen oxides (NOx = NO + NO2) are important atmospheric pollutants and key

intermediates in the global nitrogen cycle, but their sources and formation mechanisms are still poorly understood. Here, we

investigated the effect of soluble iron (Fe3+) on the photochemical behaviour of a widely used neonicotinoid (NN) insecticide,

nitenpyram (NPM), in the aqueous phase. The yields of HONO and NOx increased significantly when NPM solution was

irradiated in the presence of iron ions (Fe3+). We propose that the enhanced HONO and NO2 emissions from the35
photodegradation of NPM in the presence of iron ions result from the redox cycle between Fe3+ and Fe2+ and the generated

reactive oxygen species (ROS) by the electron transfer between the excited triplet state of NPM and the molecular oxygen

(O2). Using the laboratory-derived parametrization based on kinetic data and gridded downward solar radiation, we estimate

that the photochemistry of NPM induced by Fe3+ releases 0.50 and 0.77 Tg N year-1 of NOx and HONO to the atmosphere,

respectively.40
This study suggests a novel source of HONO and NOx during daytime and potentially helps to narrow the gap between the

field observations and model outcomes of HONO in the atmosphere. The suggested photochemistry of NPM can be an

important contribution to the global nitrogen cycle affecting the atmospheric oxidizing capacity as well as the climate change.

1 Introduction

Neonicotinoids (NNs) are a class of systemic insecticides that have been widely used in agriculture and horticulture since the45
1990s (Bass et al., 2015) accounting for one-third of the total world insecticide market (Simon et al., 2015) with growing use

in the past decades (Botías et al., 2015; Morrissey et al., 2015). They are highly water-soluble and persistent in the

environment, and can be transported to surface waters via runoff, leaching, or spray drift. NNs have been detected in various

aquatic ecosystems, such as rivers, lakes, wetlands, and coastal waters, at concentrations ranging from 12.45 ng L−1 to 225 μ

g L − 1 (Pan et al., 2020; Anderson et al., 2013). Increasing public perception of NNs insecticides pollution, led to50
significant research efforts devoted to revealing the effect of insecticide application on human (Cimino et al., 2017; Han et

al., 2018), birds (Hallmann et al., 2014; Millot et al., 2017) , animals (Morrissey et al., 2015; Gibbons et al., 2015) and

pollinators (especially bees) (Kessler et al., 2015; Raine et al., 2015; Goulson et al., 2015). In the environment, NNs

insecticides can undergo various chemical processes, photolysis being one of the major fate (Lu et al., 2015; González-

Mariño et al., 2018). Recent studies have focused mainly on photochemistry of NNs insecticides and related atmospheric55
lifetimes, and quantum yields (Lu et al., 2015; González-Mariño et al., 2018; Aregahegn et al., 2017; Aregahegn et al., 2018).

It has been shown that the ozonolysis of NNs insecticides on various surfaces could contribute to the formation of gaseous

nitrous acid (HONO) (Wang et al., 2020). Gaseous nitrous oxide (N2O), which is a potent greenhouse gas, was previously

identified as the gas-phase product in the photolysis of solid thin films of NNs (Nitenpyram, acetamiprid, thiamethoxam,

thiacloprid, clothianidin and dinotefuran), with yields of ΔN2O/ΔNN > 0.5 in air at both 313 and 254 nm (Wang et al., 2019;60
Aregahegn et al., 2017; Aregahegn et al., 2018). Palma et al (Palma et al., 2020) used a gas-flow reactor connecting with a
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NOx analyzer, and the production of gaseous NO/NO2 was founded during irradiation (300-450 nm) of imidacloprid.

However, the crucial role of the NNs insecticides in the global nitrogen cycle at the air-water interface is largely unknown.

Nitenpyram (NPM) is one of the most commonly used NNs insecticides. It represents a systemic NNs insecticide which is

widely distributed among soil, dust particles and in the aqueous environment (Botías et al., 2015; Ezell et al., 2019). Once65
released in the environment, NPM will be transformed into other products by absorbing sunlight (λ>290 nm) and/or reacting

with atmospheric oxidants such as the hydroxyl radical (OH) and ozone (O3) (Wang et al., 2020). The NPM is a nitroalkene,

which is structurally similar to nitroaromatic compounds (Ar-NO2). Previous studies have indicated that the photolysis of Ar-

NO2 can be a source of HONO and NOx in the atmosphere (Fukuhara et al., 2006; Yang et al., 2001; Bejan et al., 2021).

HONO represents one of the main sources of OH radicals in the urban atmosphere contributing by up to 80% of the total OH70
production ( Alicke et al., 2003; Young et al., 2012; Zheng et al., 2020). The main identified HONO sources in the urban air

are the photolysis of nitrates (Ye et al., 2017; Gen et al., 2021) and light-induced heterogeneous reaction of NO2 with

environmental surfaces (Liu et al., 2019; Liu et al., 2020; Liu et al., 2023; Monge et al., 2010; Han et al., 2016 ). Yet, there is

a discrepancy between the modeled HONO values and field observations of HONO during the daytime, suggesting that there

are missing HONO sources in the atmosphere. Meanwhile, the quantification of NOx is also of great significance for the75
atmospheric cycle of nitrogen species as NOx plays a crucial role in the photochemical smog and acid rain formation.

Therefore, it is worthwhile to explore the contribution of NPM photolysis to HONO and NOx, which in turn can offer a

guidance for the development of more sustainable next generation insecticide products.

Iron species are ubiquitous on earth surfaces, including water, soil and air-water interface (Gen et al., 2021). Recent study

(Kebede et al., 2016) showed that one of less explored HONO sources could be highly dependent on the photochemical80
reaction of iron. The photosensitivity, oxidation state and catalytic properties of iron could enable it to possibly react with

NNs insecticides compounds which are enriched at air-water interface. Previous studies on the mechanism of NNs oxidation

in the ferric aqueous phase have focused on the photo-Fenton reaction (Malato et al., 2021; Lacson et al., 2018; Wang et al.,

2022; Nguyen et al., 2020; Sedaghat et al., 2016) and heterogeneous-phase photocatalysis (Rózsa et al., 2019; Sun et al.,

2019; Hayat., 2019; Soltani-nezhad., 2019). As recently reported, the photolysis of iron can generate several reactive oxygen85
species (ROS) such as O2•-/HO2• , which can trigger the redox cycle between Fe3+ and Fe2+ (Gen et al., 2021) as well as

promote NNs insecticides oxidation. Meanwhile, iron ions inhibit the degradation of organic matter through the formation of

complexes, mainly due to fluorescence bursting. The complexation may cause the inhibition of the excited singlet state and

thus the photoformation of the triplet excited state (Wan et al., 2019). In addition to the NN insecticides and iron

photosensitizers, the nitrate (NO3-) and nitrite (NO2-) can also absorb sunlight in the actinic region and initiate production of90
ROS (Vione et al., 2019). Moreover, the reaction between Fe2+ and NO3- may be a potentially important source of HONO

(Gen et al., 2021). To this end, we suggest that the photolysis of NPM in the presence of iron may contribute to a missing

atmospheric HONO source.
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To our knowledge, this is a first investigation to measure the photochemical production of HONO and NOx from NPM95
photolysis in absence and in the presence of soluble iron. The photolysis frequency of HONO (JNPM→HONO), NO2 (JNPM→NO2)

and NO (JNPM→NO) during the NPM reaction at the air-water interface was investigated. The kinetics and mechanism of

HONO and NOx formation in the presence of soluble iron were evaluated. This study highlights an overlooked source of

HONO and NOx from NNs-covered water surfaces which may play a critical role in atmospheric nitrogen cycle and

evaluation of the atmospheric oxidation capacity.100

2 Experimental

2.1 Materials and Sample Preparation

Solid NPM (Aladdin, China) was dissolved in ultra-pure water to prepare an aqueous NPM solution (0.5 mg mL−1) before

each experiment. FeCl3 (98%, Aladdin China) was used as the source of different concentrations of aqueous Fe3+ (0.1-0.8 mg

mL−1), and their solutions were prepared by dissolving the corresponding mass of FeCl3 in ultra-pure water.105

2.2 Experimental Setup

The circular reactor consisted of a double layer of quartz glass (3.4 cm height, 7.5 cm inner diameter) connected to a

thermostatic bath (XOSC-20, China), which allowed operation at a constant temperature of 298 K (Figure S1). The

previously prepared sample solution was placed in the circular reactor and exposed to a Xenon lamp (Perfect Light, PLS-

SXE 300, China) vertically above the reactor. The Xenon lamp was 12 cm away from the liquid level of NPM. The spectral110
irradiance of the Xenon lamp was measured by a calibrated spectroradiometer (HP 350 UVP, China) (Figure S1). Dry air

collected from an air generator (HY-3, China) was used for the experiment. During the whole experiment, a constant flow of

800 mL min−1 of dry air was controlled by an electronic soap film flowmeter (SCal Plus, China). The UV absorption spectra

of the NPM aqueous solutions in the absence and in the presence of iron ions were measured by the UV-vis double-beam

spectrophotometer (Shimadzu 2600, Japan) (Figure S2, Text S1).115

2.3 NOx, HONO, NPM and ROS measurements

NO, NO2 and HONO were detected using a chemiluminescence NOx analyzer (42i, THERMO) with a molybdenum

converter. NO was measured by reacting NO with O3 to produce characteristic luminescence, and the intensity of

luminescence was proportional to the concentration of NO. In the detection of NO2, a molybdenum catalyst was used to

convert NO2 to NO. A quartz tube (25 cm length, 2.9 cm inner diameter) filled with a certain amount of crystalline Na2CO3120
was introduced to capture HONO between the circular reactor outlet and the NOx analyzer. It is well known that almost all

HONO molecules can contact Na2CO3 when using molybdenum converters, achieving high capture efficiency of HONO.

Therefore, HONO can be indirectly quantified by the difference between the NO2 signal and the Na2CO3 tube (Monge et al.,

2010; Cazoir et al., 2014; Brigante et al., 2008; Zhou et al., 2018). The quantification of NPM before and after the reaction
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was determined by High performance liquid chromatography (HPLC). The mobile phase was a mixture of water and125
acetonitrile with a flow rate of 0.5 mL min-1 at 80:20 (v/v). The column temperature was kept at 30℃, the injection volume

was 20 μL, and the detection wavelength was set to 270 nm. The external standard method was used for the quantitative

determination of NPM. Photoproductions of O2-•, 1O2 and •OH (ROS) were quantified using DMPO, TEMP and DMPO as

chemical probe molecules, respectively.

2.4 Kinetic Analysis130

The NPM photolysis kinetics was described using a first-order reaction (Eq.(1)), and the half-life (t1/2) was calculated using

Eq.(2).

Ct = C0 × e−kt (1)

t1/2 = ln 2 /k (2)

where C0 (mg ml-1) is initial concentration of NPM, Ct (mg ml-1) is the NPM concentration at time t, and k is the first-order135
rate constant.

2.5 The photolysis frequency

The photolysis frequencies of NPM to HONO and NOx were calculated by Eq.(3) and Eq.(4), respectively.

JNPM→HONO = QMNPM 0
t Ct

HONOdt�
60×10−3NA×t× m0+mt /2

(3)

JNPM→NOx = QMNPM 0
t Ct

NOxdt�
60×10−3NA×t× m0+mt /2

(4)140

Where Q (mL min − 1) and MNPM (g mol − 1) are the total flow gas rates in the reactor and the molar mass of NPM,

respectively; t (min) is the irradiation time; CtNOx (molecules cm-3) is the concentration of gaseous HONO or NOx formed by

photolysis of NPM during the irradiation period; NA is the Avogadro number; M0 (mg) and Mt (mg) are the masses at the

beginning and end of the NPM photolysis experiments.

2.6 Flux densities of HONO and NOx145

The flux densities of HONO and NOx were estimated by using the following equations:

HONOflux = [HONO]∙V
s∙t

(5)

NOxflux = [NOx]∙V
s∙t

(6)
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where HONO flux is expressed in molecules cm-2 s-1, [HONO] is the concentration of HONO in molecules cm-3, V (cm3) is

the volume of the reactor, S (cm2) is the surface of the reactor, and t (s) is the residence time of HONO in the circular reactor.150

2.7 Global simulation of NOx and HONO fluxes

We estimated the global inventory of the NOx and HONO fluxes produced by NPM photochemistry using the observation-

constrained parametrization scheme and hourly solar radiation data. Gridded and hourly downward solar radiation data are

obtained from the Modern-Era Retrospective analysis for Research and Application version 2 (MERRA-2) assimilated

meteorological fields. We calculated the flux of NOx and HONO for each model grid at a horizontal resolution of155
0.5°×0.625° (consistent with MERRA2 radiation dataset) following Eq-S1, Eq-S2 and Eq-S3, but assuming that the

environmental NPM concentration is three orders smaller than the experimental conditions of 0.5 mg L-1. The

parameterization of HONO and NOx productions from NPM photolysis at Fe3+ concentration of 0.025 mg L-1 used in our

estimation is based on Eq-S1, Eq-S2 and Eq-S3, and more details can be seen in the Text S2.

3 Results and Discussion160

3.1 Absorbance of NPM in the presence of Fe3+

Figure S1 shows the absorbance of NPM (0.05 mg ml-1) in the dilute aqueous phase and at different Fe3+ concentrations,

adjusted by FeCl3 along with the emission spectrum of the solar simulator and the sunlight. The presence of Fe3+ at various

initial concentrations slightly enhanced the absorbance of NPM, especially at high Fe3+ concentration (0.08 mg ml-1),

indicating that no Fe3+-NPM complexes were generated (Liu et al., 2020). Indeed, pH is a sensitive parameter that can165
significantly affect the light-absorbing properties and the degree of photochemical degradation of organic compounds (Cai et

al., 2018; Zhou et al., 2019). The interaction between Fe3+ and organics as well as possible aggregation of organics at low pH

may also influence the light absorption at low wavelengths (Weishaar et al., 2003). The change of Fe3+ concentrations may

alter the pH of the system, which in turn may affect the protonation/deprotonation degree of NPM, and therefore affects its

absorption spectrum (Zhou et al., 2019). The pH value of the NPM solution in the presence of Fe3+ varies between 2.4 and170
3.4, and under this pH conditions, NPM (pKa=3.1) exists in both, ionic and neutral form (Hậu et al., 2021; Bonmatin et al.,

2015).

3.2 Kinetic analysis

Iron ions are ubiquitous in natural waters with concentrations ranging between 10-7 and 10-4 M, and even higher in

contaminated waters (Li et al., 2018; Faust et al., 1990). Previous studies have shown that iron ions play an important role in175
the photolysis of pesticides and may affect the photodegradation of organic pollutants (Faust et al., 1990; Zhao et al., 2014).

The photolysis kinetics of NPM were performed to account the loss of NPM. The photolysis of NPM at different
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concentrations of Fe3+ obeyed pseudo-first-order kinetics (Figure 1), with half-lives ranging from 135.1 to 223.6 minutes as

the Fe3+ concentration increased from 0 to 0.8 mg ml-1 (Table S1).

180
Figure 1. (A) The kinetics of NPM (0.5 mg ml-1) in the absence of Fe3+ (dark line), and in the presence of different Fe3+
concentrations: 0.1 mg ml-1 (red line), 0.25 mg ml-1 (blue line), 0.5 mg ml-1 (green line) and 0.8 mg ml-1 (purple line). (B) The rate
constants of NPM light-induced degradation (0.5 mg ml-1) at different Fe3+ concentrations.

The light-induced degradation of NPM was significantly inhibited at low Fe3+ concentration (C(Fe3+) <0.5 mg ml-1, Figure 1

and Table S1). In contrast, when the concentration of Fe3+ reached 0.8 mg ml-1, the degradation of NPM is promoted (Figure185
1), exhibiting a rate constant of 0.00513 min-1 (Table S1). Previous studies have demonstrated that the degradation of organic

compounds in the presence of Fe3+ is dose dependent (Lin et al., 2019; Deguillaume et al., 2005). For instance, Fe3+ slightly

inhibits the photodegradation of fluazaindolizine at concentration of 1-5 mg L-1 but promotes its degradation rate at

concentrations ranging between 0.1 and 0.5 mg L-1 (Lin et al., 2019). Fang et al. (Deguillaume et al., 2005) reported that

photodegradation of flupyradifurone, a novel neonicotinoid pesticide, was faster at lower Fe3+ concentrations and slowed190
down with the increase of Fe3+ concentration (Deguillaume et al., 2005).

The main reason for the inhibition effect of Fe3+ is the attenuation of radiation due to the absorption by Fe3+ (light screening),

which reduces the light absorbance by NPM and its photodegradation. At the same time, it has been extensively confirmed

that [Fe3+(OH)]2+ is the main form of Fe3+ and exhibits great photoactivity in aqueous solution at pH=3 (Bai et al., 2023; Li

et al., 2023). In the presence of [Fe3+(OH)]2+, strong oxidizing reactive oxygen species (ROS) are produced, which promote195
hydroxylation and degradation of NPM (Andrianirinaharivelo et al., 1995; Mazellier et al., 1997). As a result, at pH=3, the

photodegradation of NPM is accelerated at high Fe3+ concentrations.

In this study, high Fe3+ concentration (0.8 mg ml-1) promoted the photodegradation of NPM, and the formation of HONO

and NOx (see the section below). The enhanced formation of HONO and NOx can be ascribed to ROS as described in the

section 3.5.200
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3.3 HONO and NOx Formations by NPM Photolysis

The experiments of NPM photodegradation in the aqueous phase were performed to measure the HONO and NOx

production in the presence of different Fe3+ concentrations. The HONO and NOx production by spontaneous reaction of

NPM in dark were negligible (Figure S3). When the NPM samples were exposed to light irradiation the concentrations of

HONO and NOx quickly increased (Figure 2A).205

Figure 2. (A) The concentration of NO, NO2 and HONO produced by NPM photolysis at different concentrations of Fe3+. (B) JNPM
→HONO and JNPM→NOx from NPM at different concentrations of Fe3+. Irradiation intensity of 169.4 W m-2 at 300<λ<400 nm, T=298 K.

Only the concentration of NO formed upon irradiation of NPM is almost the same in the absence of Fe3+ and in the presence

of 0.25 mg mL−1 of Fe3+ (Figure 2A). In the meantime, the NO2 formation increased significantly with the increase of Fe3+210
concentrations and remained almost steady during the whole light exposure time (Figure S3). Moreover, when the

experiments were shifted to high concentration of soluble iron (0.25-0.8 mg mL − 1), significantly enhanced NO2 and NO

formation were observed, and then slowly decreased with the light exposure time. In order to better understand the effect of

iron on HONO and NOx production, the quantities of HONO and NOx were compared when the NPM photolysis reached a

relatively stable stage (120 min). It is important to note that, the formed HONO (341 ppb) was significantly higher at the iron215
concentration of 0.8 mg mL-1 compared to the HONO (37 ppb) formed in the absence of iron. Similarly, the quantity of the

formed NO2 increased from 17 ppb in the absence of iron to 96 ppb in the presence of 0.5 mg mL-1 of Fe3+. However, further

increase of the iron concentration to 0.8 mg mL-1 tend to decline the production of NO2. Figure 2 shows that the NO

concentrations almost remained unchanged with the increase of iron concentration. To quantify the photolysis quantum

yields of HONO, NO2 and NO formation from NPM photolysis, we estimated the photolysis frequency of HONO (JNPM→220

HONO), NO2 (JNPM→NO2) and NO (JNPM→NO) formation, respectively (Figure 2B). JNPM→HONO varied from (2.99±0.46)×10-7 s-1

in the absence of Fe3+ to (2.79±0.10)×10-6 s-1 in the presence of 0.8 mg ml-1 Fe3+. Simultaneously, JNPM→NO2 increased ca. 5-

fold from (1.25±0.06)×10-7 s-1 in the absence of Fe3+ to (6.77±0.44)×10-7 s-1 at 0.8 mg ml-1 Fe3+. Regarding the JNPM→NO, there

was nearly no discernible changes observed, with values ranging from (2.38±0.27)×10-7 s-1 to (2.92±0.15)×10-7 s-1. Previous

studies (Yang et al., 2021) have found that the photolysis frequency of HONO and NO in nitrophenol solid-phase films (4-225
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nitrophenol, 4-nitrocatechol, 3,5-dinitrosalicylic acid, 3-nitrosalicylic acid, and 5-nitrosalicylic acid) varied in the ranges of

(0.34-4.16) × 10-7 and (0.38-3.21) × 10-7 s-1, respectively, when irradiated by xenon lamps. NPM liquid-phase photolysis

produced HONO and NOx at the photolysis frequency of 10-7 , but the addition of iron resulted in the photolysis frequency

of 10-6 for HONO, suggesting that iron significantly facilitated the release of HONO. In order to compare the efficiency of

NPM at different Fe3+ concentrations in producing HONO and NO, ΦHONO and ΦNOx were displayed (Table S2). It can be230
concluded that NPM with high Fe3+ concentrations had more important HONO formations as compared to pure NPM.

3.4 HONO and NOx Surface Flux Densities

Figure 3 summarizes the results obtained in terms of HONO formation rates per unit of exposed surface area, flux densities

of HONO, NO2, and NO.

235
Figure 3. Flux densities of HONO (A), NO2 (B) and NO (C) determined in function of photolysis time of NPM in the presence of
different concentrations of Fe3+.

The flux densities values of HONO and NOx indicate that direct photolysis dominated the transformation process of the

NPM samples in the absence of Fe3+. However, the introduction of soluble iron, leads to significantly increased HONO and

NO2 yields during the first 10 min reaction time. The further progress of the reaction up to two hours leads to slightly240
increased flux densities of NO2 and HONO. In contrast, the NO formation showed a slow decrease after the addition of Fe3+.

A recent study (Aregahegn et al., 2017) demonstrated that photolysis of solid film consisting of imidacloprid (IMD) did not

lead to HONO and NOx formation, but N2O was rather the main gas-phase product. However, it is important to note that the

introduction of Fe3+ promotes the photodegradation of NPM to produce more HONO and NOx. In the section below we

suggest a tentative reaction mechanism to describe the formation of HONO and NO2 upon irradiation of NPM at the water245
surface in the presence of soluble iron.

3.5 Mechanism Describing the Formation of HONO and NOx

We speculate that in the presence of Fe3+, the decrease in dissolved nitrogen species that resulted from the photodegradation

of NPM is the reason for the formation of HONO and NOx. Therefore, ROS and dissolved nitrogen containing ions were

measured upon photodegradation of NPM in the presence of Fe3+. The generation of superoxide radicals (O2- • ), singlet250
oxygen (1O2) and hydroxyl radicals (OH) were quantified using DMPO, TEMP and DMPO as chemical probe molecules,
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respectively. Figure 4A shows that in the absence of Fe3+, the photodegradation of NPM induces generation of OH, O2-•, and
1O2, which can be ascribed to the electron transfer between the excited triplet state of NPM and the molecular oxygen (O2)

(Segura et al., 2008; Mostafa et al., 2013; Marin et al., 2012; Wang et al., 2021).

255
Figure 4. A) EPR spectra obtained upon photodegradation of NPM (0.5 mg ml-1) in the absence of Fe3+ as a function of the reaction
time. B) EPR spectra obtained upon 45 min photodegradation of NPM (0.5 mg ml-1) in the absence of Fe3+ (dark line), and in the
presence of 0.25 mg ml-1 of Fe3+ (red line) and 0.8 mg ml-1 of Fe3+ (blue line).

It has been reported that under UV light irradiation, Fe3+ photo-reduction regenerates Fe2+ accelerating the process due to the

formation of new OH radicals (Segura et al., 2008). The EPR measurements revealed an interesting phenomenon that the260
increase of Fe3+ concentration promotes the consumption rate of ROS (Figure 4B) rather than the production rate. The

generated ROS would react with lower valence nitrogen-containing species to form HONO and NOx. Based on this finding

we suggest a tentative reaction mechanism which could explain the formation of large quantities of HONO and NOx during

the photochemical degradation of NPM. The photochemical generation of ROS could be driven by two pathways, pathway I:

the excited tripled state of NPM (3NPM*) can be formed under light irradiation (R1) (Mora et al., 2021), and then by265
reacting with water molecules (R2) it can trigger the formation of ROS such as OH radicals, accompanied by the generation

of O2-• through the transformation between radical anion of NPM (NPM-•) and dissolved oxygen (R3) (Wang et al., 2021).

Furthermore, with the progress of the photodegradation of NPM, an increase of O2-• and OH formation was observed (Figure

4A), favoring the HONO and NO2 formation (R6-R8). In the presence of Fe3+, the formation of OH radicals occur as well by

R4 (Mazellier et al., 1997). In addition, nitrate ions (NO3-) and nitrite ions (NO2-) in the aqueous phase are formed by270
reactions R5 to R7. Peroxynitrate (OONO2−) is formed by reaction of O2-• with NO2, which thermally decomposes to form

NO2− and O2 which further leads to HONO formation (R6) (Wang et al., 2020; Lammel et al., 1990; Goldstein et al., 1998).

The reaction between O2-• and NO can lead to the formation of NO2- and NO3-, with a relatively fast rate constant of 4.3×109
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M-1 s-1 (Goldstein et al., 1995) producing a peroxynitrite (OONO-) which then yields NO3- through internal rearrangement

(R7) (Løgager et al., 1993). At neutral pH (pKa=6.5), the product OONOH can also be formed by protonation, which can275
coexist with OONO- to form NO2- (R7) (Guptaet al., 2009). Previous studies have shown that the reaction between OH and

NO2- will generate NO2 (R8) (Løgager et al., 1993), and sharp increase of HONO concentration occurs immediately from

reaction between NO2- and H+ (R9), which is expected to be an important pathway of HONO formation.

At low Fe3+concentrations (0.25-0.5 mg mL-1), the degradation rate of NPM was completely inhibited which was not the

case for higher Fe3+ concentration (0.5-0.8 mg mL-1) (Figure 1). Notably, Fe3+ plays an important role in providing an acidic280
environment (pH=2.4-3.4) in the reaction system, which is followed by the redox reaction between Fe2+ and NO3- to produce

NO2 and consequently increase the amount of NO2 (R10) (Figure S3). It has been shown that NO3- undergo photochemical

process and thus produces HONO (R11) and NO2 (R12) (Ye et al., 2016; Zhou et al.,2011).
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� ���������
+�+ (���=3.2)
� ���������
+�+ (���=3.2)
� ��������� ���� R(6)

�2
−∙ + �� → ����− (��3

−) ⇋ �����
+����−

� �����
+����−

� �����
+����−

� ����� �2 + 2��2
− + �+ ���=3.2

� ���� ����
���=3.2
� ���� ����
���=3.2
� ���� ���� R(7)290

��2
− +∙ �� → ��2 + ��− R(8)

��2
− + �+ ���=3.2

� ���� ����
���=3.2
� ���� ���� R(9)

��2+ + ��3
− + 2�+ → ��3+ + ��2(�) + �2� R(10)

��3
− ℎ�

→
ℎ�
→
ℎ�
→ [��3

−] ∗ →→→ �(3�) + ��2
− �+

��
�+

��
�+

�� ���� R(11)

��3
− ℎ�

→
ℎ�
→
ℎ�
→ [��3

−] ∗ �+

��
�+

��
�+

�� ��2 + ∙ �� R(12)295

A simplified illustration of the reaction mechanism is shown in Figure S4. As shown in Figure S3, the HONO and NO2

production during the photodegradation of NPM in the presence of Fe3+ is significantly enhanced relative to that in the

absence of iron ions. High Fe3+ concentration (0.5-0.8 mg mL-1) promotes the HONO and NO2 formation compared to low

Fe3+ concentrations (0.25-0.5 mg mL-1). The formed NO3- and NO2- were also measured by the ion chromatography analysis

to evaluate the effect of Fe3+ (see the details in Text S1 and Figure S5). As shown in Figure S5, the concentration of NO3-300
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and NO2- decreased sharply in the presence of Fe3+ compared to that in absence of Fe3+. These results suggest that HONO

and NO2 enhancement during the irradiation of NPM solutions containing Fe3+ can be ascribed to the transformation in the

products distribution from NO3- and NO2- rather than a change in the products formation from the photodegradation of NPM.

4 Conclusions and outlook

Laboratory study revealed the formation of a greenhouse gas N2O by photolysis of NPM (Aregahegn et al., 2018), but305
previously the theoretical calculation predicted that the photolysis of NNs can generate NO2 (Palma et al., 2020).

The current study reveals that the light-induced degradation of NPM leads to enhanced production of HONO and NOx

driven by secondary photochemistry between redox reaction of Fe3+/Fe2+ and photoproduced ROS. We quantified the

photochemical HONO and NOx formation through NPM photodegradation, and we suggest that this chemistry may

represent a significant source of HONO and NOx in the regions where surface waters are polluted with NNs insecticides.310
In order to estimate the relative importance of the NPM photolysis to global HONO and NOx emissions in the atmosphere,

we parametrized the global HONO and NOx production related to NPM photochemistry, based on the NPM photolysis

kinetic data and gridded downward solar radiation. The parameterization of HONO and NOx production from NPM

photolysis at Fe3+ concentration of 0.025 mg L-1 used in our estimation is based on Eq-S1, Eq-S2 and Eq-S3. The

concentrations of NNs vary from several ng L-1 to hundreds of µg L-1 (Anderson et al., 2013). In view of the high315
concentration of NPM (50000 µg L-1) used in our experiments, we selected a rationalization parameter scheme related to the

environmental concentration of NPM (50 µg L-1). The kinetic data has shown that the rate constant (k) is faster at low NPM

concentration compared to that of high NPM concentrations (Figure S6). Current chemical models do not explicitly consider

this source of reactive nitrogen species. In this manner, we are able to generate an hourly dataset of the NOx and HONO

fluxes released from NPM chemistry, and we analyze the amount and spatial pattern of the fluxes in Figure 5. We note that320
although such estimation is rather simplified and can be biased in terms of the spatial heterogeneity as we do not consider the

spatial variation of environmental NPM concentrations, our study presents a pioneer attempt to quantify the global source of

HONO and NOx from the NPM photochemistry, as current chemical models do not explicitly consider this source of

reactive nitrogen species. This inventory can be then applied in chemical models to quantify the environmental impact of

HONO and NOx fluxes emerging from NPM photochemistry. The details about parameterization of HONO and NOx325
production emerged from NPM photochemistry are described in the Text S2. Figure 5 shows the spatial distributions of

HONO and NOx fluxes produced from NPM photochemistry in the tested year 2017. The results indicate that globally

produced HONO and NOx fluxes based on NPM photochemistry are 0.77 and 0.5 Tg N year-1, respectively, making a total

of 1.27 Tg N year-1.
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330

Figure 5. Global emissions of HONO and NOx, produced by photochemistry of NPM in the presence of iron ions for year 2017.

The total production of HONO and NOx emissions due to NPM photochemistry (1.27 Tg N year-1) represents 3.5% of the

anthropogenic emissions of NOx related to fossil fuel in the year 2017 (36.2 Tg N year-1, from the Community Emissions

Data System (CEDS) inventory), and about 14.8% of the soil emissions (8.6 Tg N/year (Lu et al., 2021)). The highest

HONO and NOx fluxes (74%) are produced by the photochemistry of NPM at the Ocean surface in the presence of iron ions,335
especially tropical oceans. The latter can be ascribed to the higher solar radiation in the tropic region. As displayed in the

Figure S7, it is obvious to see that the spatial distribution of solar radiation is particularly strong in tropical oceanic regions,

which can further confirmed the higher HONO and NOx fluxes at the ocean surface. The high reactive nitrogen emissions

could also appear over other water surfaces like inland waters and lakes worldwide, through similar mechanisms induced by

NPM photochemistry. Further studies are needed to quantify the relative importance of the recognized HONO and NOx340
sources from NPM photochemistry on a global scale as well as the impact on tropospheric ozone and OH in the marine

boundary layer.
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