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Abstract. Understanding the mechanisms of plant-derived carbon (C) and nitrogen (N) transformation and stabilization in soil 

is fundamental for predicting soil capacity to mitigate climate change and support other soil functions. The decomposition of 10 

plant residues and particulate organic matter (POM) contributes to the formation of mineral associated (on average more stable) 

organic matter (MAOM) in soil. MAOM is formed from the binding of dissolved organic matter (ex vivo pathway) or microbial 

necromass and bioproducts (in vivo pathway) to minerals and metal colloids. Which of these two soil organic matter (SOM) 

stabilization pathways is more important and under which conditions remains an open question. To address this question, we 

propose a novel diagnostic model to describe C and N dynamics in MAOM as a function of the dynamics of residues and POM 15 

decomposition. Focusing on relations among soil compartments (i.e., modelling in phase space) rather than time trajectories 

allows isolating the fundamental processes underlying stabilization. Using this diagnostic model in combination with a 

database of 36 studies in which residue C and N were tracked into POM and MAOM, we found that MAOM is predominantly 

fuelled by necromass produced by microbes decomposing residues and POM—the so-called ‘in vivo’ pathway of stabilization. 

The relevance of the in vivo pathway is higher in clayey soils, but lower in C rich soils and with N poor added residues. 20 

Overall, our novel modelling in phase space proved to be a sound diagnostic tool for the mechanistic investigation of soil C 

dynamics and supported the current understanding of the critical role of both microbial transformation and mineral capacity 

for the stabilization of C in mineral soils. 
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1. Introduction 25 

Soil carbon (C) storage has been proposed as a climate mitigation strategy, but how much C can be stored in soil and for how 

long is a matter of debate. Increasing plant productivity or adding C amendments to soils can increase C stocks or slow down 

their decline (Bruni et al., 2022), but the persistence of the added C depends on the balance of stabilization and destabilization 

processes (Lehmann et al., 2020; Liang et al., 2017). Only a small fraction of the added C is retained in the soil in the long 

term in mineral associated forms or occluded in stable aggregates (Cotrufo et al., 2015; Manzoni et al., 2018; Pries et al., 30 

2017). Yet, even small annual increments in soil C stocks over large areas can support the climate mitigation effort—not to 

mention other benefits of organic matter-rich soils (Paustian et al., 2016). The clear advantages of promoting C storage in soil 

motivate an improved understanding of C stabilization pathways.  

Here we focus on stabilization by mineral association including within fine aggregates (<53 µm) and do not consider occlusion 

in larger aggregates, partly because the stability of mineral associated organic matter (MAOM) is on average higher, and partly 35 

because of data availability. Two main pathways support mineral association of organic matter (Liang et al., 2017): i) the ‘in 

vivo’ pathway, in which microbial growth generates necromass and extracellular products that are stabilized on soil minerals, 

and ii) the ‘ex vivo’ pathway, in which low molecular weight compounds, released by the depolymerization of structural 

residues and particulate organic matter (POM) by extracellular enzymatic reactions or from root exudates, are stabilized on 

soil minerals. Both pathways are partly mediated by microbial (and faunal) decomposers. On the one hand, higher microbial 40 

growth per unit C consumed (i.e., high C use efficiency, CUE) is associated with higher necromass and thus to higher C 

storage—consistent with the in vivo pathway (Tao et al., 2023; Wang et al., 2021). On the other hand, higher microbial growth 

can lead to higher enzyme production, thereby promoting residue and soil organic matter (SOM) decomposition while also 

promoting C stabilization via the ex vivo pathway, with an uncertain net outcome on C storage. 

While microbial growth, CUE and decomposition dynamics mediate C stabilization, ultimately in aereated mineral soils C is 45 

stabilized by association to soil minerals and amorphous metals. Therefore, their availability and capacity to interact with 

organic compounds set the potential for long-term C stabilization (Georgiou et al., 2022; Kögel-Knabner et al., 2008). Short-

range ordered iron and aluminum oxides, and exchangeable calcium and magnesium promote organic matter stabilization by 

adsorption, as demonstrated by their strong correlations with MAOM (King et al., 2023). From a less mechanistic point of 

view, the clay (or silt + clay) fraction is also associated to higher proportion of MAOM in soil organic matter (Cotrufo et al., 50 

2019), higher MAOM content (Begill et al., 2023), and faster stabilization of residue-derived C into MAOM (Haddix et al., 

2020). 

Also, the quality of the organic matter supplied to the soil plays a role in the C stabilization process. Residues rich in nutrients—

especially nitrogen (N)—support microbial growth by providing microbes with a stoichiometrically balanced diet, thus 

resulting in higher CUE and ultimately higher likelihood of C stabilization in MAOM (Cotrufo et al., 2013). In contrast, 55 

microbes feeding on N-poor residues need to invest more resources in extracellular enzymes to mine nutrients and to release 

C in excess of their stoichiometric requirements, leading to lower CUE (Manzoni et al., 2017) and thus a less effective in vivo 
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pathway. Consistent with this idea that N-rich residues promote C stabilization in MAOM, residue N content and soil C stocks 

are positively correlated at regional scale (Zhou et al., 2019). However, mineral fertilizers can reduce the overall soil organic 

matter stability by promoting C accumulation in particulate fractions with faster turnover (Rocci et al., 2022).  60 

The combined effects of biota, soil properties, and input quality make prediction of C stabilization difficult, but these 

complexities are further compounded by methodological differences in the way organic matter fractions and their stability are 

identified. In general, organic matter is partitioned among still undecomposed coarse residues, particulate organic matter 

(POM) encompassing partly decomposed or fragmented residues (free or occluded in aggregates), and MOAM encompassing 

more degraded compounds and necromass that are bound to soil minerals. These fractions are operationally defined in multiple 65 

ways—e.g., based on density or size fractionation; or considering sub-fractions occluded in aggregates or free (Leuthold et al., 

2023). Moreover, due to nonlinear interactions of residues and native organic matter (priming), determining the fate of organic 

matter added to the soil as POM, MAOM, or mineralized products is possible only by tracing residue-derived C and N into 

the different soil components—e.g., through C and/or N isotope labelling. While soil fractionation combined with isotopic 

labelling is a commonly employed methodology, it is laborious and, as a result, residue incorporation studies have low temporal 70 

resolution. Finally, the lack of common protocols makes comparisons across studies difficult. To overcome these 

methodological challenges, it can be useful to develop minimalist C and N dynamics models to be used as diagnostic tools to 

track residue C and N stabilization into MAOM.  

A diagnostic model able to interpret observed C and N dynamics in residue, POM, and MAOM during decomposition can be 

useful also to reconcile different trends that have been reported. In fact, residue-derived POM can both increase (Fulton-Smith 75 

and Cotrufo, 2019; Leichty et al., 2021) or decrease through time (Cheng et al., 2023; Neupane et al., 2023). Also MAOM can 

exhibit contrasting trends (increasing in the studies cited above, but decreasing in e.g., Wang et al., 2017). These contrasting 

temporal dynamics might be either the result of complex stabilization dynamics or—on the contrary—a consequence of 

different experimental approaches (e.g., residue placement above- or belowground) and sampling times across experiments 

that mask simple underlying patterns.  80 

We expect that the general pattern of stabilization is simple and universal—MAOM C and N increase as residues and POM 

are decomposed thanks to both in vivo and ex vivo pathways, but ultimately even MAOM C and N are mineralized—although 

it might take years to centuries and in some soils even millennia. We argue that this pattern would emerge clearly when 

modelling POM and MAOM dynamics not as a function of time, but in relation to each other—e.g., modelling variations in 

MAOM as a function of variations in residues and POM. This approach moves away from classical modelling of time 85 

trajectories and focuses instead on modelling in the space of the state variables, also referred to as ‘phase space’ (Argyris et 

al., 1994). Phase space representations allow reducing the effects of factors that determine biogeochemical reaction rates (e.g., 

temperature, incubation conditions) while emphasizing instead the relations among the soil C and N compartments. For 

example, MAOM may accumulate in one dataset, but decrease in another. In the phase space, these two contrasting patterns 

would appear as two subsequent phases in the same trajectory—as residues and POM are decomposed, MAOM first 90 

accumulates and then is depleted, forming a single humped-shaped trajectory in the MAOM vs. POM space. Similar phase 
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space representations have been applied to study nutrient dynamics during decomposition (Bosatta and Ågren, 1985; Manzoni 

et al., 2008), but to our knowledge they have not been used to investigate C and N stabilization mechanisms. 

The goal of this contribution is to characterize the pathways of residue C and N stabilization using a novel, fully analytical 

diagnostic model combined with a database of 36 isotope labelling studies. Our specific questions are: 95 

i) Can we reconcile contrasting patterns of residues and POM, and MAOM loss/accumulation by considering the 

dynamic coupling between these pools as decomposition progresses? 

ii) What is the dominant pathway of C and N stabilization in MAOM? 

iii) What are the drivers of the stabilization pathway as represented by model parameters?  
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2. Methods 100 

2.1. Theory 

2.1.1. Model rationale 

For the purpose of this model, we conceptualize soil organic matter as the sum of two physically well-defined compartments: 

combined residues and particulate organic matter (residues + POM, subscript P) and mineral associated organic matter 

(MAOM, subscript M). Residues + POM include both partly decomposed residues (operationally defined as fragments larger 105 

than 2 mm or separated by hand based on visual inspection) and organic matter in the light or coarse soil fractions (respectively 

isolated via density or size fractionation). The choice of merging residues and POM in one model compartment is motivated 

by the fact that in many datasets they were not separated. MAOM includes only organic matter in the heavy or fine soil fractions 

(also from density or size fractionation). Both compartments are characterized by their C and N contents (mass of C or N per 

unit soil dry mass). Moreover, different from other existing models, we consider microorganisms driving the decomposition 110 

process to be distinct for POM and MAOM, given the distinctive chemical and stoichiometric properties of these two soil 

compartments, though they might express similar traits so as to be functionally equivalent.  

The two compartments are linked by two types of mass flow from residues + POM to MAOM: i) products of depolymerization 

of residues + POM transferred to MAOM in dissolved form before being converted into microbial biomass (ex vivo pathway 

of stabilization) and ii) necromass of microbes grown on residues + POM transferred to MAOM (in vivo pathway of 115 

stabilization). For simplicity, we do not consider dissolved organic matter (DOM) explicitly in this model. As shown in the 

Supplementary Information (Section S1), a model including DOM shared by microbes in both residues + POM and MAOM 

can be constructed, but this more general model can be approximated by the simpler one used here by making two assumptions: 

i) microbial uptake of the shared DOM is negligible compared to uptake from the depolymerization of residues + POM 

substrates, and ii) the DOM compartment is at quasi-equilibrium, which is a reasonable assumption because DOM is a 120 

relatively small pool with fast turnover time. 

Model parameters allow regulating how C and N are partitioned between the two stabilization pathways. Moreover, we 

consider the possibility that the soluble fraction of the added residues is immediately stabilized as MAOM. Leaching of 

dissolved organic matter is neglected. In the datasets we used (Section 2.2.1), both C and N were added in the soil only at the 

beginning of the incubations, allowing us to track a single organic matter cohort. This means that the initial condition in the 125 

model represents how much C and N have been added, but there are no subsequent inputs. In natural conditions, there would 

also be continuous inputs from new residues incorporated in the soil and from root exudation—these inputs could be added to 

apply this model in other contexts. Carbon is lost through microbial respiration, while we do not track the fate of inorganic N 

accumulating due to net N mineralization. 

With this conceptual view of the soil system, we can write the mass balance equations for C (Section 2.1.2) and N (Section 130 

2.1.4) of both substrate and microbial decomposers in the two compartments. These equations are not solved through time as 

usually done with this type of models, but instead we find analytically how one state variable change as a function of another 
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state variable (Sections 2.1.3 and 2.1.5). In other words, we solve the equations in ‘phase space’ (Argyris et al., 1994). Symbols 

are defined in Table 1, a schematic of the model is shown in Fig. 1, and a summary of equations for the model solution 

(including various scenarios with specific parameters) is provided in Table 2.  135 

 

 

Figure 1. Model schematic (see symbol explanations in Table 1). Solid and dashed arrows or compartment edges indicate respectively 

C and N flows or compartments. Light shading and color-coded symbols indicate aggregated variables including both substrates 

and microbial biomass. No input rates are shown because a single cohort of residues is tracked during decomposition and 140 
stabilization.  
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Table 1. Symbol definitions and units (see also Fig. 1). Subscripts i=P and M indicate state variables, rates, or parameters associated 

with plant residues and particulate organic matter (POM), and mineral associated organic matter (MAOM), respectively. 145 

Symbol Explanation Units 

State variables and independent variables 

𝑐𝑖 Fraction of added residue C recovered in compartment i, 𝑐𝑖 = 𝐶𝑖 𝐶𝑃,0⁄  - 

𝐶𝑖 Total C content in compartment i g C kg-1 

𝐶𝑖𝐵 C content in microbial biomass associated with compartment i g C kg-1 

𝐶𝑖𝑆 Substrate C content in compartment i g C kg-1 

𝑛𝑖 Fraction of added residue N recovered in compartment i, 𝑛𝑖 = 𝑁𝑖 𝑁𝑃,0⁄  - 

𝑁𝑖 Total N content in compartment i g N kg-1 

𝑁𝑖𝐵 N content in microbial biomass associated with compartment i g N kg-1 

𝑁𝑖𝑆 Substrate N content in compartment i g N kg-1 

𝑟𝑖 N:C ratio of compartment i, 𝑟𝑖 = 𝑁𝑖 𝐶𝑖⁄  g N g C-1 

𝑟𝑖𝑆 N:C ratio of substrates in compartment i, 𝑟𝑖𝑆 = 𝑁𝑖𝑆 𝐶𝑖𝑆⁄  g N g C-1 

t Time d 

Rates  

𝐷𝑖  Decomposition of organic matter in compartment i g C kg-1 d-1 

𝑀𝑖 Mortality of microbes associated with compartment i g C kg-1 d-1 


𝑖
 Net N mineralization by microbes associated with compartment i  g N kg-1 d-1 

𝑓𝐶 Fraction of C transferred from residues + POM to MAOM via in vivo pathway - 

𝑓𝑁 Fraction of N transferred from residues + POM to MAOM via in vivo pathway - 

Parameters 

a Parameter group, 𝑎 = 𝑒𝑃(1 − 𝑙)(1 − 𝑚) - 

b Insoluble fraction of the added residues (the fraction 1 − 𝑏 is stabilized as MAOM at time zero) - 

e C-use efficiency of all microorganisms - 

𝑒𝑖 C-use efficiency of microorganisms in compartment i - 

l 
Fraction of depolymerization products transferred from residues + POM to MAOM through the ex 

vivo pathway 

- 

m Fraction of necromass transferred from residues + POM to MAOM through the in vivo pathway - 

𝑟𝐵 N:C ratio of all microbial biomass g N g C-1 

𝑟𝑖𝐵  N:C ratio of microbial biomass in compartment i g N g C-1 

 Proportionality coefficient,  = 𝐷𝑀 𝐶𝑀⁄ (𝐷𝑃 𝐶𝑃⁄ )−1 - 
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2.1.2. Carbon mass balance equations 

The C mass balance equations for substrates (𝐶𝑃𝑆) and microbial biomass (𝐶𝑃𝐵) in residues + POM are written as, 

𝑑𝐶𝑃𝑆

𝑑𝑡
= −(1 − 𝑙)𝐷𝑃⏟      

𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑙𝐷𝑃⏟
𝑒𝑥 𝑣𝑖𝑣𝑜

+ (1 − 𝑚)𝑀𝑃⏟      
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (1) 

𝑑𝐶𝑃𝐵

𝑑𝑡
= (1 − 𝑙)𝑒𝑃𝐷𝑃⏟        

𝑔𝑟𝑜𝑤𝑡ℎ

− 𝑀𝑃⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (2) 

where 𝐷𝑃 is the residues + POM decomposition rate, 𝑀𝑃 is the mortality rate, l is the fraction of depolymerization products 

transferred to MAOM through the ex vivo pathway, m is the fraction of necromass transferred to MAOM through the in vivo 150 

pathway (1-m is the fraction recycled within the residues + POM compartment), and 𝑒𝑃 is the microbial C use efficiency 

(CUE).  

Assuming that microbial biomass attains a quasi-equilibrium (𝑑𝐶𝑃𝐵 𝑑𝑡⁄ ≈ 0), so that growth equals mortality (i.e., 𝑀𝑃 ≈

(1 − 𝑙)𝑒𝑃𝐷𝑃), and summing up substrate and microbial biomass, we can write a single equation for the total C in the residues 

+ POM compartment (𝐶𝑃), 155 

𝑑𝐶𝑃

𝑑𝑡
=

𝑑(𝐶𝑃𝑆+𝐶𝑃𝐵)

𝑑𝑡
= −(1 − 𝑙)(1 − 𝑒𝑃)𝐷𝑃⏟            

𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

− 𝑙𝐷𝑃⏟
𝑒𝑥 𝑣𝑖𝑣𝑜

− (1 − 𝑙)𝑚𝑒𝑃𝐷𝑃⏟        
𝑖𝑛 𝑣𝑖𝑣𝑜

, (3) 

with initial condition 𝐶𝑃(0) = 𝑏𝐶𝑃,0, where b is the insoluble residue fraction, which is retained as POM. Low values of b 

represent residues with a soluble fraction that is mostly stabilized as MAOM without undergoing enzymatic reaction (Eq. (7)). 

If 𝑏 = 1, no C is immediately stabilized, so that the initial condition for C in the residues + POM compartment is 𝐶𝑃(1) =

𝐶𝑃,0. For conciseness, we refer to residues with 𝑏 < 1 as ‘soluble’ and to residues with 𝑏 = 1 as ‘insoluble’ even though all 

residue types are at least partly soluble, but when 𝑏 = 1 the soluble fraction is entirely used by microorganisms in the residues 160 

+ POM compartment. The soluble fraction 1-b is immediately transferred to MAOM, where it can be adsorbed or assimilated 

by microorganisms in that compartment. 

Defining the parameter group 𝑎 = 𝑒𝑃(1 − 𝑙)(1 − 𝑚), Eq. (3) can be simplified to, 

𝑑𝐶𝑃

𝑑𝑡
= (𝑎 − 1)𝐷𝑃. (4) 

The C mass balance equations for substrate (𝐶𝑀𝑆) and microbial biomass (𝐶𝑀𝐵) in MAOM are written as, 

𝑑𝐶𝑀𝑆

𝑑𝑡
= 𝑙𝐷𝑃⏟

𝑒𝑥 𝑣𝑖𝑣𝑜

+ (1 − 𝑙)𝑚𝑒𝑃𝐷𝑃⏟        
𝑖𝑛 𝑣𝑖𝑣𝑜

− 𝐷𝑀⏟
𝑢𝑝𝑡𝑎𝑘𝑒

+ 𝑀𝑀⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (5) 

𝑑𝐶𝑀𝐵

𝑑𝑡
= 𝑒𝑀𝐷𝑀⏟  

𝑔𝑟𝑜𝑤𝑡ℎ

− 𝑀𝑀⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (6) 

where we adopted the same notation as for Eq. (1) and (2), except that now quantities refer to the MAOM compartment, as 165 

indicated by subscript M. The first two terms of Eq. (5) represent the C flows from the residues + POM compartment. We also 

assumed that all necromass produced by microbes in the MAOM compartment is recycled back into MAOM. Applying as 
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before the quasi-equilibrium approximation for microbial biomass (𝑑𝐶𝑀𝐵 𝑑𝑡⁄ ≈ 0), we determine the mortality rate (i.e., 𝑀𝑀 ≈

𝑒𝑀𝐷𝑀) and finally obtain a single equation for the total C in MAOM (𝐶𝑀), 

𝑑𝐶𝑀

𝑑𝑡
=

𝑑(𝐶𝑀𝑆+𝐶𝑀𝐵)

𝑑𝑡
= 𝑙𝐷𝑃⏟

𝑒𝑥 𝑣𝑖𝑣𝑜

+ (1 − 𝑙)𝑚𝑒𝑃𝐷𝑃⏟        
𝑖𝑛 𝑣𝑖𝑣𝑜

− (1 − 𝑒𝑀)𝐷𝑀⏟        
𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

, (7) 

with initial condition 𝐶𝑀(0) = (1 − 𝑏)𝐶𝑃,0, where 1 − 𝑏 is the fraction of residue C immediately incorporated in MAOM. For 170 

insoluble residues with 𝑏 = 1, the initial condition for C in the MAOM compartment is 𝐶𝑀(0) = 0. 

Before proceeding, it is convenient to express the decomposition rate of MAOM as a function of the decomposition rate of 

residues and POM. One could argue that the kinetic constants for these two rates should be broadly correlated as they both 

respond to environmental conditions in similar ways (although POM can have slightly higher temperature sensitivity, Karhu 

et al., 2019), but that MAOM decomposes more slowly than POM. Moreover, it is reasonable to expect that both decomposition 175 

rates scale approximately linearly with the C contents of the respective compartments (a reasonable approximation when 

considering long-term dynamics). This means that, as a first approximation,  

𝐷𝑀

𝐶𝑀
≈ 

𝐷𝑃

𝐶𝑃
→ 𝐷𝑀 ≈ 𝐷𝑃

𝐶𝑀

𝐶𝑃
, (8) 

where  is the coefficient of proportionality between the (first order) kinetics constants of the decomposition rates. Values of 

 lower than one indicate that MAOM is decomposed slower than POM (as discussed in Section 2.2.2,  ≈ 0.05). This 

assumption only implies a proportionality between the decay constants, while the actual rates will still be different depending 180 

on the relative abundance of C in residues + POM and MAOM. 

2.1.3. Solution of the carbon mass balance equations in phase space 

Equations (4) and (7) can be solved through time after specifying how the rates 𝐷𝑃 and 𝐷𝑀 vary with the state variables 𝐶𝑃 

and 𝐶𝑀, as well as with environmental conditions. To remove part of the variability induced by environmental conditions and 

to limit the number of model parameters, we move from this representation in the time domain to one in the phase space. To 185 

this aim, we now combine Eq. (4) and (7) to obtain a single ordinary differential equation with 𝐶𝑃 as independent variable and 

𝐶𝑀 as dependent variable. This can be done by dividing Eq. (7) by Eq. (3) and simplifying 𝐷𝑃, 

𝑑𝐶𝑀

𝑑𝑡
(
𝑑𝐶𝑃

𝑑𝑡
)
−1

=
𝑑𝐶𝑀

𝑑𝐶𝑃
=

𝑙+(1−𝑙)𝑚𝑒𝑃−(1−𝑒𝑀)
𝐶𝑀
𝐶𝑃

𝑎−1
. (9) 

The boundary condition for this equation is 𝐶𝑀(𝑏𝐶𝑃,0) = (1 − 𝑏)𝐶𝑃,0 . This condition indicates that at the beginning of 

decomposition, the insoluble fraction (b) of added residues (𝐶𝑃,0) is in the residues + POM compartment, while the soluble 

fraction (1-b) is transferred to MAOM.  190 

Eq. (9) is independent of the specifics of the kinetics laws used to describe decomposition rates and thus it is largely 

independent of time per se. However, Eq. (9) depends on the parameters regulating the two pathways of organic matter 

stabilization (l, m), the CUE of the two microbial groups ( 𝑒𝑃 , 𝑒𝑀 ), and the proportionality coefficient between the 

decomposition rates of MAOM and POM ().  
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To solve Eq. (9) and find the analytical relation 𝐶𝑀(𝐶𝑃), it is convenient to first normalize the C contents by the amount of 195 

added residue C—i.e., 𝑐𝑃 = 𝐶𝑃 𝐶𝑃,0⁄  and 𝑐𝑀 = 𝐶𝑀 𝐶𝑃,0⁄ . This normalization allows comparing different datasets more easily, 

as all measured quantities are rescaled between 0 and 1, with values decreasing through time as decomposition progresses, 

until all the initially added residues ( 𝑐𝑃,0 = 1 ) are mineralized (𝑐𝑃 = 𝑐𝑀 = 0 ). Moreover, the equations expressed in 

normalized form are independent of the units used to quantify inputs and mass in each compartment, and if needed it is easy 

to convert the normalized variables into absolute quantities by multiplying by the mass of added residue C. After normalizing, 200 

Eq. (9) becomes, 

𝑑𝑐𝑀

𝑑𝑐𝑃
=

𝑙+(1−𝑙)𝑚𝑒𝑃−(1−𝑒𝑀)
𝑐𝑀
𝑐𝑃

𝑎−1
, (10) 

with boundary condition 𝑐𝑀(𝑏) = 1 − 𝑏.  

Eq. (10) is a non-autonomous ordinary differential equation with a compact analytical solution when 𝑏 = 1  (insoluble 

residues), 

𝑐𝑀(𝑐𝑃) = [𝑐𝑃 − 𝑐𝑃

(1−𝑒𝑀)

1−𝑎 ]
𝑙+(1−𝑙)𝑚𝑒𝑃

(1−𝑒𝑀)+𝑎−1
. (11) 

The full solution for the general case of partly soluble residues (𝑏 < 1) is reported in the Supplementary Materials (Section 205 

S2).  

2.1.4. Nitrogen mass balance equations 

Following the same rationale as for the C mass balance equations, we consider N in substrates (𝑁𝑃𝑆) and microbial biomass 

(𝑁𝑃𝐵) of residues + POM, as well as in substrates (𝑁𝑀𝑆) and microbial biomass (𝑁𝑀𝐵) of MAOM, 

𝑑𝑁𝑃𝑆

𝑑𝑡
= −(1 − 𝑙)𝐷𝑃

𝑁𝑃𝑆

𝐶𝑃𝑆⏟        
𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑙𝐷𝑃
𝑁𝑃𝑆

𝐶𝑃𝑆⏟    
𝑒𝑥 𝑣𝑖𝑣𝑜

+ (1 − 𝑚)𝑀𝑃𝑟𝑃𝐵⏟        
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, 
(12) 

𝑑𝑁𝑃𝐵

𝑑𝑡
= (1 − 𝑙)𝐷𝑃

𝑁𝑃𝑆

𝐶𝑃𝑆⏟        
𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑀𝑃𝑟𝑃𝐵⏟  
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

− 
𝑃⏟

𝑁 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

, 
(13) 

𝑑𝑁𝑀𝑆

𝑑𝑡
= 𝑙𝐷𝑃

𝑁𝑃𝑆

𝐶𝑃𝑆⏟    
𝑒𝑥 𝑣𝑖𝑣𝑜

+𝑚𝑀𝑃𝑟𝑃𝐵⏟    
𝑖𝑛 𝑣𝑖𝑣𝑜

− 𝐷𝑀
𝑁𝑀𝑆

𝐶𝑀𝑆⏟    
𝑢𝑝𝑡𝑎𝑘𝑒

+ 𝑀𝑀𝑟𝑀𝐵⏟    
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, 
(14) 

𝑑𝑁𝑀𝐵

𝑑𝑡
= 𝐷𝑀

𝑁𝑀𝑆

𝐶𝑀𝑆⏟    
𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑀𝑀𝑟𝑀𝐵⏟    
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

− 
𝑀⏟

𝑁 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

, 
(15) 

where the N:C ratios of residues + POM (𝑁𝑃𝑆 𝐶𝑃𝑆⁄ ), MAOM (𝑁𝑀𝑆 𝐶𝑀𝑆⁄ ), microbial biomass associated with residues + POM 210 

(𝑟𝑃𝐵 = 𝑁𝑃𝐵 𝐶𝑃𝐵⁄ ), and microbial biomass associated with MAOM (𝑟𝑀𝐵 = 𝑁𝑀𝐵 𝐶𝑀𝐵⁄ ) are used to convert C flow rates to N 

flow rates; and 
𝑃

 and 
𝑃

 are the net N mineralization rates of the two microbial groups. The net N mineralization rates are set 

so that the microbial N:C ratios are stable through time (Manzoni and Porporato, 2009); i.e., they are calculated as the 

differences between N demand for growth and N supply through uptake of organic N of the two respective microbial groups,  
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
𝑃
= (1 − 𝑙)𝐷𝑃

𝑁𝑃𝑆

𝐶𝑃𝑆⏟        
𝑢𝑝𝑡𝑎𝑘𝑒

− (1 − 𝑙)𝑒𝑃𝐷𝑃𝑟𝑃𝐵⏟          
𝑔𝑟𝑜𝑤𝑡ℎ 𝑑𝑒𝑚𝑎𝑛𝑑

= (1 − 𝑙)𝐷𝑃 (
𝑁𝑃𝑆

𝐶𝑃𝑆
− 𝑒𝑃𝑟𝑃𝐵), (16) 


𝑀
= 𝐷𝑀

𝑁𝑀𝑆

𝐶𝑀𝑆⏟    
𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑒𝑀𝐷𝑀𝑟𝑀𝐵⏟      
𝑔𝑟𝑜𝑤𝑡ℎ 𝑑𝑒𝑚𝑎𝑛𝑑

= 𝐷𝑀 (
𝑁𝑀𝑆

𝐶𝑀𝑆
− 𝑒𝑀𝑟𝑀𝐵). (17) 

These formulations for net N mineralization allow capturing both net N release if substrates are sufficiently rich in N 215 

(𝑁𝑃𝑆 𝐶𝑃𝑆⁄ > 𝑒𝑃𝑟𝑃𝐵, 𝑁𝑀𝑆 𝐶𝑀𝑆⁄ > 𝑒𝑀𝑟𝑀𝐵) and net N immobilization when they cannot provide enough N for microorganisms 

(𝑁𝑃𝑆 𝐶𝑃𝑆⁄ < 𝑒𝑃𝑟𝑃𝐵, 𝑁𝑀𝑆 𝐶𝑀𝑆⁄ < 𝑒𝑀𝑟𝑀𝐵). Recalling that the mortality rates can be expressed as a function of the decomposition 

rates thanks to the quasi-equilibrium approximation (𝑀𝑃𝐵 ≈ (1 − 𝑙)𝑒𝑃𝐷𝑃 and 𝑀𝑀𝐵 ≈ 𝑒𝑀𝐷𝑀), we can now sum up substrate 

and microbial biomass and write the N mass balances for the total N in the residues + POM (𝑁𝑃 ) and in the MAOM 

compartments (𝑁𝑀), 220 

𝑑𝑁𝑃

𝑑𝑡
=

𝑑(𝑁𝑃𝑆+𝑁𝑃𝐵)

𝑑𝑡
= − 𝑙𝐷𝑃

𝑁𝑃

𝐶𝑃⏟  
𝑒𝑥 𝑣𝑖𝑣𝑜

− (1 − 𝑙)𝑚𝑒𝑃𝐷𝑃𝑟𝑃𝐵⏟          
𝑖𝑛 𝑣𝑖𝑣𝑜

− 
𝑃⏟

𝑁 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

, 
(18) 

𝑑𝑁𝑀

𝑑𝑡
=

𝑑(𝑁𝑀𝑆+𝑁𝑀𝐵)

𝑑𝑡
= 𝑙𝐷𝑃

𝑁𝑃

𝐶𝑃⏟  
𝑒𝑥 𝑣𝑖𝑣𝑜

+ (1 − 𝑙)𝑚𝑒𝑃𝐷𝑃𝑟𝑃𝐵⏟          
𝑖𝑛 𝑣𝑖𝑣𝑜

− 
𝑀⏟

𝑁 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

. 
(19) 

In these equations, we made the additional approximations 𝑁𝑃𝑆 𝐶𝑃𝑆⁄ ≈ 𝑁𝑃 𝐶𝑃⁄  and 𝑁𝑀𝑆 𝐶𝑀𝑆⁄ ≈ 𝑁𝑀 𝐶𝑀⁄ , which are justified 

because the microbial biomass C and N contents are about two orders of magnitude smaller than the substrate C and N contents, 

respectively (Xu et al., 2013). 

Substituting the definitions for the N mineralization rates from Eq. (16) and (17), we obtain more compact equations, 

𝑑𝑁𝑃

𝑑𝑡
= −𝐷𝑃 [

𝑁𝑃

𝐶𝑃
− (1 − 𝑙)(1 − 𝑚)𝑒𝑃𝑟𝑃𝐵] = −𝐷𝑃 (

𝑁𝑃

𝐶𝑃
− 𝑎𝑟𝑃𝐵), (20) 

𝑑𝑁𝑀

𝑑𝑡
= 𝐷𝑃 [𝑙

𝑁𝑃

𝐶𝑃
+ (1 − 𝑙)𝑚𝑒𝑃𝑟𝑃𝐵] − 𝐷𝑀 (

𝑁𝑀

𝐶𝑀
− 𝑒𝑀𝑟𝑀𝐵). (21) 

2.1.5. Solution of the nitrogen mass balance equations in phase space 225 

As for the C mass balance equations, we now combine Eq. (3), (20), and (21), and group parameters as before in 𝑎 =

𝑒𝑃(1 − 𝑙)(1 − 𝑚), to obtain two ordinary differential equations with 𝐶𝑃 as independent variable and 𝑁𝑃 and 𝑁𝑀 as dependent 

variables, 

𝑑𝑁𝑃

𝑑𝑡
(
𝑑𝐶𝑃

𝑑𝑡
)
−1

=
𝑑𝑁𝑃

𝑑𝐶𝑃
=

𝑁𝑃
𝐶𝑃
−𝑎𝑟𝑃𝐵

1−𝑎
, 

𝑁𝑃(𝑏𝐶𝑃,0) = 𝑏𝑁𝑃,0, 

(22) 

𝑑𝑁𝑀

𝑑𝑡
(
𝑑𝐶𝑃

𝑑𝑡
)
−1

=
𝑑𝑁𝑀

𝑑𝐶𝑃
=


𝐶𝑀
𝐶𝑃
(
𝑁𝑀
𝐶𝑀

−𝑒𝑀𝑟𝑀𝐵)−𝑙
𝑁𝑃
𝐶𝑃
−(1−𝑙)𝑚𝑒𝑃𝑟𝑃𝐵

1−𝑎
, 

𝑁𝑀(𝑏𝐶𝑃,0) = (1 − 𝑏)𝑁𝑃,0. 

(23) 

After normalizing 𝑁𝑃 by the amount of added residue N (𝑛𝑃 = 𝑁𝑃 𝑁𝑃,0⁄ ) and some algebraic manipulations, Eq. (22) becomes, 



12 

 

𝑑𝑛𝑃

𝑑𝑐𝑃
=

𝑛𝑃
𝑐𝑃
−𝑎

𝑟𝑃𝐵
𝑟0

1−𝑎
, 𝑛𝑃(𝑏) = 𝑏, (24) 

where 𝑟0 is the initial N:C ratio of the residues + POM (𝑟0 = 𝑁𝑃,0 𝐶𝑃,0⁄ ). If residues are insoluble (𝑏 = 1), Eq. (24) can be 230 

solved following Manzoni (2017) to obtain the N release curve,  

𝑛𝑃(𝑐𝑃) = 𝑐𝑃
𝑟𝑃𝐵

𝑟0
+ (1 −

𝑟𝑃𝐵

𝑟0
) 𝑐𝑃

1

1−𝑎. (25) 

The general solution for 𝑏 < 1 is reported in the Supplementary Information (Section S2). Eq. (25) reduces to a linear relation 

when 𝑎 ≈ 0 (i.e., if l or m are close to 1), 𝑛𝑃(𝑐𝑃) = 𝑐𝑃. This property will be useful in the following.  

Normalizing the N content in the MAOM compartment in Eq. (23) by the amount of added residue N (𝑛𝑀 = 𝑁𝑀 𝑁𝑃,0⁄ ) and 

after some algebraic manipulations we obtain, 235 

𝑑𝑛𝑀

𝑑𝑐𝑃
=

(
𝑛𝑀
𝑐𝑃
−𝑒𝑀

𝑟𝑀𝐵
𝑟0

 
𝑐𝑀
𝑐𝑃
)−𝑙

𝑛𝑃
𝑐𝑃
−(1−𝑙)𝑚𝑒𝑃

𝑟𝑃𝐵
𝑟0

1−𝑎
, 𝑛𝑀(𝑏) = 1 − 𝑏. (26) 

Eq. (26) can be solved analytically thanks to the fact that 𝑐𝑀  and 𝑛𝑃 are known functions of 𝑐𝑃  (using Eq. (11) and (25), 

respectively). For simplicity, we now assume that the microorganisms associated with both substrate types have similar N:C 

ratio (i.e., 𝑟𝑃𝐵 ≈ 𝑟𝑀𝐵 = 𝑟𝐵) and that residues are insoluble (𝑏 = 1). With these assumptions, the N release curve for MAOM 

is, 

𝑛𝑀(𝑐𝑃) = 𝑐𝑃

1

1−𝑎 (1 −
𝑟𝐵

𝑟0
)

⏟        

=𝑛𝑃(𝑐𝑃)−𝑐𝑃
𝑟𝐵
𝑟0

(𝑐𝑃

−1

1−𝑎 − 1)
𝑙

1−
+ [𝑐𝑃 − 𝑐𝑃

(1−𝑒𝑀)

1−𝑎 ]
𝑙+(1−𝑙)𝑚𝑒𝑃

(1−𝑒𝑀)+𝑎−1⏟                
=𝑐𝑀(𝑐𝑃)

𝑟𝐵

𝑟0
, 

(27) 

where we highlighted how two of the terms on the right hand side of the equation are related to 𝑛𝑃(𝑐𝑃) (Eq. (25)) and 𝑐𝑀(𝑐𝑃) 240 

(Eq. (11)). The general solution for 𝑏 < 1 is reported in the Supplementary Information (Section S2). 

To summarize, Eq. (11), (25), and (27) constitute the solutions in phase space of the mass balance equations describing the 

dynamics of C and N in the residues + POM and MAOM compartments. These equations and their limiting cases under 

assumptions of only in vivo or only ex vivo stabilization are reported in Table 2. The shape of these equations depends on five 

parameters (, l, m, and microbial CUE and N:C ratio), which will be constrained using residues + POM and MAOM data, as 245 

described in Section 2.2.2. 
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Table 2. Summary of analytical solutions of the dynamic model in phase space (C and N fractions are expressed as a function of the 

C fraction in residues + POM, 𝒄𝑷), including model variants parameterized to describe scenarios in which the in vivo or ex vivo 250 
stabilization pathways are dominant. The solutions reported here are derived from Eq. (11), (25), and (27) (insoluble residues, 𝒃 =
𝟏) by assuming for simplicity that all microbial groups have the same N:C ratio, 𝒓𝑩, and the same carbon use efficiency, e. The 

equations for 𝒏𝑴(𝒄𝑷) are written in a compact form as a function of 𝒏𝑷(𝒄𝑷) and 𝒄𝑴(𝒄𝑷). Parameter group a is defined as 𝒂 =
𝒆(𝟏 − 𝒍)(𝟏 −𝒎). 

Scenario C in MAOM, 𝑐𝑀(𝑐𝑃) N in POM + residues, 𝑛𝑃(𝑐𝑃) N in MAOM, 𝑛𝑀(𝑐𝑃) 

General model [𝑐𝑃 − 𝑐𝑃

(1−𝑒)

1−𝑎 ]
𝑙+(1−𝑙)𝑚𝑒

(1−𝑒)+𝑎−1
  𝑐𝑃

𝑟𝐵

𝑟0
+ (1 −

𝑟𝐵

𝑟0
) 𝑐𝑃

1

1−𝑎  (𝑛𝑃 − 𝑐𝑃
𝑟𝐵

𝑟0
) (𝑐𝑃

−1

1−𝑎 − 1)
𝑙

1−
+ 𝑐𝑀

𝑟𝐵

𝑟0
  

Combined 

pathways: 𝑙 > 0 , 

𝑚 = 1,  𝑎 = 0 

[𝑐𝑃 − 𝑐𝑃
(1−𝑒)]

𝑙+(1−𝑙)𝑒

(1−𝑒)−1
  𝑐𝑃  (𝑐𝑃

 − 𝑐𝑃) (1 −
𝑟𝐵

𝑟0
)

𝑙

1−
+ 𝑐𝑀

𝑟𝐵

𝑟0
  

Ex vivo: 𝑙 = 1 ,  

𝑎 = 0 
[𝑐𝑃 − 𝑐𝑃

(1−𝑒)]
1

(1−𝑒)−1
  𝑐𝑃  (𝑐𝑃

 − 𝑐𝑃) (1 −
𝑟𝐵

𝑟0
)

1

1−
+ 𝑐𝑀

𝑟𝐵

𝑟0
  

In vivo: 𝑙 = 0 , 

𝑚 = 1,  𝑎 = 0 
[𝑐𝑃 − 𝑐𝑃

(1−𝑒)]
𝑒

(1−𝑒)−1
  𝑐𝑃  𝑐𝑀

𝑟𝐵

𝑟0
  

 255 

2.1.6. Contribution of the in vivo pathway to MAOM 

Parameters l and m regulate how much C and N are transferred to MAOM, but the total amounts transferred throughout the 

whole decomposition process depends on these parameters, the residues + POM decomposition rate, and how much of the 

initial residue C and N is transferred immediately to MAOM. These total amounts are calculated by integrating through time 

the C and N flow rates from residues + POM to MAOM through the in vivo and ex vivo pathways,  260 

C to MAOM, in vivo pathway = ∫ 𝑚𝑀𝑃𝑑𝑡
∞

0
= ∫ 𝑚(1 − 𝑙)𝑒𝑃𝐷𝑃𝑑𝑡

∞

0
, (28) 

C to MAOM, ex vivo pathway = (1 − 𝑏)𝐶𝑃,0 + ∫ 𝑙𝐷𝑃𝑑𝑡
∞

0
, (29) 

N to MAOM, in vivo pathway = ∫ 𝑚𝑀𝑃𝑟𝑃𝐵𝑑𝑡 = ∫ 𝑚(1 − 𝑙)𝑒𝑃𝐷𝑃𝑟𝑃𝐵𝑑𝑡
∞

0

∞

0
, (30) 

N to MAOM, ex vivo pathway = (1 − 𝑏)𝑁𝑃,0 + ∫ 𝑙𝐷𝑃𝑟𝑃𝑆𝑑𝑡
∞

0
. (31) 

In Eq. (29) and (31), the mass of residue C and N that is readily transferred to MAOM (i.e., the soluble fraction 1-b of the 

added residues) is also accounted for in the calculation of the ex vivo contribution to MAOM. 

The relative contribution of the in vivo pathway to MAOM (𝑓𝐶 or 𝑓𝑁) can be then calculated as the ratio between the mass of 

C or N transferred from the microbial biomass in residues + POM to MAOM over the total mass of C or N transferred from 

POM to MAOM, 265 
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𝑓𝐶 =
∫ 𝑚(1−𝑙)𝑒𝑃𝐷𝑃𝑑𝑡
∞
0

(1−𝑏)𝐶𝑃,0+∫ [𝑚(1−𝑙)𝑒𝑃𝐷𝑃+𝑙𝐷𝑃]𝑑𝑡
∞
0

≈
𝑚(1−𝑙)𝑒𝑃

𝑚(1−𝑙)𝑒𝑃+𝑙
, (32) 

𝑓𝑁 =
∫ 𝑚(1−𝑙)𝑒𝑃𝐷𝑃𝑟𝑃𝐵𝑑𝑡
∞
0

(1−𝑏)𝑁𝑃,0+∫ [𝑚(1−𝑙)𝑒𝑃𝐷𝑃𝑟𝑃𝐵+𝑙𝐷𝑃𝑟𝑃𝑆]𝑑𝑡
∞
0

≈
𝑚(1−𝑙)𝑒𝑃𝑟𝑃𝐵

𝑚(1−𝑙)𝑒𝑃𝑟𝑃𝐵+𝑙𝑟0
, (33) 

where in the last equalities of both equations we assumed that the residues were insoluble (𝑏 = 1). In Eq. (33) we also 

approximated the time-varying N:C ratio of the residues + POM substrates (𝑟𝑃𝑆) with the time-invariant initial residue N:C 

ratio (𝑟0). This allows taking out from the integrals in Eq. (33) all coefficients and N:C ratios, so that the integrals can be 

simplified, as also done in Eq. (32). As demonstrated in Section 3.2, this approximation is supported by the data. Simpler 

formulas for 𝑓𝐶 and 𝑓𝑁 can be easily obtained for the different model variants (Table 3). 270 

 

Table 3. Summary of analytical formulas for the relative contributions of the in vivo pathway to MAOM C and N (𝒇𝑪 and 𝒇𝑵 from 

Eq. (32) and (33), respectively). As for results reported in Table 2, we consider insoluble residues (𝒃 = 𝟏) and assume for simplicity 

that all microbial groups have the same N:C ratio, 𝒓𝑩, and the same carbon use efficiency, e.  

Scenario 𝑓𝐶 𝑓𝑁 

General model 
𝑚(1 − 𝑙)𝑒

𝑚(1 − 𝑙)𝑒 + 𝑙
 

𝑚(1 − 𝑙)𝑒𝑟𝐵
𝑚(1 − 𝑙)𝑒𝑟𝐵 + 𝑙𝑟0

 

Combined pathways: 𝑙 > 0, 𝑚 = 1,  𝑎 = 0 
(1 − 𝑙)𝑒

(1 − 𝑙)𝑒 + 𝑙
 

(1 − 𝑙)𝑒𝑟𝐵
(1 − 𝑙)𝑒𝑟𝐵 + 𝑙𝑟0

 

Ex vivo: 𝑙 = 1,  𝑎 = 0 0 0 

In vivo: 𝑙 = 0, 𝑚 = 1,  𝑎 = 0 1 1 

 275 

2.2. Data and model parameterization 

2.2.1. Data retrieval and processing 

Residue-derived C and N contents in undecomposed residues, POM, and MAOM were collated from published studies (Table 

S1). In most studies, 13C or 14C was used as C tracer and 15N as N tracer; in a few studies, residue-derived C and N were 

estimated by difference between residue-amended and control treatments. We considered plant or microbial residues, but not 280 

leachates or biochar. Residues were often (but not always) separated before soil fractionation as fragments larger than 2 mm. 

Finely ground residues were instead recovered as POM (in that case we report the sum of residues and POM C or N). POM 

was generally isolated via density fractionation (light fraction with density lower than 1.6 to 2 g cm-3) or size fractionation 

(coarse fraction with size larger than 53 m). Where both free and occluded POM were reported, they were combined into a 

single POM fraction. MAOM was generally defined as heavy fraction (density higher than 1.6 to 2 g cm-3) or fine fraction 285 

(size smaller than 53 m). Published data was obtained from tables and digitized figures or was provided by the authors. In 

some cases, authors provided additional unpublished data to complete the datasets.  
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Data sources were selected to guarantee some degree of comparability across studies. Studies where residue C or N were traced 

in aggregates, but where it was not possible to distinguish between POM and MAOM within aggregates were not considered. 

Reported negative values for any of the considered quantities were removed, but if primary data showed major inconsistencies 290 

(e.g., negative fractions of remaining residues) that could not be explained even after contacting the authors, the whole study 

was excluded. After this screening, the database contained data from 42 published articles (Almeida et al., 2021; Antonio 

Telles Rodrigues et al., 2022; Buckeridge et al., 2022; Canisares et al., 2023; Cheng et al., 2023; Cotrufo et al., in review, 

2015, 2022; Craig et al., 2022; Dai et al., 2022; Duan et al., 2023; Even and Cotrufo, 2024; Fang et al., 2019; Ferreira et al., 

2021; Fulton-Smith and Cotrufo, 2019; Haddix et al., 2020, 2016; Huys et al., 2022a; Kölbl et al., 2006, 2007; Kou et al., 295 

2023b; Lavallee et al., 2018; Leichty et al., 2021; Lian et al., 2016; Liang et al., 2023; Liebmann et al., 2020; Lyu et al., 2023; 

Magid et al., 2002; Mitchell et al., 2018; Neupane et al., 2023; Nunez et al., 2022; Nyamasoka-Magonziwa et al., 2022; Oliveira 

et al., 2021; Poeplau et al., 2023; Pries et al., 2017, 2018; Ridgeway et al., 2022, 2023b; Schiedung et al., 2023; Sokol et al., 

2019; Su et al., 2020; Throckmorton et al., 2015; Wang et al., 2017; Witzgall et al., 2021; Xu et al., 2022). Some datasets were 

directly accessible from online repositories (Buckeridge, 2021; Craig et al., 2021; Huys et al., 2022b; Kou et al., 2023a; 300 

Ridgeway et al., 2023a). Several of the datasets within this database are incomplete because, depending on the specific 

experimental design, only C vs. C and N contents, or only POM vs. combined residues and POM had been measured. Due to 

these gaps, 36 out of the total 42 datasets are used in the following analyses. 

Minor data processing and harmonization were also performed. In the few studies reporting values of replicate measurements, 

replicates in each treatment and date were averaged. When the sum of residue-derived C in POM and MAOM did not match 305 

the amount of residue-derived C in the bulk soil (typical for physical fractionation, given mass and C recoveries may vary 

from 100%), we recalculated the fractions of residue-derived C in POM and MAOM as products of the fraction of residue-

derived C in bulk soil times the relative contribution of C in POM versus the sum of C in POM and MAOM, and similarly for 

C in MAOM.  

If not reported, the C content of the residues (g C per g of residue dry weight) was assumed equal to that of species in the same 310 

family that was provided in other studies of the database. Fractions of remaining residue C were approximated by the fractions 

of remaining residue dry mass if C contents were not reported for all measurement times. Finally, all C and N contents were 

normalized by the residue C and N contents added to the soil samples. In this way, C and N in undecomposed residues, POM 

and MAOM were all expressed as fractions of remaining residue C and N (as in the model equations). 

In addition to residue-derived C and N in the soil fractions, we also collected from the original data sources information on 315 

residue and soil properties, as well as climatic conditions at the sampled sites, including initial residue C:N ratio, soil texture 

and total organic C content, and temperature during the laboratory or field incubation. If detailed texture data was not reported, 

percentages of sand, silt and clay were inferred from the soil texture qualitative description provided in the data source. If no 

specific value of mean temperature during the field incubation was reported, we used the mean annual temperature at the 

incubation site. Generally, incubations in the field lasted more than one year, making the mean annual temperature 320 

representative of actual incubation conditions. 
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2.2.2. Model parameter estimation 

The model was fitted to residue-derived C and N contents in both residues + POM and MAOM fractions. The number of free 

parameters was reduced by assuming that both microbial groups have the same CUE (𝑒 = 𝑒𝑃 = 𝑒𝑀) and N:C ratio (𝑟𝐵 = 𝑟𝑃𝐵 =

𝑟𝑀𝐵). The latter parameter was assumed fixed 𝑟𝐵 = 0.13 g N g C-1, corresponding to the global average microbial C:N ratio of 325 

7.6 g C g N-1 (Xu et al., 2013). With these assumptions, the model solutions 𝑐𝑀(𝑐𝑃), 𝑛𝑃(𝑐𝑃), and 𝑛𝑀(𝑐𝑃) (Table 2) have still 

four free parameters: e, , l, m. These parameters have partly similar effects, so fitting all of them could lead to equifinality 

issues, requiring us to constrain some of these parameters before fitting the others.  

The relative decomposability  was estimated as 0.05, based on the decay constants used in the MEMS-2 model (Zhang et al., 

2021). In MEMS-2, the ratios of the decay constants for decomposition of MAOM and hydrolysable residues, oxidizable 330 

residues, and POM are ≈2×10-2, ≈5×10-2, ≈10-1, respectively. The higher ratio  ≈10-1 is also comparable to that estimated 

by Guo et al. (2022). Considering that here residues and POM are merged in a single compartment including also chemically 

recalcitrant compounds, we considered the intermediate value  = 0.05. We also attempted to constrain other parameters and 

fit  to the data instead of setting a fixed value. However, this approach was unsuccessful, as fitting was poor for most datasets.  

In Section 3.2 we present arguments for constraining also the value of m, so that the remaining parameters e and l can be fitted 335 

to the 𝑐𝑃 and 𝑐𝑀 data using Eq. (11) that provides the relation between them 𝑐𝑀(𝑐𝑃) (a lower bound for e values was set to 

0.02). To this aim, we used all the time series with at least three 𝑐𝑃  and 𝑐𝑀  data pairs after grouping data from similar 

treatments, but not from different soils or treatments involving N additions, as those are expected to affect organic matter 

stabilization (38 time series in total). Too few datasets included residue-derived N contents in soil fractions for a systematic 

analysis, so model parameters were fitted only to the C data, except for a few examples. Model fitting was performed by 340 

minimizing the square errors between measurements and data, using the function lsqcurvefit in Matlab (MathWorks, 2018). 

2.2.3. Statistical analysis of model results 

The estimated model parameters were predicted using as independent variables: C:N ratio of the added residues, clay content, 

soil organic C content (as an index of overall C availability), and incubation temperature (laboratory temperature or air 

temperature at the field site where the litter was incubated). The data were fitted with a linear mixed effect model including 345 

interactions of clay content with residue C:N ratio and soil organic C content, and with data source as a random factor, using 

the function fitlme in Matlab (MathWorks, 2018). 
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3. Results 

3.1. Model behavior 350 

In general, the data show that C and N from the residues + POM compartment accumulate in MAOM in the early 

decomposition phase, while later both residues + POM and MAOM compartments lose mass (Appendix A). The same general 

trend is captured by modeled phase-space trajectories, but these trajectories are modulated by the dominant stabilization 

pathways and other model parameters (Fig. 2). For all parameter values, decreasing 𝑐𝑃 during decomposition causes an initial 

increase in both 𝑐𝑀 and 𝑛𝑀 because C and N are transferred from residues + POM to MAOM (top and bottom rows in Fig. 2). 355 

However, towards the end of the decomposition process, as 𝑐𝑃 nears zero, transfer to MAOM is lower than mineralization of 

MAOM, so that both 𝑐𝑀 and 𝑛𝑀 start decreasing to eventually also reach zero. Decomposition of residues + POM also causes 

𝑛𝑃 to decrease, although in some scenarios N is preferentially retained in this pool before being transferred to MAOM or 

mineralized (downward concavity of the curves in the central row in Fig. 2).  

Differences in the model behavior emerge when comparing predictions under contrasting stabilization pathways. If the in vivo 360 

pathway is dominant (𝑙 = 0, 𝑚 = 1; blue), at a given 𝑐𝑃, less C accumulates in MAOM (lower 𝑐𝑀) compared to a scenario 

where the ex vivo pathway is dominant (𝑙 = 1, 𝑚 = 0; orange). This lower C accumulation is due to respiration that removes 

C before necromass is formed and transferred to MAOM. In contrast, more N accumulates in MAOM (higher 𝑛𝑀) if the in 

vivo pathway is dominant. This higher N accumulation is due to the N-enriched necromass from the residues + POM 

compartment. Because in the in vivo scenario necromass is not recycled within the residues + POM compartment (𝑚 = 1), 365 

the C:N ratio of that compartment remains constant. Microorganisms might still need to immobilize N when feeding on N poor 

residues + POM (Eq. (16)), but the acquired N supports the production of biomass that is eventually transferred to MAOM. 

The mix scenario, with simultaneous in vivo and ex vivo stabilization (green curves), leads to trajectories of 𝑐𝑀 and 𝑛𝑀 that 

are intermediate between the two more extreme scenarios. 

Neither the in vivo or the ex vivo pathway lead to preferential N retention in residues + POM (central row in Fig. 2). 370 

Mathematically, this pattern is explained by the fact that 𝑛𝑃 = 𝑐𝑃  when either 𝑙 = 1 or 𝑚 = 1 (both resulting in 𝑎 = 0). 

However, in the mix scenario, preferential N retention in the residues + POM compartment occurs, as indicated by the 

downward concavity of the green curves in the central row of Fig. 2. 

Increasing the C:N ratio of the added residues (solid vs. dashed curves in the 2nd column of Fig. 2) causes relatively stronger 

N retention in residues + POM in the mix scenario, and relatively higher N accumulation in MAOM, due to the higher N 375 

immobilization needed to satisfy the microbial N demand in both compartments. The same mechanism also causes higher N 

retention when increasing microbial CUE (solid vs. dashed curves in the 3rd column of Fig. 2). However, higher CUE also 

increases C accumulation in MAOM (while residue C:N has no effect on 𝑐𝑀) because less C is lost through respiration when 

CUE is higher. 

Finally, increasing the MAOM decay constant relative to the decay constant of residues + POM (higher ) causes lower 380 

retention of C and N in MAOM, and more curvilinear trajectories as 𝑐𝑃 decreases (solid vs. dashed curves in the 4th column of 
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Fig. 2). This pattern differs from the nearly linear accumulation (and very late decomposition) of C and N in MAOM when  

is low. 

  

Figure 2. Fraction of added C in MAOM, 𝒄𝑴 (top row), fraction of added N in residues + POM, 𝒏𝑷 (center row), and fraction of 385 
added N in MAOM, 𝒏𝑴 (bottom row), as a function of the fraction of added C in residues + POM, 𝒄𝑷, under different stabilization 

pathway scenarios (colors) and when varying the values of model parameters around baseline values shown in the 1st column: residue 

N:C ratio, 𝒓𝟎 (2nd column), microbial carbon use efficiency, e (3rd column), and ratio between the decay constants of MAOM and 

residues + POM decomposition,  (4th column). Three stabilization scenarios are considered: dominant ex vivo stabilization (𝒍 = 𝟏; 

orange), dominant in vivo stabilization (𝒍 = 𝟎, 𝒎 = 𝟏; blue), and a combination of pathways denoted by ‘mix’ (𝒍 = 𝟏 𝟐⁄ , 𝒎 = 𝟏 𝟐⁄ ; 390 
green). In all panels, residue decomposition progresses from right to left along the curves, as 𝒄𝑷 decreases. The dot-dashed black 

lines indicate 1:1 lines, which represent equality between the fractions of added C or N shown on the y-axes and 𝒄𝑷 shown on the x-

axes; the added residues are assumed to be insoluble (𝒃 = 𝟏). 
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3.2. Stabilization pathways – mathematical analysis 

Two lines of evidence help us constrain parameters l and m, which represent the MAOM stabilization pathways. First, during 395 

decomposition, the C:N ratio of the combined residues + POM compartment remains similar to the initial residue C:N (Fig. 

3A). In general, POM is expected to have lower C:N than the residues, because necromass recycling enriches the decomposing 

residues in N. Therefore, the observed stable C:N in the residues + POM compartment is surprising. Stable C:N implies that 

either microbial necromass recycling is low in the residues + POM compartment or all depolymerization products are 

transferred to MAOM so biomass growth is low. The first explanation corresponds to C and N in necromass being stabilized 400 

through the in vivo pathway, which in our mathematical framework implies 𝑚 ≈ 1. The second explanation requires instead 

that most C and N released during residues + POM decomposition is transferred to MAOM through the ex vivo pathway, 

corresponding to 𝑙 ≈ 1.  

Mathematically, stable C:N in the residues + POM compartment requires 𝑎 ≈ 0, so that 𝑛𝑃(𝑐𝑃) ≈ 𝑐𝑃 (Eq. (25)), or—after 

converting variables back to actual C and N contents—𝑁𝑃(𝐶𝑃) ≈ 𝑟0𝐶𝑃. Fitting Eq. (25) to all 𝑛𝑃 and 𝑐𝑃 pairs in the dataset we 405 

found 𝑎 =0.012 when considering the median 𝑟0, confirming that the C:N ratio of the residues + POM compartment is nearly 

constant. The parameter group a depends on both l and m, and a is approximately zero when either 𝑙 ≈ 1 (ex vivo pathway) 

or 𝑚 ≈ 1  (in vivo pathway). Therefore, this first argument points to one of the alternative scenarios for the model 

parameterization: either 𝑙 ≈ 1 (in such a case the value of m is inconsequential) or 𝑚 ≈ 1 (with l still to be determined). It is 

also possible that 𝑎 ≈ 0 due to simultaneously low value of e and high values of l and m, but microbial carbon use efficiency 410 

in incubation studies with high organic matter availability is likely in the range 0.1 to 0.3 at least in the early phase of 

decomposition (e.g., CUE values reported for one of the incubation studies, Craig et al., 2022). We thus discard this third 

possibility and focus on the alternatives 𝑙 ≈ 1 or 𝑚 ≈ 1. 

The second line of evidence points to significant release of C through respiration as C is transferred from residues + POM to 

MAOM (Fig. 3B). It is likely that part of the depolymerization products are already metabolized by microbes in residues + 415 

POM (or even via extracellular oxidative metabolism, Maire et al., 2013) with release of CO2. Mathematically, we can quantify 

the rate of change in 𝑐𝑀 as 𝑐𝑃 decreases in the early phase of decomposition—i.e., we can calculate from Eq. (11) 𝑑𝑐𝑀 𝑑𝑐𝑃⁄  

for 𝑐𝑃 → 1 and 𝑐𝑀 → 0, 

𝑑𝑐𝑀

𝑑𝑐𝑃
|
𝑐𝑃→1

= −
𝑙+(1−𝑙)𝑚𝑒

1−𝑒(1−𝑙)(1−𝑚)
. (34) 

This derivative is always negative, because decreasing 𝑐𝑃 causes an increase in 𝑐𝑀, but the specific values depend on the 

parameter choice. In the ex vivo scenario, 𝑙 ≈ 1 and 𝑑𝑐𝑀 𝑑𝑐𝑃⁄ ≈ −1 indicating no C loss during the transfer from POM + 420 

residue to MAOM. This is a clearly unrealistic scenario because data suggest significant C loss. In fact, the measured 𝑐𝑀 are 

lower than 1 − 𝑐𝑃 (dashed line in Fig. 3B), indicating that not all C from residues + POM is transferred to MAOM.  

In contrast, in the in vivo scenario, 𝑚 ≈ 1 and 𝑑𝑐𝑀 𝑑𝑐𝑃⁄ ≈ −𝑙 − (1 − 𝑙)𝑒. The largest—but still reasonable—increase in 

MAOM as residues + POM is decomposed can be quantified from 𝑐𝑀 and 𝑐𝑃 data through the upper quartile boundary line 
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shown in red in Fig. 3A. The slope of this line is 𝑑𝑐𝑀 𝑑𝑐𝑃⁄ = −0.37. This value corresponds to a reasonable 𝑒 = 0.37 if 𝑙 = 1 425 

or to any combination of l and e satisfying 0.37 = 𝑙 + (1 − 𝑙)𝑒. For l to be larger than zero, 𝑒 < 0.37. For e in the range 0.1 

to 0.3, we find l between 0.1 and 0.3.  

To summarize these initial results based on a simple mathematical analysis of the model combined with measured C and N 

contents in soil fractions, we can narrow down the range of plausible parameter values to 𝑚 ≈ 1 and 𝑙 < 0.3. In the following, 

we will set 𝑚 = 1, while conservatively letting l free to vary. This allows us to determine through least square fitting of 430 

individual data time series the parameters regulating the stabilization pathway and thus the relative contribution of each 

pathway to C and N stabilization (Section 3.4). 

 

 

Figure 3. A) Relation between the fractions of added residue N (𝒏𝑷) and C (𝒄𝑷) recovered in residue + particulate organic matter 435 
(POM); lighter colors refer to residues with increasing C:N ratio. B) Relation between the fraction of added residue C recovered in 

mineral associated organic matter (MAOM), 𝒄𝑴, and 𝒄𝑷; different colors indicate different data sources. In both panels, residue 

decomposition progresses from right to left along the curves, as 𝒄𝑷 decreases. The dot-dashed black lines indicate 1:1 lines. In A, the 

1:1 line corresponds to the equation 𝒏𝑷(𝒄𝑷) = 𝒄𝑷 (i.e., 𝑵𝑷(𝑪𝑷) = 𝒓𝟎𝑪𝑷), which is the solution of the model for both ‘ex vivo’ and ‘in 

vivo’ scenarios (Table 2). In B, the dashed black line indicates the trajectory of conversion from residues + POM to MAOM without 440 
any C loss via respiration, whereas the thick red line is the upper quartile boundary line for the early decomposition phase (𝟎. 𝟓 ≤
𝒄𝑷 ≤ 𝟏). 
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3.3. Examples of model calibration on individual time series 

Parameters e and l were calibrated to datasets with at least three pairs of data points (Section 2.2.2). Examples of data time 445 

series and fitting of both 𝑐𝑀(𝑐𝑃) and 𝑛𝑀(𝑐𝑃) are shown in Fig. 4. In the first example (Fig. 4A, D, G), the residues (microbial 

necromass) were labile and N rich, so they were decomposed rapidly. As a result, sampling took place when most of the 

residues had already been decomposed (𝑐𝑃 ≈ 0), so that both C and N in MAOM decrease. In the second example, representing 

the addition of a residue with intermediate C:N (Fig. 4B, E, H), C accumulates very slowly in MAOM as C in residues + POM 

is decomposed, whereas N in MAOM increases through time and as 𝑐𝑃 decreases. In the third example (Fig. 4C, F, I), relatively 450 

N poor residues exhibit strong N immobilization and accumulation of N in MAOM. In the last two examples, more N than C 

accumulate in MAOM at a given time or 𝑐𝑃 value (compare Fig. 4B and 4E or Fig. 4C and 4F), indicating preferential retention 

and stabilization of N when residues with high C:N are decomposed (as also shown in Figure 2). These examples show that 

data can be representative of early (last two examples) and later phases (first example) in the same stabilization pattern, which 

are linked through a single curve in the phase space. Therefore, datasets might appear inconsistent across studies (𝑐𝑀 and 𝑛𝑀 455 

increasing vs. decreasing through time), but the underlying dynamic behavior is the same. Despite similar underlying 

dynamics, the fitted parameters are different across studies, reflecting contrasting residue type (plant vs. microbial necromass), 

soil characteristics, and experimental conditions, as shown in the next section. 
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Figure 4. Examples of data time series from incubations (A-F) and model fitting in the phase space (G-I), for residues with increasing 460 
residue C:N from the left to the right column: A-C) fractions of added C in residues + POM (𝒄𝑷, green circles) and MAOM (𝒄𝑴, 

brown circles) as a function of time; D-F) fractions of added N in POM + residues (𝒏𝑷, green triangles) and MAOM (𝒏𝑴, brown 

triangles) as a function of time; G-I) 𝒄𝑴 (black circles) and 𝒏𝑴 (gray triangles) as a function of 𝒄𝑷. In G-I, we fitted parameters e 

and l in the functions 𝒄𝑴(𝒄𝑷) and 𝒏𝑴(𝒄𝑷) with 𝒎 = 𝟏 and  = 𝟎. 𝟎𝟓 (Table 2). Data are from: A, D, G) Buckeridge et al. (2022) 

(residues: Escherichia coli necromass, C:N=3.4), B, E, H) Mitchell et al. (2018) (residues: Chloris gayana, C:N=14.2), and C, F, I) 465 
Lavallee et al. (2018) (residues: Andropogon gerardii, silt soil, C:N=28.2). In G-I, residue decomposition progresses from right to left 

along the curves, as 𝒄𝑷 decreases; the dot-dashed lines represent equality between the fractions of added C or N shown on the y-axes 

and 𝒄𝑷 shown on the x-axes. 
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3.4. Stabilization pathways – general patterns 470 

We focus now on fitting of 𝑐𝑀(𝑐𝑃), as there are too few datasets including N in MAOM to draw general conclusions. The 

values of e and l obtained from fitting 𝑐𝑀(𝑐𝑃) were weakly correlated (Pearson correlation coefficient = 0.27) indicating that 

despite constraining other parameters, there remain mild equifinality issues with the two calibrated parameters. Values of e 

were below ≈0.2 (Fig. 5), with the lowest values from datasets with minimal accumulation of C in MAOM (Mitchell et al., 

2018). Values of l were generally lower than 0.1, indicating that less than 10% of depolymerized C is transferred to MAOM 475 

and confirming our expectations from the mathematical analysis (Section 3.2). Low values of l might be associated with large 

depolymerization rates (𝐷𝑃 in Fig. 1) and low microbial CUE, so that the actual rate of C transfer to MAOM via the ex vivo 

pathway could still be large (𝑓𝐶 calculated from Eq. (32)), but that was not the case. Indeed, the median relative contribution 

of the in vivo pathway to MAOM formation is ≈75 % (Fig. 5), but with a large variability. Notably, the contribution of the in 

vivo pathway is larger for N (𝑓𝑁 calculated from Eq. (33)), with a median value of 96%. 480 

Next, we tested how the estimated parameters e and l are affected by residue C:N ratio, soil properties (clay fraction, SOC 

content), and incubation conditions (temperature). When accounting for the combined effects of all variables and grouping 

data by source with a linear mixed effect model, we found that e decreased with increasing residue C:N (Fig. 6). The in vivo 

contributions 𝑓𝐶 and 𝑓𝑁 increased in more clayey soils, but the effect of clay was less positive in C rich soil and when adding 

N poor residues (significant negative interactions of clay fraction with SOC and residue C:N; Fig. 6). 485 

 

Figure 5. Box plots of fitted model parameters and relative contributions of the in vivo pathways to MAOM C and N: microbial 

carbon use efficiency (e), fraction of depolymerized products transferred from POM + residue to MAOM (l), fractions of C and N 

transferred from POM to MAOM via in vivo pathway (respectively 𝒇𝑪 and 𝒇𝑵). Each box shows median and quartiles, and whiskers 

represent extreme values (1.5 times the interquartile range).  490 

 



24 

 

 

 

Figure 6. Results of linear mixed effect models predicting model parameters (e and l) and relative contributions of the in vivo 

pathway to MAOM C and N (𝒇𝑪 and 𝒇𝑵, respectively) as a function of residue C:N ratio (C:N), soil clay fraction, soil organic carbon 495 
content (SOC), incubation temperature (T), and the interactions of clay fraction with C:N and SOC, with data source as a random 

factor. A) Model coefficients: colors indicate the direction of the effect (red: negative, blue: positive) and shading intensity indicates 

the significance of the effect (blank: not significant, light colors: 0.05<p<0.1, dark colors: p<0.05); marginal coefficients of 

determination: 0.89, 0.96, 0.65, and 0.80 for e, l, 𝒇𝑪, and 𝒇𝑵, respectively. The bottom panels show model predictions of 𝒇𝑪 as a 

function of clay fraction when varying B) SOC content (gC g-1) and C) residue C:N ratio (gC gN-1) as indicated by the thickness of 500 
the lines (values of SOC and C:N represent 10, 50, and 90th percentiles of the observations). Data points color coded by SOC (B) and 

residue C:N (C) are also shown. 
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4. Discussion 

4.1. Model design and solution in phase space 505 

We considered only two compartments in our model, in contrast to other more complex C and N cycling models describing 

also dissolved organic matter, microbial biomass (which is here assumed to be in quasi equilibrium), occluded organic matter, 

and MAOM with different degrees of availability to decomposition (Abramoff et al., 2018; Guo et al., 2022; Zhang et al., 

2021). However, models with more than two compartments might not fit POM and MAOM data better, while having worse 

equifinality issues (Guo et al., 2022). Therefore, our model design balances the need to both represent (at least in a simplified 510 

way) the previously hypothesized stabilization pathways and minimize the number of parameters to fit.  

Different from previous models, here we study the dynamics of one state variable (C in MAOM, N in residues + POM, or N 

in MAOM) as a function of another variable (C in residues + POM). This approach allows focusing on relations among 

variables rather than the temporal progression of the decomposition and stabilization process. This is particularly useful when 

the temporal trajectories are very different among datasets (e.g., Figure 4A-F), while in the phase space data start exhibiting 515 

more consistent (and simpler) trends (Figure 4G-I). From a modeling perspective, using time series would require calibrating 

not only the parameters regulating the partitioning of C and N flows into different pathways, but also decay constants and 

those parameters that capture the effects of environmental conditions on the rate of decomposition—e.g., parameters in soil 

moisture or temperature rate modifiers (Bauer et al., 2008). Moreover, temporal dynamics depend on the chosen kinetics for 

decomposition, whereas our approach is largely independent of the kinetics (except for the assumption that the ratio of MAOM 520 

and residues + POM decomposition rates scales approximately as the ratio of C contents in those two compartments).  

While not aiming to model C and N stabilization, previous work described N release from decomposing residues following 

this approach, leading—albeit through different derivations—to an equation linking residue N to residue C that is formally 

equivalent to Eq. (25) (the theory was developed by Bosatta and Ågren, 1985; Manzoni et al., 2008). That equation was then 

fitted to measured fractions of remaining C and N in litterbag incubations, to estimate the CUE of residue decomposers (Bosatta 525 

and Ågren, 1985; Manzoni, 2017; Manzoni et al., 2008) or their threshold element ratio (i.e., the C:N ratio below which net N 

mineralization starts) (Ågren et al., 2013). In our application, we use the same equation to infer the constraint 𝑚 = 1, but we 

estimate the parameter e (conceptually analogous to CUE) with the analytical equation linking C in MAOM to C in residues 

+ POM. 

Moreover, our approach allows finding analytical solutions that provide mathematical insights into these processes. Besides 530 

the already mentioned application of the N vs. C relation to constrain parameter m, the analytical relation between MAOM C 

and residues + POM C (i.e., 𝑐𝑀(𝑐𝑃)) allowed determining limit values for parameter l by studying the slope of the 𝑐𝑀(𝑐𝑃) 

function at the beginning of decomposition. These insights would not be possible when solving numerically a more complex 

model. 
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4.2. Model limitations   535 

Our model was designed to match the type of data available—residue, POM, and MAOM fractions measured at coarse 

temporal resolution from soils sampled from different ecosystems and land uses. We also aimed for full analytical tractability. 

These two requirements set constraints on the model complexity and the number of parameters that could be estimated from 

the data. These constraints in turn imply the following simplifications and approximations that might limit the model 

applicability: 540 

- Model structure: the model was initially constructed with five compartments (including POM and MAOM substrates 

and microbial biomass, as well as DOM), but assuming that microbial biomass and DOM are at quasi-equilibrium 

allows reducing the model to two compartments. This simplification has minor consequences on the POM and 

MAOM dynamics as long as both microbial biomass and DOM turn over faster than the POM and MAOM substrates. 

Microbial biomass has a turnover time in the order of a few months (Spohn et al., 2016) and DOM dynamics are even 545 

faster—shorter than the turnover of POM and MAOM. Therefore, our quasi-equilibrium assumption appears to be 

reasonable. 

- Organic matter chemical heterogeneity: residues + POM and MAOM contain compounds with contrasting chemical 

characteristics (depending on residue chemistry and on the pathway of stabilization into MAOM, respectively), but 

we neglected these chemical differences both to keep the model simple and because of limited data to parameterize 550 

more than one compartment for residues + POM and one for MAOM. As a consequence, we also neglected the 

decreasing rates of decomposition through time as a result of accumulating recalcitrant compounds. However, we can 

expect that less decomposable compounds remain in both POM and MAOM (because of their different chemical 

recalcitrance or accessibility, respectively), so that the ratio of the decay constants for these compartments (i.e., 

parameter ) should remain relatively stable, which is the only assumption we need to make in our derivation. 555 

Therefore, neglecting chemical heterogeneity may significantly affect the prediction of decomposition rates, but it is 

likely to be less important when modelling residues + POM and MAOM in phase space. 

- Microbial traits: microorganisms growing on POM are likely different from those feeding on organic matter desorbed 

from minerals. For example, we could expect higher fungal to bacterial ratio in residues + POM, with higher microbial 

biomass C:N and possibly lower CUE (Soares and Rousk, 2019), but lack of specific information on microbial traits 560 

within the soil fractions does not allow us to parameterize these communities in the model (though soil fraction-

specific traits are retained in the general solutions of the mass balance equations).  

4.3. Reconciling contrasting decomposition patterns in phase space   

Our phase space representation of residues + POM and MAOM dynamics highlights a simple and consistent pattern—as 

residues are decomposed, the residues + POM compartment is depleted, while MAOM gains C and N (early phase of 565 

decomposition). However, also residue-derived C and N in MAOM will be decomposed eventually (late phase). These 
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processes lead to a humped relation between the fractions of residue C or N recovered in MAOM and the C fraction recovered 

in POM (Fig. 3). The shape of this relation depends on microbial CUE and the partitioning of C and N between in vivo and ex 

vivo pathways (Fig. 2). Generally, higher CUE and ex vivo stabilization promote C and N accumulation in MAOM (steeper 

increase in MAOM as residues + POM is reduced). In both cases, this is due to lower C losses via respiration in the residues 570 

+ POM compartment promoting C (and N) transfer to MAOM and retention in stabilized form in that compartment.  

Because of the infrequent sampling in the incubation studies, the whole pattern of increasing and decreasing MAOM has not 

been observed so far. For example, C in MAOM increased through time in some studies (Cheng et al., 2023; Fulton-Smith and 

Cotrufo, 2019; Leichty et al., 2021; Neupane et al., 2023), but in others it decreased (Su et al., 2020; Throckmorton et al., 

2015; Wang et al., 2017). N in MAOM tends to increase through time in most studies (Fulton-Smith and Cotrufo, 2019; 575 

Mitchell et al., 2018; Nunez et al., 2022), but it can also decrease (Kölbl et al., 2006). Our model links through analytical 

equations these two regimes of early decomposition associated to transfer to MAOM and late decomposition associated to 

destabilization from MAOM. These equations allow to compare datasets that might appear inconsistent at first sight. 

The phase space representation also shows that the stoichiometry of residues + POM is conserved during residue 

decomposition and stabilization, regardless of the residue initial C:N ratio (Figure 3A). This result might seem surprising, as 580 

N is preferentially retained during residue decomposition, often resulting in a temporary net N accumulation if residues are N 

poor (Moore et al., 2006; Parton et al., 2007). This pattern can be explained by microbial N immobilization and recycling of 

N rich microbial necromass within the residues, which gradually lowers the residue C:N to values close to those of microbial 

biomass (Manzoni et al., 2008). The observation that the residues + POM compartment retains the initial residue C:N ratio 

indicates that microbial necromass is not recycled within that compartment, but rather it is stabilized into the MAOM fraction 585 

through the in vivo pathway (parameter 𝑚 = 1). Therefore, the phase space of C and N in residues + POM both informs about 

stabilization mechanisms and helps constrain model parameters. 

4.4. What is the dominant pathway of C and N stabilization in MAOM? 

Earlier studies identified the origin of MAOM using microbial biomarkers (e.g., amino sugars) that trace microbial necromass 

contributions to MAOM, molecular fingerprinting to partition MAOM into microbial- or plant-derived based on their specific 590 

molecular signatures, or isotopic and stoichiometric mixing models (Chang et al., 2024; Whalen et al., 2022). Leveraging the 

contrast in N contents of microbial biomass (N-rich) and plant residues (N-poor), Chang et al. (2024) estimated that between 

34% and 47% of MAOM is of microbial origin. Estimates based on amino sugar analysis can be similar or lower (Whalen et 

al., 2022). Our estimates suggest that approximately 75% of MAOM C and almost all MAOM N are formed thanks to the in 

vivo pathway. It is possible that the contribution of the in vivo pathway we estimated is higher because we did not consider 595 

the stabilization of residues + POM within very fine aggregates (Mueller et al., 2012), which would be separated as MAOM. 

Another explanation may be that we neglected the stabilization of dissolved C and N at the very beginning of decomposition. 

Our model can account for this process, but our data analysis to test its relevance was not conclusive (Supplementary 

Information, Section S3). A third plausible explanation is that the persistence of necromass and other sources of MAOM differ, 
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so that despite a larger contribution of the in vivo pathway (predicted by our model), compounds stabilized via the ex vivo 600 

pathway could persist longer in the MAOM compartment. This would result in lower percentages of microbe-derived MAOM 

as estimated by Chang et al. (2024). This explanation appears plausible in the light of relatively short turnover time of 

necromass in MAOM (< 1 year, Buckeridge et al., 2022) compared to the bulk MAOM. Therefore, we conclude that the 

stabilization of residue C and N in MAOM is dominated by the in vivo pathway, but we also acknowledge that other sources 

of C and N that would contribute ex vivo were not considered in the isotope tracing experiments or in our model. 605 

4.5. What are the drivers of the stabilization pathway? 

Our results show that a higher clay fraction is associated with more dominant in vivo stabilization of both C and N (𝑓𝐶 and 𝑓𝑁 

in Fig. 6). This is consistent with empirical evidence that the in vivo pathway is promoted in finer textured soils (Chang et al., 

2024), and thus supports the idea that in these soils, depolymerization products are used by microorganisms whose necromass 

is eventually stabilized. Finer textured soils can promote microbial growth and necromass production by improving moisture 610 

retention besides offering more available minerals for stabilization of the microbial products (Mao et al., 2024). Similar to 

Chang et al. (2024), we found negative effects of SOC on both 𝑓𝐶 and 𝑓𝑁, indicating that in organic matter rich soils the in 

vivo stabilization pathway is less important than in organic matter poor soils. The result that stabilization through the in vivo 

pathway is more important in clay rich soil, but less so in C rich soils suggests that in vivo stabilization is particularly sensitive 

to saturation of mineral surfaces (Georgiou et al., 2022). This finding is consistent with N-rich organic matter—likely of 615 

microbial origin—directly bonding to minerals (Spohn, 2024) and thus being dependent on the availability of active mineral 

surfaces. In contrast, C-rich organic matter from the ex-vivo pathway tends to indirectly bond to minerals through organic 

matter-organic matter interactions (Spohn, 2024) and is thus less constrained by saturation of the mineral surfaces (Begill et 

al., 2023). 

According to the Microbial Efficiency-Matrix Stabilization (MEMS) hypothesis, labile and N rich residues would be more 620 

likely to be stabilized via the in vivo pathway, thanks to more efficient conversion of residue-derived C and N into biomass 

(Cotrufo et al., 2013). The general trend of decreasing CUE as residue C:N increases (Manzoni et al., 2008, 2017) was 

confirmed here (Fig. 6a), and low residue C:N indeed promoted stabilization via the in vivo pathway, but only in soils with 

more than about 15% clay content (Fig. 6c). 

The in vivo pathway was also promoted by warmer conditions (although the temperature effect was only marginally 625 

significant)—again consistent with the results by Chang et al. (2024). 
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5. Conclusions 

We proposed a simple diagnostic model to interpret data on residue incorporation into POM and MAOM. The model is solved 

analytically in the phase space—i.e., by expressing one variable as a function of other variables instead of time. This approach 630 

moves away from the usual focus on kinetics and allows quantifying the partitioning of C and N between two main pathways 

of stabilization: in vivo stabilization of microbial necromass and ex vivo stabilization of depolymerization products. We found 

that the majority of C and N derived from added residues is stabilized through the in vivo pathway. This pathway is particularly 

dominant in clay rich and C poor soils, where stabilization is less limited by saturation of the mineral surfaces. Overall, these 

findings support the idea that a large fraction of MAOM is derived from microbial necromass, but also that the availability of 635 

mineral surfaces affects the relevance of this stabilization pathway. 
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Appendix A 

General trends in MAOM accumulation can be assessed by calculating the change in C or N in MAOM per unit change in 

residues + POM (∆𝑐𝑀∆𝑐𝑃
−1). Because the residues + POM compartment loses mass due to decomposition, its changes are 640 

always negative (∆𝑐𝑃 < 0). As a consequence, negative relative changes in MAOM (∆𝑐𝑀∆𝑐𝑃
−1 < 0) indicate accumulation 

of mass in MAOM. Generally, in the early phase of decomposition when the fraction of remaining residues + POM is still 

high, both C and N accumulated in MAOM, but below a 𝑐𝑃 or 𝑛𝑃 threshold, both C and N are lost from MAOM (Fig. A1). 

The turning points when MAOM starts being depleted are at 𝑐𝑃 ≈0.18 and 𝑛𝑃 ≈0.42 (i.e., earlier than for C). We note that 

fewer data on N accumulation in MAOM do not allow to constrain this threshold as accurately as for C accumulation.  645 

 

Figure A1. Changes in C or N in MAOM per unit change in C or N in residues + POM, as a function of remaining C or N in residues 

+ POM (panel A for C and panel B for N). 𝒄𝑷 and 𝒄𝑴 (𝒏𝑷 and 𝒏𝑴) denote the fractions of remaining C (respectively N) in residues 

+ POM and MAOM. Time progresses from right to left as 𝒄𝑷 and 𝒏𝑷 decrease. Data points are from all datasets containing at least 

two subsequent measurements for the same treatment, site, and residue type. Solid curves are fitted exponential functions with an 650 
asymptote, used to define the threshold 𝒄𝑷 and 𝒏𝑷 at which MAOM accumulation (light gray) turns into depletion (we excluded 

from the regression outliers defined as values lower than the 3th and higher than the 97th percentile). 

Data availability 

Data on residue-derived carbon and nitrogen in the residue, dissolved, particulate, and mineral associated organic matter 

compartments are deposited in the open access Bolin Centre Database (https://doi.org/10.17043/manzoni-2024-residue-655 

stabilization-1). 

https://doi.org/10.17043/manzoni-2024-residue-stabilization-1
https://doi.org/10.17043/manzoni-2024-residue-stabilization-1
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