10

15

20

A Python interface to the Fortran-based Parallel Data Assimilation
Framework: pyPDAF v1.0.2

Yumeng Chen'?, Lars Nerger®, and Amos S. Lawless!*

'School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6ET, UK
ZNational Centre for Earth Observation, University of Reading, Reading RG6 6ET, UK
3Alfred-Wegener-Institut, Helmholtz-Zentrum fiir Polar-und Meeresforschung (AWI), 27570 Bremerhaven, Germany

Correspondence: Yumeng Chen (yumeng.chen@reading.ac.uk)

Abstract. Data assimilation (DA) is an essential component of numerical weather and climate prediction. Efficient imple-
mentation of DA algorithms benefits both research and operational prediction. Currently, a variety of DA software programs
are available. One of the notable DA libraries is the Parallel Data Assimilation Framework (PDAF) designed for ensemble
data assimilation. The DA framework is widely used with complex high-dimensional climate models, and is applied for re-
search on atmosphere, ocean, sea ice and marine ecosystem modelling, as well as operational ocean forecasting. Meanwhile,
there exists-inereasing-need-are increasing demands for flexible and efficient DA implementations using Python due to the
increasing amount of intermediate complexity models as well as machine learning based models coded in Python. To accom-
modate for such needsdemands, we introduce a Python interface to PDAF, pyPDAF. pyPDAF allows for flexible DA system
development while retaining the efficient implementation of the core DA algorithms in the Fortran-based PDAF. The ideal
use-case of pyPDAF is a DA system where the model integration is independent from the DA program, which reads the
model forecast ensemble, produces a-medet-analysisan analysis, and updates the restart files of the model, or a DA system
where the model can be used in Python. With implementations of both PDAF and pyPDAF, this study demonstrates the use
of pyPDAF and PDAF fer-in a coupled data assimilation (CDA) setup in a coupled atmosphere-ocean model, the Modular
Arbitrary-Order Ocean-Atmosphere Model (MAOOAM). This study demonstrates that pyPDAF allows for the-utilisation-of

Pythonuser-supplied-funetions-with PDAF funetionalities-PDAF functionalities from Python where users can utilise Python

functions to handle case-specific information from observations and numerical model. The study also shows that pyPDAF can
be used with high-dimensional systems with little slow-down per analysis step of only up to 13% for the localized ensem-

ble Kalman filter LETKEF -

m—in the example used in this
study. The study also shows that, compared to PDAF, the overhead of pyPDAF is comparatively smaller when computationall
intensive components dominate the DA system. This can be the case for systems with high-dimensional state vectors.

1 Introduction

25

30

35

40

45

50

55

using dynamical systems theory and statistical methods. This rovides optimal estimates (i.e., analyses), enables

arameter estimation, and allows for the evaluation of observation networks. Due to the limited predictability and imperfect
models, DA has become one of the most important techniques for the-numerical weather and climate predictions. Progresses

Progress of the DA methodology development can be found in various review articles and books (e.g., Bannister, 2017; Carrassi
et al., 2018; Vetra-Carvalho et al., 2018; Evensen et al., 2022).

To ameliorate the difficulties in the implementation of different DA approaches, several DA software programs and libraries
have been proposed (e.g., Nerger et al., 2005; Anderson et al., 2009; Raanes et al., 2024; Trémolet and Auligne, 2020). Even
though the implementation of the core DA algorithms is similar, these software programs/libraries are typically tailored to
different purposes. For example, the Joint Effort for Data assimilation Integration (JEDI, Trémolet and Auligne, 2020) is
a piece of self-contained software that includes a variety of functionalities that can be used for all aspects of a DA system
mainly for operational purposes while DA software for methodology research such as BPAPPER(Raanes-etal;2624)Data
Assimilation with Python: a Package for Experimental Research (DAPPER, Raanes et al., 2024) is designed for identical twin
experiments equipped with low complexity models.

One widely used DA framework is the Parallel Data Assimilation Framework (PDAF) developed and maintained by the Al-
fred Wegener Institute (Nerger et al., 2005; Nerger and Hiller, 2013b). The framework is designed for efficient implementations
implementation of ensemble-based DA systems for complex weather and climate models but is also used for research on data
assimilation-DA methods with low-dimensional “toy” models.
provide-In this generic framework, DA methods accommodate case-specific information about the DA system ineluding-the
through functions provided by users including the model fields, treatment of observations, and localisation. These functions
are referred to as user-supplied functions. More than 100 studies have used PDAF, including atmosphere (e.g., Shao and
Nerger, 2024), ocean (e.g., Losa et al., 2012; Pohlmann et al., 2023), sea ice (e.g., Williams et al., 2023; Zhao et al., 2024),
land surface (e.g., Strebel et al., 2022; Kurtz et al., 2016), hydrology (e.g., Tang et al., 2024; Doll et al., 2024), and cou-
pled systems (e-gNerger-etal;-2020)(e.g., AWI-CM in Nerger et al., 2020). Further use-cases of PDAF can be found in the
PDAF website (PDAF - the Parallel Data Assimilation Framework, last access: 2024-02-13). Even though PDAF provides

highly optimised DA algorithms, the flexible framework relies on the user-supplied functions to couple DA with model sys-

tem and observations. The implementation of user-supplied functions still require additional code development, which can be
time-consuming especially when the routines have to be written in Fortran, a popular programming language for weather and
climate applications.

In recent years, Python is gaining popularity in weather and climate communities due to its flexibility and ease of implemen-
tation. For example, Python is adopted by some low- to intermediate-complexity models (e.g., De Cruz et al., 2016; Abernathey
et al., 2022), models with a Python wrapper (e.g., McGibbon et al., 2021), and machine learning based models (e.g., Kurth et al.,
2023; Lam et al., 2023; Bi et al., 2023). For the application of DA in Python, DAPPER provides a variety of DA algorithms

for twin experiments using low-dimensional Python models. The Ensemble and Assimilation Tool, EAT (Bruggeman et al.,

a, which is a wrapper to a Fortran data assimilation system

based on PDAF, was proposed to set up a 1D ocean-biogeochemical DA system including the 1D ocean-biogeochemical model,

60

65

70

75

80

85

90

GOTM-FABM. There are also Python packages designed mainly for pedagogical purposes in low-dimensional systems such
as openDA (Ahmed et al., 2020) and filterpy (filterpy PyPI, last access: 2024-08-29). For high-dimensional applications, there
are efficient implementations of DA packages such as HIPPYlib by Villa et al. (2021) and ADAO (SALOME The Open Source
Integration Platform for Numerical Simulation, last access: 2024-08-29), but HIPPYib does not have a focus on ensemble data
assimilation approaches whereas ADAO provides various ensemble DA methodologies but it has no support for the localisa-
tion used in weather and climate applications. More recently, NEDAS (Ying, 2024) was introduced for offline ensemble DA in
climate applications but it currently only supports limited DA algorithms.

Targeted at applications to high-dimensional ensemble data assimilation systems, here, we introduce a Python interface to
PDAF, pyPDAF. Using pyPDAF, one can implement both offline and online DA systems using Python. For offline DA systems,
DA is performed utilising files written onto a disk, e.g., model restart files. If a numerical model is available in Python, pyPDAF
allows for implementing an online DA system implementation-where DA algorithms can be used with the Python model with
in-memory data exchange that does not need I/O operations bringing about more efficiency than an offline system. Compared
to user-supplied functions implemented in Fortran, the Python implementation can facilitate easier code development thanks
to a variety of packages readily available in Python. In the meantime, DA algorithms provided by PDAF that are efficiently

implemented in Fortran can still be utilised.

In this study, we ir-a-introduce the design, implementation and functionalities of pyPDAF.

Further, in comparison to the existing PDAF implementation, we provide a use-case of pyPDAF in a coupled data assimilation
(CDA) setup with the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM, De Cruz et al., 2016) where an arbi-

trary number of grid points can be specified without changing the model dynamics making it suitable to provide benchmarks of

weakly—ecoupledDA-This use-case allows us to further compare the ease of implementation of pyPDAF with PDAF, and
investigate the computational performance under different choices of state vector including both the strongly CDA (SCDA
and weakly CDA (WCDA) 1t b e 3 imultaneoy HSHa a

—cases. In the SCDA case, the atmosphere and ocean are coupled in both forecast and analysis steps. In the WCDA case, the

forecast step is coupled but the analysis of the atmosphere and ocean is performed independently.
. i Sect. 2.2 Section 2 will

deseribe-the-design-and-implementation-of PDAF-and-2 will introduce PDAF, the implementation and design of pyPDAF, and

95

100

105

110

115

120

125

the implementation of a DA system in pyPDAF. In Sect. 3, the experimental and model setup will be described. Section 4 will

report the performance of PDAF and pyPDAF in the CDA setup. We will conclude in Sect. 5.

130

135

140

145

Model

el User supplied routines DRI
state vector PP state vector

PDAF/pyPDAF
(LETKF)

User supplied routines

Localisation handling . .
: Observation handling
o Number of local domains . e Postprocess ensemble
o Number of observations

Preprocess | e Relationship between > Feed ahereten s | Set number of model
ensemble local domain and global S CAE T e time steps until next

domain . assimilation
o . e Observation operator
® Localisation radius

Figure 1. A schematic diagram of an online LETKF DA system using (py)PDAF. In the case of an offline DA system, the model can be its

restart files.

2 PDAF and PyPDAF

PDAF is designed for research and operational DA systems. As a Python interface to PDAF, pyPDAF inherits the DA algorithms

implemented in PDAF and the same implementation approach to build a DA system.
2.1 Parallel Data Assimilation Framework (PDAF)

PDAF is a Fortran-based DA framework providing fully optimised, parallelised ensemble-based DA algorithms. The frame-
work provides a software library and defines a suite of workflows based on different DA algorithms provided by PDAFineluding

To ensure that PDAF can be flexibly adapted to any models and observations, it requires users to provide case-specific

information. This includes the information on the state vector, observations and localisation. The framework obtains this infor-
mation via user-supplied functions which are external callback subroutines. Figure 1 shows a schematic diagram of an online
DA system where the EEFKF-local ensemble transform Kalman filter (LETKF) is used. Here, the user-supplied functions con-

nect PDAF with models. Called within-by the PDAF routines, these user-supplied functions collect state vectors from model
forecasts and distribute the analysis back to the model for the following forecast phase. During the analysis step, user-supplied
functions also pre- and post-process the ensemble, handle teeatisations-localisation and observations, and provide the number
150 of model time steps for the next-forecast-phasetoPDAFfollowing forecast phase. As the user-supplied functions depend on the
chosen DA algorithm, other algorithms may require different functions. For example, the-a 3DVar DA system requires routines
for the adjoint observation operator and control vector transformation. To ameliorate the difficulty in the observation handling,
PDAF provides a scheme called observation module infrastructure (OMI). The OMI routines provide a structured way to han-
dle the processing of ebservation-veetors-observations and error covariance matrix used by DA algorithms, and provide support

155 for the complex distance computation used by localisation. In the current version of PDAF V2.3, it also supports spatial in-
terpolations on structured and unstructured grids -direect-observation-eperator,-and-a-diagenal-orfor observation operators as
well as an observation operator for observations located on grid points. The OMI also supports both diagonal and non-diagonal

observation error covariance matrixmatrices. One can also implement PDAF without OMI, but additional functions would be
required.

160 In an online DA system, the collection and distribution of state vector is an in-memory data exchange handled byPBDAF
effieienttyefficiently by PDAF. It is possible to implement an offline DA system with PDAF where the model in Fig. 1 would
be-is replaced by model restart files while the user-supplied collection and distribution routines manage the I/O operations of
these restart files. Offline DA implementation is a crucially supported feature of PDAF and a potentially important use-case
for pyPDAF, but we will not discuss it in detail for the sake of brevity. We will provide details of the use-implementation of

165 user-supplied functions in the context of pyPDAF in Sect. 2.4.

2.2 Data assimilation methods in PDAF

As described in Sect. 2, PDAF supports a variety of DA methods with a focus on ensemble-based DA methods. Ensemble-based
DA is a class of DA approaches that approximate the statistics of the model state and its uncertainty using an ensemble of model
realisations. These DA methods are based on Bayes theorem where the prior, typically a model forecast, and posterior (analysis)
170 distributions can be approximated by a Monte Carlo approach, The ensemble forecast allows for an embarrassingly parallel
does not increase with the ensemble size.
The majority of ensemble DA methods are constructed under the Gaussian assumption of the forecast and analysis distributions
such as the stochastic ensemble Kalman filter (EnKF, Evensen, 1994). The EnKF approximates the forecast and analysis error
175 distribution by an ensemble. PDAF provides implementations for the EnKF and several of its variants. These variants improve
the efficiency and reliability of the EnKF including singular evolutive intepolated Kalman filter (SEIK, Pham, 2001), ensemble
transform Kalman filter (ETKF, Bishop et al.. 2001), error space transform Kalman filter (ESTKF, Nerger et al,, 2012). Other
typical filtering algorithms, not implemented in current releases, such as ensemble adjustment Kalman filter (EAKE, Anderson, 2001)
and ensemble square root filters (EnSRE, Whitaker and Hamill, 2002) are planned to be included in future releases. In practice,
180 computational resources limit the feasible ensemble size in the high-dimensional realistic DA applications in the Earth system

due to the cost of model forecasts. The ensemble-based DA approaches typically suffer from sampling errors from limited

ensemble size. To mitigate these deficiencies, PDAF also provides common techniques such as covariance matrix inflation

., Pham et al., 1998; Hamill et al., 2001; Hunt et al., 2007). In addition to EnKFs, PDAF also provides
3-dimensional variational methods. This includes variants of 3DEnVar (see Bannister, 2017) that can be used to achieve

185 flow-dependent background error covariance matrix, and/or to avoid explicit computation of the adjoint model in the minimisation
process by using an ensemble approximation.

In additional, PDAF also provides DA methods that can treat fully non-linear and non-Gaussian problems. This includes
article filters (see van Leeuwen et al., 2019). However, for high-dimensional geoscience a

and localisation (e.

lications, the classical particle

filters suffer from the “curse of dimensionality” where the required ensemble size grows exponentially with the dimension of

190 the state vector making the approach computationally infeasible. Therefore, PDAF also provides other non-linear filters such as
nonlinear ensemble transform filter (NETF) and local Kalman—nonlinear ensemble transform filter (LKNETEF, Todter and Ahrens, 2015; Ne
- These methods mitigate the cost of nonlinear filters by restricting to the second-order moment of the statistical distribution._

2.3 pyPDAF

Implementation-Depending on the users’ programming skills, implementation of user-supplied functions can be laborious in

195 Fortran and typical code development in Python can be less time consuming. Thanks to the integrated package management,
code development in Python can rely on well optimised packages without the need for compilation. For these reasons, a variety
of numerical models are implemented in Python (e.g., De Cruz et al., 2016; Abernathey et al., 2022; McGibbon et al., 2021;
Bi et al., 2023). Hence, a Python interface to PDAF allows the design of an online DA system with such Python-based models.
These range from low-dimensional toy dynamical systems to high-dimensional weather and climate systems. Compared to a

200 Fortran-coded DA system, a Python DA system can be implemented efficiently with the aid of various external packages and
allows for easier modifications without recompilation such that users can focus on scientific problems.

The pyPDAF package can also be applied for-to offline DA systems, i.e. coupling the model and data assimilation program
through restart files. Here-In an offline DA system, pyPDAF can be used without the restriction of the programming language
of the numerical model. When computation-intensive user-supplied functions are well optimised(, e.g., using just-in-time

205 (JIT) compilationy, this could also be used for high-dimensional complex models. Thus, depending on the requirements of
the users, an-offtine DA-systemean-pyPDAF can also be used to prototype a Fortran DA systemas-weH. The application of
pyPDAF in high-dimensional models can also be shewn-enabled by its support of the parallel features of PDAF, which use
the Message Passing Interface (MPI, Message Passing Interface Forum, 2023). For this, a pyPDAF DA system relies on the
“mpidpy” package for MPI support. The pyPDAF system can also support shared memory parallelisation for DA algorithms

210 using domain localisation in PDAF when built with OpenMP. However, the efficiency of OpenMP is restricted by the global

interpreter lock in Python.
As the reference implementation of Python is based on the C programming language (The Python Language Reference, last

access: 2024-02-13), the design of pyPDAF is based on the interoperability between the programming languages of C and
Fortran using the iso_c_binding module of Fortran. As shown in Fig. 2, the-a C interface of PDAF, PDAFc, is developed in

Fortran
DA system pyPDAF PDAF

C interface
e PDAF
call Call e PDAFomi Subroutines
: A subroutines e PDAF
Python : C callable e Handling PDAFomi
user : - user derived types
Input supplied : supplied

functions - + functions
. . Implement C interface .
User supplied functions Userfuncs subpackage e User-supplied

routines

Figure 2. An illustration of the design of the pyPDAF interface to the Fortran-based framework PDAF. Here, only the Python component is

exposed to pyPDAF users, and the Cython and Fortran implementations are internal implementations of pyPDAF.

215 pyPDAF, which includes essential PDAF interfaces and interfaces for user-supplied functions. HereeDue to this design, PDAFc
could be used independentdyfrompyPPAF-as—aCinterface-to-the PDAFpackase—Thecore-of-the pyPBAF-tmplementatio

uses-as an independent C library for PDAF. The pyPDAF implementation relies on the C-extension for Python (Cython). Here
In Cython, Python datatypes are converted into C pointers to allow for information exchange between PDAF and pyPDAF.

pyPDPAF-implements-In pyPDAF, C callable functions which-ean-are implemented to call user-supplied functions written in
220 Python such that PDAF can utilise the-these user-supplied Python-funetions—functions. The PDAF functionalities are provided
through functions implemented in Cython, which are accessible from Python.
pyPPAFis-designedso-The pyPDAF design means that a DA system can be coded purely in Python ineluding-the-user-supplied

DA system depends on mixed programming languages and external libraries. The interface—to-PDAF-isprovided-through
225 functionstmplemented-using-Cythonwhich-provides-the-interface forea om-Pythen—Thusthe pyPDAF package itself is a

mixed program of C, Fortran and Python. Moreover, as DA algorithms require high-dimensional matrix multiplications, PDAF
relies on the numerical libraries LAPACK (linear algebra package) and BLAS (basic linear algebra subprograms). These-The
mixed languages and libraries lead to a complex compilation process especially when users could use different operating sys-
tems. To fully utilise the cross-platform support of Python environment, pyPDAF is distributed via the package manager conda
230 to provide an out-of-box user experience with pyPDAF where users can use pyPDAF without the need for compiling the pack-

age from the source code. Detailed installation instructions can be found at: Installation - pyPDAF documentation (last access: 2025-03-25)

pyPDAF allows for the use of efficient implementations of DA algorithms in PDAF. However, a DA system purely based on
pyPDAF could still be less efficient than a DA system purely based on PDAF coded in Fortran. The loss of efficiency is partly

235 due to the operations in user-supplied Python functions and the overhead from the conversion of data types between Fortran

and Python. We will evaluate the implications of these loss of efficiency in Sect. 4.2.
2.4 Construction of data assimilation systems using pyPDAF

To illustrate the application of pyPDAF to an existing numerical model, as an example, we present key eompenentsimplementation
details of an LETKF DA system. This example follows the schematic diagram in Fig. 1. Here, we assume that the number of

240 available processors is equal to the ensemble size. In-thissetupUnder this assumption, each ensemble member of the model
forecast runs on one processor, and the analysis is performed serially on a single processor. We further assume that observations
are co-located on the model grid but are of lower resolution, and they have a diagonal error covariance matrix.

Compared-toFortran—implementations;—a—Python-A_pyPDAF DA system can better-utilise—the-object-oriented—features:

Here;—we-assume-the-existenee-of-a-generie-model object-that-contains-model-informationbe divided into three components:
the variable names in pyPDAF are given in brackets. In this sytemsystem, the pyPDAF functionalities should-be-initialised-by
are initialised by a single function call

param_int,param_real, flag = pyP DAF.P D AF.init(filtertype, subtype, stepnull,
param_int, param_real,

250 COM M _model, COM M _filter, COM M _couple,

task_id,n_modeltasks, filterpe,init_ens_pdaf).

TFhe-information-In the initialisation step, the following information is provided to pyPDAF:

1. pyPDAF takes information on the type of filters (filtertype and subtype)is
parameters-of-these-filters—Here; the-.

255 2. Corresponding to the filter type, the initialisation step also requires the size of the state vector (di##—p)-and the ensemble
size (dim_p and dim_ens y-are-speeified-in-the-in param_int arrayrespectively), and the inflation factor is-—speeified-in

(param_realarray). These parameters allow PDAF to allocate internal arrays such as the ensemble mean (state_p) and

the ensemble matrix (ens_p) used by the DA.

260 3. In addition to the filter configurations, the initialisation step also initialises the parallelisation used in PDAF, which
requires the MPI communicators. These MPI communicators instruct PDAF on the functionalities of each processor
and their communication patterns. Processors within the same model communicator (COMM_model;-COMM—filter;

265 erform the same ensemble member of model forecast. The number of model communicators is the same as the number

270

275

280

285

290

295

of ensemble members run simultaneously (n_modeltasks:-a-boolean-variable-that-determine-if-the-filter-). Each processor

is associated with a specific ensemble member or model task by an index (fask_id). During the DA step, PDAF will
collect an ensemble matrix from the state vector residing in each model communicator via the coupling communicator
COMM_couple). The DA is performed on eurrent-process-by-filterpefilter processors (filterpe = .true.) in one of the

filter communicators (COMM _filter). Even though the parallelisation strategy can be freely designed by users, example

arallelisation modules are readily available in pyPDAF. Detailed explanations of the parallelisation strategy used by
PDAF can be found in Nerger and Hiller (2013a). Adso;-the-initialisationfunetion

4. The initialisation step also prepares the system for future forecast-analysis cycling. Here, it takes the initial time step 5
(stepnull-as-astep-eounter-) for step counters in PDAF.

5. In the initialisation +step, the ensemble has to be initialised. In pyPDAF, this is achieved by the return values of a user-
supplied function ef-(state_p, uinv, ens_p, flag = init_ens_pdaf{filtertype, dim_p, dim_ens, state_p, uinv, ens_p, flag)is

e--). In this function, users have the flexibility
to choose the initial ensemble. One can read an ensemble from files, or sample an ensemble from a covariance matrix.
These can be assisted by input from PDAF via arguments of user-supplied functions. For example, PDAF provides the
mmw@@mmmﬁmwwmmm
matrix using second-order exact sampling -

%@Mﬁdﬁmmﬁmﬁfﬁm@j@&m

6. If OMI is used, the initialisation step also involves an additional function call (pyPDAF.PDAF.omi_init(n_obs)is-ased-te
inttialise-the-) to inform PDAF the number of observation types (n_obstypes-of-observations—) in the system.

In each model integration step, the analysis-step-is-exeeuted-by-function_

status = pyPDAF.PDAF.omi_assimilate_local(collect_state, distribute_state,init_dim_obs,
obs_op, prepostprocess,init_n_domains,

init_dim_l,init_dim_obs_l,

g2l_state,[2g_state,next_observation)

called where all arguments specify the names of user-supplied fuﬂe&mﬁ—whieh—wﬂi—beéseusse&m—éefafk@gggggé\li@gl@\g
operations specific to the model and observations. If the forecast phase is complete, the analysis step is executed. In the analysis
step, each user-supplied function will next be executed by PDAF to collect necessary information, or perform case-specific
operations for the DA. A flow chart is given in Fig 3.

As shown in Fig. 1, the model and PDAF exchanges-exchange information by user-supplied functions. The-First, a user-
supplied function (state_p = collect_state(dim_p, state_p)) is executed by PDAF for each ensemble member to fill-collect a state

10

Ensemble Global part Local ana\y5|s loop Ensemble
Framework Framework

Init i-th local
domain
(init_dim_1)

PDAF call-back

Process analysis
(prepostprocess)

F_\ functions
Get no. of local Get state vector for
domains i-th local domain

(init_n_domains) (g2l_state)

Get next analysis
step
(next_observation)

PDAF callback
function without
PDAFlocal

LETKF local
analysis
(core algorithm)

Arrows indicate the
order of the calls. They
do not imply that one
routine calls the other.
The control resides
within the framework.

Process forecast
(prepostprocess)

Update global state
vector
(12g_state)

Figure 3. A flowchart of the sequence of LETKF operations in PDAF. These operations include user-supplied functions and core LETKF
algorithm. The arrows indicate the order in which the user-supplied functions are executed. They do not imply that one routine calls the other.
The observation operators and the global and local domain update are represented by multiple boxes as they are performed by each ensemble

member.

vector (state_p) from model forecast fieldsin
state—p) WMMMWGWWJ WMM)

300 such that, after the analysis step, the analysed state vector can be distributed back to model fields for the initialisation of the
next forecast cycle. These user-supplied functions allow users to adapt a DA system with different models. For example, as
mentioned in Sect. 2.2, optimal state estimation is achieved by ensemble-based Kalman filters under a Gaussian assumption.
The state vector collection and distribution function can be used to perform Gaussian anamorphosis where non-Gaussian
variables can be transformed to Gaussian variables (Simon and Bertino, 2012).

305 To handle different observations, with the OMI functionality, only three user-supplied functions need to be implemented. One

W%H%WWMWM@MW
310 user-supplied function (dim_obs = pyPPAF-PPAFE-omiinit_gatherdim_obs(i—obsstep, obsdim_pyivar—obs—p;ocoord—pycradiis):
The-funetion—returns—the-total-dimension-of-the-) that primarily serves the purpose of providing the dimension of observa-

tion vector (d—l—fﬁ—eb%}—ﬁff MM&Q@&M‘W&Q obs-th observation type which—is—retarned-by—the

b FRen Fot : provides PBAF-with-the—can

be calculated by PDAF function (dim_obs = pyPDAEPDAEomi_gather_obs(i_obs, obs_p, ivar,_obs_p, ocoord p, cradius)).

315 directly by providing observation vector (eceordobs_p), inverse of the observation error variance (ivar_obs_p), the ebservation
eoordinates-spatial coordinates of observations (ocoord_p), and a leeatisationradius—tor-the-eurrent-observationtypecut-off
localisation radius (cradius). Fhe-other-approach-sets-attributes-of-the-derived-data-type;In _this user-supplied function, one

11

320

325

330

335

340

345

350

also sets additional observation attributes (0bs_f+
observation-type—-the-index-of-the-) including the switch for assimilating the observation type (doassim), the indices of the
observations in the state vector --(id_obs_p), the domain size and the options for distance computation in localisation. While

these-These attributes can be set by di

setter functions (e.g., id—obs—p ean-be-setusing-the-pyPDAF funetion pyPDAF. PDAF.omi_set_id_obs_p(i_obs, id_obs_p)).

The-observation-operator-is-implemented-by-the-

Another piece of case-specific information provided by a user-supplied function is the observation operator (m_state_p
= obs_op(step, dim_p, dim_obs—p, state_p, m_state_p)—tt—teakes—a—). The observation operator transforms the state vector
(state_p) as-input-and-returns-a-veetorin-into observation space (im_state_p). In eur-example-itean-be-handled-directly-by-the
OMIHunetion-PDAF, observation operators that transform a model field to observations located on grid points (m_state_p =

pYPDAF.PDAF.omi_obs_op_gridpoint(i_obs, state_p, m_state_p):

pyPDAFbut-) are provided. One can construct more complex observation operators in pyPDAF (e , Shao and Nerger, 2024

, but is not discussed here -

stepr-dim—obs-din—obs—1) whichteHs PDAFfor the sake of simplicity. In the LETKF, one also has to specify the number of ob-
servations being assimilated in the-earrenteach local domain (dim_obs_l) —Fhisfunctioncanbesimplified-by-the OMI-funetion

dim_obs, dim_obs_1

in the user-supplied function (dim_obs_I = init_dim_obs_I(domain . In this function, users can

simply utilise an OMI function without further implementations (dim_obs_I = pyPDAF.PDAF.omi_init_dim_obs_I_iso(i_obs,
coords_l, locweight, cradius, sradius, dim_obs_l)which-automatically-handles-observation-veetors-and-ts-). The OMI function
automatically handles observations and their error variances used in the local domain given the eeerdinate-of-coordinates of a

local domain (coords_l), the type of localisation weight (locweight), and the cut-off localisation radius (cradius) as well as the

support radius of specified localisation function (sradius).

The-domain-localisation—requires-Users must specify information for domain localisation in four additional user-supplied
functions. The-These include the number of local domains (rn—domains—p)isprovidedby-n_domains_p = init_n_domains(step,
n_domains_p)), the dimension of the state vector in the domain_p-th local domain sdim—t-isprevided-by-(dim_I= init_dim_I(step,
domain_p, dim_l)-Fhe-), the conversion of the full global state vector to a state vector on leeal-domain-a local domain (state_|[

2[_state(step, domain_p, dim_p, state_p, dim_I, state_l)) and vice versa is-controHed-bystate{=-g2lstate(step,-domain—p;
dim—prstate—p,—dim—t—state_l} and-(state_p = [2g_state(step, domain_p, dim_l, state_l, dim_p, state_p)). The user-supplied
function g2I_state and [2g_state are not used in “PPAFlecal~"PDAFlocal” modules as will be discussed in Sect. 4.2.

The pyPDAFanalysis steprequires two-additionatIn addition to information on the state vector, observations and localisation,
@wmﬁmwmnmwﬁwum
supplied fon . e erme B roeesslsten o dinn e v obs s i
W%m%%%%meeﬁﬁmmﬁmensj Mm
dim_p, dim_ens, dim_ens_p, dim_obs_p, state_p, uinv, ens_p, flag)ypefore-the- LETKF and-post-process-the-analysis-ensemble

. This function allows the user to perform arbitrary operations on the ensemble directly before (pre-processing) or after (ens—p)
after-the EETKF-assimilated-the-observations—The-post-processing) the analysis step update.

12

One last piece of case-specific information is the control of DA cycles. In the user-supplied function (nsteps, doexit, time =
next_observation(step, nsteps, doexit, time);tells PDAF-), users specify the number of time steps between-two-DA-executions;
355 (msteps) until the next analysis step is computed (thus the duration of the forecast phase). Given the current time stepand

other-uninitialised-input-arguments, PDAF also obtains the information of the current model time +—(time) and a flag for the
completion of all DA cycles (doexitinnext—observation—Tto-). _

In the completion of the DA system, to control the memory allocation in the DA eyeleprocess, the DA system ean-should be
finalised by funetiona clean-up function (pyPDAF.PDAF.deallocate()).

360 PDAF can handle much more complex cases including non-isotropic localisation, or non-diagonal observation error covari-

ance matrices. Besides LETKEF, other filters might require different user-supplied functions as they utilise different case-specific

information. The provided pyPDAF example code that exists can support a wide range of filters without changes.

3 Moedel-and DA-setupApplication example

To demonstrate the application of pyPDAF and to evaluate its performance in aceupledDA-setup;—comparison to PDAF, we

365 set up coupled DA experiments with MAOOAM (De Cruz et al., 2016) version 1.4is-ecoupled-with- PDAF-and-pyPDAF. The
original MAOOAM model is implemented-written in Fortran that is eoupled-implemented directly with PDAF, and a wrapper

for Python is developed in this study such that MAOOAM can be coupled with pyPDAF. This means that two online DA
systems using Fortran and Python respeetively-are-developed-are developed respectively to allow for a comparison between
the PDAF and pyPDAF implementation. In these DA systems, a suite of twin experiments is carried out using the ensemble

370 transform Kalman filter (ETKF, Bishop et al., 2001) and its domain localisation variant, LETKF.

3.1 Coupled-modetMAOOAM configuration

The MAOOAM solves a reduced-order non-dimensionalised quasi-geostrophic (QG) equation (De Cruz et al., 2016). Using
the beta-plane approximation, the model has a two-layer QG atmosphere component and one-layer QG shallow-water ocean
component with both thermal and mechanical coupling. For the atmosphere, the model domain is zonally periodic, and has

375 a no-flux boundary condition meridionally. For the ocean, no-flux boundary conditions are applied in both directions. This
setup represents a channel in the atmosphere and a basin in the ocean. The model variables for the two-layer atmosphere are
averaged into one layer. Accordingly, MAOOAM consists of four model variables: the atmospheric streamfunction, v,, the
atmospheric temperature, T, the ocean streamfunction, 1,, and the ocean temperature, T,. The model variables are solved
in a-spectral space. The spectral basis functions are orthonormal eigenfunctions of the Lapaee-Laplace operator subject to the

380 boundary condition, and the number of spectral modes is characterised by harmonic wave numbers P, H, M (Cehelsky and
Tung, 1987).

Our model configuration adopts the strongly coupled ocean and atmosphere configuration ‘36st’ of Tondeur et al. (2020)

using a time step of 0.1 time units corresponding to around 16 minutes. Using the notation of H"**x — P™%*y of De Cruz et al. (2016

with the superscript max the maximum number of harmonic wave numbers, the configuration chooses 2z — 4y modes for the

13

385

390

395

400

405

415

ocean component and 2z — 2y modes for the atmosphere component. This leads to a total of 36 spectral coefficients with 10
modes for ¥, and T, respectively and 8 modes for v, and T, respectively. The model runs on a rectangular domain with a
reference coordinate system of (x x y) € [0, 27] x [0. 7], where n. = 1.5 is the aspect ratio between the o and y dimensions.
In contrast to Tondeur et al. (2020) who assimilate in the spectral space, we assimilate in the physical space in which real
observations are usually available. Assimilating in the physical space is not only more realistic but also provides the possibility.
to investigate the computational efficiency of pyPDAF without changing the model dynamics. This is because the same number
of spectral modes can be transformed to different number of grid points. This allows us to focus on the computational cost
of the DA, Therefore, for benchmarking computational cost, we conduct a suite of SCDA experiments with 2° -1 2" + 1
grid points where 7 < k < 11. This gives us state vectors with dimensions ranging from a magnitude of 10* to 107, We also
implement SCDA experiments using LETKF on a grid number size of 257 x 257 with observations on every 4 and 8 grid points

to investigate the efficiency of the domain localisation in pyPDAF.
We integrate MAOOAM with (py)PDAF. As shown in Fig. 1, the key ingredient of coupling MAOOAM with (py)PDAF is

the collection and distribution of state veetor—JIn-common-setups-of-ocean-and-atmospheric DA -the-observations-are-available
in-the-physical-space-Heneein-the-vectors. In the user-supplied function that collects the state vector for pyPDAF (see Fig. 1),

spectral modes of the model are transformed from the spectral space to physical space using the transformation equation,

K

f(x7y7t)zzci(t)Fi(x7y)7 (1)

i=1
where f(x,y,t) is any model variable in the physical space, K is the number of modes, ¢;(t) is the spectral coefficient of the
model variable, F;(x,y) is the spectral basis function of mode 7 outlined in De Cruz et al. (2016). In the user-supplied function
that distributes the state vector for pyPDAF (see Fig. 1), the analysis has to be transformed back to the spectral space to initialise

the following model forecast. The inverse transformation from the physical space to the spectral space can be obtained by

s

ci(t) = 271?/

0

o\:\’;’

where 7 is the ratio between meridional and zonal extents of the model domain. Here, each basis function corresponds to
a spectral coefficient of the model variable. The basis functions are evaluated on an equidistant model grid. The spectral
coefficients are obtained via the Romberg numerical integration. Fo-ensure-the-The accuracy of the numerical integration ;-the

depends on the spatial resolution and the number of grid points is-2%—+t-swith-k-c-Z+

14

420

425

430

435

440

445

shews-that-when-the-with an error of O(n~21°82") where n is the number of grid pointsreaehes-. Qur experiments suggest that
the numerical integration error is negligible once we have (27 + 1 x 27 + 1) = {129-<129}the transformation-error-becomes

(129 x 129) grid
points. In this study, for the sake of efficiency, the transformation between spectral modes and grid points are implemented
in Fortran. In pyPDAF systems, the Fortran transformation routines are used by Python with “f2py”. This implementation
ensures that the numerical computations do not render rounding errors when conducted in different programming languages.
Moreover, it also demonstrates that the computationally intensive component of user-supplied functions can be sped up by
optimised Fortran code.

3.2 Experiment design

In a twin experiment, a long model run is considered to represent the truth. The model state is simulated with an initial condition
sampled in the spectral space whichfoHows-following a Gaussian distribution, A'(0,0.01). The DA experiments are started
after +6>-9 x 10° time steps corresponding to around 277 years of model integration to ensure the-dynamical-consisteney-of

The observations are generated from the truth of the model state based on pre-defined error statistics of the observations.
Except for the LETKF experiments, both atmosphere and ocean observations are sampled every 8 model grid points for each

model grid setup. In all cases, the observation error standard deviations are set to 50% and 70% of the temporal standard devia-

tion of the true model trajectory at each grid point for the atmosphere and ocean respectively. Theresultingstandard-deviation-of

{he bF’inet. NMith e chacan anda Afet " ho ‘i < : n —in—th n N 7 eF
streamfunction-shows-the-least-uncertainty-due-to-its—slow—variability—This leads to spatially varying observation errors with
regions of larger or smaller observation errors. The atmospheric processes in MAOOAM show variability on shorter timescales

15

450

455

460

465

Time series of free run on 129 x 129 grid points

v, 0.05 T, 2 T,

0.06 :
0.00100 0.06 A

0.04 0.02 0.00075

0.04
0.00050 \\,\VM
0.02 0.01
0.00025 /w//\\ 0.02
0.00 0.00 0.00000 0.00
0 100 200 0 100 200 0 100 200 0 100 200
year year year year

Time series of SCDA analysis on 129 x 129 grid points

T Y, To
0.00100 0.00015
0.002 0.006
0.00075
0.00050 0.00010 0.004
0.001 ’
0.00025 0.00005 0.002
0.000 0.00000
0 0 100 200
year year
— err —— std dewv.

Figure 4. Ensemble spread-standard deviation and RMSE of the (top) free run and (bottom) SCDA analysis on a 129 x 129 grid. Shown are
the time series of the spatial mean of ensemble spread (red) and the RMSE of the analysis (black). The atmosphere shows fast variability

and oscillatory RMSE of the ensemble mean while the RMSE of the ocean ensemble mean is smooth. The horizontal grey line is the spatial
averaged observation error.

than the ocean. Hence, the ocean observations are assimilated around every 7 days (630 time steps) while the atmosphere

observations are assimilated around every day (90 time steps). This is in line with the experiment setup in Tondeur et al. (2020

As shown by Tondeur et al. (2020), DA in the model configuration using 36 spectral coefficients can achieve sufficient
accuracy with 15 ensemble members. In this study, 16 ensemble members are used, and each ensemble member runs serially

with a single process. Without tuning, a forgetting factor of 0.8 is applied to maintain the ensemble spreadand-ensure-a-stable

BA-proeess—. The forgetting factor (Pham et al., 1998) is an efficient approach to multiplicative ensemble inflation in which
the covariance matrix is inflated by the inverse of the forgetting factor as shown in the formulation in Nerger et al. (2012).
Using the PDAF provides functionality to generate the ensemble. Here, to demonstrate its functionality, we use second-order
exact sampling provided-by PPDAF(see-Seet-2-1H(Pham, 2001), in which the ensemble is generated from a model-trajectory
by sampling-the-medetled-truth-covariance matrix. The covariance matrix is estimated using model states sampled every 10
days over a 100years-afteraround-year period, based on the trajectory of the truth model after approximately 1000 years from
the beginning-start of the simulation. This leads to a covariance matrix with 36 non-zero singular values equaling-equalling to
the number of spectral modes in the model. The perturbation-from-the second-orderexact-sampling-ensemble generated from
the covariance matrix could violate the dynamical consistency of the model, so that the ensemble would need to be spun up to
reach dynamical consistency. To reduce the spin up time, the initial perturbation is scaled down by a factor of 0.2, 0.15, 0.4 for

v,, T, and T, respectively. Because the ocean streamfunction has very low variability, its perturbation is unchanged.

16

The DA experiments are started after 15 days from the beginning of the ensemble generation. The DA experiments are then

run for another 9 x 10° time steps which is around 277 years. In this setup, the forecast error is solely a result of inaccuracy of
initial conditions. As shown in Fig. 4, the ensemble spread generally-captures the trendand-is-in-, and has a similar magnitude

AR
470 of-as the model forecast error. This suggests that the forecast uncertainty from-of the free run ensemble initialised-by—the
second-order-exact-sampling-is able to reflect the forecast errors even though the spread is lower than the RMSE after 200
years.

In the free run (upper panel of Fig. 4), the ocean tempera

eeean-streamfunction shows a very slow error growth rate. This is also shown by the errer-and-ensemble-uncertaintywhich-are
475 twe-magnitades-smaller-than-those-of-other-model-variablesensemble uncertainty. Sensitivity tests (not shown) suggest that

an increased error- RMSE of the ocean streamfunction has a significant-strong impact on the model dynamics consistent with

the theoretical discussion given in Tondeur et al. (2020). The error-RMSE of the atmosphere components shows a wave-like
behaviour in time. Tondeur et al. (2020) describe the periods associated with fast dynamics with high and oscillatory errors

RMSEs as active regimes and the periods associated with slow dynamics with low and stable errers RMSEs as passive regimes.

480 3.3 Comparison of pyPDAF and PDAF implementation of CDA

As pyPDAF is an interface to PDAF, the same number of user-supplied functions are used for DA systems implemented with
pYPDAF and PDAF:. As detailed in Sect. 2.4, the ETKF system requires 7 user-supplied functions. For the LETKF system, an
additional 5 user-supplied functions are needed. However, as will be discussed in Sect. 4.2, if “PDAFlocal” modules are used,
the additional user-supplied function necessary for domain localisation can be reduced to 3.

485 One of the major advantages of pyPDAF is the ease of implementation. Here, to partially reflect the difference in implementation
difficulty between pyPDAF and PDAF, the number of lines of code between pyPDAF and PDAF in each user-supplied functions
is_compared in Tab. 1. We recognise that such comparison can be inaccurate due to different coding styles and potential
unaccounted boilerplate code. Moreover, fewer lines of code do not necessarily represent improved ease of implementation as
the DA system setup typically involves scientific research besides code implementation. Nevertheless, we show that Python

490 implementation needs fewer lines of code than Fortran implementation for all user-supplied functions. The reduced implementation
difficulty can be attributed to: 1) the Python implementation can make use of efficient third-party Python packages utilising
vectorisation avoiding loops and manual implementation; 2) the Python programming language does not require static typing
which is required by Fortran; 3) the Python programming language allows for extensible and flexible implementation due to
its language features.

495 4 Results

In this section, we-evaluate-the-DA-skill-of-the-to validate the MAOOAM-(py)PDAF online DA systemusing-the- ETKE, we
evaluate its DA skill. For the sake of efficiency, the skill of DA is assessed on a domain with 129 x 129 grid points. To

17

500

505

510

Table 1. Number of lines of code broken down by user-supplied functions between Fortran and Python implementation of a strongly coupled
DA system. The count removes comments and empty blank lines. In the “init_dim_obs” function, we count the total lines of code including.
functions called within the user-supplied functions and boilerplate code for class definition. The “prepostprocess” is divided into three
functions in Python where we count the total lines of code here.

)) Lines of code
User-supplied functions

Fortran | Python
init_ens_pdaf s 3.
obs_op 35 | 9
prepostprocess 46 36
init_dim_obs | 3 | u
next_observation 19 11

evaluate the computational efficiency of pyPDAF and PDAF and the potential practical applications of pyPDAF, we compare
the wallclock time in the SCDA system.

The online DA systems using PDAF and pyPDAF produce quantitatively the same results in all experiments up to machine

precision. This is because the user-supplied functions mainly perform file handling and variable assignments, but no numerical
computations. An_exception is_only the spectral transformation described in Sect. 3.1. To ensure comparable numerical
outcome, the numerical computations that affect the forecast and analysis, in particular the spectral transformation, are all
conducted in Fortran in this work. These Fortran implementations are used by Python user-supplied functions using “f2py”.
Note that, when numerical computations involve different programming languages, the model trajectory of the nonlinear system
could differ because of errors in the initial conditions arising from rounding errors.

4.1 EffeetSKill of eoupled-data assimilation

As a case study to demonstrate the capability of pyPDAF, both SCDA and WCDA are implemented. In WCDA, the-coupling
only-oceurs-during-the-modelforeeasteach model component performs DA independently even though the forecast is obtained
by the coupled model. This means that the observations only influence their own model component in the analysis step —tn-this

the-same-model-grid—Fhis-which implies two separate DA systems. In an online DA setup in PDAF, two separate state vectors

18

515

520

525

530

10—3<

14 o
Ta Y, To Y, Ta Yo To
[analysis RMSE (obs.) B&ZY analysis RMSE (no obs.)
[freerun RMSE (obs.) B freerun RMSE (no obs.) 1 WCDA RMSE [SCDA RMSE

Figure 5. Left: The time-averaged RMSE of the analysis using WCDA and free run where the RMSE of the observed (non-hatched bars),
denoted by “obs.” in the legend, and unobserved gridpoints (hatched bars), denoted by “no obs.”, are compared separately. Right: comparison

of RMSEs for weakly and strongly coupled DA for all grid points. The y-axis is plotted in the log-scale.

have to be defined in each analysis step which is not straightforward with PDAF due to its assumption that each analysis step
has only one state vector. In the case of AWI-CM in Tang et al. (2021), two separate state vectors were obtained by using &
parallelisation, but here the two model components of MAOOAM are run using the same processor. In our implementation we
obtain WCDA by resetting the time step counter in PDAF in our implementation such that even if the assimilation of two state
vectors are done by using PDAF twice, PDAF only counts it as one analysis time step. An alternative approach could be to use
the LETKF method, and define the local state vector as either the atmosphere or ocean variables.

Figure 5 shows that the time averaged RMSE of WCDA is smaller than that of the unconstrained free run. Thus, the error
growth is successfully controlled by DA. This also demonstrates that the ETKF leads to a converged analysis even though our
observations are less accurate than the forecast at the start of the DA period. The results also show that sparse observations
can successfully control errors in regions without observations. This is due to the fact that the model fields are rather smooth
leading to long ensemble correlations.

Compared to the WCDA, atmosphere observations influence the ocean part of the state vector and vice versa in the SCDA.
This means that the coupling occurs for both the analysis step and model forecast. In this case, the DA system only has one
unified state vector that contains the streamfunction and temperature of both model components. The implementation of an
online SCDA system aligns with the design of PDAF, and does not require special treatment.

As expected, the SCDA yields lower analysis errors-RMSEs than the free run as shown in Fig. 4, and the errors-RMSEs are
also lower than the WCDA as shown in the right panel of Fig. 5. The improved analysis in the SCDA in each model component
is a result of assimilating observations from the other model component. The effective use of these additional observations
relies on the error cross-covariance matrix between model components estimated by the forecast ensemble. The improvements

suggest a reliable error cross-covariance matrix in the coupled DA system.

19

101.
100.
1071

[E
o
b

10—3.
10—4.
10—5.

Time per analysis step (s)
in log-scale

\ X e e 1 T \ \
e vfe'posd ceriput® S‘a;\\eC‘ stat® ¥ obs- ope‘atgm—'mtef“aow setP yotd
1\

0 129 x 129 (fort) 1 257 x 257 (fort) 1 513 x 513 (fort) [1025 x 1025 (fort) [2049 x 2049 (fort)
. 129 x 129 (py) w257 x 257 (py) W 513 x 513 (py) mww 1025 x 1025 (py) ~ mEE 2049 x 2049 (py)

Figure 6. Wall clock time of pyPDAF (dark colour bars) and PDAF (light colour bars) systems per analysis step broken down by function-

alities in SCDA ETKF experiments and their total wallclock time per analysis step in fog-seatelog-scale.

535

540

545

550 These results suggest that both pyPDAF and PDAF can be used to implement a DA system as expected.

20

Table 2. Wall clock time per analysis step of pyPDAF and PDAF for each component of SCDA ETKF using 129 x 129 grid points and
2049 x 2049 grid points in seconds. The table also shows the ratio of the wall clock time between Python and Fortran. The wall clock time
is the same as the wall clock time shown in Fig. 6.

PDAF 129 x 129 2049 x 2049
component Pyton Forran ratio | Python Formn ratio
MPL 1621077 469x107° 346 | 075 079 094

4.2 Computational performance of PDAF and pyPDAF

One motivation of developing a Python interface to PDAF is that the efficient DA algorithms in PDAF can be used by pyPDAF
while the user-supplied functions can be developed with the-ease-of Python. However, the user-supplied functions provided by
Python are expected to be slower than a pure Fortran implementation. The slow-down is both a result of lack of compilation
555 in Python and the type cast between Fortran arrays and Python objects. Here we present a comparison of the wall clock time
of both PDAF and pyPDAF experiments with standard SCDA broken down to the level of subroutines. Each experiment runs
100 analysis steps, and each experiment is repeated 10 times. The computation runs on the computing facility of University
of Reading on a node with two AMD EPYC 7513 32-Core processors which have a 2.6GHz frequency. With 16 ensemble

members, each member uses a single processor for model forecast, and the DA is performed serially on a single processor.

parallelisation since the global transform matrix can be computed in a distributed form followed by a global sum. The LETKE

is embarrassingly parallel for each local domain after communicating the necessary observations. Each processor can perform

565 numerical model itself. Thus, all local domains are located in one single processor for LETKF. The parallelisation strategy of
As shown in Fig. 6 and Tab. 2, the PDAF-internal procedures (fabeted-labelled ‘internal’), which are the core DA algorithm,

take nearly the same amount of time per analysis step for PDAF and pyPDAF regardless of the number of grid points. As

21

570

575

580

585

590

595

600

expected, the user-supplied functions take more computational time in the DA system based on pyPDAF than PDAF. In this
study, the pre- and post-processing of the state vector (labeled-labelled ‘pre-post’) calculates the square root of the spatial
mean of ensemble variance. The pre- and post-processing is implemented as a user-supplied function (see Sect. 2.4) which is
computationally intensive. The intensive computations suit well for the use of the Python JIT compilation. The computational
time of the pre- and post-processing increases with the size of the state vector, and Python is in general slower than the

Fortran implementation. The difference of wall clock time between the pyPDAF and PDAF-based DA system decreases with

increasing state vector size as the overhead in pyPDAF becomes-less-signifieanttakes smaller portion of the total computation
grvnvq compared to the floating-point computations. As a comparison ‘eﬂ—a%QeH%&gﬂd—fkte—PBAF—syﬁem—fakes—GJ&é—seeeﬂds

MMW%WMWMWWPCY analysis step while
implementation reduces 10 2,04 on a 2049 x 2049 grid from 5.62 on a 129 x 129 grid. The overhead in the pyPDAF system
is also comparatively small in high-dimensional systems for the distribution and collection of state vector (labeled-labelled
‘distribute state’ and ‘collect state’). For example, the pyPDAF system takes afactor-of-2-9-mere-computational-time-than-3.82

and 8.89 times of computational time of the PDAF system for ‘distribute state’ and ‘collect state’ respectively on a 129 x 129
grld but enly

ely-the ratio is only 2.04 and 3.58 for
‘distribute state’ and ‘collect state’ respectively on a 2049 x 2049 grid. In addition to assigning a state vector to model fields and

vice versa in Python, these user-supplied functions perform conversion between physical and spectral space based on Eq. (1)
and (2). The-As mentioned in Sect. 3.1, the transformation utilises the same Fortran subroutines for both PDAF and pyPDAF
system. In the pyPDAF system, the Fortran subroutines are converted to Python functions by ““f2py>”. The computational time
taken by these functions is proportional to the number of grid points. Fhe-In this study, the MPI communications are only
used to gather an ensemble matrix from the state vector of each ensemble member located at their specific processor. These
communications, which are internal to PDAF which-and are not exposed to users, show little differences between pyPDAF and
PDAF system.

The wall clock time used for handling observations shows that a pyPDAF DA system is in general slower than a PDAF
system. With a low-dimensional state vector, the observation operator (fabeled-labelled ‘obs. operator’) is slower in a pyPDAF
system than PDAF even if the observation operator function only calls a PDAF subroutine provided by OMI. The slow-down of
the pyPDAF system is again a result of overhead in the conversion of Fortran and Python arrays. Here, similar to the collection
and distribution of the state vector, the function is called by each ensemble member. The overhead becomeslesssignificant

takes only a small fraction of the total computation time for high-dimensional state vectorswhen-the-ebservation—operator
computation-, while the computing of the observation operator dominates the total computational time of the call. The internal
operations of OMI (labeled-labelled ‘OMI internal’) are very-efficient-andefficient and, in some cases, the pyPDAF systems

can be more efficient than PDAF systems. Our experiments do not show clear benefits between pyPDAF and PDAF system for
these operations, as expected especially considering the short wall clock time at an order of 10~5 with 129 x 129 grid points

22

605

610

615

620

625

630

635

used in these operations. The setup of the OMI functionality is implemented in the user-supplied function of init_dim_obs (see
Sect. 2.4). This includes reading and processing the observation data and their errors. In this case, the pyPDAF-based system is

more expensive than the PDAF system. The pyPDAF system is-2-15(8-57-times-slowerinexeeutingtakes 3.30 (3.46) times of
the computational time used to execute init_dim_obs than-the-in PDAF system on a 129 x 129 (2049 x 2049) grid. The relative

increase is-cue-to-of computational time between the pyPDAF and PDAF system is not evident even though a larger number of
observations that-needs to be processed.

Our comparison shows that the interfacing between Python and Fortran yields overheads in the pyPDAF system even if we
utilise JIT compilation of Python. Users need to consider a trade-off between these overheads and the ease of implementation
in pyPDAF compared to PDAF. The differences of the computational cost can be-Jess-signifieant-take a smaller portion of the
total computation time for high-dimensional systems for the ETKF DA system without localisation due to increased numerical
computations.

In practice, localisation is used to avoid sampling errors in high-dimensional weather and climate systems. To make full use
of the computational resources, these high-dimensional systems are parallelised by domain decomposition. PDAF exploits the
feature of these models for domain localisation where the state vector is also domain decomposed. Here, we choose a domain
with 257 x 257 grid points to assess the LETKF with a cut-off localisation radius of 1 non-dimensionalised spatial unit. This
corresponds to 3000 km covering around a third of the domain. As no domain decomposition is implemented for MAOOAM,
each processor contains 257-<-257-<4-257 x 257 local domains which is similar to the number of local domains used in a
single processor of a domain decomposed global climate model.

For each local domain, the LETKF computes an analysis using observations with a localisation cut-off radius. Hence, the
computational cost depends on the observation density. To investigate the effect of increased intensity of computations on the
pyPDAF overhead, we add experiments that observe every 4 grid points.

As shown in Fig. 7, the increased observation density leads to an increase in computational time for the internal opera-

tions, observation operator, and the OMI-internal operations due to the larger number of locally assimilated observations. For

example, for applying the observation operator, when every 8 grid points are observed, ~~ 2.4 x 10" s and ~ 1.4 x 10_" s are
respectively used in pyPDAF and PDAF systems, but in the case of observations for every 4 grid points, ~ 8.4 x 10~" s and
~ 7.4 x 10~* s is used in pyPDAF and PDAF systems respectively. The increased observation density shows little influence on
the computational cost of other user-supplied functions. For example, in the case of the OMI setup, when every 8 grid points
are observed, ~ 0.047 s and ~~ 0.014 s is used in the pyPDAF and PDAF systems respectively, and in the case of observations
for every 4 grid points, a similar computational time of ~ 0.035 s and ~ 0.0137 s is used in pyPDAF and PDAF systems

respectively. However, as the increased observation density leads to more intensive computations, this mitigates the gap of the
total computational time between pyPDAF and PDAF system. In particular, as shown in Tab. 3 the run times for the internal

operations of PDAF (netshewn)-and OMI (‘OMI-internal’) dominate the overall run time of the analysis step and show little

difference for the pyPDAF and PDAF DA systems. Here, when executing ‘OMI-internal’ operations, when every 8 grid points
are observed, ~ 3.07 s and ~ 2.69 s is used in pyPDAF and PDAF systems respectively, but in the case of observations for
every 4 grid points, ~ 11.04 s and ~ 10.74 s is used in pyPDAF and PDAF systems respectively.

23

—_
o
=

—_
o
R

[E
o
b

_
o
&

Time per analysis step (s)
in log-scale

o 0 fr

0% 09 a5 2%© AL X
A @ B K & X0
o9° g\\w o o a0 20 09°
o 5O
e
1 every 8 gp (fort) 1 every 4 gp (fort) 1 every 8 gp (PDAFlocal) (fort) 1 every 4 gp (PDAFlocal) (fort)
I every 8 gp (py) H every 4 gp (py) H every 8 gp (PDAFlocal) (py) Il every 4 gp (PDAFlocal) (py)

o>

Figure 7. Wall clock time of pyPDAF (light colour bars) and PDAF (dark colour bars) system per analysis step broken down by functionalities
in SCDA LETKEF experiments and their total wallclock time per analysis step in tog-sealelog-scale with a 257 x 257 grid points. The left
four bars (blue and purple bars) represent the case without using the PDAFlocal module while the rest uses the PDAFlocal module. For the
sake of conciseness, the functionalities shared by both ETKF and LETKF are omitted. The computational time of PDAF system for ‘no.

domains’ is negligible when every 8 grid points are observed which lead to an empty bar.

Table 3. Wall clock time per analysis step of pyPDAF and PDAF for each component of SCDA LETKF using 257 X 257 grid points in
seconds where observations are taken every 4 grid points. The table also shows the ratio of the wall clock time between Python and Fortran.
The wall clock time is the same as the wall clock time shown in Fig. 7.

collect state 468x107 555x107° 84 | 467x107% 5551000 842
OMsetup 333x10°2 138x10°% 256 0.16 138x100% 119
initlocal domain | 4.96x107% 7.68x107° 645 126 7681000 16468

24

640

645

650

655

660

665

670

We notice ﬁgmﬁ%dﬂ%}g/(ggoverhead in the pyPDAF system for user-supphed functions related to domain localisation. The
‘no. domains’)ﬂ%—%ﬁ#@fﬂ&ﬁf&%ﬁf—%@—

user-supplied function takes ~ 1.8 x 10°° s per analysis step
pyPDAF-than-the PDAF-for pyPDAF system but only ~ 1. x 107% s is taken by the PDAF system. The latter can be negligible
when every 8 grid points are observed. In this user-supplied function, only one assignment is executed in the user-supplied
function. Therefore, the overhead is primarily a result of conversion between the interoperation between Fortran and Python.

This operation has little impact on the overall efficiency of the system. The computation takes 6.45 times of computational
time of PDAF system in the pyPDAF system for the function specifying the dimension of the local state vector (‘init local

domain’) —as shown in Tab. 3. The increased computational cost is a result of repeated execution of the user-supplied functions
for each local domain. Specifically, in our experiment, this user-supplied function is used 257 x 257 x 4 times per analysis
step. The overhead is even higher for the user-supplied functions that convert between local state vector and global state vector
(‘g2l state’ and ‘12g state’ respectively), which are called for each ensemble member, due to the conversion of arrays instead of
integers. In this experiment, the execution of these routines in pyPDAF systenris-around-4006-can be even more than 500 times
slower than in the PDAF system. As these operations are not computationally intensive, the overhead cannot be mitigated by
JIT compilation. Without modifications in the PDAF workflow, the overhead can become comparatively tesssignificant-smaller
with high observation density arising from increased computational cost of other routines, or increased parallelisation of model
domains leading to reduced number of local domains on each processor.

To overcome this-the specific run time issue of ‘g2l state’ and ‘12g state’, we developed a PDAFlocal module in PDAF,
included in release version 2.3, where the user-supplied functions of ‘g2l state’ and ‘12g state’ are circumvented in the PDAF
interface as their operations are performed in the compiled Fortran code of PD AF'local. This leads to similar computational
cost of these functions between-in the pyPDAF and PDAF systemsystems. With PDAFlocal, users need to implement an
index vector providing the relationship between the state vector in the current local domain and the global state vector when
local domain is initialised in ‘init local domain’. Due to this, with PDAFlocal, we see an increased computational time in ‘init
local domain’ in pyPDAF, which is around +56-160 times slower than the PDAF system. The-However, this pyPDAF overhead
for ‘init local domain’ is smaller than that of ‘g2l state’ and ‘12g state’ (around-400-times-slowdown)-due-to-redueced-due to the
different types of operations and hence a lower number of array conversions between Fortran and Python in ‘init local domain’.
Further, only one instead of three user-supplied functions are implemented in Python. Bue-to-thisWith the enhancement by
PDAFlocal, the total computing time is nearly equal for pyPDAF and PDAF with only 6% — 13% higher time for pyPDAF.

As both numerical computation and user-supplied functions can be sensitive to the number of ensemble members, we
further compare the computational time for different ensemble members with 257 > 257 grid points observed by every §
grid points. As shown in Tab. 4, the ETKF takes longer computational time for a larger ensemble. Consistent with other
experiments and as expected, the internal PDAF operations take similar computational time between Fortran-based PDAF and
Python-based pyPDAF. For all user-supplied functions, compared to the pure Fortran implementation, the pyPDAF leads to
increased computational time. The overhead depends on the specific implementation of each function. For example, in the state
vector collection and distribution, even though the computational cost should be theoretically proportional to the ensemble size,

25

675

680

685

690

Table 4. Wall clock time per analysis step of pyPDAF and PDAF for each component of SCDA ETKEF in seconds with different ensemble
members using 257 x 257 grid points where observations are taken every 8 grid points. The table also shows the ratio of the wall clock time
between Python and Fortran.

PDAF 64 members 128 members

pre-post 0.15 0.02 652 025 0.04 841
distribute state | 0.04 00t 388 | om 001 398
MPL 0.14 008 169 | 044 052 084
OMI setup 0.04 001 346 | ou4 001 378

the overall overhead is stable regardless of the ensemble size. In the pre- and post-processing functions, the overhead relative to
the Fortran implementation gets smaller with increased ensemble size as the numerical computations take a higher proportion
of the total computational time. The effect of increased ensemble size is also revealed in the observation-related functions.
In both the user-supplied function for the observation operator and the internal PDAFomi functions, the computational time
increases with the ensemble size. In our specific experiment setup, the overhead does not show large differences with different
ensemble size for these observation-related functions. Nevertheless, when the overall computational time between the Fortran
and pyPDAF implementation is compared, increasing the ensemble size leads to comparatively lower overhead due to increased

We recognise that the exact computational time can be case-specific. For example, we can postulate that, compared to this
study, the overhead can be comparatively smaller for computational intensive user-supplied functions where JIT can be used.
This could be the case when correlated observation error covariances are used. Even though this study only investigates the
commonly used ETKF and LETKF, the relative run times of pure PDAF and pyPDAF should be similar for other global and
local filters. This expectation results from the algorithmic similarity of many filters and the fact that the user routines which
are coded in Python when using pyPDAF are mainly the same. However, the overhead may also vary depending on the DA
algorithms, in particular for variants of 3DVar, These results demonstrate that pyPDAF ean-has the potential to be used with

high-dimensional systems with stightty-some increased overhead per analysis step.

26

695

700

705

710

715

720

5 Conclusions

We introduce the Python package pyPDAF, which provides an interface to the Parallel Data Assimilation Framework (PDAF).
We outline its implementation and design. pyPDAF allows for a Python-based DA system for models coded in Python or
interfaced to Python. Furthermore it allows for the implementation of a Python-based offline DA system where the DA is
performed separately from the model and data is exchanged between the model and DA code through files. The pyPDAF
package allows one to implement user-supplied functions in Python for flexible code development while the DA system still
benefits from PDAF’s efficient DA algorithm implementation in Fortran.

Using a CDA setup, we demonstrate that pyPDAF can be used with the Python model MAOOAM. Both strongly coupled
data assimilation (SCDA) and weakly coupled data assimilation (WCDA) are demonstrated. Our results confirm that the SCDA
performs better than WCDA it i

of-the-model-state-in—the MAOOAM-meodel. The advantage of pyPDAF in terms of the ease of implementation is reflected

by a comparison of the number of lines of code by user-supplied functions in the SCDA setup. The pyPDAF implementation
consistently uses fewer lines of code showcasing the requirement for a lower implementation effort than PDAF implementation.

Using the SCDA setup, the computational costs of using pyPDAF and a Fortran-only implementation with PDAF are com-
pared. We show that the computational time stays the-same-similar for the core DA algorithm executed in PDAF while pyPDAF
yields an overhead in user-supplied functions. This overhead is a result of both the Python implementation and the require-
ment of data conversion between Python and Fortran. These overheads become comparatively less-signifieant-smaller when
the analysis becomes computationally more intensive with increased spatial resolution or observation density. To mitigate the
overhead in domain localisation implementations, we introduce-a-new-introduced a new module “PDAFlocal” module-in PDAF
such that a DA system using pyPDAF can achieve similar computational cost as a pure Fortran based system. This module
is included in-since the release v2.3 of PDAF and is now also recommended for the Fortran implementation due to the lower
implementation effort. We note that JIT compilation or ‘f2py’ can be used with the Python user-supplied functions for compu-
tationally intensive tasks to speed up the Python DA system. OurIn the scope of our specific experiment setup, our benchmark
shows that --with-a-global-filter;- 70% more time is used ;-and-with-a-domain-loealised-filter-with the global filter while only
6% — 13% more time is used-required with a domain-localized filter when applying the Python DA system build with pyPDAF
in a high-dimensional dynamical systemssystem.

We recognise that the computational cost of the pyPDAF and PDAF can vary case-by-case. Our results demonstrate that the
additional “"PDAFlocal”’ module was essential to mitigate the computational overhead in the case of domain localisation. When
pYPDAF is used for other DA algorithms and applications, potential efficiency gain can be implemented in future releases of
both PDAF and pyPDAF as both pyPDAF and PDAF are still under active development and maintenance.

27

725

730

735

740

pyPDAF opens the possibility to apply sophisticated efficient parallel ensemble DA to large-scale Python models such
as machine learning models. pyPDAF also allows for the construction of efficient offline Python DA systems. In particular,
pyPDAF can be integrated to machine learning models as long as the state—veetor—data structures of such models can be
converted to numpy-arraysthe numpy arrays used by pyPDAF. A pyPDAF-based DA system allows users to utilise sophisticated
parallel ensemble DA methods. However, a pyPDAF system does not support GPU parallelisation like TorchDA (Cheng et al.,
2025), which is designed based on the machine learning framework pyTorch. The TorchDA package may also have limitation

on-limitations for the application of DA on machine learning models implemented by other frameworks.

Code availability. The Fortran and Python code and corresponding configuration and plotting scripts including the randomly generated
initial condition for the coupled DA experiments are available at: https://doi.org/10.5281/zenodo.11367123. The MAOOAM V1.4 model
used for our experiments is available at https://github.com/Climdyn/MAOOAM/releases/tag/v1.4 with a version available at https://doi.org/
10.5281/zenodo.1308192. The Fortran version of the experiment depends on PDAF V2.3 which is released at https://doi.org/10.5281/zenodo.
13789628 and can be also found at https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3 (Nerger, 2024). The source code of pyPDAF
is available at https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0 with the exactly same version at https://doi.org/10.5281/zenodo.
10950130.

Author contributions. YC coded and distributed the pyPDAF package, conducted the experiments, performed the data analysis, and wrote

the paper. LN coded PDAF and the PDAFlocal module. All authors contribute to the conceptual experiment design and the paper writing.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors acknowledge the UK National Environment Research Council’s support for the National Centre for Earth

Observation (Contract Number: PR140015).

28

https://github.com/Climdyn/MAOOAM/releases/tag/v1.4
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.13789628
https://doi.org/10.5281/zenodo.13789628
https://doi.org/10.5281/zenodo.13789628
https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3
https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0
https://doi.org/10.5281/zenodo.10950130
https://doi.org/10.5281/zenodo.10950130
https://doi.org/10.5281/zenodo.10950130

745

750

755

760

765

770

775

780

References

Abernathey, R., rochanotes, Ross, A., Jansen, M., Li, Z., Poulin, F. J., Constantinou, N. C., Sinha, A., Balwada, D., SalahKouhen, Jones, S.,
Rocha, C. B., Wolfe, C. L. P,, Meng, C., van Kemenade, H., Bourbeau, J., Penn, J., Busecke, J., Bueti, M., and Tobias: pyqg/pyqg: v0.7.2,
Zenodo [code], https://doi.org/10.5281/zenodo.6563667, 2022.

Ahmed, S. E., Pawar, S., and San, O.: PyDA: A Hands-On Introduction to Dynamical Data Assimilation with Python, Fluids, 5,
https://doi.org/10.3390/fluids5040225, 2020.

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The Data Assimilation Research Testbed: A Community
Facility, Bulletin of the American Meteorological Society, 90, 1283 — 1296, https://doi.org/https://doi.org/10.1175/2009BAMS2618.1,
2009.

Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 129, 2884 — 2903,
https://doi.org/10.1175/1520-0493(2001)129<2884: AEAKFF>2.0.CO;2, 2001.

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal
Meteorological Society, 143, 607-633, https://doi.org/https://doi.org/10.1002/qj.2982, 2017.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks,
Nature, 619, 533-538, https://doi.org/10.1038/s41586-023-06185-3, 2023.

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical As-
pects, Monthly Weather Review, 129, 420 — 436, https://doi.org/https://doi.org/10.1175/1520-0493(2001)129<0420: ASWTET>2.0.CO;2,
2001.

Bonavita, M., H6lm, E., Isaksen, L., and Fisher, M.: The evolution of the ECMWF hybrid data assimilation system, Quarterly Journal of the
Royal Meteorological Society, 142, 287303, https://doi.org/https://doi.org/10.1002/qj.2652, 2016.

Bruggeman, J., Bolding, K., Nerger, L., Teruzzi, A., Spada, S., Skdkala, J., and Ciavatta, S.: EAT v1.0.0: a 1D test bed for physical—
biogeochemical data assimilation in natural waters, Geoscientific Model Development, 17, 5619-5639, https://doi.org/10.5194/gmd-17-
5619-2024, 2024.

Caron, J.-F., Milewski, T., Buehner, M., Fillion, L., Reszka, M., Macpherson, S., and St-James, J.: Implementation of Deterministic Weather
Forecasting Systems Based on Ensemble—Variational Data Assimilation at Environment Canada. Part II: The Regional System, Monthly
Weather Review, 143, 2560 — 2580, https://doi.org/10.1175/MWR-D-14-00353.1, 2015.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-
tives, WIREs Climate Change, 9, €535, https://doi.org/https://doi.org/10.1002/wcc.535, 2018.

Cehelsky, P. and Tung, K. K.: Theories of Multiple Equilibria and Weather Regimes—A Critical Reexamination. Part
II: Baroclinic Two-Layer Models, Journal of Atmospheric Sciences, 44, 3282 - 3303, https://doi.org/10.1175/1520-
0469(1987)044<3282: TOMEAW>2.0.CO;2, 1987.

Cheng, S., Min, J., Liu, C., and Arcucci, R.: TorchDA: A Python package for performing data assimilation with deep learning forward and
transformation functions, Computer Physics Communications, 306, 109 359, https://doi.org/https://doi.org/10.1016/j.cpc.2024.109359,
2025.

Clayton, A. M., Lorenc, A. C., and Barker, D. M.: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system
at the Met Office, Quarterly Journal of the Royal Meteorological Society, 139, 1445-1461, https://doi.org/https://doi.org/10.1002/qj.2054,
2013.

29

https://doi.org/10.5281/zenodo.6563667
https://doi.org/10.3390/fluids5040225
https://doi.org/https://doi.org/10.1175/2009BAMS2618.1
https://doi.org/10.1175/1520-0493(2001)129%3C2884:AEAKFF%3E2.0.CO;2
https://doi.org/https://doi.org/10.1002/qj.2982
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/https://doi.org/10.1175/1520-0493(2001)129%3C0420:ASWTET%3E2.0.CO;2
https://doi.org/https://doi.org/10.1002/qj.2652
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.1175/MWR-D-14-00353.1
https://doi.org/https://doi.org/10.1002/wcc.535
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.cpc.2024.109359
https://doi.org/https://doi.org/10.1002/qj.2054

785

790

795

800

805

810

815

De Cruz, L., Demaeyer, J., and Vannitsem, S.: The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0, Geoscientific Model
Development, 9, 2793-2808, https://doi.org/10.5194/gmd-9-2793-2016, 2016.

de Rosnay, P., Browne, P., de Boisséson, E., Fairbairn, D., Hirahara, Y., Ochi, K., Schepers, D., Weston, P., Zuo, H., Alonso-Balmaseda,
M., Balsamo, G., Bonavita, M., Borman, N., Brown, A., Chrust, M., Dahoui, M., Chiara, G., English, S., Geer, A., Healy, S., Hers-
bach, H., Laloyaux, P., Magnusson, L., Massart, S., McNally, A., Pappenberger, F., and Rabier, F.: Coupled data assimilation at
ECMWE: current status, challenges and future developments, Quarterly Journal of the Royal Meteorological Society, 148, 2672-2702,
https://doi.org/https://doi.org/10.1002/qj.4330, 2022.

Doll, P, Hasan, H. M. M., Schulze, K., Gerdener, H., Borger, L., Shadkam, S., Ackermann, S., Hosseini-Moghari, S.-M., Miiller Schmied, H.,
Giintner, A., and Kusche, J.: Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological
model: evaluation of three ensemble-based approaches for the Mississippi River basin, Hydrology and Earth System Sciences, 28, 2259—
2295, https://doi.org/10.5194/hess-28-2259-2024, 2024.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,
Journal of Geophysical Research: Oceans, 99, 10 143-10 162, https://doi.org/https://doi.org/10.1029/94JC00572, 1994.

Evensen, G., Vossepoel, F. C., and van Leeuwen, P. J.: Data assimilation fundamentals: A unified formulation of the state and parameter
estimation problem, Springer Nature, 2022.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937-1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Feng, L., Palmer, P., Bosch, H., and Dance, S.: Estimating surface CO 2 fluxes from space-borne CO 2 dry air mole fraction observations
using an ensemble Kalman Filter, Atmospheric chemistry and physics, 9, 2619-2633, 2009.

filterpy PyPI: https://pypi.org/project/filterpy/, last access: 2024-08-29.

Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensem-
ble Kalman Filter, Monthly Weather Review, 129, 2776 — 2790, https://doi.org/10.1175/1520-0493(2001)129<2776: DDFOBE>2.0.CO;2,
2001.

Hamill, T. M., Whitaker, J. S., Fiorino, M., and Benjamin, S. G.: Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with
an Ensemble Kalman Filter, Monthly Weather Review, 139, 668 — 688, https://doi.org/10.1175/2010MWR3456.1, 2011.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hordnyi, A., Mufloz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-
mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,
P, Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,
Hélm, E., Janiskovd, M., Keeley, S., Laloyaux, P., Lopez, P, Lupu, C., Radnoti, G., de Rosnay, P., Rozum, 1., Vamborg, F., Vil-
laume, S., and Thépaut, J.-N.: The ERAS global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049,
https://doi.org/https://doi.org/10.1002/qj.3803, 2020.

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B.: Atmospheric Data Assimilation with
an Ensemble Kalman Filter: Results with Real Observations, Monthly Weather Review, 133, 604 — 620, https://doi.org/10.1175/MWR-
2864.1, 2005.

Hu, C.-C. and van Leeuwen, P. J.: A particle flow filter for high-dimensional system applications, Quarterly Journal of the Royal Meteoro-

logical Society, 147, 2352-2374, https://doi.org/https://doi.org/10.1002/qj.4028, 2021.

30

https://doi.org/10.5194/gmd-9-2793-2016
https://doi.org/https://doi.org/10.1002/qj.4330
https://doi.org/10.5194/hess-28-2259-2024
https://doi.org/https://doi.org/10.1029/94JC00572
https://doi.org/10.5194/gmd-9-1937-2016
https://pypi.org/project/filterpy/
https://doi.org/10.1175/1520-0493(2001)129%3C2776:DDFOBE%3E2.0.CO;2
https://doi.org/10.1175/2010MWR3456.1
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/MWR-2864.1
https://doi.org/10.1175/MWR-2864.1
https://doi.org/10.1175/MWR-2864.1
https://doi.org/https://doi.org/10.1002/qj.4028

820

825

830

835

840

845

850

855

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman
filter, Physica D: Nonlinear Phenomena, 230, 112-126, https://doi.org/https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Installation - pyPDAF documentation: https://yumengch.github.io/pyPDAF/, last access: 2025-03-25.

Kalnay, E., Sluka, T., Yoshida, T., Da, C., and Mote, S.: Review article: Towards strongly coupled ensemble data assimilation with additional
improvements from machine learning, Nonlinear Processes in Geophysics, 30, 217-236, https://doi.org/10.5194/npg-30-217-2023, 2023.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., Miele, A., Kashinath, K., and Anandkumar, A.: FourCastNet:
Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators, in: The Platform for Advanced
Scientific Computing 2023, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3592979.3593412, 2023.

Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M. Vereecken, H., and Hendricks Franssen, H.-J.: TerrSysMP-
PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land
surface—subsurface model, Geoscientific Model Development, 9, 1341-1360, https://doi.org/10.5194/gmd-9-1341-2016, 2016.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W.,
Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful medium-range
global weather forecasting, Science, 382, 1416-1421, https://doi.org/10.1126/science.adi2336, 2023.

Losa, S. N., Danilov, S., Schréter, J., Nerger, L., Mafmann, S., and Janssen, F.: Assimilating NOAA SST data into the BSH oper-
ational circulation model for the North and Baltic Seas: Inference about the data, Journal of Marine Systems, 105-108, 152-162,
https://doi.org/https://doi.org/10.1016/j.jmarsys.2012.07.008, 2012.

McGibbon, J., Brenowitz, N. D., Cheeseman, M., Clark, S. K., Dahm, J. P. S., Davis, E. C., Elbert, O. D., George, R. C., Harris, L. M., Henn,
B., Kwa, A., Perkins, W. A., Watt-Meyer, O., Wicky, T. F., Bretherton, C. S., and Fuhrer, O.: fv3gfs-wrapper: a Python wrapper of the
FV3GFS atmospheric model, Geoscientific Model Development, 14, 4401-4409, https://doi.org/10.5194/gmd-14-4401-2021, 2021.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1, https://www.mpi-forum.org/docs/mpi-4.1/
mpi41-report.pdf, 2023.

Nerger, L.: Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter, Quarterly Journal of the Royal
Meteorological Society, 148, 620-640, https://doi.org/https://doi.org/10.1002/qj.4221, 2022.

Nerger, L.: PDAF Version 2.3, Zenodo [code], https://doi.org/10.5281/zenodo.13789628, 2024.

Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation systems—Implementation strategies and scalability, Computers
& Geosciences, 55, 110-118, https://doi.org/https://doi.org/10.1016/j.cageo.2012.03.026, ensemble Kalman filter for data assimilation,
2013a.

Nerger, L. and Hiller, W.: Software for Ensemble-based Data Assimilation Systems - Implementation Strategies and Scalability, Computers
& Geosciences, 55, 110-118, 2013b.

Nerger, L., Hiller, W., and Schréter, J.: PDAF - The parallel data assimilation framework: experiences with Kalman filtering, in: Use of High
Performance Computing in Meteorology, pp. 63—83, https://doi.org/10.1142/9789812701831_0006, 2005.

Nerger, L., Janjié, T., Schroter, J., and Hiller, W.: A Unification of Ensemble Square Root Kalman Filters, Monthly Weather Review, 140,
2335 — 2345, https://doi.org/https://doi.org/10.1175/MWR-D-11-00102.1, 2012.

Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework:
example of AWI-CM (AWI-CM-PDAF 1.0), Geoscientific Model Development, 13, 4305-4321, https://doi.org/10.5194/gmd-13-4305-
2020, 2020.

Parallelisation Strategy: https://yumengch.github.io/pyPDAF/parallel.html, Accessed: 20 March 2025.

31

https://doi.org/https://doi.org/10.1016/j.physd.2006.11.008
https://yumengch.github.io/pyPDAF/
https://doi.org/10.5194/npg-30-217-2023
https://doi.org/10.1145/3592979.3593412
https://doi.org/10.5194/gmd-9-1341-2016
https://doi.org/10.1126/science.adi2336
https://doi.org/https://doi.org/10.1016/j.jmarsys.2012.07.008
https://doi.org/10.5194/gmd-14-4401-2021
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/https://doi.org/10.1002/qj.4221
https://doi.org/10.5281/zenodo.13789628
https://doi.org/https://doi.org/10.1016/j.cageo.2012.03.026
https://doi.org/10.1142/9789812701831_0006
https://doi.org/https://doi.org/10.1175/MWR-D-11-00102.1
https://doi.org/10.5194/gmd-13-4305-2020
https://doi.org/10.5194/gmd-13-4305-2020
https://doi.org/10.5194/gmd-13-4305-2020
https://yumengch.github.io/pyPDAF/parallel.html

860

865

870

875

880

885

890

PDAF - the Parallel Data Assimilation Framework: https://pdaf.awi.de/, last access: 2024-02-13.

Penny, S. G. and Hamill, T. M.: Coupled data assimilation for integrated earth system analysis and prediction, Bulletin of the American
Meteorological Society, 98, ES169-ES172, 2017.

Pham, D. T.: Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Monthly Weather Review, 129, 1194 —
1207, https://doi.org/https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.C0O;2, 2001.

Pham, D. T., Verron, J., and Christine Roubaud, M.: A singular evolutive extended Kalman filter for data assimilation in oceanography,
Journal of Marine Systems, 16, 323—-340, https://doi.org/https://doi.org/10.1016/S0924-7963(97)00109-7, 1998.

Pohlmann, H., Brune, S., Frohlich, K., Jungclaus, J. H., Sgoff, C., and Baehr, J.: Impact of ocean data assimilation on climate predictions
with ICON-ESM, Climate Dynamics, 61, 357-373, https://doi.org/10.1007/s00382-022-06558-w, 2023.

Raanes, P. N., Chen, Y., and Grudzien, C.: DAPPER: Data Assimilation with Python: a Package for Experimental Research, Journal of Open
Source Software, 9, 5150, https://doi.org/10.21105/joss.05150, 2024.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters, Tellus A,
60, 361-371, https://doi.org/10.1111/j.1600-0870.2007.00299.x, 2008.

Sakov, P., Counillon, F., Bertino, L., Lisater, K. A., Oke, P. R., and Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the
North Atlantic and Arctic, Ocean Science, 8, 633—656, https://doi.org/10.5194/0s-8-633-2012, 2012.

SALOME The Open Source Integration Platform for Numerical Simulation: http://www.salome-platform.org/, last access: 2024-08-29.

Shao, C. and Nerger, L.: WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework,
Geoscientific Model Development, 17, 4433-4445, https://doi.org/10.5194/gmd-17-4433-2024, 2024.

Simon, E. and Bertino, L.: Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D
ocean ecosystem model, Journal of Marine Systems, 89, 1-18, https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.07.007, 2012.

Sluka, T. C., Penny, S. G., Kalnay, E., and Miyoshi, T.: Assimilating atmospheric observations into the ocean using strongly coupled ensemble
data assimilation, Geophysical Research Letters, 43, 752—759, https://doi.org/https://doi.org/10.1002/2015GL067238, 2016.

Smith, P. J., Fowler, A. M., and Lawless, A. S.: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmo-
sphere—ocean model, Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.3402/tellusa.v67.27025, 2015.

Strebel, L., Bogena, H. R., Vereecken, H., and Hendricks Franssen, H.-J.: Coupling the Community Land Model version 5.0 to
the parallel data assimilation framework PDAF: description and applications, Geoscientific Model Development, 15, 395-411,
https://doi.org/10.5194/gmd-15-395-2022, 2022.

Tang, Q., Mu, L., Goessling, H. F., Semmler, T., and Nerger, L.: Strongly coupled data assimilation of ocean observations into an ocean-
atmosphere model, Geophys. Res. Lett., 48, €2021GL094 941, 2021.

Tang, Q., Delottier, H., Kurtz, W., Nerger, L., Schilling, O. S., and Brunner, P.. HGS-PDAF (version 1.0): a modular data assimi-
lation framework for an integrated surface and subsurface hydrological model, Geoscientific Model Development, 17, 3559-3578,
https://doi.org/10.5194/gmd-17-3559-2024, 2024.

The Python Language Reference: https://docs.python.org/3/reference/introduction.html#alternate-implementations, last access: 2024-02-13.

Tondeur, M., Carrassi, A., Vannitsem, S., and Bocquet, M.: On temporal scale separation in coupled data assimilation with the ensemble
kalman filter, Journal of Statistical Physics, 179, 1161-1185, https://doi.org/10.1007/s10955-020-02525-z, 2020.

Trémolet, Y. and Auligne, T.: The Joint Effort for Data Assimilation Integration (JEDI), JCSDA Q, 66, 1-5, 2020.

Todter, J. and Ahrens, B.: A Second-Order Exact Ensemble Square Root Filter for Nonlinear Data Assimilation, Monthly Weather Review,
143, 1347 — 1367, https://doi.org/10.1175/MWR-D-14-00108.1, 2015.

32

https://pdaf.awi.de/
https://doi.org/https://doi.org/10.1175/1520-0493(2001)129%3C1194:SMFSDA%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/S0924-7963(97)00109-7
https://doi.org/10.1007/s00382-022-06558-w
https://doi.org/10.21105/joss.05150
https://doi.org/10.1111/j.1600-0870.2007.00299.x
https://doi.org/10.5194/os-8-633-2012
 http://www.salome-platform.org/
https://doi.org/10.5194/gmd-17-4433-2024
https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.07.007
https://doi.org/https://doi.org/10.1002/2015GL067238
https://doi.org/10.3402/tellusa.v67.27025
https://doi.org/10.5194/gmd-15-395-2022
https://doi.org/10.5194/gmd-17-3559-2024
https://docs.python.org/3/reference/introduction.html#alternate-implementations
https://doi.org/10.1007/s10955-020-02525-z
https://doi.org/10.1175/MWR-D-14-00108.1

895

900

905

910

915

van Leeuwen, P. J., Kiinsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A
review, Quarterly Journal of the Royal Meteorological Society, 145, 2335-2365, https://doi.org/https://doi.org/10.1002/qj.3551, 2019.
Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., and Beckers, J.-M.: State-of-the-art

stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A, 70, 1445 364, 2018.

Villa, U., Petra, N., and Ghattas, O.: HIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs:
Part I: Deterministic Inversion and Linearized Bayesian Inference, ACM Trans. Math. Softw., 47, https://doi.org/10.1145/3428447, 2021.

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P, Lock, A., Manners, J., Morcrette, C., Mulcahy,
J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A.,
Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S.,
Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere
7.0/7.1 and JULES Global Land 7.0 configurations, Geoscientific Model Development, 12, 1909-1963, https://doi.org/10.5194/gmd-12-
1909-2019, 2019.

Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation without Perturbed Observations, Mon. Wea. Rev., 130, 1913-1927, 2002.

Williams, N., Byrne, N., Feltham, D., Van Leeuwen, P. J., Bannister, R., Schroeder, D., Ridout, A., and Nerger, L.: The effects of assimi-
lating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system, The Cryosphere, 17, 2509-2532,
https://doi.org/10.5194/tc-17-2509-2023, 2023.

Ying, Y. M.: nansencenter/NEDAS: v1.0-beta, Zenodo [code], https://doi.org/10.5281/zenodo.10525331, 2024.

Zhang, S., Liu, Z., Zhang, X., Wu, X., Han, G., Zhao, Y., Yu, X., Liu, C., Liu, Y., Wu, S., et al.: Coupled data assimilation and parameter esti-
mation in coupled ocean—atmosphere models: a review, Climate Dynamics, 54, 5127-5144, https://doi.org/https://doi.org/10.1007/s00382-
020-05275-6, 2020.

Zhao, F,, Liang, X., Tian, Z., Li, M., Liu, N., and Liu, C.: Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the
system and evaluation of synoptic-scale sea ice forecasts, Geoscientific Model Development, 17, 6867-6886, https://doi.org/10.5194/gmd-
17-6867-2024, 2024.

Zhu, M., van Leeuwen, P. J., and Amezcua, J.: Implicit equal-weights particle filter, Quarterly Journal of the Royal Meteorological Society,
142, 19041919, https://doi.org/https://doi.org/10.1002/qj.2784, 2016.

33

https://doi.org/https://doi.org/10.1002/qj.3551
https://doi.org/10.1145/3428447
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/tc-17-2509-2023
https://doi.org/10.5281/zenodo.10525331
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/https://doi.org/10.1002/qj.2784

