
Well-posedness of the isostatic boundary value problem
In the following, we use the notation from the preprint [4]. Without loss of generality, the
coefficients in the bilinear forms

a(w, v) =
∫

A
D
(
ν∆w∆v + (1 − ν)∇2w : ∇2v

)
dA,

b(w, v) =
∫

A
(ϱm − ϱr)gwv dA,

(1)

can be assumed to be real numbers with D > 0, 0 ≤ ν ≤ 0.5, g > 0, and ϱm > ϱr. If the
coefficients are variable in space, we only require that D(1 − ν) and (ϱm − ϱr)g are bounded
from below by a positive number.

Claim: Let A ⊂ R2 be a bounded Lipschitz domain. Then there exists a constant α > 0
such that

a(w, w) + b(w, w) ≥ α∥w∥2
H2(A) (2)

for all w ∈ H2(A).

Proof: Let C∞(A) denote the space of smooth real-valued functions on A. Since C∞(A)
is dense in H2(A) with respect to the H2 norm, it suffices to establish the inequality for
w ∈ C∞(A). By definition of the bilinear forms, we have that

a(w, w) + b(w, w) =
∫

A
D
(
ν|∆w|2 + (1 − ν)|∇2w|2

)
dA +

∫
A

(ϱm − ϱr)g|w|2 dA

≥ D(1 − ν)∥∇2w∥2
L2(A) + (ϱm − ϱr)g∥w∥2

L2(A)

≥ C
(

∥∇2w∥2
L2(A) + ∥w∥2

L2(A)

) (3)

with C = min{D(1 − ν), (ϱm − ϱr)g} > 0. According to the Ehrling–Gagliardo–Nirenberg
interpolation inequality in [1, Theorem 5.2] or the equivalence of norms in [3, Theorem 1.8],
there exists a constant K > 0 such that

∥∇w∥2
L2(A) ≤ K

(
∥∇2w∥2

L2(A) + ∥w∥2
L2(A)

)
(4)

in the case of a bounded Lipschitz domain A. Applying (4) to (3) yields

a(w, w) + b(w, w) ≥ C

2

(
∥∇2w∥2

L2(A) + ∥w∥2
L2(A)

)
+ C

2K
∥∇w∥2

L2(A)

≥ α∥w∥2
H2(A)

(5)

with the coercivity constant α = min{C/2, C/(2K)} > 0.

The above shows that a + b : H2(A) × H2(A) → R is a coercive bilinear form. Furthermore,
symmetry and continuity of a + b are easily verified. The well-posedness of the isostatic
boundary value problem with Neumann boundary conditions then follows from a standard
argument using the Lax–Milgram theorem [2, Chapter II, Section 2–3].
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