

Well-posedness of the isostatic boundary value problem

In the following, we use the notation from the preprint [4]. Without loss of generality, the coefficients in the bilinear forms

$$\begin{aligned} a(w, v) &= \int_{\mathcal{A}} D(\nu \Delta w \Delta v + (1 - \nu) \nabla^2 w : \nabla^2 v) \, dA, \\ b(w, v) &= \int_{\mathcal{A}} (\varrho_m - \varrho_r) g w v \, dA, \end{aligned} \quad (1)$$

can be assumed to be real numbers with $D > 0$, $0 \leq \nu \leq 0.5$, $g > 0$, and $\varrho_m > \varrho_r$. If the coefficients are variable in space, we only require that $D(1 - \nu)$ and $(\varrho_m - \varrho_r)g$ are bounded from below by a positive number.

Claim: Let $\mathcal{A} \subset \mathbb{R}^2$ be a bounded Lipschitz domain. Then there exists a constant $\alpha > 0$ such that

$$a(w, w) + b(w, w) \geq \alpha \|w\|_{H^2(\mathcal{A})}^2 \quad (2)$$

for all $w \in H^2(\mathcal{A})$.

Proof: Let $C^\infty(\mathcal{A})$ denote the space of smooth real-valued functions on \mathcal{A} . Since $C^\infty(\mathcal{A})$ is dense in $H^2(\mathcal{A})$ with respect to the H^2 norm, it suffices to establish the inequality for $w \in C^\infty(\mathcal{A})$. By definition of the bilinear forms, we have that

$$\begin{aligned} a(w, w) + b(w, w) &= \int_{\mathcal{A}} D(\nu |\Delta w|^2 + (1 - \nu) |\nabla^2 w|^2) \, dA + \int_{\mathcal{A}} (\varrho_m - \varrho_r) g |w|^2 \, dA \\ &\geq D(1 - \nu) \|\nabla^2 w\|_{L^2(\mathcal{A})}^2 + (\varrho_m - \varrho_r) g \|w\|_{L^2(\mathcal{A})}^2 \\ &\geq C \left(\|\nabla^2 w\|_{L^2(\mathcal{A})}^2 + \|w\|_{L^2(\mathcal{A})}^2 \right) \end{aligned} \quad (3)$$

with $C = \min\{D(1 - \nu), (\varrho_m - \varrho_r)g\} > 0$. According to the Ehrling–Gagliardo–Nirenberg interpolation inequality in [1, Theorem 5.2] or the equivalence of norms in [3, Theorem 1.8], there exists a constant $K > 0$ such that

$$\|\nabla w\|_{L^2(\mathcal{A})}^2 \leq K \left(\|\nabla^2 w\|_{L^2(\mathcal{A})}^2 + \|w\|_{L^2(\mathcal{A})}^2 \right) \quad (4)$$

in the case of a bounded Lipschitz domain \mathcal{A} . Applying (4) to (3) yields

$$\begin{aligned} a(w, w) + b(w, w) &\geq \frac{C}{2} \left(\|\nabla^2 w\|_{L^2(\mathcal{A})}^2 + \|w\|_{L^2(\mathcal{A})}^2 \right) + \frac{C}{2K} \|\nabla w\|_{L^2(\mathcal{A})}^2 \\ &\geq \alpha \|w\|_{H^2(\mathcal{A})}^2 \end{aligned} \quad (5)$$

with the coercivity constant $\alpha = \min\{C/2, C/(2K)\} > 0$. □

The above shows that $a + b: H^2(\mathcal{A}) \times H^2(\mathcal{A}) \rightarrow \mathbb{R}$ is a coercive bilinear form. Furthermore, symmetry and continuity of $a + b$ are easily verified. The well-posedness of the isostatic boundary value problem with Neumann boundary conditions then follows from a standard argument using the Lax–Milgram theorem [2, Chapter II, Section 2–3].

References

- [1] Robert A. Adams and John J. F. Fournier. *Sobolev Spaces*. Academic Press, 2003.
- [2] Dietrich Braess. *Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics*. Cambridge University Press, 2007.
- [3] Jindřich Nečas. *Direct Methods in the Theory of Elliptic Equations*. Springer, 2012.
- [4] Rozan Rosandi, Yudi Rosandi, and Bernd Simeon. Isogeometric analysis of the lithosphere under topographic loading: Igolith v1.0.0. *EGUsphere [preprint]*, 2024.