
Response to RC2 
 
This study focuses on improving the estimation of Amazonian carbon fluxes, particularly 
the Net Biome Exchange (NBE), which encompasses biogenic and wildfire fluxes. The 
authors highlight the challenges in quantifying Amazonia's carbon balance due to 
anthropogenic disturbances and the need for more reliable long-term data. To address this, 
they utilize solar-induced fluorescence (SIF) data from NASA's OCO-2 satellite and other 
observations to enhance the Vegetation Photosynthesis and Respiration Model (VPRM). 
They compare diQerent VPRM versions and the Simple Biosphere 4 (SiB4) model and 
further optimize these models using OCO-2 CO2 column observations. The study reveals 
that SIF-based VPRM versions, especially VPRM_SIFg, outperform traditional ones in 
capturing CO2 fluxes across various timescales and moisture conditions. The researchers 
underscore the importance of SIF in improving carbon flux estimations and understanding 
Amazon's response to environmental changes. 
  
We thank Reviewer 2 for the extensive comments, including ways to make both this current 
work and future follow-on work more robust. Where changes in the paper have been made, 
comments have been included as “RC2.#”.  
 
There are some issues that, if the authors address, can make the study more robust: 
RC2.1    The VPRM model calibration relies on a limited dataset from eight eddy flux 
sites, potentially hindering the model's ability to represent the diverse and 
heterogeneous Amazonian ecosystems accurately. (if possible) expanding the 
calibration dataset to include more sites and diverse vegetation types would improve 
the model's applicability and robustness. 
 
We agree but unfortunately, at the time of this work, the eddy flux data set was limited in 
time and location to the sites as described in the paper. However, this is a topic of ongoing 
development: in progress VPRM-SIFg development will incorporate newly available data 
sets representing interior Amazon forest (to supplement K34) and lowland Amazon forest 
where model-observation mismatch is highest at least as suggested by the March 2016 
case study. We now note this in Section 3.2.1 and also in the conclusions: 
 
Sec 3.2.1: The optimization suggests that all prior models in wet season 2016 tended to 
underestimate carbon uptake in the western Amazon and particularly in the Amazon 
lowlands;. The regions of underestimated uptake correspond to the anomalously wet 
region identified through the Self-calibrated Palmer Drought Severity Index (ScPDSI) by 
Jimenez-Muñoz et al. (2016), but also in the case of the VPRM to regions under-constrained 
by eddy flux calibration sites (Fig. 2a; Fig. 6a).  
 
Conclusions: Currently, Br-K34 is the only site representing the interior Amazon; additional 
eddy flux data for calibration and/or validation such as from Amazon Tall Tower Observatory 
(ATTO) would be beneficial. In addition, eddy flux data from the Amazon lowlands would 



provide additional constraints to the higher model-observation mismatch observed in that 
region.  
 
RC2.2   The available eddy flux data used for calibration spans a period from 2001 to 
2015, which is oJset from the study period of 2014-2020. This temporal mismatch 
might aJect the model's accuracy in capturing recent carbon dynamics, as ecosystem 
states and environmental conditions could have changed over time. Therefore, it 
becomes essential to incorporate uncertainty in VPRM parameters in inversion runs. 
These uncertainties can be obtained from the hessian of non-linear optimization 
procedure. 
 
Agreed, and we had noted this limitation in the text below. We also fixed the 2014 typo in 
the paper to 2010 (fluxes are generated from 2010 not 2014) 
 
Second, while the available eddy flux data can be oYset up to thirteen years prior to the 
study period of 2010–2020, the major drivers of hourly ecosystem flux variations are 
provided by Tair, PAR, surface reflectance indices, and SIF. That is, while the static 
ecosystem parameters of l, PAR0, a, b, and g would benefit from tuning to eddy flux data 
seasonally and/or over the entire study period to reflect concurrent ecosystem states most 
accurately, the real time variation is dominated by Tair, PAR, surface reflectance indices, 
and SIF (Dayalu et al., 2018). 
 
However, we have also expanded the conclusions accordingly to note the concerns from 
RC2.2: 
Future work will optimize GPP and Reco separately; in that case, the VPRM can be optimized 
in parameter space (e.g., Matross et al., 2006) which will also account for the uncertainty 
associated with using carbon dynamics from 2000-2010 to describe carbon dynamics from 
2010-2020. 
 
RC2.3   Assessment of transport model errors is required to understand their influence 
in determining the coherence between observations and fluxes. This can be done 
through ensemble runs. The authors can also convolve the posterior uncertainty to 
see the envelope of uncertainty surrounding true observations and convolved 
observation that is forward operator*posterior fluxes. 
 
We agree with this and note that a full model optimization (for the entire 2010-2020 time 
period and for an in-development expansion from 2003-2023)  is being conducted. This will 
include a formal assessment of model transport errors. The scope of the current work was 
flux model development, with a small performance-testing case study. We had noted as 
such in Section 2.4: 

In our application we also neglect transport model errors, which are diYicult to 
quantify but can be further explored in the future using transport ensembles. Errors in WRF-
STILT transport are discussed in Rastogi et al., (2021) in terms of calculating 𝑋!"#$%&  for OCO-2 
XCO2 retrievals in North America. They found that low partial column bias relative to 



independent vertical profile CO2 data show that errors in WRF-STILT transport contribute 
very minimally to bias in 𝑋!"#$%&

 . 
 
RC2.4   While the study briefly touches upon the impact of fires on carbon fluxes, a 
more comprehensive evaluation of fire influences, including the eJects of fire severity 
and frequency on ecosystem recovery and carbon balance, would provide a deeper 
understanding of the Amazon's response to fire disturbances. This can be done by 
OSSE kind of run to see its impact on the flux. 
 
Agreed. Once again we note that the scope of this work was to develop a suQiciently 
representative biogenic flux model that could then be reliable combined with a fire 
emissions model to complete the picture of impacts on carbon fluxes. The test done here 
was to find which biogenic flux model provides a realistic representation of the vegetation 
carbon dynamics (absent confounding influences of fire emissions). In-progress work is 
developing a CO2 fire emissions inventory from an amazon-specific CO-fire emissions 
inventory. 
 
RC2.5   Finally (this is the biggest issue), the study primarily focuses on a wet season 
case study in 2016 and lacks a long-term validation of the improved VPRM model 
against independent observations. Conducting a multi-year validation using 
additional data sources, such as atmospheric CO2 measurements or biomass 
inventories, would strengthen the confidence in the model's performance and its 
ability to capture interannual and seasonal carbon trends. 
  
Agreed, and this was a big gap in the analysis that was also identified by RC1. We have 
rectified this by including a new section and an additional figure: 
 
We have included additional analysis – namely, we have created a new Figure 10 and 
compared with the most relevant and recent work by Gatti et al. (2021) (Amazon basin as a 
whole) and the Cerrado and Caatinga region (also incorporating eddy flux site results from 
Mendes et al. 2020 and Alves et al. 2021). We have included a summary of these new 
results in an additional Section 3.3.3. Comparison with interannual observations. The 
section and figure are reproduced below. Note that we display the 95% CI in Figure 10b as 
displaying the larger IQR drowns out the median signal on the plot. Also note that Gatti et 
al. (2021) report fluxes as Total Flux – Fires » NEE (but not exactly, as the total flux would 
also include river eQlux). However, it’s a fair quantity for comparison as NEE dominates that 
signal. 
 
3.3.3 Comparison with interannual observations 
 We assessed the performance of VPRM_SIFg and SiB4 from 2010 to 2019 for the 
Amazon basin (Amazon mask; Fig. 10ab) and separately for the region containing the 
Cerrado and Caatinga biomes (Cerrado+Caatinga mask; Fig. 10ac) and compared against 
available observations.  



For the Amazon mask, the VPRM-SIFg prior tends to estimate interannual net 
release while the SiB4 model tends to remain closer to neutral (Figure 10b). In addition, the 
VPRM-SIFg describes greater ecosystem heterogeneity relative to SiB4: the interquartile 
range (IQR) over the Amazon for the VPRM-SIFg is -0.47 to 0.83 g C m-2 d-1. In contrast the 
SiB4 IQR  is 0.06 to 0.07 g C m-2 d-1. Meanwhile, the Gatti et al. (2021) mass balance 
approach using aircraft vertical profiles tends to estimate net fluxes closer to neutral that 
generally track SiB4 interannual estimates with a few notable exceptions: in 2016, 
corresponding to the tail of the severe 2015-2016 El Niño; aircraft profiles suggest a 
regional net release of 0.1 g C m-2 d-1 in agreement with VPRM_SIFg, while the following year 
shows a net regional uptake of -0.2 g C m-2 d-1. We note that the VPRM_SIFg model agrees 
with the trajectory of the Gatti et al (2021) post-El Niño fluxes in that there is more net 
uptake implied between 2016 and 2018. Furthermore, we note that the 2010-2011 El Niño 
corresponds to a VPRM_SIFg estimate of net release, while Gatti et al. (2021) and SiB4 
estimate carbon fluxes that are net neutral to uptake. Given the severity of the associated 
2010 drought across the Amazon, particularly as it was only five years after the previous 
severe drought, it is worth exploring whether the VPRM_SIFg is better able to capture the 
regional carbon eYects and impacts of antecedent environmental stressors.   
The performance in the Cerrado and Caatinga region suggests that the ecosystem 
heterogeneity exhibited in the VPRM_SIFg model is realistic. The IQR for the VPRM_SIFg in 
the Cerrado and Caatinga region captures the site diversity exhibited by the Mendes et al. 
(2020) northern Caatinga eddy flux site and the Alves et al. (2021) southern 
Cerrado/converted pasture site. In contrast, the IQR of SiB4 remains closer to neutral. Note 
that the Gatti et al. (2021) analysis did not include an assessment of the Cerrado and 
Caatinga regions. 
 



 
Figure 10. Interannual performance of VPRM_SIFg and SiB4 NEE (g C m-2 d-1) relative to available observations for the 
decade beginning in 2010. (a) IGBP land use map overlaid with the Amazon mask, Cerrado + Caatinga mask, and two Cerrado 
and Caatinga eddy flux sites used for comparison; (b) VPRM_SIFg and SiB4 median annual NEE (95% CI of the median) for the 
Amazon mask along with estimates from Gatti et al. (2021); (c)  VPRM_SIFg and SiB4 median annual NEE (25th, 75th percentiles) 
for the Cerrado + Caatinga mask along with annual estimates from two eddy flux sites. 

 
Other comments: 
 
RC2.6 How are the authors dealing with negative SIF values in their models? If they 
keep them, GPP will become positive in SIF-based equations. The authors technically 
are not completely replacing EVI and other scalars by SIF as CSIF is itself derived from 
MODIS reflectance. It would be good to know how does SIF directly obtained from 
OCO-2 perform in the VPRM models. Why rely on CSIF when SIF is directly available 
from OCO-2? Note that OCO-2 SIF also comes with uncertainty, whereas CSIF does 
not include uncertainty estimates. If there are cloud cover issues, then the 
distribution of CSIF can be compared with OCO-2. Also, if there are cloud cover 
issues, then CSIF is mainly influenced by MODIS. I suggest a few things authors can 
do: 

• Replace CSIF (derived from OCO-2) with OCO-2 SIF (native OCO-2 SIF) 
• Compare the ECDF of CSIF with OCO-2. Check if they are similar or not. Use two 

samples, Anderson-Darling or other statistical tests, to ensure they carry the 
same information. If they are statistically diJerent, then making any 
conclusions about SIF improving VPRM estimates would be diJicult. 

• Run this analysis with CSIF, GOSIF, and other SIF products. Please also check 
the annual variability in CSIF. 



All this is required to make sure that acceptance of the new model is not an artifact of 
CSIF. 
 
OCO SIF was not available prior to 2014, and our study was looking at a decade of biogenic 
model performance from 2010-2020. For model consistency and to provide the basis for a 
SIF-based flux model that can be extended to the early 2000s and therefore enable multi-
decade carbon trend analyses (this is currently in progress work all the way back to 2003), 
we wanted a consistent SIF field. The work you mention has already been done in the CSIF 
paper by Zhang et al. (2018a). Future work will explore a wider range of SIF products, and 
we have included this statement in the conclusions: 
Future work will continue development of the VPRM_SIFg formulation, including further 
investigating the model structure as it relates to SIF and PAR as well as exploring the direct 
use of SIF satellite products rather than derived products such as CSIF. 
 
RC2.7 Evaluation of VPRM models against observation is OK, but it depends on 
uncertainty. Clarify this. Show the posterior flux match of each of them against 
observations and whether they are within each other uncertainty bounds or they are 
outside uncertainty bounds, in which case they can be rejected outright. 
 
Apologies, but we do not understand this comment and were unable to follow-through with 
a response. To what section are you referring? Are you referring to the optimization? To the 
aircraft vertical profile calculation? To the eddy flux data?  
 
RC2.8 The study could benefit from adding a flowchart to provide a clear visual 
representation of its methodology. This would be particularly helpful in understanding 
the complex workflow and interconnections between the diJerent components of the 
study, such as data processing, model calibration, regional inversion, and model 
evaluation. 
 
We have created a flowchart and added it to the SI as Figure S4. The flowchart is 
reproduced below. 
 
 
 
 
  



  

(a) 

(b) 

Figure S4. Flowchart of methodology. (a) Overall methodology; (b) aircraft vertical profile site 
simulation and comparison. 



RC2.9 Many of the steps the authors took for their assessment need to be formalized 
to understand better what is being done. For example, "We bootstrap CT2019 
background concentrations and vertical profile measurements at each vertical level 
to dimensions that enable merging with the month of hourly ….." I was utterly lost 
here. I do not know what is being done. Line 360 to the end of the methodology section 
requires a significant rewrite for clarity. Have a clear flowchart + equations + Jupiter 
notebook. How is this all connected to equation 10. What kind of bootstrap is it? 
We have clarified and re-written Section 2.5, encompassing the area of confusion 
beginning in Line 360 (reproduced below). Thank you – the section now reads much better. 
In addition, we have included and equation in the main text for clarity, and also added in a 
flowchart as a Figure S4 in the supplemental information. 
 
2.5 Model Aircraft Vertical Profile Simulation 
We calculate prior and posterior modelled vertical profiles for SiB4 and each VPRM 
formulation for our March 2016 optimization period at locations roughly corresponding to 
the vertical profiling sites RBA and ALF displayed in Fig.1a. As the available OCO-2 
receptors are not identical in space and time to locations of RBA and ALF profiling sites, a 
direct comparison of simulated prior and posterior CO2 vertical profiles derived from 
convolving multi-level OCO-2 receptor footprints and vegetation flux models is not 
possible. In addition, RBA and ALF vertical profiles are typically obtained once or twice a 
month such that robust measured monthly averages for a single month are not available. To 
allow for direct comparison between modelled (prior and posterior) and measured vertical 
profiles for all 744 hours of March 2016, we construct pooled datasets that occasionally 
combine February and March 2016 measurements and/or modelled fields to develop a 
dataset that adequately represents a typical 2016 wet season month. Given the seasonal 
similarities across the Amazon in February and March, combining data across these 
months to create a representative “typical wet season month” is reasonable. Our method is 
detailed below. 
We first construct a pooled dataset of “typical wet season 2016” measured vertical profiles 
at each of RBA and ALF sites. For RBA, we combine all measurements obtained between 
February and March 2016 (2016-02-08 at 1630UTC; 2016-02-27 at 1645UTC; and 2016-03-
17 at 1700UTC), resulting in three measurements at each of 17 vertical levels between 300 
and 4500 m asl. For ALF, we combine all measurements obtained between February and 
March 2016 (2016-02-23 at 1630UTC; 2016-02-29 at 1540UTC; 2016-03-13 at 1600UTC; 
and 2016-03-30 at 1540 UTC), resulting in four measurements at each of 12 vertical levels 
between 450 and 4500 m asl. For each site, we conduct a Monte Carlo simulation of 
measurements at each vertical level to obtain measured concentration matrices of 744 h x 
17 levels (RBA) or 744 h x 12 levels (ALF).  Second, we assess the availability of OCO-2 
footprints in the vicinity of RBA and ALF sites from February to March 2016. Our goal was to 
obtain footprints suYiciently close to each profiling site to be representative of the near-
field influences on the site, but also have a large enough bounding box so that at least two 
OCO-2 receptors and their footprints were present for transport uncertainty calculations. 
Figure 2a displays the final selected 5x5 km bounding boxes around each of RBA and ALF 
and the representative OCO-2 receptors. RBA and ALF simulated vertical profiles are then 



derived from the OCO-2 receptor footprints bounded in each box (Fig. 2a). Third, we use 
NOAA’s web-based HYSPLIT model to assess land surface influences on each of the 
measured vertical profile dates and compare them with the land surface influences on 
each of the selected OCO-2 receptors. Figures S2-S3 show that the land surfaces 
influencing both the simulated and actual profiles at RBA and ALF are comparable with the 
airmass trajectories representing typical seasonal prevailing winds in the February/March 
2016 time frame and annually from 2010–2018; the average air mass trajectories are 
displayed in Fig. 2a. Fourth, we obtain CT2019 background concentrations associated with 
the vertical level of each airmass back trajectory before it enters the study domain. We 
capture background uncertainty by pooling all CT2019 concentrations at each vertical 
level, and conducting a Monte Carlo simulation resulting in a CT2019 matrix of 744 hours x 
14 WRF-STILT vertical levels. Next, we use the March 2016 prior and posterior hourly fluxes 
to estimate a “typical wet season 2016 month of fluxes” and convolve them with WRF-STILT 
footprints from each of the six OCO-2 receptors in the RBA and ALF bounding boxes to 
obtain a spread of enhancements or depletions relative to the incoming CT2019 
background CO2 from 10 days prior. This results in a simulated CO2 concentration at each 
of 14 WRF-STILT vertical levels for each of 744 hours in March 2016 (Eq. 12).  Finally, we 
linearly interpolate all components from WRF-STILT vertical grids to each of the RBA and 
ALF measured vertical profiles which enables us to calculate hourly model-observation 
residuals at each vertical level and extract means, 25th, and 75th percentiles. Ultimately, 
vertical profiles of modelled and measured residuals for the simulated month typical of the 
2016 wet season incorporate uncertainties in transport, background, vertical profile 
measurements, and flux fields. Figure S4 displays the overall methodology in a flow chart. 
 
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝐶𝑂#,()*)(+,,-./0+-(𝑝𝑝𝑚) = 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡,,- × 𝐹𝑙𝑢𝑥- + 𝐶𝑇2019,,-   (12) 
 
 
RC2.10 Line 330 "The footprint domain is outlined in Figure Error! Reference source not 
found.b". Correct this. 
Fixed. 
 
RC2.11 In Figure 3. VPRM Model-Observation (Night-time) Respiration residuals (I think 
this is a boxplot). It would also be good to see this as a frequency or histogram plot, as 
clearly, the bars are not uncertainty estimates. Therefore, we need to know the 
proportion of residual per/quantile. The authors should explain the relevance of these 
results in the caption. 
 
This has been fixed. We have re-displayed the boxplot as violin plots so that both the data 
distribution and deviation from normal is also apparent (i.e., combining the information in 
histograms and standard boxplots in one plot). We have also edited the caption and the 
text to summarize the key take-aways/relevance: 
 
Sec 3.1: 



Overall, we find that annually and by season, the SIF-based VPRM formulations—and 
VPRM-SIFg in particular—have less skewed distributions and lower overall bias than the 
traditional formulations (Fig. 3, Table S3). On average, the dry season respiration bias is 
lower across all model versions than in the wet season. In the wet season, while all models 
tend to underestimate respiration, VPRM-TRA and VPRM-TRG display the greatest bias, with 
VPRM-TRG displaying the greatest skew. In both seasons, the VPRM-SIFg formulation 
exhibits the lowest respiration bias with a residual distribution closest to normal. The 
underestimate in wet season night-time respiration also implies that the general 
underestimate of peak daytime wet-season drawdown in NEE occurs through 
underestimating GPP rather than through over-estimating Reco. Of the VPRM formulations, 
the SIF-based formulations have more instances of overestimating respiration, especially 
in savanna ecosystems (Table S3). 
 
Associated figure edit: 
 

 
 
RC2.12 In Figure 4. Panel(a) bars are not uncertainty estimates. They incorrectly imply 
uncertainty when it is something else. Clarify and, if possible, plot them in a way so 
that people, by just looking at them, do not think that these are estimates of 
uncertainty 
Apologies for that; we have clarified that they are the 1-s standard deviation from the NLS 
fitting of parameters. 

Figure 1. Violin plots of VPRM Model-Observation (Night-time) Respiration residuals, annually and by season at 
eddy flux sites (µmol CO2 m-2 s-1). Nighttime NEE (where GPP = 0) is used to approximate respiration. Lines are 25th, 50th,, 
and 75th quantiles. All models tend to underestimate wet season respiration and overestimate dry season respiration. Data 
skew suggests that VPRM_SIFg respiration residuals are the closest to a normal distribution. 
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