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Abstract. The Bering Sea shelf supports a highly productive marine ecosystem that is vulnerable 

to ocean acidification (OA) due to the cold, carbon rich waters.  Previous observational evidence 

suggests that bottom waters on the shelf are already seasonally undersaturated with respect to 15 

aragonite (i.e. Ωarag < 1), and that OA will continue to increase the spatial extent, duration, and 

intensity of these conditions.  Here, we use a regional ocean biogeochemical model to simulate 

changes in ocean carbon chemistry for the Bering Sea shelf from 1970-2022.  Over this 

timeframe, surface Ωarag decreases by -0.043 decade-1 and surface pH by -0.014 decade-1, 

comparable to observed global rates of OA.  However, bottom water pH decreases at twice the 20 

rate of surface pH, while bottom [H+] decreases at nearly three times the rate of surface [H+].  

This amplified bottom water acidification emerges over the past 25 years and is likely driven by 

a combination of anthropogenic carbon accumulation and a trend of increasing primary 

productivity and increasing subsurface respiration and remineralization.  Due to this enhanced 

bottom water acidification, the spatial extent of bottom waters with Ωarag < 1 has greatly 25 

expanded over the past two decades, along with pH conditions harmful to red king crab.  

Interannual variability in surface and bottom Ωarag, pH, and [H+] has also increased over the past 

two decades, resulting in part from the increased physical climate variability. We also find that 

the Bering Sea shelf is a net annual carbon sink of 1.1-7.9 TgC/year, with the range resulting 

from the difference in the two different atmospheric forcing reanalysis products used.  30 

Seasonally, the shelf is a significant carbon sink from April-October but a somewhat weaker 

carbon source from November-March.  
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1 Introduction 

The global ocean presently absorbs 25-31% of annual CO2 emissions, making it a critical 

carbon sink that mitigates anthropogenic warming (Gruber et al., 2019; Friedlingstein et al., 35 

2020; McKinley et al., 2020).  The uptake of this anthropogenic carbon has driven a shift in the 

marine carbonate system towards a state of lower pH and carbonate saturation, a process referred 

to as Ocean Acidification (OA; Feely et al., 2004).  High latitude regions are particularly 

vulnerable to OA due to the poorly buffered, cold temperature waters generating naturally low 

carbonate saturation states (Fabry et al., 2009).  Experimental studies have determined a number 40 

of negative effects to marine organisms due to OA (Doney et al., 2020), particularly for 

organisms that form calcium carbonate shells as these shells become harder to build and maintain 

as carbonate saturation states (Ω) approach and drop below 1.  Pteropod shell dissolution has 

already been observed in several high-latitude environments (Bednarsek et al., 2012; Niemi et 

al., 2021), and OA is expected to shift these conditions equatorward over time. 45 

 Although OA is driven by the increase in atmospheric CO2 and subsequent increase in 

ocean carbon uptake, there are a number of physical and biogeochemical processes that can 

modify the rate of OA expected from the increase in atmospheric CO2 (Hauri et al., 2021).  For 

example, the accumulation of respired carbon at depth reduces the buffer capacity of subsurface 

water, leading to amplified subsurface acidification rates compared to surface waters throughout 50 

large regions of the global oceans (Fassbender et al., 2023).  Coastal shelf systems can 

experience local rates of acidification much faster than the global oceans due to upwelling (Feely 

et al., 2008), biological respiration (Feely et al., 2010), eutrophication (Laurent et al., 2017), and 

changes in circulation (Siedlecki et al., 2021).  In the Arctic, changes in sea ice formation (Zhang 

et al., 2020) and biological productivity and remineralization (Qi et al., 2022) can generate 55 

acidification rates 2-3 times greater than the rate for the open oceans.   

 The Bering Sea is composed of a relatively large (> 500km wide and > 100km long), 

shallow eastern coastal shelf along with, a narrow western shelf, and a deep interior basin.  The 

shelf itself is composed of three distinct biophysical domains (inner, middle, and outer) often 

delineated by the 50m, 100m, and 200m isobaths. General circulation on the shelf tends to follow 60 

these isobaths in a north-northwest direction, eventually feeding into the western intensified 

Anadyr Current, which then flows through Bering Strait, thereby providing a key conduit 

between the Bering Sea and Arctic (Kinder et al., 1986; Stabeno et al., 2016).  The Bering Sea 
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shelf ecosystem is strongly tied to the atmospheric and oceanic physical forcing, with the 

seasonal formation and retreat of sea ice playing a fundamental role through the development of 65 

the bottom water cold pool and by setting the timing and magnitude of the spring phytoplankton 

bloom (Brown and Arrigo 2013; Sigler et al., 2014).  While the formation of sea ice occurs 

annually, the areal extent and timing of ice formation and retreat can vary substantially.  This 

variability during the past 10-20 years has consisted of multi-year periods of persistent warm, 

low sea ice extent (e.g. 2001-2005 and 2014-2018) or cold, high sea ice extent conditions (e.g. 70 

2007-2013; Stabeno et al., 2012).  The recent warm years have generated record breaking low 

sea ice extent and high temperatures in the northern Bering Sea, with substantial negative 

impacts to the marine ecosystem (Stabeno and Bell, 2019; Siddon et al., 2020).   

 On annual timescales, the Bering Sea shelf is generally considered a net carbon sink, 

driven by substantial spring-summer primary productivity generating low surface ocean pCO2 75 

values and a net influx of carbon from the atmosphere (Bates et al., 2011; Cross et al., 2014; 

Pilcher et al., 2019).  A portion of the carbon fixed by this mixed layer productivity sinks to 

bottom waters where it is respired into inorganic carbon and can be re-emitted back to the 

atmosphere in fall-winter due to strong atmospheric wind speeds and vertical mixing (Cross et 

al., 2014; Pilcher et al., 2019).  Sea ice further impacts the seasonal carbon cycle by acting as a 80 

physical barrier inhibiting air-sea gas exchange.  Furthermore, sea ice formation can pump DIC 

and total alkalinity to the bottom along with salinity via brine rejection, while sea ice melt dilutes 

both variables in surface waters (Mortenson et al., 2020).  

 Previous observational and modeling studies have found that seasonal periods of 

undersaturation of aragonite (Ωarag < 1) are already occurring within subsurface waters and near 85 

regions of significant riverine freshwater runoff (Mathis et al., 2011; Cross et al., 2013; Pilcher et 

al., 2019).  Subsurface Ωarag < 1 waters occur in summer and early fall, driven by bacterial 

respiration associated with remineralization of sinking organic matter, particularly in regions of 

high primary productivity in the middle and outer shelf domains (Mathis et al., 2011).  Surface 

waters generally maintain much higher values of Ωarag and pH due to this significant primary 90 

productivity, except near freshwater runoff, particularly the mouths of the Yukon and 

Kuskokwim rivers, where Ωarag < 1 and relatively low pH values are driven by relatively high 

DIC:TA ratios due to terrestrial carbon exports (Mathis et al., 2011; Pilcher et al., 2019).  

Furthermore, model simulations suggest that winter surface Ωarag values are relatively low and 
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close to 1, particularly in ice covered regions where entrained subsurface carbon cannot re-95 

equilibrate with the atmosphere (Pilcher et al., 2019).  Winter observational data is extremely 

sparse due to challenging weather and sea ice conditions; however, limited late-fall data suggest 

supersaturated pCO2 conditions (Cross et al., 2014; Cross et al., 2016).  Model simulations 

project that seasonal periods of surface Ωarag undersaturation may grow to encompass up to 5 

months of the year following the RCP 8.5 emissions scenario and 2-3 months following the RCP 100 

4.5 scenario (Pilcher et al., 2022).     

 The Bering Sea sustains a substantial U.S. fishery, representing 40% of U.S. total fish 

catch by weight and $3 billion in annual value (Wiese et al., 2012).  These fisheries also provide 

commercial, subsistence, and cultural benefits to many Alaskan communities, putting them at 

risk from ocean acidification (Mathis et al., 2015).  In the Bering Sea, red and tanner crab have 105 

emerged as species particularly vulnerable to the direct effects of OA.  The growth rates and 

survival of larval and juvenile crab for both species are decreased at lower pH values (Long et 

al., 2013a,b; Long et al., 2016).  Incorporating these results into bioeconomic models suggests 

that the red king crab fishery could substantially decline if OA is not accounted for in the 

fisheries management process (Seung et al., 2015; Punt et al., 2016).  Recent closures of the 110 

snow crab fishery and the Bristol Bay red king crab fishery have had devastating impacts to the 

Bering Sea commercial fishing community and has led to some discussion concerning the 

potential role of OA.  However, recent laboratory studies have found that snow crab appear 

resilient to OA (Algayer et al., 2023), and that the snow crab fishery collapse may be due to a 

mass mortality event resulting from the 2018-2019 heatwave (Szuwalski et al., 2023).  In 115 

comparison to the collapse in snow crab populations, the Bristol Bay red king crab fishery has 

been in a steady decline since 2014 (Fedewa et al., 2020).  Although model results suggest that 

bottom waters in parts of Bristol Bay have pH values harmful to larval and juvenille red king 

crab, these crab populations tend to inhabit nearshore regions that are relatively well buffered 

with much higher pH values (Pilcher et al., 2022).  Thus, the potential role of OA in impacting 120 

Bristol Bay red king crab populations is currently unclear.  

 Recent work utilized a regional ocean biogeochemical model and a dynamical 

downscaling technique to generate long-term projections of OA for the Bering Sea shelf using 

multiple Earth System Models (ESMs) and emissions scenarios (Pilcher et al., 2022).  Here, we 

greatly expand the temporal coverage of our previous model hindcast (e.g. Pilcher et al., 2019) to 125 
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simulate 53 years (1970-2022) of the Bering Sea marine carbon cycle.  We use this model output 

to quantify spatial-temporal trends in Bering Sea shelf marine carbonate variables over the entire 

hindcast and the underlying mechanisms generating heterogeneity in these trends.  We conclude 

by illustrating how this model output is being incorporated into the fisheries management 

process and the next steps to continue refining these model-based OA products. 130 

   

2 Methods 

2.1 Base model description 

 The regional Bering10K model is an implementation of the Regional Ocean Modeling 

System (ROMS; Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008), with 10 km 135 

horizontal resolution and 30 vertical layers.  The Bering10K model simulates sea ice formation 

and melt, along with tidal mixing.  A thorough description of the physical model can be found in 

Hermann et al., (2016) and Kearney et al., (2020).  This physical model is coupled to a lower 

trophic NPZD model, originally developed as part of the Bering Sea Ecosystem Study 

(BESTNPZ; Gibson and Spitz 2011), and recently updated by Kearney et al., (2020).  Briefly, 140 

the BESTNPZ model simulates two phytoplankton groups (small and large), five zooplankton 

groups (microzooplankton, small copepods, large copepods, euphausiids, and jellyfish), three 

nutrient groups (nitrate, ammonium, iron), and two detrital groups (slow and fast sinking).  

BESTNPZ also contains an ice biology sub-model which simulates ice algae, nitrate, and 

ammonium, along with a benthic sub-model which simulates a benthic infauna group and a 145 

detrital group.  A thorough description of the BESTNPZ model can be found in Kearney et al., 

2020.    

 Carbonate chemistry is incorporated into the Bering10K BESTNPZ model by simulating 

dissolved inorganic carbon (DIC) and total alkalinity (TA), which are used to calculate the 

remainder of the carbonate system following the OCMIP-2 protocols (Orr et al., 1999) and 150 

CO2SYS (Lewis and Wallace, 1998).  Here we report pH and [H+] values on the total scale.  

DIC is generated from planktonic respiration and detrital remineralization, and consumed via 

planktonic photosynthesis.  Additionally, DIC is exchanged with the atmosphere depending on 

the gradient in the partial pressure of CO2 between the surface ocean and the atmosphere 

(DpCO2) and the wind speed following Wanninkhof et al., (2014).  The atmospheric CO2 155 

concentration is set to the monthly in-situ concentration from Barrow, Alaska (Thoning et al., 
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2022).  This timeseries started in 1973; for 1970-1972, we take the 1973 Barrow monthly 

timeseries and subtract the respective annual growth rate from the Mauna Loa timeseries 

(https://gml.noaa.gov/ccgg/trends/).  Riverine freshwater runoff flux is prescribed following 

freshwater discharge data from Alaska and Russia (Kearney, 2019).  This river runoff contains 160 

seasonally varying concentrations of DIC and TA following data collected at Pilot Station at the 

mouth of the Yukon River (Striegl et al., 2007; PARTNERS, 2010, Pilcher et al., 2019). 

 The atmospheric forcing for air temperature, sea level pressure, longwave and shortwave 

radiation, u and v winds, specific humidity, and rainfall are provided by a combination of 

reanalysis products.  For 1970-1994 we use the Common Ocean Reference Experiment (CORE; 165 

Large and Yeager, 2009) forcing, for 1995-2011 the Climate Forecast System Reanalysis (CFSR; 

Saha et al., 2010), and for 2011-2021 the Climate Forecast System Operational Analysis 

(CFSv2-OA; Saha et al., 2014).  Lateral open boundary conditions at weekly resolution for 

temperature, salinity, and oceanic velocities (u and v) are derived from the larger scale Northeast 

Pacific model (Danielson et al., 2011) for the CORE forcing timeframe, and the CFSR/CFSv2-170 

OA for CFSR forcing timeframe.  Nitrate boundary conditions are monthly climatologies from a 

long-term run of the larger Northeast Pacific (NEP-5) ROMS domain (Danielson et al., 2011).  

Oxygen initial conditions and monthly boundary conditions are climatologic means from the 

World Ocean Atlas 2018 product (Garcia et al., 2018).  Water column iron concentrations are 

nudged towards empirical climatological profiles. 175 

 The lateral boundary conditions for DIC and TA are calculated via linear regressions with 

salinity, derived from observational data collected primarily from 2008-2010 (Pilcher et al., 

2019).  The salinity-DIC regression has changed over time as the oceanic uptake of CO2 has 

increased the DIC concentration of waters, with no effect on salinity.  Thus, using this same 

relationship for the boundary conditions at the start of the hindcast in 1970 would introduce a 180 

high DIC bias.  To account for changes in DIC over time, we center the DIC-salinity relationship 

on the year 2009 (i.e. midpoint of 2008-2010 sampling timeframe) and subtract (add) DIC for 

years before (after) 2009.  The DIC value added or subtracted is calculated from the linear trend 

in DIC calculated from the historical runs of the Coupled Model Intercomparison Phase 6 

(CMIP6) over the 1970-2009 timeframe from the mean of three different Earth System Models.  185 

These three ESMs were selected as they have been coupled previously with the Bering10K 
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regional model (Cheng et al., 2021; Pilcher et al., 2022).  We chose to use this method to gain the 

higher spatial resolution, particularly in the vertical, provided by the ESM output.  

Initial conditions for the start of the hindcast in 1970 for non-carbonate chemistry 

variables are taken from a 30-year model spin-up using repeating 2001 forcing (Kearney et al., 190 

2020).  Initial conditions for TA are calculated using the same salinity regression used for the 

boundary conditions.  Similarly, the DIC initial conditions use the salinity regression, along with 

subtracting the same long-term trend used for the boundary conditions.  The model is then spun-

up for an additional three years using repeating 1970 forcing, at which point the model seasonal 

CO2 cycle was approximately in balance with minimal year-to-year on-shelf variations. The 195 

model hindcast is then started and run continuously for 1970-2022.   

 

2.2 Model updates 

A new addition to the BESTNPZ model presented in previous work is the inclusion of 

oxygen cycling following Siedlecki et al., (2015) and Bianucci et al., (2011).  Oxygen cycling 200 

contains phytoplankton growth as a source, and respiration, remineralization, and nitrification as 

sinks.  Oxygen cycling throughout the water column is governed by the following equation:  
𝜕𝑂2
𝜕𝑡

= 𝑃ℎ𝑦! ∗ 𝑢!(𝐿𝑖𝑔ℎ𝑡, 𝑁) − 𝑟𝑒𝑠𝑝(𝑃ℎ𝑦!) − 𝑟𝑒𝑠𝑝(𝑍!) − 𝑟𝑒𝑚𝑖𝑛(𝐷!) − 𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

+ 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

(1) 205 

Surface and bottom oxygen concentrations are further modified through the following equations, 

respectively: 
 

𝜕𝑂2
𝜕𝑡
?
"#$%&'(

=
𝑉)*
∆𝑧 ∗ C

[𝑂*]"&+ − [𝑂*]|,-"#$%&'(H 

(2) 210 

𝑉)* = 0.251𝑢* N
𝑆'
660Q
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𝜕𝑂2
𝜕𝑡
?
23++34

=
1
∆𝑧 N𝑊5

𝑑𝐷

𝑑𝑧
?
,-23++34

Q − 𝑟𝑒𝑠𝑝(𝐵𝑒𝑛) − 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛(𝐵𝑒𝑛) − 𝑟𝑒𝑚𝑖𝑛(𝐷𝑒𝑡𝐵𝑒𝑛) 

(4) 

where Phyi is the phytoplankton group, ui is the growth rate, Light and N and the light and 215 

nutrient limitations respectively, resp is respiration, Zi is the zooplankton group, remin is 

bacterial remineralization, and Di is the detrital group.  For the surface equation (2), ∆z is the 

vertical thickness of the grid cell, [O2]sat is calculated following the equation from Garcia and 

Gordon (1992), Sc is the Schmidt number, and VO2 is the gas transfer velocity following 

Wanninkhof (2014).  For the bottom equation (4), WD is the detrital sinking rate, Ben is the 220 

benthic infauna group, and DetBen is benthic detritus.  The above model equations (1-4) utilize 

constant stoichiometric molar ratios consisting of C:N = 106:16, O2:N = 138:16 for nitrate 

fluxes, and O2:N = 106:16 for ammonium fluxes.  The complete BESTNPZ model equations are 

found in Kearney et al., (2020).   

 225 

2.3 Observational data for model validation 

To assess overall model skill, we compare model hindcast output to several observational 

datasets.  One of the largest available datasets for carbonate chemistry in the Bering Sea was 

collected and compiled during the 2008-2010 Bering Sea Ecosystem Study (BEST) and Bering 

Sea Integrated Research Program (BSIERP).  This dataset is particularly valuable due to the 230 

large number of discrete DIC and TA samples; these are the prognostic model variables used 

within the model and therefore provide a direct model-data comparison.  These data were 

typically collected in the spring (April/May) and summer (June/July) seasons, along with a fall 

(September/October) sample period in 2009.  The sampling regime covered a large portion of the 

U.S. southeastern Bering Sea shelf, including three cross-shelf transects (Fig. 1).  pCO2, pH, and 235 

Ωarag values were calculated from DIC, TA, salinity, and temperature measurements using 

CO2SYS (Cross et al., 2012; Cross et al., 2013).  

The M2 mooring is the longest dataset for surface ocean pCO2 in the Bering Sea.  While 

the M2 mooring itself provides a multi-decadal long timeseries of standard oceanographic 

properties, the moored autonomous surface vehicle (MAPCO2; Sutton et al., 2019) system used 240 

to measure pCO2 was first deployed in 2013 and has since been re-deployed with the M2 

mooring during the ice-free season for every year except 2020.  Generally, this timeseries covers 
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the months of May-September, however in 2021 it was left out much later than usual, providing 

the first glimpse of late fall and early winter pCO2.  For further model validation of pCO2, we 

also utilize pCO2 measurements from an Autonomous Surface Vehicle CO2 System (ASVCO2)  245 

 
Figure 1: Spatial map of the model domain along with the model bathymetry.  Also shown are the discrete ship-based sample 
locations (blue dots) and the two moorings (red diamonds) used for model validation.  The black line denotes the spatial region 
used to encompass the Bering Sea shelf. 

onboard the Saildrone uncrewed surface vehicle (USV) (Wang et al., 2022).  This dataset 250 

provides a transect of surface ocean pCO2, generally running from the Aleutian Islands to the 

Bering Strait during missions to the Chukchi Sea from 2017-2019.  Therefore, each year contains 

a northward transect in late spring/early summer, along with a southward transect in late 

summer.   

 255 

3 Results 

3.1 Model Skill Assessment 

Model property-property comparisons and associated skill statistics between discrete 

samples collected during 2008-2010 and the model hindcast illustrate relatively high correlation 

coefficients across the water column for most model prognostic variables (Fig. 2).  However, a 260 

slight negative TA bias combined with a slight positive DIC bias work synergistically to generate 

a relatively larger negative bias in Ωarag and pH.  Another notable model-data mismatch is that 

subsurface points (depth > 200m) for salinity, NO3, TA, and DIC are all relatively lower in the 

model compared to the observations.  These points are all outside of our definition of the Bering 

M2

M8
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Sea shelf (encompassing depth 0-200m; Fig. 1) and are located on the shelf break, which is 265 

smoothed in the model bathymetry to ensure numerical stability (Kearney et al., 2020).   

 
Figure 2: Plots of model (x-axis) and observed (y-axis) co-located points for different model variables.  Also shown in each plot 
are the R, RMSE, and bias skill statistics.  Observed data are from the 2008-2010 BEST-BSIERP project, shown as blue dots in 
Fig. 1.  Note that here the colorbar is constrained to depths between 0-200m because our focus is on the shelf, though deeper, off-270 
shelf points (denoted by bright yellow dots) are still included. 

The model-data comparison illustrated in Fig. 2 is further summarized via a Target 

Diagram (Jolliff et al., 2009) in Fig. 3.  In a Target diagram, the position in the y-axis denotes 

either a positive (Y > 0) or negative (Y < 0) normalized model bias, while the position in the x-

axis signifies whether the model has a larger (X > 0) or smaller (X < 0) root-mean-square-275 

deviation (RMSD) compared to the observed data.  The radial distance from the origin 

(normalized RMSD) is then related to the modeling efficiency metric (MEF; Stow et al., 2009), 

where model variables that lie within the RMSD < 1 circle have a MEF > 0, signifying that the 

model outperforms an estimate based solely on the mean of the observations.  Figure 3 illustrates 

that all highlighted model variables fall within the RMSD value of 1, with relatively low overall 280 

biases.  Most model variables display less variability compared to the observations, except for 

Ωarag which displays more variability. 

In addition to the ship-based observational comparison, model output of surface ocean 

pCO2 is also compared to the M2 mooring timeseries (Fig. 4).  The model accurately captures the 

timing of the late spring pCO2 drawdown along with the subsequent increase in pCO2 leading 285 

into summer.  Furthermore, the modeled late fall and early winter increase in pCO2 is also 

apparent in the mooring for the single year that the mooring was left out late into the season.    

However, the model generally tends to underestimate the magnitude of the late spring pCO2 

drawdown, which then subsequently leads to model overestimations of summer pCO2.  Notable 
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exceptions are apparent in 2013, 2018, and 2022 when the observed late spring pCO2 drawdown 290 

was relatively weaker, and the modeled drawdown is more comparable with observations.  

 
Figure 3: Target diagram summarizing the data comparison from Fig. 2.  Here, the X-axis is the normalized unbiased RMSD 
between the model and data, multiplied by the sign of the difference between model and observed standard deviation.  The Y-axis 
is the normalized mean bias. 295 

 
Figure 4: M2 mooring pCO2 data (blue dots) compared to model daily pCO2 values (black line) at the equivalent model grid cell 
location. The mooring is generally deployed in spring and retrieved in fall, though was out much later in 2021. 
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 Further surface pCO2 comparisons between the model output and in-situ pCO2 from the 

autonomous Saildrone platform are shown in Fig. 5.  Overall, the model does a reasonably  300 

 
Figure 5: Surface pCO2 values from Saildrone transects (dots) with model surface pCO2 values averaged over the equivalent 
timeframe as the background shading.   

sufficient job of capturing the dominant spatial pattern in pCO2 illustrated by the Saildrone data, 

namely the relatively lower pCO2 values in the southeastern and northern Bering Sea with higher 305 

values in the central inner shelf domain near Nunivak Island.  The seasonality between the two 

transects also aligns, with relatively lower values during the northward transect and higher values 

during the southward transect.  However, the model appears to consistently underestimate the 

pCO2 drawdown (i.e. model pCO2 biased high compared to Saildrone data) in the southeastern 

Bering Sea during the northward transect, similar to the underestimated spring pCO2 drawdown 310 

from the M2 mooring comparison (Fig. 4).  However, the southward transects suggest that this 

bias is reversed later in the year, where the model is now biased low compared to the Saildrone 

data, which is also the opposite bias of what we see during the late summer and early fall in the 

M2 mooring comparison.  Additionally, the model tends to underestimate pCO2 in the central 

inner shelf domain just to the west of Nunivak Island.  It appears that the Saildrone data is 315 
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consistently capturing a relatively high plume of pCO2 in this region.  The model also generally 

simulates these relatively high pCO2 waters in that region of the inner shelf domain, but there is a 

lot of interannual variability and seasonality in this feature. 

 This analysis suggests that the model is simulating the Bering Sea carbon cycle 

reasonably well, though there are some noted differences.  Namely, the model appears to 320 

underestimate variability overall (Fig. 3) and underestimate the magnitude of the seasonal pCO2 

drawdown according to both the M2 mooring and Saildrone data.  This could be due to a 

somewhat smaller magnitude spring bloom, which is consistent with slight positive model biases 

in DIC and NO3 from the ship-based observation comparison (Fig. 2).  This bias could translate 

to model pH and Ωarag values that are biased low in surface waters but biased high in bottom 325 

waters, due to less respiration of sinking organic carbon from a smaller spring bloom.  However, 

we caution that bottom measurements are very limited overall, and were all collected during the 

anomalously cold-water conditions during 2008-2010.  Furthermore, pCO2 is a relatively 

difficult variable for the model to capture because it is a nonlinear, diagnostic variable that is 

dependent on temperature, salinity, DIC, and TA.  This nonlinearity and the potential for 330 

synergistic biases (e.g. positive DIC bias but negative TA bias) can generate very large 

magnitude deviations.  Thus, additional bottom water data, particularly for DIC and TA, would 

be extremely useful in further validating the bottom water carbonate chemistry beyond the 2008-

2010 analysis here. 

 335 

3.2 Impact of forcing on linear trends 

The Bering10K BESTNPZ model has historically been utilized for a variety of fisheries 

management applications (Gibson and Spitz, 2011; Kearney et al., 2020).  For these applications, 

the model hindcast timeframe needed to run through the present and extend back in time to cover 

major transitions in the Bering Sea during the 1970s and 1980s.  No individual forcing product 340 

provided this full timeframe, therefore, it was necessary to combine the CORE and CFSR 

forcing.  Furthermore, the transition between products in 1995 was selected as the 1990s 

experienced relatively more stable climate variability for the Bering Sea, as this was after the 

shifts in the 1970s and 1980s, but prior to the temperature stanzas of the early 2000s (Stabeno et 

al., 2012).  However, any significant differences in either the atmospheric forcing or the oceanic 345 

boundary conditions between the datasets could generate a significant deviation in model results, 
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particularly immediately following the transition in 1995.  Furthermore, this transition (i.e. 

essentially a spin-up to the new model forcing) could generate erroneous linear trends when 

calculated over the entire timeframe, that would represent a shift in the variable over a discrete 

period, rather than a multi-decadal trend.  To help clarify this potential influence, we ran a 350 

separate simulation which branched off from the primary hindcast simulation in 1995 by 

continuing the CORE forcing until 2003.  We then compared these results to the primary 

hindcast simulation (e.g. simulation that switches to CFSR in 1995) to assess the effect of this 

transition in forcing. 

 Surface and bottom salinity for the Bering Sea shelf provides an example of how the shift 355 

in forcing can generate an erroneous long-term trend.  A noticeable decrease in salinity of ~ 0.5 

psu immediately follows the switch to CFSR forcing and oceanic boundary conditions, which 

does not occur when the CORE forcing and northeast Pacific model derived oceanic boundary 

conditions are extended to 2003 (Fig. S1).  This decrease generates a negative trend in surface 

salinity when calculated over the entire timeframe, however, trends over the individual forcing 360 

timeframes are extremely weak and of the opposite sign for the CORE timeframe. 

 To account for the potential influence of this transition in forcing, we report all timeseries 

linear trends over three timeframes: 1.) the complete 1970-2022 CORE-CFS timeframe, 2.) the 

1970-1994 CORE timeframe, and 3.) the 1998-2022 CFSR timeframe.  We start the CFSR trends 

in 1998 rather than 1995 to account for several years for the transition in forcing, based in part 365 

on the re-equilibration to the new forcing by 1998 demonstrated in salinity (Fig. S1).  

Furthermore, dividing the hindcast into the two timeframes of 1970-1994 and 1998-2022 

produces two, equivalent 25-year time slices and will help elucidate any acceleration in trends.  

Lastly, we show the results of the CORE simulation extended to 2003 for trend estimates in the 

supplementary information, noting which variables exhibit consistent trends throughout both 370 

forcing datasets, and which variables’ long-term trends (estimated over 1970-2022) are impacted 

by the forcing switch in 1995.    

 

3.3 Bering Sea Shelf Acidification 

Over the 1970-2022 model hindcast, annual surface and bottom Ωarag and pH decrease, 375 

while [H+] increases for the Bering Sea shelf, with linear trends greater at the bottom compared  
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Figure 6: Timeseries plots of model annual average surface (left) and bottom (right) Ωarag (top), pH (middle), and [H+] bottom 
averaged over the Bering Sea shelf region.  Also shown are the linear trend values over three different timeframes. 380 

to the surface (Fig. 6).  We show [H+] in addition to pH because pH changes reflect relative [H+] 

changes and are, therefore, not ideal for comparisons between waters with different initial 

chemistry conditions, such as between surface and bottom waters (Fassbender et al., 2017; 

Fassbender et al., 2021).  Surface Ωarag ranges from 1.7-1.8 at the start of the simulation and 

decreases to 1.5-1.6 by the end, surface pH ranges 8.1-8.125 and decreases to 8.025-8.05, and 385 

surface [H+] ranges from 7.5-7.75 nmol/kg at the start and increases to 9.25 nmol/kg by 2022.  

Furthermore, the bottom pH trend from 1970-2022 is twice as great as the surface trend, while 

the bottom [H+] trend over the same timeframe is nearly three times as great as the surface [H+] 

trend.  In fact, bottom acidity, as denoted by [H+], increases by approximately 40% from 1970-

2022.  These amplified bottom water carbonate trends are driven by the more recent timeframe, 390 
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as trends over the CORE-forced 1970-1994 timeframe are fairly weak, though these trends are a 

bit stronger when extending the CORE forcing to 2003 (Fig. S2).  Surface trends in all three 

carbonate variables are comparable across all time frames, with slightly higher trends from 1998-

2022 for pH and [H+].  Notably, annual bottom Ωarag < 1 conditions first emerge in 2008, and 

after 2020 stay below 1 for the remainder of the model simulation.  Furthermore, bottom pH 395 

values are approaching 7.8 (e.g. conditions demonstrated to negatively affect growth and 

survival of red king crab) by the end of the model simulation.   

Annual average surface Ωarag and pH values from 1998-2022 are generally greater on the 

middle and outer shelf domains compared to the inner shelf domain (Fig. 7-8).  Conversely, 

bottom water values for both variables are generally greater for the inner shelf domain compared 400 

to the middle and outer shelf domains.  The lowest bottom values tend to occur in the northwest 

Bering Sea shelf, in the Gulf of Anadyr.  Relatively lower values of surface Ωarag and pH are also 

apparent near the Yukon River delta.  Most shelf surface waters have annual Ωarag > 1.25 and pH 

≥ 8.0.  Bottom waters, however, are near or below the aragonite saturation horizon (i.e. Ωarag = 1) 

for most of the middle and outer shelf, along with pH values < 8.0 and near 7.8 for the 405 

northwestern middle shelf domain.  Surface Ωarag and pH trends are spatially fairly consistent 

throughout the shelf, with slightly stronger, negative trends over the middle shelf and in the 

northwestern shelf near the Gulf of Anadyr (Fig. 7-8).  Bottom water trends for both variables 

are more spatially heterogenous, with substantially greater trends on the outer shelf domain 

compared to the rest of the shelf.  This region, along with parts of the southeastern middle shelf 410 

domain, displays stronger, negative trends at the bottom compared to the surface, similar to the 

shelf-wide averaged timeseries plots in Fig. 6.  [H+] trends display similar spatial patterns as pH 

and are not shown here. 

 Vertical profiles of modeled pH at the M2 and M8 mooring locations highlight the onset 

of seasonally occurring pH values < 7.8 (Fig. 9).  At M2, these conditions do not occur in the 415 

hindcast until after 2005, at which point they seasonally occur somewhat regularly, and shoal to 

depths between 30-50m.  At M8, pH < 7.8 waters rarely occur prior to 2000, after which they 

occur seasonally every year.  Most years, these conditions also shoal to 30-50m, however, there 

are several years when they occur throughout the entire water column.    
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 420 
Figure 7: Spatial plots of model annual average surface (left) and bottom (right) Ωarag form 1998-2022 (top) along with the linear 
trend for each grid cell (bottom) over the same timeframe.  Bottom waters with depths > 1500m are omitted here as our focus is 
on the shelf. 

3.4 Bering Sea Shelf Carbon Cycle 

 Atmospheric CO2 concentrations significantly increase from 328 µatm in 1970 to 420 425 

µatm by 2022, while the surface ocean pCO2 for the Bering Sea shelf increases from 324 µatm in 

1970 to 402 µatm in 2022 (Fig. 10a).  This lag in the growth rate of surface ocean pCO2 

compared to the atmosphere generates a net decrease in DpCO2 (i.e. pCO2ocean – pCO2atmo) and 

drives a more negative air-sea CO2 flux, where a negative flux indicates a flux of carbon into the 

ocean (Fig. 10b, c).  However, the more negative DpCO2 values with greater carbon fluxes into 430 

the ocean tend to occur from 1995-2022, following the switch from CORE to CFSR forcing.  

Indeed, analysis of the CORE-extended hindcast indicates that the switch in forcing plays a 

significant role, with the CORE forcing suggesting higher oceanic surface pCO2 values and more 

positive CO2 flux values during the overlapping years (Fig. S3).  Furthermore, while there is a 

negative trend in CO2 flux over the entire 1970-2022 timeframe (under combined forcing), there 435 

is a very minimal negative trend over the 1970-2003 CORE forced timeframe and a slight 

positive trend over the 1998-2022 CFSR forced timeframe, indicating that the transition in 
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forcing is biasing the 1970-2022 trend (Fig. S3).  To further illustrate this difference, we 

calculate the total carbon shelf sink using the spatial area of the shelf (i.e. area defined in Fig. 1; 

804,393 km2).  For the CORE-forced 1970-1994 timeframe, the shelf was an annual carbon sink 440 

of 1.1 TgC/year, compared to an annual carbon sink of 7.9 TgC/year for the 1998-2022 CFSR-

forced timeframe.   

 
Figure 8: Spatial plots of model annual average surface (left) and bottom (right) pH form 1998-2022 (top) along with the linear 
trend for each grid cell (bottom) over the same timeframe.  Bottom waters with depths > 1500m are omitted here as our focus is 445 
on the shelf. 

Figure 11 illustrates that a substantial amount of this annual carbon uptake occurs within 

the middle and outer shelf domain and the northern Bering Sea inner shelf domain.  Conversely, 

coastal waters near regions of significant riverine runoff (e.g. Yukon and Kuskokwim Rivers) are 

an annual net carbon source.  The spatial patterns of air-sea CO2 flux are largely consistent with 450 

the spatial pattern in DpCO2, though there are some areas where the two variables are not aligned 

(i.e. not the same sign).  This is especially apparent for the off-shelf Bering Sea Basin, which 

displays slightly negative DpCO2 values, but a relatively strong, positive (i.e. flux out of the  
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Figure 9: Model monthly averaged pH over the entire model timeseries at the M2 (top) and M8 (bottom) approximate model 455 
locations.  The black contour line denotes the threshold for pH values < 7.8, which are conditions harmful to red king crab. 

ocean) CO2 flux.  The difference in both variables between the CFSR and CORE forcing 

timeframes illustrates the substantial changes noted in Fig. 10.  The off-shelf Bering Sea Basin in 

particular displays substantially greater magnitude, negative DpCO2 and CO2 flux values during 

the CFSR-forced timeframe.  CO2 flux values on the outer shelf domain and near the shelf-break 460 

are also substantially more negative (i.e. greater carbon uptake) during the CFSR-forced 

timeframe. 

To further investigate the processes leading to the enhanced ocean carbon uptake, we 

examine the progression of the seasonal carbon cycle over each model decadal timeframe (Fig. 

12).  These figures reveal a non-uniform seasonal increase in surface ocean pCO2, with the 465 

summer (May-September) values increasing at a much lower rate compared to the rest of the 

year.  For example, the seasonal pCO2 summer minimum increases by only 22 µatm over the  
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Figure 10: Timeseries of model annual average (top) surface ocean pCO2 (black line) and atmospheric CO2 concentration 
(dashed line), DpCO2 (middle), and CO2 flux (bottom). Here, DpCO2 is defined as pCO2

ocean – pCO2
atmo and a negative CO2 flux 470 

signifies a flux of carbon into the ocean.  The dotted line denotes the year where the forcing transitions from CORE to CFSR. 

model timeframe, whereas the seasonal winter maximum in January increases by 93 µatm.  

Atmospheric pCO2 also increases over this timeframe, but with minimal changes in seasonality 

(i.e. the seasonal amplitude increases by ~ 6 µatm over the entire timeframe).  The overall effect 

is a slight reduction in positive CO2 flux (i.e. less carbon efflux to the atmosphere) during the 475 

months when the shelf is a net source of carbon (November-March) but generates greater 

magnitude, negative DpCO2 and CO2 flux values during the months when the shelf is a net 

carbon sink (April-September).  Notably, these enhanced negative DpCO2 and CO2 flux values 

occur following the transition to CFSR-forcing. 

 To further understand changes in pCO2, we separate the pCO2 signal into a temperature 480 

component and non-temperature component following Takahashi et al., (2002): 
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Figure 11: Spatial plots of model annual average surface (a) DpCO2 and (b) CO2 flux from 1998-2022.  Also shown is (c) 
∆DpCO2 and the (d) ∆CO2 flux calculated as the difference between the 1998-2022 and the 1970-1994 timeframes. 

𝑝CO*	7 = 𝑝𝐶𝑂*XXXXXXX ∗ 𝑒𝑥𝑝[0.0423(𝑇 − 𝑇X)] 485 

(5) 

𝑝CO*	8387 = 𝑝𝐶𝑂* ∗ 𝑒𝑥𝑝[0.0423(𝑇X − 𝑇)] 

(6) 

where the overbars represent the model annual mean values, pCO2 T is the temperature 

component reflecting the effect of thermal solubility on pCO2, while pCO2 nonT is the remaining 490 

pCO2 effects governed by non-thermal components, including biological activity.  Following 

equations 5 and 6, we can calculate the seasonal amplitude of both pCO2 T and pCO2 nonT, which 

gives an indication of which component has a greater effect on determining the seasonal pCO2.  

Figure 13 illustrates this comparison throughout the model timeframe.  The seasonal amplitudes 

for both pCO2 T and pCO2 nonT increase over the model simulation, however, the amplitude for  495 
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Figure 12: Seasonal plots of model surface ocean pCO2 (top), DpCO2 (middle), and CO2 flux (bottom) averaged over multiple 
timeframes. 

pCO2 nonT increases to a much greater extent.  Furthermore, the pCO2 nonT amplitude is always 500 

greater than the pCO2 T amplitude, with the ratio increasing to greater than two. 

Figure 6 illustrates that linear trends in Ωarag and pH are greater at the bottom compared 

to the surface, especially for the CFSR-forced timeframe.  Figure 14 demonstrates that this is 

also true for the trend in DIC, where the bottom trend over the entire model hindcast is a little 

over twice as strong compared to the surface.  The CORE and CFSR forcing comparison 505 

illustrates that this enhanced bottom trend is a result of the CFSR-forced timeseries which is a 

factor of ~1.5 greater at the bottom compared to the surface for 1998-2022.  Conversely, the 

CORE-forced surface trend is more than three times as strong as the bottom trend.  However, 

extending the CORE forcing to 2003 doubles the bottom DIC trend, reducing this surface to 

bottom trend comparison to less than a factor of two (Fig. S4).  There are also positive trends in 510 

integrated primary production and bottom water remineralization, along with a negative trend in  
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Figure 13: Timeseries of the yearly maximum seasonal amplitude of pCO2-T (blue dotted line), pCO2-nonT (solid blue line), and 
the ratio of pCO2-nonT / pCO2-T (orange line).   

bottom oxygen concentrations over the entire model timeframe.  Here, primary production refers 515 

to gross primary production (GPP) and remineralization encompasses all detrital remineralization 

and benthic excretion.  Productivity and remineralization rates are both relatively high to start the 

model simulation, before decreasing to a minimum in the early 1990s, and then steadily 

increasing through the remainder of the model simulation.  This leads to opposite trends in all 

three variables between the CORE and CFSR forced timeframes, with CORE trending towards 520 

lower productivity, remineralization, and higher oxygen, but CFSR trending towards higher 

productivity, remineralization and lower oxygen.  However, the CORE trends are more affected 

by the relatively anomalous initial values, and the extended CORE-forced simulation also 

suggests a shift towards higher productivity and remineralization, though not to the same extent 

as the overlapping CFSR-forced years (Fig. S4). Over the entire model hindcast, productivity is 525 

strongly correlated with bottom remineralization (R = 0.92) and negatively correlated with 

bottom oxygen (R = -0.76). 
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Figure 14: Timeseries plots of Bering Sea shelf model annual average (a) surface DIC, (b) bottom DIC, (c) depth integrated 
primary productivity, (d) bottom water remineralization, and (e) bottom water oxygen concentration.  Also shown are the linear 530 
trend values over three different timeframes.   

 

4 Discussion 

Our model hindcast simulates surface Ωarag and pH trends of -0.043 decade-1 and -0.014 

decade-1 and bottom Ωarag and pH trends of -0.066 decade and -0.028 decade-1 respectively from 535 

1970-2022 for the Bering Sea shelf.  This surface pH trend is comparable to the global observed 

mean pH decline over a similar timeframe due to ocean acidification (Lauvset et al., 2015; Ma et 

al., 2023).  Our surface Ωarag trend is lower than the global observed Ωarag trend of -0.071 decade-

1 (Ma et al., 2023), though the global high latitude trend is more comparable to our model trend.  

Pilcher et al., (2022) projected that surface Ωarag on the Bering Sea shelf would decline by -0.044 540 
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respectively, while surface pH would decline by -0.015 to -0.04 decade-1.  Thus, our hindcast 

simulation has a historical acidification rate from 1970-2022 that is comparable to the projected 

RCP 4.5 acidification rate.  Conversely, the RCP 8.5 acidification rate is more than twice as great 

as our historical rate.  This comparison provides context for the rate of change in carbonate 545 

chemistry that marine ecosystems have already experienced compared to the projected rate over 

the 21st Century. 

Surface trends in Ωarag are comparable across all model timeframes, while surface trends 

in pH and [H+] are stronger over the last 25 years, reflecting a recent increase in the rate of 

acidification likely driven by the increased rate of atmospheric CO2 growth.  Interannual 550 

variability in surface carbonate variables also increased over the past 25 years, including the 

emergence of multi-year periods of sustained anomalous conditions.  This is especially apparent 

for surface Ωarag, with periods of relatively high (e.g. 2001-2007 and 2014-2019) and low (e.g. 

2008-2013) Ωarag conditions.  This coincides with the observed warm and cold temperature 

“stanzas” that have emerged for the Bering Sea shelf (Stabeno et al., 2012; Stabeno and Bell 555 

2019).  For the surface and bottom, warm temperatures lead to higher Ωarag values while cold 

temperatures generate lower Ωarag values.  Pilcher et al., (2019) noted a similar phenomenon 

between a warm and cold temperature regime and attributed this to a combination of the thermal 

solubility effect on Ωarag (i.e. cooling decreases Ωarag) and increased fall productivity and ocean 

carbon uptake.  In our study, thermal solubility is likely also a contributor to recent Ωarag 560 

variability; however, surface DIC (Fig. 14a) also displays a similar pattern between warm and 

cold temperature regimes suggesting the influence of changes in biogeochemistry (i.e. Pilcher et 

al., 2019).  The warm and cold regimes also generate substantial differences in sea ice extent, 

which can impact the seasonal carbon cycle through changes in air-sea flux inhibition, the timing 

and composition of the spring phytoplankton bloom, and changes in the sea ice carbonate pump 565 

(e.g. Mortenson et al., 2020).  A complete mechanistic breakdown of how the warm and cold 

temperatures regimes impact the seasonal carbon cycle and modify background OA rates is 

beyond the scope of this present manuscript but is the focus of planned future work. 

The threat OA presents to Alaskan marine ecosystems demonstrates a clear need to 

develop accurate and reliable model-based OA products to support fisheries management.  The 570 

recent emergence of multi-year anomalously low Ωarag and pH conditions is significant because 

marine organisms may not be as resilient to longer cumulative exposure to acidic conditions 
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(Bednarsek et al., 2022).  Furthermore, OA is gradually shifting waters to a lower Ωarag and pH 

baseline and reduced buffer capacity, leading to a higher rate of extreme acidity events (Burger 

et al., 2020) and an amplification of the seasonal cycle (Kwiatkowski and Orr, 2018).  It is 575 

therefore critical to track the development of high acidity water conditions on seasonal to annual 

timeframes to support tactical advice within the fisheries management process.  To this end, we 

have developed an OA index for the Eastern Bering Sea shelf using annually updated output 

from our model hindcast (Fig. 15).  This index indicates the area extent of the Bering Sea shelf 

where bottom waters are below threshold values of Ωarag and pH from July-September.  We 580 

specifically target summer bottom waters because this is when the seasonal bottom water 

respiration signal is greatest, thereby generating the most acidic seasonal conditions.  The two 

biological thresholds are chosen as the aragonite saturation horizon, and a pH of 7.8, which has 

negative effects to red king and tanner crab growth and survival (Long et al., 2013a, b; Long et 

al., 2016).  The spatial extent for both indices has greatly expanded over our model hindcast for 585 

both the entire Bering Sea shelf (Fig. 15a) and Bristol Bay (Fig. 15b), the location of a highly 

valuable red king crab fishery.  Prior to 2005, between 5-10% of the shelf had pH < 7.8 

conditions but by 2022 this jumped to more than 50% of the shelf spatial area.  Thus, locations 

on the shelf that had rarely or never contained these conditions in our model hindcast prior to the 

early 2000s now regularly experience them (Fig. 9).  Currently this index, along with spatial 590 

plots highlighting pH conditions on the shelf for the current year, are included in the annual 

NOAA Eastern Bering Sea Ecosystem Status Report (Siddon et al., 2022), a key report used by 

the North Pacific Fisheries Management Council for setting quotas.   

Modeled bottom water acidification rates on the Bering Sea shelf are substantially greater 

compared to the surface, particularly for pH and [H+].  The bottom water amplified trends 595 

emerge over the past 25 years, coinciding with a net increase in primary productivity, and a 

subsequent increase in bottom water remineralization.  The accumulation of anthropogenic 

carbon can also generate relatively greater changes in pH and [H+] in subsurface waters due to 

nonlinearities in the carbonate system (Fassbender et al., 2023), though anthropogenic carbon is 

not explicitly tracked in our model simulations.  Our model results add to a growing body of 600 

literature suggesting that biological remineralization reduces water buffer capacity and can 

accelerate subsurface acidification rates (Cai et al., 2011; Feely et al., 2010; Cross et al., 2018; 

Kwiatkowski et al., 2020; Arroyo et al., 2022; Qi et al., 2022; Fassbender et al., 2023).  Indeed, 
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Qi et al., (2022) found accelerated OA rates in the neighboring Chukchi Sea due to enhanced 

subsurface biological remineralization.  Previous observational studies have also noted a long-605 

term increase in primary productivity for both the Arctic Ocean (Lewis et al., 2020) and the 

Bering Sea (Wang et al.,  

 
Figure 15: Timeseries plots of an OA indicator calculated as the spatial extent (i.e. percent of total area) of bottom waters with a 
July-September Ωarag < 1 (grey line) and pH < 7.8 (black line). The total spatial are is the entire Bering Sea shelf for the top plot 610 
and Bristol Bay for the bottom plot. 

2022).  Higher productivity in the Bering Sea has also been observed in warmer years (Lomas et 

al., 2020), though model projections suggest that overall phytoplankton biomass will decrease 
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with future climate warming (Cheng et al., 2021).  Thus, the enhanced productivity may be a 

transient response to recent observed warming and sea ice decline and the resulting ongoing 615 

ecological shift (Moore and Stabeno 2015; Overland et al., 2023).  Interestingly, Pilcher et al., 

(2022) did not find accelerated bottom water acidification rates compared to the surface in their 

projected OA rates for the Bering Sea shelf.  These projections were generated using the same 

Bering10K-BESTNPZ model presented in here, suggesting that the enhanced bottom OA rates in 

our hindcast result from the model forcing. 620 

  Here, we find that the Bering Sea shelf is an annual carbon sink of 1.1 – 7.9 TgC/year, 

with the range resulting from the change in forcing between CORE and CFSR.  Most of this 

carbon uptake occurs on the middle and outer shelf domains, while the inner shelf domain 

contains some regions of net carbon efflux, mostly located near river runoff.  Previous estimates 

for the shelf carbon sink have ranged from 2 – 67 TgC/year, and our estimate agrees with the 6.8 625 

TgC/year estimate by Cross et al., (2013) that incorporated late fall/winter data when the shelf is 

typically outgassing carbon.  Notably, this range is significantly less than the previous model 

estimate of 15-25 TgC/year by Pilcher et al., (2019), which was over a much shorter timeframe 

(2003-2012) that only used the CFSR forcing (i.e. more comparable to our upper 7.9 TgC/year 

estimate here).  Using pCO2 data from autonomous vehicles, Wang et al., (2022) found that 630 

Bering Sea shelf carbon uptake has increased from 1989-2019 due to an increase in primary 

productivity which suppressed summer pCO2 values and generating more negative DpCO2.  Our 

model results present a similar mechanism (Fig. 12) but are highly uncertain as this mechanism 

appears to be sensitive to the switch in forcing.  The substantial increase in the magnitude of the 

pCO2 nonT seasonal amplitude compared to pCO2 T may also indicate that changes in productivity 635 

and respiration are driving recent changes in the model carbon cycle and the amplified bottom 

water acidification rates.  However, anthropogenic carbon uptake can also generate large changes 

in the pCO2 nonT seasonal amplitude (Fassbender et al., 2018).   

Interestingly, the strongest model trends over the past 25 years are in the off-shelf Bering 

Sea Basin.  This region is a net annual source of carbon (Fig. 11), but the model suggests that 640 

this carbon efflux has substantially declined over the past 25 years.  This region also displays 

divergent DpCO2 and CO2 flux patterns (i.e. negative DpCO2 but positive CO2 flux) on annual 

timeframes, likely due to the influence of wind speed in determining the magnitude of the flux.  

For example, wind speeds in the Bering Sea basin are much stronger in winter compared to 
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summer, thus positive winter efflux values will be greater in magnitude than negative summer 645 

influx values, generating a net positive annual average flux.  However, our model results are 

likely more uncertain for this region because the substantially greater depths combined with our 

model terrain-following coordinates generate relatively deep surface grid cells, which may 

significantly influence the air-sea gas exchange.     

A noted caveat to our model results is that the shift in atmospheric and boundary 650 

condition forcing in 1995 can lead to a shift in the system which impacts trends calculated over 

the entire model timeframe.  For some model variables such as salinity and air-sea CO2 flux, the 

impact is readily noticeable, particularly when extending the CORE forcing to 2003 (see 

supplementary information).  Conversely, the extent to which this switch impacts the trends in 

Ωarag and pH are less clear.  Surface Ωarag and pH trends are largely consistent across all three 655 

timeframes, suggesting these trends are largely unaffected by the change in forcing.  This result 

is not unexpected, given that surface acidification rates are strongly tied to the atmospheric CO2 

concentration, which is not impacted by the forcing shift.  There is a moderate acceleration of the 

pH and [H+] trends over the last 25 years, however, the annual atmospheric CO2 growth rate also 

increases over this same timeframe.  Meanwhile, bottom Ωarag and pH display different trends 660 

over the CORE and CFSR timeframes, with essentially no trend with the former but steep 

negative trends with the latter.  This result suggests that the 1970-2022 trend is not a product of a 

discontinuity created in 1995 by the change in forcing, but rather emerges over the 1998-2022 

CFSR forcing.  Thus, the accelerated bottom OA rates generated by the model may be dependent 

on the CFSR forcing, as they are driven by enhanced productivity-remineralization that is not 665 

apparent in the CORE forced simulation.  But it does not appear that these trends are artificially 

generated by the switch in forcing itself.   

It is also possible that these bottom water trends emerge over the more recent timeframe 

and are independent of the forcing, a conclusion supported by previous observational studies 

(e.g. Qi et al., 2022; Wang et al., 2022).  Indeed, extending the CORE forced simulation to 2003 670 

generates a modest increase in bottom water acidification rates.  Diagnosing the mechanism 

responsible for these differences in the forcing is beyond the scope of this manuscript, as our 

goal is rather to highlight which variables and trends are impacted by the transition in forcing.  

However, we note that the CORE atmospheric shortwave and longwave radiative forcing are 

slightly adjusted to agree with the CFSR radiative forcing (Kearney et al., 2020) and that water 675 
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temperature comparisons between the two are comparable (Kearney 2021).  Nonetheless, this 

study highlights the sensitivity of the simulated carbon cycle to small shifts in surface and 

boundary forcing and suggests that further constraints on the spinup and boundary condition 

forcing may be required as part of future model development. 

 680 

5 Conclusions 

We use a regional ocean biogeochemical model to simulate the Bering Sea shelf carbon 

cycle from 1970-2022.  Over this timeframe, surface waters acidify at rates comparable to those 

observed in the global ocean, with a slight acceleration in the trend over the past 25 years.  Shelf 

bottom waters acidify at two to nearly three times the rate of surface waters, driven by increased 685 

productivity and subsurface respiration and remineralization.  This mechanism leads to a 

substantial increase in the spatial extent of summer bottom waters with Ωarag < 1 and pH 

conditions harmful to red king crab, including parts of the shelf where these conditions 

previously did not occur during our model timeframe.  To facilitate tracking these conditions and 

support the fisheries management process, we have developed an OA index which is annually 690 

updated and presented as part of the NOAA Eastern Bering Sea Ecosystem Status Report.  

Lastly, we find that the Bering Sea shelf is an annual carbon sink of 1.1-7.9 TgC/year, which is 

lower than a previous model estimate of 15-25 TgC/year but is more consistent with the 

observational constraint of 6.8 TgC/year.  The range in our estimate results from differences 

between the two atmospheric forcing reanalysis products, with the higher estimate driven by 695 

relatively greater carbon uptake in summer and early fall and somewhat less winter carbon 

efflux.     

 
Code and data availability 

 The ROMS Bering10K model source code is available on Github here 700 

https://github.com/beringnpz/roms-bering-sea, and the model output is available on the PMEL 

THREDDS server through the Alaska Climate Integrated Modeling Project 

https://data.pmel.noaa.gov/aclim/thredds/catalog/files/B10K-K20P19_CORECFS.html.  

Atmospheric CO2 values for Barrow and Mauna Loa are publicly available at the NOAA Earth 

System Research Laboratories Global Monitoring Laboratory.  M2 mooring pCO2 data are 705 
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available at the NOAA National Centers for Environmental Information (NCEI) 

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0157599.html.   
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