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Abstract. Raman lidars are an important tool for measuring important atmospheric parameters including water vapor content

and temperature in the troposphere and stratosphere. These measurements enable climatology studies and trend analyses to

be performed. To detect long-term trends it is critical to have as reliable and continuous as possible calibration of the system

and monitoring of its associated uncertainties. Here we demonstrate a new methodology to derive calibration coefficients for

a rotational temperature Raman
::::::
Raman

::::::::::
temperature lidar. We use solar background measurements taken by the rotational Ra-5

man channels of the Raman Lidar for Meteorological Observations (RALMO) located at the Federal Office of Meteorology

and Climatology MeteoSwiss in Payerne, Switzerland, to calculate a relative calibration as a function of time, which is made

an absolute calibration by requiring only a single external calibration, in our case with an ensemble of radiosonde flights. This

approach was verified using an external time series of coincident radiosonde measurements. We employed the calibration tech-

nique on historical measurements that used a Licel data acquisition system and established a calibration time series spanning10

from 2011 to 2015 using both the radiosonde-based external and solar background-based internal methods. Our results show

that using the background calibration technique reduces the mean bias of the calibration by an average of 0.5 K across the

troposphere compared to using the local radiosoundings. Furthermore, it demonstrates the background calibration’s ability to

adjust and maintain continuous calibration values even amidst sudden changes in the system, which sporadic external calibra-

tion could miss. This approach ensures that climatological averages and trends remain unaffected by the drift effects commonly15

associated with using daily operational radiosondes. It also allows a lidar not co-located with a routine external source to be

continuously calibrated once an initial external calibration is done. Furthermore, the technique works both for temperature

retrievals using the optimal estimation method and the traditional temperature algorithms.
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1 Introduction20

Water vapor is the predominant greenhouse gas, with its abundance significantly regulated by surface temperature. When air

temperature rises, the Clausius-Clapeyron equation predicts that the equilibrium vapor pressure of water will increase, leading
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to higher levels of water vapor in the atmosphere. Positive climate feedback, caused by an increase in water vapor concen-

tration, ultimately leads to elevated temperatures.(Colman and Soden, 2021; Dessler et al., 2013; Held and Soden, 2000).

Accurate retrievals are crucial for conducting precise relative humidity climatology and trend studies in the Upper Troposphere25

and Lower Stratosphere (UTLS) region with Raman lidar measurements. Consequently, the credibility of the computed trends

relies significantly on the reduction of uncertainties associated with these measurements. Direct retrieval of relative humidity

from Raman lidar measurements necessitates the calibration of temperature measurements and a notable contributor to the

uncertainty budget in Raman lidar measurements stems from the determination of these temperature calibration constants.

Enhancing and refining these calibration methods are important steps toward achieving greater accuracy and reducing uncer-30

tainties in our investigations. Mahagammulla Gamage et al. (2019) proposed an Optimal Estimation Method (OEM) based

methodology for temperature retrieval that considers the full Raman lidar equation, without requiring the assumption of an

empirical calibration function. This approach mitigates uncertainties when contrasted with the utilization of empirical cali-

bration functions, which could potentially introduce substantial errors exceeding 1 K, particularly in cases involving larger

temperature ranges (Behrendt, 2005). However, it is crucial to recognize that the accuracy of any calibration method utilizing35

radiosondes depends on the uncertainty associated with the reference radiosondes. Sherlock et al. (1999) proposed an alterna-

tive approach known as the background calibration method, for calibrating water vapor mixing ratio measurements obtained

through Raman backscatter water-vapor lidar systems. Their method is classified as an internal calibration technique. This

method was further expanded by Hicks-Jalali et al. (2018) to generate a time series for water vapor calibration using RALMO

data. This method uses the ratio of the solar background signal in detector channels to deduce a calibration constant. In this40

study, we will adapt this internal calibration technique to produce temperature calibration values for a rotational temperature

Raman
::::::
Raman

::::::::::
temperature

:
lidar. This approach distinguishes itself from the external method by enabling the calculation of

the complete calibration time series through a single calibration, achieved using an ensemble of external calibrations. The

ensemble reduces the systematic uncertainties introduced by the external calibrations, resulting in a more robust calibration

time series. Consequently, this allows the establishment of a temperature calibration time series whose temporal evolution is45

independent of subsequent external measurements. Although an extensive ensemble of radiosondes provides the most robust

results, this approach can still be applied with a limited number of radiosondes, but with potentially reduced accuracyprecision.

This ensures that sites with only a few available soundings can still utilize the method effectively. This methodology offers the

prospect of generating temperature and relative humidity trends that are free from the influences of radiosonde drifts.

2 Measurements and Methodology50

2.1 Raman Lidar for Meteorological Observations (RALMO)

In order to develop our method, we used Raman lidar measurements obtained from the Raman Lidar for Meteorological Ob-

servations (RALMO). The lidar is located in Payerne, Switzerland at the facility of the Federal Office of Meteorology and

Climatology MeteoSwiss (MeteoSwiss 46◦48′N,6◦56′E,492ma.s.l) and has been in near-continuous operation since 2009.

RALMO was constructed at the École Polytechnique Fédérale de Lausanne (Dinoev et al., 2013). RALMO’s configuration55
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includes a narrow field-of-view lidar receiver and a frequency-tripled Nd:YAG Q-switched laser producing an energy output

of 300-400 mJ per pulse at 355 nm and at 30 Hz, and is capable of taking measurements continuously during both daytime and

nighttime. RALMO’s data acquisition is performed using a Licel GmbH transient recorder
:::::::
recorders, which enables simulta-

neous measurement of atmospheric signals through two distinct methods: photon counting and analog detection. This system

utilizes a 250 MHz photon counter in conjunction with a 12-bit, 40 MSPS analog digitizer. The system achieves a minimum60

time resolution of 25 ns, corresponding to a vertical resolution of 3.75 meters in altitude. In August 2015, RALMO’s data

acquisition was transitioned from the Licel system to the more advanced and efficient FAST ComTec P7888 (FastCom) data

acquisition system (Martucci et al., 2020). Consequently, the dataset is divided between data collected using the Licel system

and that acquired with the FastCom system. However, for the purposes of this study, we focus exclusively on the historical

data obtained through the Licel acquisition system. RALMO uses a polychromator designed for Pure Rotational Raman (PRR)65

spectroscopy, allowing it to isolate Rayleigh and Mie lines, including the Cabannes line. PRR spectra from diatomic molecules

like N2 and O2 have rotational lines spaced on both sides of the exciting wavelength (Stokes and anti-Stokes branches). An-

alyzing certain lines or groups of adjacent lines enables the retrieval of vertical temperature profiles in the troposphere and

lower stratosphere, as the intensity of these spectra is sensitive to temperature and wavelength (Dinoev et al., 2010; White-

man, 2003). Various validation studies have been conducted to assess the accuracy of RALMO measurements of temperature70

and water vapor. Brocard et al. (2013b) conducted a validation study focusing on RALMO measurements of water vapor,

employing collocated radiosondes. Their findings indicate that, on average, the water vapor mixing ratio closely matched ra-

diosonde values, with differences of approximately 5 to 10% up to 8 km during nighttime and within 3% up to 3 km during

daytime operations. Martucci et al. (2021) compared RALMO measurements with measurements from two reference opera-

tional radiosounding systems (ORSs) co-located alongside RALMO. Their findings demonstrate that RALMO measurements75

meet the OSCAR (Observing Systems Capability Analysis and Review Tool) requirements at breakthrough level for high-

resolution numerical weather prediction (NWP) in the free troposphere in terms of measurement uncertainty and observing

cycle. (https://space.oscar.wmo.int/requirements, accessed on 3 April 2024).

2.2 Radiosondes

Since October 2011, MeteoSwiss has been conducting biweekly launches of Vaisala RS92 radiosondes at 11:00 and 23:0080

UTC retrieving atmospheric profiles of temperature, humidity, pressure, and wind. In 2012 MeteoSwiss became a part of

the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) with the Vaisala sonde RS92. As a

result, these radiosonde datasets have been reprocessed by collecting metadata, applying correction algorithms, and performing

uncertainty estimates, to produce a GRUAN-certified data product (Dirksen et al., 2014). In late 2013, Vaisala introduced the

RS41 radiosonde, marking the fourth generation of their atmospheric profiling instruments. This new model was designed85

to replace the RS92 radiosonde and brought enhanced precision in measuring atmospheric variables. The RS41 radiosonde

features advanced sensor technologies, along with cutting-edge design and manufacturing techniques. These improvements,

combined with its ease of use, deliver reliable and highly precise atmospheric measurements (Jensen et al., 2016; Dirksen et al.,

2020).
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The Payerne radiosonde PTU (pressure, temperature, and relative humidity) time series has been the subject of a complete90

reevaluation that led to the homogenized PTU series up to 2011(Brocard et al., 2013a). A more recent analysis describes the

homogenization procedure of the entire PTU time series from 1954 to 2022 (Martucci et al, in preparation). The analysis

applies two main corrections to the PTU series with respect to the operational radiosonde of Payerne, the Vaisala RS41: (a)

all soundings during the period from 1980 to 2011 have been corrected for residual systematic biases and (b) for statistically

significant and traceable breaks along the period from 1954 to 2022 for the RS41. MeteoSwiss has carried out several intercom-95

parison flights of the different radiosonde models with either the reference RS41 or the transfer radiosonde model the Vaisala

RS92. These intercomparison flights have allowed to determine transfer functions to correct for the systematic biases of pre-

vious radiosondes models with respect to the RS41 radiosonde, for 11 UTC and 23 UTC flights. With respect to the previous

homogenization, this corrects the temperature and relative humidity data for the effects of solar radiation on the temperature

sensor according to the changes in radiosonde models that occurred between 2011 and 2018100

2.3 Utilizing the Optimal Estimation Method (OEM) for Retrieving Temperatures through PRR Spectroscopy

Sica and Haefele (2015, 2016) introduced a methodology that uses the OEM to retrieve Rayleigh-scatter temperature and

vibrational Raman scatter water vapour mixing ratio. Their methodology has several advantages over the traditional techniques,

including a full energy budget and the determination of instrument averaging kernels. Recent studies by Hicks-Jalali et al.

(2020) and Gamage et al. (2020) has further extended the application of OEM to RALMO retrievals to determine water vapour105

mixing ratio trends, rotational
::::::
Raman temperature, and relative humidity. OEM, being an inverse technique, employs Bayesian

statistics to estimate a target atmospheric parameter by utilizing both a forward model, which encapsulates the complete physics

of the measurement process, and a comprehensive description of the instrumentation employed for data acquisition (Rodgers,

2000). This method can be mathematically represented as follows:

y = F(x,b)+ ϵ (1)110

where y is the quantity measured, F the forward model, x the state vector, b the model parameter vector and ϵ the experi-

mental error. The model parameter comprises variables that are essential for evaluating the forward model but are not directly

retrieved. To ensure the reliability of the retrieval process, the uncertainties associated with these model parameters must be

well-characterized and subsequently carried through the retrieval process (Rodgers, 2000). The retrieval process leverages

Bayes’ theorem, which hinges on conditional probabilities, to derive the desired state vector from the measured data. This115

theorem relies on assessing the probability of a specific outcome by considering prior knowledge of conditions relevant to that

outcome. Therefore a prior estimate (xa) of the state can be used to obtain a statistical estimate for the state vector. By assum-

ing that the measurement state and a priori state are Gaussian, the most likely a posteriori state can be found by minimizing

the cost function using the vectorized form of Bayes’ theorem.

cost= [y−F(x̂,b)]TS−1
ϵ [y−F(x̂,b)] + [x̂−xa]

TS−1
a [x̂−xa] (2)120

where Sϵ is the measurement error covariance and Sa the a priori
:
a

:::::
priori error covariance. The cost function evaluates how

well a solution fits the data, and for effective models, the cost is typically close to one. In our validation process, we have
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chosen to adopt the methodology introduced by Mahagammulla Gamage et al. (2019) for the retrieval of temperature from

PRR lidar measurements. Their OEM uses the full physics of PRR scattering to retrieve profiles of temperature directly from

the raw measurements, including a profile-by-profile uncertainty budget.125

2.4 External Calibration for Temperature

Lidar temperature measurements, including those from Raman lidar studied here, require calibration to derive accurate absolute

temperature measurements. Mahagammulla Gamage et al. (2019) obtained relative humidity (RH) directly from RALMO

measurements, using an external calibration method of temperature that relies on an external reference instrument, like a

balloon-borne radiosonde. The Raman lidar equation for the backscattered PRR signal
:::::
signal

:::::
NJX ,

::::::
where

::
X

::::::
denotes

:::::
either

:::
H130

::
or

::
L

:::::::::::
corresponding

:::
to

::
the

:::::
high

:
J
::
or

:::
low

::
J
::::::::
rotational

::::::
Raman

:::::::
channel,

:
is given by,

NRR,tJX,t
:::

(z) = CRRJX
::

O(z)

z2
n(z)Γ2

atm(z)

 ∑
i=O2,N2

ηi
:

∑
Ji

τRRJX
::

(Ji)ηi

(
dσ

dΩ

)i

π

(Ji)

+BRRJX
::

(z), (3)

where NRR,t(z)::::::::
NJX,t(z):is the true backscattered PRR signal as a function of altitude z, CRR ::::

CJX the lidar constant, O(z)

the geometrical overlap, n(z) the number density of the air molecules, Γatm the atmospheric transmission, τRR(Ji) the
::
ηi :::

the

::::::
volume

::::::
mixing

::::
ratio

:::
of

:::::::
nitrogen

:::
and

:::::::
oxygen,

::::::::
τJX(Ji) :::

the transmission of the receiver at the wavelength of the RR
::::::::
rotational135

::::::
Raman line Ji , ηi the volume mixing ratio of nitrogen and oxygen,

(
dσ
dΩ

)i
π
(Ji) the attenuated differential backscatter cross-

section and BRR(z) :::::::
BJX(z)

:
the background signal. Following methodology

::
the

::::::::::::
methodology

::
of

:
Mahagammulla Gamage

et al. (2019) we can define a calibration constant, referred to as (C∗), as follows,

C∗ =
CJH

CJL
, (4)

where CJH and CJL represent the lidar constants for RALMO’s high J and low J rotational Raman channels, respectively.140

In this work, we adopt a slightly modified notation from that used by Mahagammulla Gamage et al. (2019). Specifically, we

use C∗ instead of R to denote the calibration constant in our equations. This change is intended to maintain consistency with

our existing notation and to avoid potential confusion with other variables commonly represented by R in related literature.

Combining the Raman lidar equation for the backscattered PRR signal with equation 4, we find

C∗ =
NJH−BJH

NJL−BJL

σJH

σJL

, (5)145

where NJH and NJL are the raw signals for high J and low J rotational Raman channels, BJH and BJL the background photon

counts for the high J and low J rotational Raman channels, and σJH and σJL denote the term
∑

i=O2,N2

∑
Ji
τRR(Ji)

(
dσ
dΩ

)i
π
(Ji)

::::::::::::::::::::::::::::

∑
i=O2,N2

∑
Ji
τJX(Ji)

(
dσ
dΩ

)i
π
(Ji):for the high J and low J rotational Raman channels. For the external method, GRUAN-

certified radiosondes launched at nighttime were used. Equation 5 can in principle be evaluated at any altitude and we have

omitted the range dependence for improved readability. We calculated the calibration constants by averaging over the 5 to 8 km150

altitude range to reduce the random error
:::::::::
uncertainty

:
and to avoid regions of the profiles where the signals could be saturated.
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2.5 Internal Calibration for Temperature: The Solar Background Method

External calibration methods necessitate access to an external reference instrument. Depending on the
::::::
external

:
instrument’s

location
::::::::
operating

::::::::
schedule, these calibration opportunities can be days or weeks apart. Typically, balloon-borne radiosondes

serve as the most commonly employed external reference. Calibration using radiosondes can be influenced by the flight path155

of the balloon, which, depending on atmospheric conditions, may experience horizontal drift and enter a different air mass

compared to what the lidar instrument samples. Such deviations in radiosonde measurements can substantially impact the pre-

cision and reliability of the calibration time series. To improve the precision and expand the applicability of external calibration

methods, we adopted a technique that computes the relative calibration time series by determining the temporal evolution of

the solar background ratio between the JH and JL digital channels. This approach
::::
The

:::::::
approach

::::
that

:::
we

::::::
present

::::
here

:
mirrors160

Hicks-Jalali et al. (2018) internal calibration method for water vapor mixing ratio, which utilizes the solar background for

tracking changes in the mixing
::::
ratio

:
calibration constant over time. What distinguishes this approach

::
the

::::::::
approach

::::
here

:
is its

reliance on only one reference radiosonde measurement
:
a
:::::
single

::::::::::
calibration

:::::
based

::
on

::
an

:::::::::
ensemble

::
of

::::::::::
radiosondes to construct

the entire calibration time series. This method significantly reduces the uncertainties typically associated with external refer-

ence instruments, and makes the calibration time series independent from drifts
:::::::::
calibration

:::::::
changes associated with radiosonde165

measurements. The
:::
We

::::
now

:::::
define

:::
the relative calibration time series rsolar(t) is given by the equation,

::
as

:::::::
follows:

:

rsolar(t) =
Bsolar

JH (t)

Bsolar
JL (t)

, (6)

where Bsolar
JH and Bsolar

JL are the solar background levels detected by the high J and low J rotational Raman channels, respec-

tively. To derive the background calibration constant (
::
We

::::
can

:::
now

::::
use

:::::::
rsolar(t)::

to
::::::::
calculate

:::
the

::::
time

:::::
series

:::
of

:::
the

:::::::::
calibration

:::::::
constant C∗),

:
. the function is normalized using an ensemble of external calibrations and solar measurements as follows:170

C∗(t) = C∗(t)
rsolar(t)

rsolar(t)
. (7)

C∗(t) is the average of all external calibration points and rsolar(t) is the average of all background ratios corresponding to

the external points, i.e. the background ratio the following morning at a solar zenith angle of 70◦. For our solar background

above 55km, we used the ratio between the solar background from the total counts over 60 minutes from the high J and low J

rotational Raman channels. At these altitudes in a raw 1-minute profile, the lidar signal will be completely due to background175

solar radiation and not the photons emitted by the laser. Also, we had to consider both the diurnal and seasonal solar cycles

when using this solar background method, therefore we chose to only use the solar background at a time corresponding to the

highest
:::::
lowest

:
solar zenith angle on the winter solstice, which corresponds to a 70◦ zenith angle.We tested the method across

various solar zenith angles (70◦,60◦, and 50◦) and observed an average variation of 0.2% in the calibration constant between

these angles. This variation corresponds to a temperature difference of approximately 0.2K
:
,
:::::::::
suggesting

:::
the

::::
ratio

::
is
:::::::
weakly180

::::::::
dependent

:::
on

:::
the

::::
solar

:::::
zenith

::::::
angle.
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2.6 Extending the Background Calibration Technique for Traditional Temperature Algorithms

In this section, we show, how the background calibration can be applied to the traditional temperature algorithms. Following

the methodology outlined by Behrendt (2005), Q(T ) is defined as follows:

Q(T ) =

∑
i=O2,N2

∑
Ji
τJH(Ji)ηi

(
dσ
dΩ

)i
π
(Ji)∑

i=O2,N2

∑
Ji
τJL(Ji)ηi

(
dσ
dΩ

)i
π
(Ji)

∑
i=O2,N2

ηi
∑

Ji
τJH(Ji)

(
dσ
dΩ

)i
π
(Ji)∑

i=O2,N2
ηi
∑

Ji
τJL(Ji)

(
dσ
dΩ

)i
π
(Ji)

::::::::::::::::::::::::::::::

. (8)185

By using the lidar equation (Equation 3), Equation 8 can be expressed in terms of the background corrected signals and the

calibration constant C∗ (Equation 4) as follows:

Q(T ) =
NJH,t(z)−BJH

NJL,t(z)−BJL
× CJL

CJH
=

NJH,t(z)−BJH

NJL,t(z)−BJL
× 1

C∗(t)
. (9)

For systems that detect only a single PRR line in each of the two PRR channels, Equation 8 can be simplified so that it takes

the form,190

Q(T ) = exp(a− b/T ), (10)

where a and b are the two calibration constants (Behrendt, 2005). Note that a and b depend on the spectral characteristics of

the receiver. By using Equation 9 in conjunction with Equation 10 the calibration constants a and b can be calculated using

an external temperature measurement (radiosonde). The above method can also be applied to systems that measure multiple

PRR lines, requiring higher-order calibration functions that involve additional calibration constants. We tested this method on195

the traditional temperature algorithm and obtained results comparable to those achieved when it was used in conjunction with

OEM. However, in this study, we focus exclusively on the application of the method in combination with OEM.

3 Results and Discussion

Figure 1 shows a comparison between the time series of the temperature calibration constants, derived through the application

of the external calibration method and the solar background method. As an illustration of the external calibration method, the200

time series was computed for a selected number of dates spanning from the end of 2011 to the end of 2015, during which Me-

teoSwiss in Payerne, Switzerland, has
:::
had been launching Vaisala RS92 and RS41 sondes to obtain GRUAN-certified profiles

of temperature and humidity. For every 60 minutes of count data profiles, a profile-by-profile filtering method was implemented

to identify and eliminate scans exhibiting significant cloud cover. This approach involved assessing the signal-to-noise ratio

(SNR) of the Nitrogen (N2) digital channel, focusing on the average SNR within the 12 to 14 km range. Profiles with an SNR205

below 1 were discarded. Furthermore, the calibration dataset used dates where the retained profiles, following the cloud-based

filtering mechanism, constituted more than 75% of the initial number of profiles. The calibration time series was calculated

through the utilization of reference radiosondes launched at nighttime. Additionally, any calibration points exhibiting an uncer-

tainty greater than 5% were excluded from the time series. The background method calibration was performed daily using the
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Figure 1. Comparison between the temperature calibration constant (dimensionless) obtained by the external method and the temperature

calibration constant obtained using the background method. For the external method, the calibration constants were obtained using GRUAN-

certified profiles of temperature from Vaisala RS92 and RS41 radiosondes launched at nighttime. For the background method, a solar

background above 55km from the high J and low J quantum number channels of RALMO at a time corresponding to a 70◦ solar zenith

angle was employed.

procedure discussed above.We employed the cloud-based filtering method used in the external method to filter and discard any210

profiles and dates with significant cloud cover. We then applied the calibration technique to the measurement
::::::::::::
measurements

collected in the last 4 years of RALMO’s operation using a Licel acquisition system. One of the prominent features of the

calibration time series is the pronounced decline in the calibration constant’s value seen from March to May 2012. This change

is attributed to an intervention on the system hardware. However, the only details
:::::
detail that the logbook reveals is the replace-

ment of the coaxial cable connecting low J’s photomultiplier with the
::::
low-J

:::::::
channel

:::::::::::::
photomultiplier

::
to

:::
the acquisition system.215

We can see an increased sensitivity in the low J channel following this intervention which explains the drop in the calibration

constant. We can see that the notable drop observed in the external calibration time series is likewise seen in the background

calibration time series, thus emphasizing the sensitivity of the background calibration method to changes within the lidar sys-
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Figure 2. (a) The temperature difference between 175 OEM retrieved temperature profiles utilizing external GRUAN-sonde calibration and

the homogenized radiosonde temperature profile for the years 2011 (Oct) to 2014 (Dec). (b) The temperature differential observed between

175 OEM retrieved temperature profiles utilizing the solar background calibration and the homogenized radiosonde temperature profile using

measurements obtained between October 2011 and December 2014.

tem. This observation highlights the method’s ability to measure changes in the system that could be missed with sporadic

external calibration. Also, we can see that the calibration constant is less noisy after the intervention on the low J channel220

in 2013. The agreement between the external and background methods is within a mean difference of less
:::::
better than 5%.

Temperatures were retrieved from the lidar measurements using the OEM-based algorithm presented by Mahagammulla Gam-

age et al. (2019). Only photon counting measurements were used for the retrievals as the analog measurements introduced

biases that we were not able to correct or explain. The OEM temperature retrieval uses the full physics of PRR scattering

and can be calibrated with equation 4 instead of an empirical calibration function. Additionally, OEMs produce a full uncer-225

tainty budget on a profile-by-profile basis while being computationally efficient. The measurements for the years 2011 to 2014

were processed first using the externally determined calibration constants and secondly utilizing the background method. The

externally determined calibration coefficients were interpolated to align with the internal calibration points, resulting in two
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Table 1. Summary of the mean bias and mean IQR values across different altitude ranges for the temperature difference plots obtained using

the external and the background calibration method.

Calibration Method
Mean Bias (K) Mean IQR (K)

1-4 km 4-8 km 8-12 km 12-16 km 1-8 km 8-16 km

External Method −0.3± 0.8 0.7± 0.3 −0.2± 0.5 −0.2± 0.8 6.1± 0.6 6.1± 0.7

Solar Background Method −0.2± 0.4 −0.08± 0.2 −0.9± 0.4 −1.4± 0.9 4.3± 0.5 6.0± 1.1

datasets with identical processed dates for both calibration methods. A filtering method, reliant on the cost associated with the

OEM retrieval process was implemented to eliminate bad retrievals from externally calibrated and solar background calibrated230

datasets (Mahagammulla Gamage et al., 2019). Profiles with a retrieval cost lower than 0.5 or higher than 10 were discarded,

indicating overfitting and underfitting, respectively. Furthermore, profiles exhibiting unphysical characteristics in the raw sig-

nal were filtered out. These accounted for less than 3% of the total profiles. Each dataset consisted of a total of 175 nights.

We also used an upper-cutoff height which was determined as the altitude at which the measurement response function (The

area of the temperature averaging kernels) falls below 0.8. Below this specified altitude, the retrieval process is predominantly235

influenced by the measurements themselves rather than the a priori temperature profile. Next, we compared the 175 tempera-

ture profiles generated using the two calibration methods with those from homogenized radiosonde measurements. Note that

the GRUAN-certified radiosondes used for calibration are independent from the homogenized radiosonde data set used for

validation. Figure 2a shows the temperature differences between the OEM-derived profiles utilizing the external method and

corresponding temperature profiles from the homogenized radiosonde dataset while Figure 2b shows the comparison with the240

background calibration method. Table 1 summarizes the mean bias and mean Inter Quartile Range (IQR) values for the two

distinct calibration methods across various altitude ranges, corresponding to the temperature difference comparison plots.

For the externally calibrated temperatures (Figure 2a) between 1 to 4 km, a negative mean bias of −0.3K is observed, indicating

an underestimation of the lidar-derived temperatures with respect to the radiosonde measured temperatures. This negative mean

bias predominantly originates from temperature retrievals obtained between February and October 2012. This period coincides245

with the large decline in the calibration constant time series, attributed to changes made to the RALMO system. For the

subsequent altitude range of 4 to 8 km, a positive mean bias of 0.7K is observed, suggesting an overestimation in the lidar-

derived temperatures within this interval. For the altitudes, 8 to 12 km and 12 to 16 km an underestimation of temperature

values is observed with a negative mean bias of −0.2K.

The daily solar background-calibrated measurements exhibit a lower mean bias between
:::::::::
comparison

:::::::
between

:::
the

::::
solar

::::::::::
background250

:::
and

:::::::
external

:::::::::
calibration

:::::::
methods

::::::::
indicates

:::
that

:::
for

::::
four

::
of

:::
the

:::
six

::::::
metrics

:::::::::::::::
presented—mean

::::
bias

::
in

:::
the 1and 8 km, particularly

in the
:
–4to

:::
km,

:
8km range, when compared to those calibrated using the less frequent radiosonde data. This highlights the

background calibration method’s adaptability to immediately respond to changes within the RALMO system, ensuring the

continuity of calibration values even during abrupt system changes. This capability enables accurate retrievals, which is not

feasible with the external method due to insufficient calibration points around the periods of abrupt (and possibly unanticipated)255
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system changes. In the subsequent 8 to
:
–12 km

:::
km,

:
and 12to

:
–16

::
km

::::::
ranges,

:::
as

::::
well

::
as

:::
the

:::::
mean

::::
IQR

::
in

:::
the

::::::::
8–16 km

:::::
range

::
are

::::::::::
comparable

::::::
within

:::
the

:::::::
1-sigma

:::::::::
uncertainty

::::::
levels.

::::::::
However,

:::::::::
differences

:::
are

:::::::
observed

::
in
:::
the

:::::
mean

::::
bias

:::
for

::
the

::::
4–8 km

:::::
range

:::
and

:::
the

:::::
mean

::::
IQR

:::
for

:::
the

::::::
1–8 km

:
range, a mean bias of −0.9K and −1.4K is observed, an underestimation trend similar to

that seen in the external calibration method. For the external calibration
:
.
::::::::::
Specifically, the IQR values over the

:::
for

:::
the

:::::::
external

::::::
method

:::
are

:::::
6.1K

:::
for

::::
both

:::
the 1to

:
–8 km and 8to

:
–16 km rangesare 6.1K . Meanwhile, ,

:::::::
whereas

:::
the

::::::::::::
corresponding

::::::
values for260

the background calibration, these IQR values
::::::
method are 4.3K and 6.0Kacross the same altitude intervals. These statistics

show a lower variability in temperature differences when employing the background calibration , and thus, a more consistent

performance over this height range compared to the external calibration method
:
,
::::::::::
respectively.

:::::
These

:::::::::::
observations

::::::
suggest

::::
that

::
the

::::
two

:::::::::
calibration

::::::::
methods

::::::::
generally

::::
yield

:::::::
similar

:::::
results

::::::
across

:::::
most

:::::::
metrics,

::::
with

:::
the

::::::::::
background

:::::::
method

::::::::::::
demonstrating

::::::
reduced

:::::::::
variability

::
in

::::::
certain

:::::
cases.265

4 Conclusions

We have shown the solar background calibration method is a viable method for the temperature calibrations of rotational-

Raman lidars. By using the solar background values acquired by the lidar, this technique provides a more extensive and

continuous calibration timeline, which decreases
:::
can

:::::::
decrease

:
the difference between the lidar and radiosonde temperatures.

Notably, our study highlights the method’s adaptability, showcased through its ability to swiftly adjust to modifications within270

the RALMO system and demonstrating its responsiveness to system variations that sporadic external calibration could miss
:
.

:::
Our

:::::
study

::::::::
highlights

::::
that

:::
the

::::
solar

::::::::::
background

::::
value

::
is
::::::
weakly

:::::::::
dependent

::
on

:::
the

:::::
solar

:::::
zenith

:::::
angle,

:::::::::::
underscoring

:::
the

:::::::::
robustness

::
of

:::
the

::::::::
technique.

::::
This

:::::::::
potentially

:::::::
enables

::::::
broader

:::::::::::
applicability

:::
and

:::::
might

:::::::
simplify

:::::::::::::
implementation

:::::
under

:::::::
diverse

:::::::::::
observational

:::::::::
conditions,

:::::::::::
emphasizing

::
its

::::::::
potential

:::
for

::::::::
reliability

::::
and

:::::::::
widespread

::::
use. Moreover, the solar background calibration method

offers the advantage of generating a daily calibration timeline based on a single or ensemble of external reference instrument275

measurements which mitigates the impacts of drifts and other possible interpretation problems with comparisons to radioson-

des. The solar background method is applicable to any PRR temperature lidar and can be used for temperature retrievals using

both the OEM and traditional temperature algorithms.. The adoption of the background calibration method presents substantial

benefits, especially for climatology and trend studies within the troposphere and lower stratosphere. Its application ensures that

climatological assessments and trend derivations remain independent of drift effects associated with radiosonde measurements.280

Data availability. Measurements used in this paper may be requested from MeteoSwiss by contacting Alexander Haefele
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