
::
A

::::::::::::
Python

::::::::::::::
interface

::::
to

:::::
the

::::::::::::::::::::::
Fortran-based

::::::::::::
Parallel

::::::::
Data

::::::::::::::::::::
Assimilation

:::::::::::::::::::
Framework:

:::::::::::::
pyPDAF

::::::::::
v1.0.2

Yumeng Chen1,2, Lars Nerger3, and Amos S. Lawless1,2

1School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6ET, UK
2National Centre for Earth Observation, University of Reading, Reading RG6 6ET, UK
3Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung (AWI), 27570 Bremerhaven, Germany

Correspondence: Yumeng Chen (yumeng.chen@reading.ac.uk)

Abstract. Data assimilation (DA) is an essential component of numerical weather and climate prediction. Efficient imple-

mentation of DA
:::::::::
algorithms benefits both research and operational prediction. Currently, a variety of DA software programs

are available. One of the notable DA libraries is the Parallel Data Assimilation Framework (PDAF) designed for ensemble

data assimilation. The DA framework is widely used with complex high-dimensional climate models
:
, and is applied for re-

search on atmosphere, ocean, sea ice and marine ecosystem modelling, as well as operational ocean forecasting. Meanwhile,5

there exists increasing need
:::
are

:::::::::
increasing

:::::::
demands

:
for flexible and efficient DA implementations using Python due to the

increasing amount of intermediate complexity models as well as machine learning based models coded in Python. To accom-

modate for such needs
:::::::
demands, we introduce a Python interface to PDAF, pyPDAF. pyPDAF allows for flexible DA system

development while retaining the efficient implementation of the core DA algorithms in the Fortran-based PDAF. The ideal

use-case of pyPDAF is a DA system where the model integration is independent from the DA program, which reads the10

model forecast ensemble, produces a model analysis
::
an

:::::::
analysis,

:
and updates the restart files of the model, or a DA system

where the model can be used in Python. With implementations of both PDAF and pyPDAF, this study demonstrates the use

of pyPDAF and PDAF for
::
in

:
a
:

coupled data assimilation (CDA)
::::
setup

:
in a coupled atmosphere-ocean model, the Modular

Arbitrary-Order Ocean-Atmosphere Model (MAOOAM). This study demonstrates that pyPDAF allows for the utilisation of

Python user-supplied functions with PDAF functionalities
:::::
PDAF

::::::::::::
functionalities

::::
from

::::::
Python

::::::
where

:::::
users

:::
can

:::::
utilise

:::::::
Python15

:::::::
functions

::
to
::::::
handle

:::::::::::
case-specific

::::::::::
information

::::
from

:::::::::::
observations

:::
and

:::::::::
numerical

:::::
model. The study also shows that pyPDAF can

be used with high-dimensional systems with little slow-down per analysis step of only up to 13% for the localized ensem-

ble Kalman filter LETKF . In addition, our CDA experiments confirm the benefit of strongly coupled data assimilation for

improving both the instantaneous state and the long-term trend of the coupled dynamical system.
::
in

:::
the

:::::::
example

::::
used

::
in

::::
this

:::::
study.

:::
The

:::::
study

::::
also

:::::
shows

::::
that,

::::::::
compared

::
to
::::::
PDAF,

:::
the

::::::::
overhead

::
of

::::::::
pyPDAF

:
is
::::::::::::
comparatively

::::::
smaller

:::::
when

::::::::::::::
computationally20

:::::::
intensive

::::::::::
components

::::::::
dominate

:::
the

::::
DA

::::::
system.

::::
This

:::
can

:::
be

:::
the

::::
case

::
for

:::::::
systems

::::
with

:::::::::::::::
high-dimensional

::::
state

:::::::
vectors.

1 Introduction

Data assimilation (DA) is widely used in weather and climate modelling where observations are used to constrain the model

prediction based on the uncertainty of both the observations and the model forecast
:::::::
combines

::::::::::
simulations

::::
and

:::::::::::
observations

1



::::
using

:::::::::
dynamical

::::::::
systems

::::::
theory

:::
and

:::::::::
statistical

::::::::
methods.

::::
This

:::::::
process

::::::::
provides

::::::
optimal

:::::::::
estimates

::::
(i.e.,

:::::::::
analyses),

:::::::
enables25

::::::::
parameter

:::::::::
estimation,

::::
and

::::::
allows

:::
for

:::
the

:::::::::
evaluation

::
of

::::::::::
observation

::::::::
networks. Due to the limited predictability and imperfect

models, DA has become one of the most important techniques for the numerical weather and climate predictions. Progresses

:::::::
Progress of the DA methodology development can be found in various review articles and books (e.g., Bannister, 2017; Carrassi

et al., 2018; Vetra-Carvalho et al., 2018; Evensen et al., 2022).

To ameliorate the difficulties in the implementation of different DA approaches, several DA software programs and libraries30

have been proposed (e.g., Nerger et al., 2005; Anderson et al., 2009; Raanes et al., 2024; Trémolet and Auligne, 2020). Even

though the implementation of the core DA algorithms is similar, these software programs/libraries are typically tailored to

different purposes. For example, the Joint Effort for Data assimilation Integration (JEDI, Trémolet and Auligne, 2020) is

a piece of self-contained software that includes a variety of functionalities that can be used for all aspects of a DA system

mainly for operational purposes while DA software for methodology research such as DAPPER (Raanes et al., 2024)
::::
Data35

::::::::::
Assimilation

::::
with

:::::::
Python:

:
a
:::::::
Package

:::
for

:::::::::::
Experimental

::::::::
Research

:::::::::::::::::::::::::::
(DAPPER, Raanes et al., 2024) is designed for identical twin

experiments equipped with low complexity models.

One widely used DA framework is the Parallel Data Assimilation Framework (PDAF) developed and maintained by the Al-

fred Wegener Institute (Nerger et al., 2005; Nerger and Hiller, 2013b). The framework is designed for efficient implementations

:::::::::::::
implementation of ensemble-based DA systems for complex weather and climate models but is also used for research on data40

assimilation
:::
DA

:
methods with low-dimensional “toy” models. The DA implementations require user-supplied functions to

provide
:
In

::::
this

::::::
generic

::::::::::
framework,

::::
DA

:::::::
methods

::::::::::::
accommodate case-specific information about the DA system including the

::::::
through

::::::::
functions

::::::::
provided

:::
by

::::
users

:::::::::
including

:::
the

:::::
model

::::::
fields, treatment of observations,

:
and localisation.

:::::
These

::::::::
functions

::
are

::::::::
referred

::
to

::
as

::::::::::::
user-supplied

::::::::
functions

:
. More than 100 studies have used PDAF, including atmosphere (e.g., Shao and

Nerger, 2024), ocean (e.g., Losa et al., 2012; Pohlmann et al., 2023), sea ice (e.g., Williams et al., 2023; Zhao et al., 2024),45

land surface (e.g., Strebel et al., 2022; Kurtz et al., 2016), hydrology (e.g., Tang et al., 2024; Döll et al., 2024), and cou-

pled systems (e.g., Nerger et al., 2020)
::::::::::::::::::::::::::::::
(e.g., AWI-CM in Nerger et al., 2020). Further use-cases of PDAF can be found in the

PDAF website (PDAF - the Parallel Data Assimilation Framework, last access: 2024-02-13). Even though PDAF provides

highly optimised DA algorithms, the flexible framework relies on the user-supplied functions to couple DA with model sys-

tem and observations. The implementation of user-supplied functions still require additional code development, which can be50

time-consuming especially when the routines have to be written in Fortran, a popular programming language for weather and

climate applications.

In recent years, Python is gaining popularity in weather and climate communities due to its flexibility and ease of implemen-

tation. For example, Python is adopted by some low- to intermediate-complexity models (e.g., De Cruz et al., 2016; Abernathey

et al., 2022), models with a Python wrapper (e.g., McGibbon et al., 2021), and machine learning based models (e.g., Kurth et al.,55

2023; Lam et al., 2023; Bi et al., 2023). For the application of DA in Python, DAPPER provides a variety of DA algorithms

for twin experiments using low-dimensional Python models. The Ensemble and Assimilation Tool, EAT (Bruggeman et al.,

2024)was proposed to set up a 1D ocean-biogeochemical DA system, which is a wrapper to a Fortran data assimilation system

based on PDAF
:
,
:::
was

::::::::
proposed

::
to

:::
set

::
up

:
a
:::
1D

:::::::::::::::::::
ocean-biogeochemical

:::
DA

::::::
system including the 1D ocean-biogeochemical model,

2



GOTM-FABM. There are also Python packages designed mainly for pedagogical purposes in low-dimensional systems such60

as openDA (Ahmed et al., 2020) and filterpy (filterpy PyPI, last access: 2024-08-29). For high-dimensional applications, there

are efficient implementations of DA packages such as HIPPYlib by Villa et al. (2021) and ADAO (SALOME The Open Source

Integration Platform for Numerical Simulation, last access: 2024-08-29), but HIPPYlib does not have a focus on ensemble data

assimilation approaches whereas ADAO provides various ensemble DA methodologies but it has no support for the localisa-

tion used in weather and climate applications. More recently, NEDAS (Ying, 2024) was introduced for offline ensemble DA in65

climate applications but it currently only supports limited DA algorithms.

Targeted at applications to high-dimensional ensemble data assimilation systems, here, we introduce a Python interface to

PDAF, pyPDAF. Using pyPDAF, one can implement both offline and online DA systems using Python. For offline DA systems,

DA is performed utilising files written onto a disk, e.g., model restart files. If a numerical model is available in Python, pyPDAF

allows for
:::::::::::
implementing

::
an

:
online DA system implementation where DA algorithms can be used with the Python model with70

in-memory data exchange that does not need I/O operations bringing about more efficiency than an offline system. Compared

to user-supplied functions implemented in Fortran, the Python implementation can facilitate easier code development thanks

to a variety of packages readily available in Python. In the meantime, DA algorithms provided by PDAF that are efficiently

implemented in Fortran can still be utilised.

In this study, we demonstrate the use of pyPDAFin a
::::::::
introduce

:::
the

::::::
design,

:::::::::::::
implementation

::::
and

::::::::::::
functionalities

::
of

::::::::
pyPDAF.75

::::::
Further,

::
in

::::::::::
comparison

::
to

:::
the

:::::::
existing

:::::
PDAF

::::::::::::::
implementation,

:::
we

::::::
provide

::
a

:::::::
use-case

::
of

::::::::
pyPDAF

::
in

:
a coupled data assimilation

(CDA) setup with the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM, De Cruz et al., 2016) where an arbi-

trary number of grid points can be specified without changing the model dynamics making it suitable to provide benchmarks of

pyPDAF. The research on CDA is motivated by the use of coupled earth system models, especially for coupled atmosphere and

ocean simulations (Eyring et al., 2016; Walters et al., 2019). Traditionally, each model component is assimilated individually80

and the state of each model component interacts with the others only in the coupled model forecast. This approach is called

weakly coupled DA
::::
This

:::::::
use-case

::::::
allows

:::
us

::
to

::::::
further

::::::::
compare

:::
the

:::::
ease

::
of

:::::::::::::
implementation

:::
of

::::::::
pyPDAF

::::
with

::::::
PDAF,

::::
and

:::::::::
investigate

:::
the

::::::::::::
computational

::::::::::
performance

::::::
under

:::::::
different

:::::::
choices

::
of

::::
state

::::::
vector

::::::::
including

::::
both

::::
the

:::::::
strongly

::::
CDA

::::::::
(SCDA)

:::
and

::::::
weakly

:::::
CDA (WCDA) . It is desirable to perform DA jointly for all model components simultaneously, usually denoted as

strongly coupled DA (SCDA). Studies report a suite of benefits of using SCDA. For example, Smith et al. (2015) shows that85

the SCDA can improve dynamical balance in the analysis leading to reduced initialisation shocks. Sluka et al. (2016) reported

improvements in analysis with SCDA in an intermediate complexity model. Tang et al. (2021) performed SCDA of ocean

observations into the coupled atmosphere-ocean model AWI-CM and found positive effects in particular in the polar regions.

Further studies can be found in a suite of review articles on CDA (Penny and Hamill, 2017; Zhang et al., 2020; de Rosnay et al., 2022; Kalnay et al., 2023)

.
:::::
cases.

::
In

:::
the

::::::
SCDA

::::
case,

:::
the

::::::::::
atmosphere

::::
and

:::::
ocean

:::
are

:::::::
coupled

::
in

::::
both

:::::::
forecast

:::
and

:::::::
analysis

:::::
steps.

:::
In

:::
the

::::::
WCDA

:::::
case,

:::
the90

::::::
forecast

::::
step

::
is

:::::::
coupled

:::
but

:::
the

:::::::
analysis

::
of

:::
the

:::::::::
atmosphere

::::
and

:::::
ocean

::
is

:::::::::
performed

::::::::::::
independently.

Here, we will first introduce ensemble-based data assimilation, the principal objective of PDAF, in Sect. 2.2. Section 2 will

describe the design and implementation of PDAF and
:
2
::::

will
::::::::
introduce

::::::
PDAF,

:::
the

:::::::::::::
implementation

::::
and

:::::
design

::
of

::::::::
pyPDAF,

::::
and

3



::
the

::::::::::::::
implementation

::
of

:
a
:::
DA

::::::
system

::
in
:
pyPDAF. In Sect. 3, the experimental and model setup will be described. Section 4 will

report the performance of PDAF and pyPDAF in
:::
the CDA setup. We will conclude in Sect. 5.95

2 Ensemble-based data assimilation

Although PDAF supports a few deterministic DA methods, it focuses on ensemble-based DA methods. Ensemble-based DA

is a class of DA approaches that approximate the statistics of the model state and its uncertainty using an ensemble of

model realisations motivated by DA approaches based on Bayes theorem where the prior, typically a model forecast, and

posterior (analysis) distributions can be approximated by a Monte Carlo approach. The ensemble model forecast allows100

for an embarrassingly parallel implementation which means that, with sufficient computational resources, the wall clock

computational time of the forecast does not increase with the ensemble size.

Under the Gaussian assumption of the forecast and analysis distributions, one of the most notable ensemble-based DA

methods is the ensemble Kalman filter (EnKF, Evensen, 1994). The EnKF approximates the forecast and analysis error distribution

by an ensemble. The method was proven to be successful in many applications (e.g., Houtekamer et al., 2005; Feng et al., 2009; Hamill et al., 2011; Sakov et al., 2012)105

. To further improve the efficiency and reliability of the EnKF, multiple variants of the EnKF were proposed, such as singular

evolutive intepolated Kalman filter (SEIK, Pham, 2001), ensemble transform Kalman filter (ETKF, Bishop et al., 2001), error

space transform Kalman filter (ESTKF, Nerger et al., 2012), and the deterministic ensemble Kalman filter (Sakov and Oke, 2008)

. In practice computational resources limit the feasible ensemble size, which is typically of an order of 10 to 100, in the

high-dimensional realistic DA applications in the Earth system due to the cost of model forecasts. The ensemble-based DA110

approaches typically suffer from sampling errors from limited ensemble size. To counter these deficiencies, covariance matrix

inflation and localisation are commonly used (e.g., Pham et al., 1998; Hamill et al., 2001; Hunt et al., 2007). In particular, the

domain localisation is tailored for efficient parallel implementations that are commonly used in high-dimensional DA systems.

Ensemble-based DA can also treat fully non-linear non-Gaussian problems. The most notable example is particle filters (see, van Leeuwen et al., 2019)115

. They can be used to solve fully non-linear problems without assumptions on the prior and posterior distribution. However,

for high-dimensional geoscience applications, the classical particle filters suffer from the “curse of dimensionality” where

the required ensemble size grows exponentially with the dimension of the state vector making the approach computationally

infeasible. Recent developments of the particle filters significantly improve the stability and reduce the required ensemble size

of the approach making it a potential choice for low-to-medium complexity models, such as implicit equal-weights particle120

filters (Zhu et al., 2016) and the particle flow filter (Hu and van Leeuwen, 2021). An overview of other developments of particle

filters can be found in van Leeuwen et al. (2019).

The ensemble-based DA approaches are adopted by many operational centres where traditionally variational methods are

used (e.g., Clayton et al., 2013; Caron et al., 2015; Bonavita et al., 2016; Hersbach et al., 2020). In variational methods, ensemble

approaches are used to achieve flow-dependent background covariance matrix, and/or to avoid explicit computation of the125

4



User supplied routines

PDAF/pyPDAF
(LETKF)

Model

Observation handling
● Number of observations
● Read observation data
● Observation error
● Observation operator

● Postprocess ensemble
● Set number of model 

time steps until next 
assimilation

Preprocess 
ensemble

User supplied routinesCollect 
state vector

Distribute 
state vector

Localisation handling
● Number of local domains
● Relationship between 

local domain and global 
domain

● Localisation radius

Figure 1. A schematic diagram of an online LETKF DA system using (py)PDAF. In the case of an offline DA system, the model can be its

restart files.

adjoint model in the minimisation process by using an ensemble approximation. These goals can be realised using various

different methodologies and a detailed review of these methods can be found in Bannister (2017).

2 PDAF and PyPDAF

PDAF is designed for research and operational DA systems. As a Python interface to PDAF, pyPDAF inherits the DA algorithms

implemented in PDAF and the same implementation approach to build a DA system.130

2.1 Parallel Data Assimilation Framework (PDAF)

PDAF is a Fortran-based DA framework providing fully optimised, parallelised ensemble-based DA algorithms. The frame-

work provides a software library and defines a suite of workflows based on different DA algorithms provided by PDAFincluding

various ensemble Kalman filters/smoothers, ensemble-based 3DVar (Bannister, 2017), particle filters (van Leeuwen et al., 2019)

and other non-linear filters (Tödter and Ahrens, 2015; Nerger, 2022). To deal with sampling errors in the ensemble-based DA135

, the framework also provides options for adaptive inflation and localisation schemes.
:
.
::::
The

:::
DA

:::::::::
algorithms

::::::::
provided

::
by

::::::
PDAF

:::
will

::
be

:::::
given

::
in
:::::
Sect.

:::
2.2.

:

As a framework for ensemble DA, it comes with the functionality to generate the initial ensemble. One possibility is to use

the second-order exact sampling (Pham, 2001) where the ensemble is generated based on the model trajectory of the modelled

truth. The assumption is that the uncertainty of the model initial condition lies in the phase space of the model trajectory.140

The space is represented by the singular values and its corresponding vectors using an empirical orthogonal function (EOF)

decomposition.

To ensure that PDAF can be flexibly adapted to any models and observations, it requires users to provide case-specific

information. This includes the information on the state vector, observations and localisation. The framework obtains this infor-

mation via user-supplied functions which are external callback subroutines. Figure 1 shows a schematic diagram of an online145

DA system where the LETKF
::::
local

::::::::
ensemble

::::::::
transform

:::::::
Kalman

::::
filter

::::::::
(LETKF)

:
is used. Here, the user-supplied functions con-

5



nect PDAF with models. Called within
::
by

:
the PDAF routines, these user-supplied functions collect state vectors from model

forecasts and distribute the analysis back to the model for the following forecast phase. During the analysis step, user-supplied

functions also pre- and post-process the ensemble, handle localisations
::::::::::
localisation and observations, and provide the number

of model time steps for the next forecast phaseto PDAF
::::::::
following

:::::::
forecast

:::::
phase. As the user-supplied functions depend on the150

chosen DA algorithm, other algorithms may require different functions. For example, the
:
a 3DVar

:::
DA

::::::
system requires routines

for the adjoint observation operator and control vector transformation. To ameliorate the difficulty in the observation handling,

PDAF provides a scheme called observation module infrastructure (OMI). The OMI routines
::::::
provide

:
a
:::::::::
structured

::::
way

::
to han-

dle the processing of observation vectors
::::::::::
observations and error covariance matrix used by DA algorithms, and provide support

for the complex distance computation used by localisation. In the current version of PDAF V2.3, it also supports spatial in-155

terpolations on structured and unstructured grids , direct observation operator, and a diagonal or
:::
for

:::::::::
observation

::::::::
operators

:::
as

:::
well

:::
as

::
an

::::::::::
observation

:::::::
operator

:::
for

::::::::::
observations

::::::
located

:::
on

:::
grid

::::::
points.

::::
The

::::
OMI

::::
also

:::::::
supports

::::
both

:::::::
diagonal

::::
and non-diagonal

observation error covariance matrix
::::::
matrices. One can also implement PDAF without OMI, but additional functions would be

required.

In an online DA system, the collection and distribution of state vector is an in-memory data exchange handled by PDAF160

efficiently
::::::::
efficiently

:::
by

:::::
PDAF. It is possible to implement an offline DA system with PDAF where the model in Fig. 1 would

be
::
is replaced by model restart files while the user-supplied collection and distribution routines manage the I/O operations of

these restart files. Offline DA implementation is a crucially supported feature of PDAF and a potentially important use-case

for pyPDAF, but we will not discuss it in detail for the sake of brevity. We will provide details of the use
::::::::::::
implementation

:
of

user-supplied functions in the context of pyPDAF in Sect. 2.4.165

2.2
::::

Data
::::::::::
assimilation

::::::::
methods

::
in

::::::
PDAF

::
As

::::::::
described

::
in

:::::
Sect.

:
2,
::::::
PDAF

:::::::
supports

:
a
::::::
variety

::
of

::::
DA

:::::::
methods

::::
with

:
a
:::::
focus

::
on

:::::::::::::
ensemble-based

::::
DA

:::::::
methods.

::::::::::::::
Ensemble-based

:::
DA

::
is

:
a
::::
class

::
of

:::
DA

::::::::::
approaches

:::
that

:::::::::::
approximate

:::
the

:::::::
statistics

::
of

:::
the

:::::
model

::::
state

::::
and

::
its

:::::::::
uncertainty

:::::
using

::
an

::::::::
ensemble

::
of

::::::
model

::::::::::
realisations.

:::::
These

:::
DA

:::::::
methods

:::
are

:::::
based

::
on

::::::
Bayes

:::::::
theorem

:::::
where

:::
the

::::
prior,

::::::::
typically

:
a
::::::
model

:::::::
forecast,

:::
and

::::::::
posterior

::::::::
(analysis)

::::::::::
distributions

:::
can

:::
be

::::::::::::
approximated

::
by

::
a

::::::
Monte

:::::
Carlo

::::::::
approach.

::::
The

::::::::
ensemble

:::::::
forecast

::::::
allows

:::
for

::
an

:::::::::::::
embarrassingly

:::::::
parallel170

:::::::::::::
implementation

:::::
which

::::::
means

::::
that,

::::
with

::::::::
sufficient

::::::::::::
computational

:::::::::
resources,

:::
the

::::
wall

::::
clock

::::::::::::
computational

:::::
time

::
of

:::
the

:::::::
forecast

::::
does

:::
not

:::::::
increase

::::
with

:::
the

::::::::
ensemble

::::
size.

:::
The

:::::::
majority

::
of

::::::::
ensemble

:::
DA

::::::::
methods

::
are

::::::::::
constructed

:::::
under

:::
the

:::::::
Gaussian

::::::::::
assumption

::
of

:::
the

:::::::
forecast

:::
and

:::::::
analysis

::::::::::
distributions

::::
such

::
as

:::
the

::::::::
stochastic

::::::::
ensemble

:::::::
Kalman

::::
filter

::::::::::::::::::::
(EnKF, Evensen, 1994).

::::
The

:::::
EnKF

:::::::::::
approximates

:::
the

:::::::
forecast

:::
and

:::::::
analysis

:::::
error

:::::::::
distribution

:::
by

::
an

:::::::::
ensemble.

:::::
PDAF

:::::::
provides

::::::::::::::
implementations

:::
for

:::
the

:::::
EnKF

::::
and

::::::
several

::
of

::
its

::::::::
variants.

:::::
These

:::::::
variants

:::::::
improve175

::
the

:::::::::
efficiency

:::
and

::::::::
reliability

::
of

:::
the

:::::
EnKF

::::::::
including

:::::::
singular

::::::::
evolutive

:::::::::
intepolated

:::::::
Kalman

::::
filter

:::::::::::::::::
(SEIK, Pham, 2001)

:
,
::::::::
ensemble

::::::::
transform

:::::::
Kalman

::::
filter

:::::::::::::::::::::::
(ETKF, Bishop et al., 2001),

:::::
error

:::::
space

::::::::
transform

:::::::
Kalman

::::
filter

::::::::::::::::::::::::
(ESTKF, Nerger et al., 2012)

:
.
:::::
Other

:::::
typical

:::::::
filtering

::::::::::
algorithms,

:::
not

::::::::::
implemented

::
in

::::::
current

::::::::
releases,

::::
such

::
as

::::::::
ensemble

:::::::::
adjustment

::::::
Kalman

:::::
filter

:::::::::::::::::::::
(EAKF, Anderson, 2001)

:::
and

::::::::
ensemble

::::::
square

:::
root

:::::
filters

:::::::::::::::::::::::::::::::
(EnSRF, Whitaker and Hamill, 2002)

::
are

:::::::
planned

::
to

:::
be

:::::::
included

::
in

:::::
future

:::::::
releases.

::
In

::::::::
practice,

:::::::::::
computational

::::::::
resources

:::::
limit

:::
the

::::::
feasible

::::::::
ensemble

::::
size

::
in

:::
the

:::::::::::::::
high-dimensional

::::::
realistic

::::
DA

::::::::::
applications

::
in

:::
the

:::::
Earth

::::::
system180

6



:::
due

::
to

:::
the

::::
cost

:::
of

:::::
model

::::::::
forecasts.

::::
The

::::::::::::::
ensemble-based

:::
DA

::::::::::
approaches

::::::::
typically

:::::
suffer

::::
from

::::::::
sampling

::::::
errors

::::
from

:::::::
limited

::::::::
ensemble

::::
size.

:::
To

:::::::
mitigate

:::::
these

::::::::::
deficiencies,

::::::
PDAF

::::
also

:::::::
provides

::::::::
common

:::::::::
techniques

:::::
such

::
as

:::::::::
covariance

::::::
matrix

::::::::
inflation

:::
and

::::::::::
localisation

::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Pham et al., 1998; Hamill et al., 2001; Hunt et al., 2007)

:
.
::
In

::::::::
addition

::
to

:::::::
EnKFs,

::::::
PDAF

::::
also

::::::::
provides

:::::::::::
3-dimensional

::::::::::
variational

::::::::
methods.

::::
This

::::::::
includes

:::::::
variants

::
of

:::::::::
3DEnVar

:::::::::::::::::::
(see Bannister, 2017)

:::
that

:::
can

:::
be

::::
used

:::
to

:::::::
achieve

::::::::::::
flow-dependent

::::::::::
background

::::
error

:::::::::
covariance

:::::::
matrix,

:::::
and/or

::
to

:::::
avoid

::::::
explicit

::::::::::
computation

::
of
:::
the

::::::
adjoint

::::::
model

::
in

::
the

:::::::::::
minimisation185

::::::
process

::
by

:::::
using

:::
an

::::::::
ensemble

::::::::::::
approximation.

:

::
In

:::::::::
additional,

::::::
PDAF

:::
also

::::::::
provides

:::
DA

::::::::
methods

:::
that

::::
can

::::
treat

:::::
fully

::::::::
non-linear

::::
and

::::::::::::
non-Gaussian

::::::::
problems.

::::
This

::::::::
includes

::::::
particle

:::::
filters

:::::::::::::::::::::::::
(see van Leeuwen et al., 2019)

:
.
::::::::
However,

:::
for

:::::::::::::::
high-dimensional

:::::::::
geoscience

:::::::::::
applications,

::::
the

:::::::
classical

:::::::
particle

:::::
filters

:::::
suffer

::::
from

:::
the

::::::
“curse

::
of

:::::::::::::
dimensionality”

::::::
where

:::
the

:::::::
required

::::::::
ensemble

::::
size

:::::
grows

::::::::::::
exponentially

::::
with

:::
the

:::::::::
dimension

::
of

::
the

:::::
state

:::::
vector

::::::
making

:::
the

::::::::
approach

:::::::::::::
computationally

:::::::::
infeasible.

:::::::::
Therefore,

:::::
PDAF

::::
also

:::::::
provides

:::::
other

:::::::::
non-linear

:::::
filters

::::
such

::
as190

::::::::
nonlinear

:::::::
ensemble

:::::::::
transform

::::
filter

:::::::
(NETF)

:::
and

::::
local

:::::::::::::::
Kalman–nonlinear

::::::::
ensemble

::::::::
transform

:::::
filter

:::::::::::::::::::::::::::::::::::::::::
(LKNETF, Tödter and Ahrens, 2015; Nerger, 2022)

:
.
:::::
These

:::::::
methods

:::::::
mitigate

:::
the

::::
cost

::
of

::::::::
nonlinear

:::::
filters

:::
by

::::::::
restricting

::
to

:::
the

:::::::::::
second-order

:::::::
moment

::
of

:::
the

::::::::
statistical

::::::::::
distribution.

:

2.3 pyPDAF

Implementation
:::::::::
Depending

:::
on

:::
the

:::::
users’

::::::::::::
programming

:::::
skills,

:::::::::::::
implementation

:
of user-supplied functions can be laborious in

Fortran and typical code development in Python can be less time consuming. Thanks to the integrated package management,195

code development in Python can rely on well optimised packages without the need for compilation. For these reasons, a variety

of numerical models are implemented in Python (e.g., De Cruz et al., 2016; Abernathey et al., 2022; McGibbon et al., 2021;

Bi et al., 2023). Hence, a Python interface to PDAF allows the design of an online DA system with such Python-based models.

These range from low-dimensional toy dynamical systems to high-dimensional weather and climate systems. Compared to a

Fortran-coded DA system, a Python DA system can be implemented efficiently
::::
with

:::
the

:::
aid

::
of

::::::
various

:::::::
external

::::::::
packages

:
and200

allows for easier modifications
::::::
without

::::::::::::
recompilation such that users can focus on scientific problems.

The pyPDAF package can also be applied for
::
to offline DA systems, i.e. coupling the model and data assimilation program

through restart files. Here
::
In

::
an

::::::
offline

:::
DA

:::::::
system, pyPDAF can be used without the restriction of the programming language

of the numerical model. When computation-intensive user-supplied functions are well optimised(,
:

e.g., using just-in-time

(JIT) compilation), this could also be used for
::::::::::::::
high-dimensional complex models. Thus, depending on the requirements of205

the users, an offline DA system can
:::::::
pyPDAF

:::
can

::::
also

:
be used to prototype a Fortran DA systemas well. The application of

pyPDAF in high-dimensional models can also be shown
::::::
enabled by its support of the parallel features of PDAF, which use

the Message Passing Interface (MPI, Message Passing Interface Forum, 2023). For this, a pyPDAF DA system relies on the

“mpi4py” package for MPI support. The pyPDAF system can also support shared memory parallelisation
::
for

::::
DA

:::::::::
algorithms

::::
using

:::::::
domain

::::::::::
localisation in PDAF when built with OpenMP.

::::::::
However,

:::
the

::::::::
efficiency

:::
of

::::::::
OpenMP

:
is
:::::::::

restricted
::
by

:::
the

::::::
global210

::::::::
interpreter

::::
lock

::
in

:::::::
Python.

As the reference implementation of Python is based on the C programming language (The Python Language Reference, last

access: 2024-02-13), the design of pyPDAF is based on the interoperability between the programming languages of C and

Fortran using the iso_c_binding module of Fortran. As shown in Fig. 2, the
:
a
:
C interface of PDAF, PDAFc, is developed in

7



PDAFc

C interface
● PDAF
● PDAFomi

Customised 
subroutines
● Handling PDAFomi 

derived types

C interface
● User-supplied 

routines

Fortran 
(iso_c_binding)

PDAF

Subroutines
● PDAF-omi
● PDAF

Fortran

pyPDAF

PDAF subpackage

Userfuncs subpackage

Cython

Python 
user
supplied 
functions

C callable
user
supplied 
functions

Python

DA system

User supplied functions

PDAF Callers

Input

Call

Implement

CallCall

Figure 2. An illustration of the design of the pyPDAF interface to the Fortran-based framework PDAF. Here, only the Python component is

exposed to pyPDAF users, and the Cython and Fortran implementations are internal implementations of pyPDAF.

pyPDAF, which includes essential PDAF interfaces and interfaces for user-supplied functions. Hence
:::
Due

::
to

:::
this

::::::
design, PDAFc215

could be used independently from pyPDAF as a C interface to the PDAFpackage. The core of the pyPDAF implementation

uses
::
as

::
an

::::::::::
independent

::
C

::::::
library

:::
for

::::::
PDAF.

:::
The

::::::::
pyPDAF

:::::::::::::
implementation

:::::
relies

::
on

:
the C-extension for Python (Cython). Here

::
In

:::::::
Cython, Python datatypes are converted into C pointers to allow for information exchange between PDAF and pyPDAF.

pyPDAF implements
:
In

::::::::
pyPDAF,

:
C callable functions which can

::
are

:::::::::::
implemented

::
to

:
call user-supplied functions

::::::
written in

Python such that PDAF can utilise the
::::
these user-supplied Python functions.

::::::::
functions.

::::
The

:::::
PDAF

::::::::::::
functionalities

:::
are

::::::::
provided220

::::::
through

::::::::
functions

:::::::::::
implemented

::
in

:::::::
Cython,

:::::
which

:::
are

:::::::::
accessible

::::
from

:::::::
Python.

:

pyPDAF is designed so
:::
The

:::::::
pyPDAF

::::::
design

:::::
means

:
that a DA system can be coded purely in Python including the user-supplied

functions and function calls to algorithms implemented in PDAF .
::::::
utilising

::::::
PDAF

:::::::::
functions.

:::
The

:::::::::
simplicity

::
of

:
a
:::::
pure

::::::
Python

:::
DA

::::::
system

:::::::
depends

:::
on

::::::
mixed

::::::::::::
programming

::::::::
languages

::::
and

:::::::
external

::::::::
libraries.

:
The interface to PDAF is provided through

functions implemented using Cython, which provides the interface for calls from Python . Thus, the pyPDAF package itself is a225

mixed program of C, Fortran and Python. Moreover, as DA algorithms require high-dimensional matrix multiplications, PDAF

relies on the numerical libraries LAPACK (linear algebra package) and BLAS (basic linear algebra subprograms). These
:::
The

:::::
mixed

::::::::
languages

::::
and libraries lead to a complex compilation process especially when users could use different operating sys-

tems. To fully utilise the cross-platform support of Python environment, pyPDAF is distributed via the package manager conda

to provide an out-of-box user experience with pyPDAF where users can use pyPDAF without the need for compiling the pack-230

age from the source code. Detailed installation instructions can be found at:
:::::::::::::::::::::::::::::::::::::::::::::::::::
Installation - pyPDAF documentation (last access: 2025-03-25)

.

pyPDAF allows for the use of efficient
:::::::::::::
implementations

:::
of DA algorithms in PDAF. However, a DA system purely based on

pyPDAF could still be less efficient than a DA system purely based on PDAF coded in Fortran. The loss of efficiency is partly

8



due to the operations in user-supplied Python functions and the overhead from the conversion of data types between Fortran235

and Python. We will evaluate the implications of these loss of efficiency in Sect. 4.2.

2.4 Construction of data assimilation systems using pyPDAF

To illustrate the application of pyPDAF to an existing numerical model, as an example, we present key components
::::::::::::
implementation

:::::
details

:
of an LETKF DA system. This example follows the schematic diagram in Fig. 1. Here, we assume that the number of

:::::::
available

:
processors is equal to the ensemble size. In this setup

:::::
Under

::::
this

::::::::::
assumption, each ensemble member of the model240

forecast runs on one processor, and the analysis is performed serially on a single processor. We further assume that observations

are co-located on the model grid but are of lower resolution, and they have a diagonal error covariance matrix.

Compared to Fortran implementations, a Python
:
A
::::::::

pyPDAF
:

DA system can better utilise the object-oriented features.

Here, we assume the existence of a generic model object that contains model information
::
be

::::::
divided

::::
into

:::::
three

:::::::::::
components:

:::::::::::
initialisation,

::::::::::
assimilation

:::
and

:::::::::::
finialisation.

::
In

:::
this

:::::::
section,

::
to

::::::::
associate

:::
the

:::::::::
description

::::
with

:::::
actual

:::::::
variable

::::::
names

::
in

::::::::
pyPDAF,245

::
the

:::::::
variable

::::::
names

::
in

::::::::
pyPDAF

:::
are

::::
given

::
in
::::::::

brackets. In this sytem
::::::
system, the pyPDAF functionalities should be initialised by

::
are

:::::::::
initialised

::
by

::
a
:::::
single

:::::::
function

::::
call

param_int,param_real,f lag = pyPDAF.PDAF.init(filtertype,subtype,stepnull,

param_int,param_real,

COMM_model,COMM_filter,COMM_couple,250

task_id,n_modeltasks,filterpe, init_ens_pdaf).

The information
:
In

:::
the

:::::::::::
initialisation

::::
step,

:::
the

::::::::
following

::::::::::
information

::
is

:::::::
provided

::
to
:::::::::
pyPDAF:

1.
:::::::
pyPDAF

:::::
takes

::::::::::
information on the type of filters (filtertype and subtype)is given to PDAF by this function. It also takes

parameters of these filters. Here, the
:
.

2.
::::::::::::
Corresponding

::
to

:::
the

::::
filter

:::::
type,

::
the

:::::::::::
initialisation

::::
step

:::
also

:::::::
requires

:::
the

:
size of the state vector (dim_p) and the ensemble255

size (
:::::
dim_p

:::
and

:
dim_ens ) are specified in the

::
in

:
param_int array

::::::::::
respectively), and the inflation factor is specified in

:
(param_realarray

:
). These parameters allow PDAF to allocate

::::::
internal

:
arrays such as the ensemble mean (state_p) and

the ensemble matrix (ens_p) used by the DA. The MPI communicatorsof model, the filter and the coupling between

model and filter are also specified here by

3.
::
In

:::::::
addition

::
to

:::
the

:::::
filter

:::::::::::::
configurations,

:::
the

:::::::::::
initialisation

::::
step

::::
also

::::::::
initialises

:::
the

::::::::::::
parallelisation

:::::
used

::
in

::::::
PDAF,

::::::
which260

::::::
requires

::::
the

::::
MPI

:::::::::::::
communicators.

::::::
These

::::
MPI

:::::::::::::
communicators

:::::::
instruct

::::::
PDAF

::
on

:::
the

:::::::::::::
functionalities

::
of

::::
each

:::::::::
processor

:::
and

::::
their

::::::::::::::
communication

:::::::
patterns.

:::::::::
Processors

::::::
within

::::
the

:::::
same

:::::
model

:::::::::::::
communicator

:
(COMM_model, COMM_filter,

COMM_couple respectively. The initialisation function also obtain other parallelisation information from the function

call including the index of the parallel model tasks by task_id, the total number of parallel model tasks by )
:::
are

:::::
used

::
to

::::::
perform

:::
the

:::::
same

::::::::
ensemble

:::::::
member

::
of

::::::
model

:::::::
forecast.

::::
The

::::::
number

::
of

::::::
model

:::::::::::::
communicators

::
is

::
the

:::::
same

::
as

:::
the

:::::::
number265

9



::
of

::::::::
ensemble

:::::::
members

::::
run

::::::::::::
simultaneously

:
(n_modeltasks, a boolean variable that determine if the filter

:
).
:::::
Each

::::::::
processor

:
is
:::::::::

associated
::::
with

::
a
:::::::
specific

::::::::
ensemble

:::::::
member

:::
or

:::::
model

::::
task

:::
by

::
an

::::::
index

:
(
::::::
task_id

:
).

::::::
During

:::
the

::::
DA

::::
step,

::::::
PDAF

::::
will

:::::
collect

:::
an

::::::::
ensemble

::::::
matrix

::::
from

:::
the

::::
state

::::::
vector

:::::::
residing

::
in

::::
each

::::::
model

::::::::::::
communicator

:::
via

:::
the

::::::::
coupling

::::::::::::
communicator

:
(
::::::::::::
COMM_couple

:
).
::::
The

::::
DA is performed on current process by filterpe

::::
filter

:::::::::
processors

:
(
::::::
filterpe

::
=

:::::
.true.

:
)
::
in

:::
one

:::
of

:::
the

::::
filter

:::::::::::::
communicators

:
(
:::::::::::
COMM_filter

:
).

::::
Even

:::::::
though

:::
the

:::::::::::
parallelisation

:::::::
strategy

::::
can

::
be

:::::
freely

::::::::
designed

::
by

:::::
users,

::::::::
example270

:::::::::::
parallelisation

::::::::
modules

:::
are

::::::
readily

::::::::
available

::
in

::::::::
pyPDAF. Detailed explanations of the parallelisation strategy used by

PDAF can be found in Nerger and Hiller (2013a). Also, the initialisation function

4.
:::
The

:::::::::::
initialisation

::::
step

:::
also

::::::::
prepares

:::
the

::::::
system

:::
for

:::::
future

::::::::::::::
forecast-analysis

:::::::
cycling.

:::::
Here,

::
it takes the initial time step ,

:
(stepnull, as a step counter )

:::
for

::::
step

:::::::
counters

:
in PDAF.

5. In the initialisation ,
:::
step,

:::
the

:::::::::
ensemble

:::
has

::
to

::
be

:::::::::
initialised.

::
In

::::::::
pyPDAF,

::::
this

::
is

:::::::
achieved

:::
by

:::
the

:::::
return

::::::
values

::
of a user-275

supplied function of
:
(state_p, uinv, ens_p, flag = init_ens_pdaf(filtertype, dim_p, dim_ens, state_p, uinv, ens_p, flag)is

used to initialise PDAF ensemble, ens_p. In the user-supplied function, the input arguments are given by the PDAF,

and the returned arguments are received by PDAF to perform DA. Here,
:
).
:::
In

:::
this

::::::::
function,

:::::
users

::::
have

:::
the

:::::::::
flexibility

::
to

::::::
choose

:::
the

:::::
initial

:::::::::
ensemble.

:::
One

::::
can

::::
read

::
an

::::::::
ensemble

:::::
from

::::
files,

:::
or

::::::
sample

::
an

::::::::
ensemble

:::::
from

:
a
:::::::::
covariance

:::::::
matrix.

:::::
These

:::
can

:::
be

::::::
assisted

:::
by

:::::
input

::::
from

::::::
PDAF

:::
via

:::::::::
arguments

::
of

:::::::::::
user-supplied

:::::::::
functions.

:::
For

::::::::
example,

:::::
PDAF

::::::::
provides

:::
the280

::::::::::
functionality

::
of
::::::::::

generating
::::::::
ensemble

::::
from

:::::::
singular

:::::::
vectors

:::
and

::::::
values

:
(uinvis a variable used for the

:
)
::
of

::
a

:::::::::
covariance

:::::
matrix

:::::
using

:
second-order exact sampling . The ensemble generation method can be used with pyPDAF.PDAF.eofcovar

and pyPDAF.PDAF.SampleEns when starting from a deterministic run.
:::::::::::
(Pham, 2001)

:
.

6. If OMI is used,
::
the

:::::::::::
initialisation

:::
step

::::
also

:::::::
involves

:::
an

::::::::
additional

:::::::
function

::::
call

:
(pyPDAF.PDAF.omi_init(n_obs)is used to

initialise the
:
)
::
to

::::::
inform

::::::
PDAF

::
the

:::::::
number

::
of

::::::::::
observation

:::::
types

:
(n_obstypes of observations. )

::
in
:::
the

:::::::
system.285

In each model integration step, the analysis step is executed by
::::::
function

:

status= pyPDAF.PDAF.omi_assimilate_local(collect_state,distribute_state, init_dim_obs,

obs_op,prepostprocess, init_n_domains,

init_dim_l, init_dim_obs_l,

g2l_state, l2g_state,next_observation)290

where status is a flag for the error code of the DA step, and the arguments of pyPDAF.PDAF.omi_assimilation_local are
::
is

:::::
called

:::::
where

:::
all

::::::::
arguments

:::::::
specify

:::
the

:::::
names

::
of
:
user-supplied functions, which will be discussed in detail.

:::::::
functions

::::::::
handling

::::::::
operations

:::::::
specific

::
to

:::
the

:::::
model

:::
and

:::::::::::
observations.

::
If
:::
the

:::::::
forecast

:::::
phase

::
is

::::::::
complete,

:::
the

:::::::
analysis

:::
step

::
is

::::::::
executed. In the analysis

step, each user-supplied function will next be executed by PDAF to collect necessary information, or perform case-specific

operations for the DA. A flow chart is given in Fig 3.295

As shown in Fig. 1, the model and PDAF exchanges
:::::::
exchange

:
information by user-supplied functions. The

:::::
First,

:
a
:
user-

supplied function
:
(state_p = collect_state(dim_p, state_p)

:
) is executed by PDAF for each ensemble member to fill

:::::
collect

::
a

::::
state

10



Perform obs. 
operator
(obs_op)

Get obs. info
(init_dim_obs)

Init i-th local 
domain

(init_dim_l)

Get i-th local 
domain obs.

(init_dim_obs_l)

Get state vector for 
i-th local domain

(g2l_state)

LETKF local 
analysis

(core algorithm)

Update global state 
vector

(l2g_state)

Process analysis
(prepostprocess)

Get next analysis 
step

(next_observation)

Distribute analysis
(distribute_state)

Get no. of local 
domains

(init_n_domains)

all 
domains 

done

Yes

No

Global part Local analysis loop Ensemble 
Framework

Collect forecast 
(collect_state)

Process forecast
(prepostprocess)

Ensemble 
Framework

Perform obs. 
operator
(obs_op)

Perform obs. 
operator
(obs_op)

Get state vector for 
i-th local domain

(g2l_state)

Get state vector for 
i-th local domain

(g2l_state)

Update global state 
vector

(l2g_state)

Update global state 
vector

(l2g_state)

Interfacing with 
model fields

PDAF call-back 
functions

PDAF-OMI 
call-back function

PDAF callback 
function without 

PDAFlocal

Arrows indicate the 
order of the calls. They 
do not imply that one 
routine calls the other. 
The control resides 
within the framework.

Figure 3. A flowchart of the sequence of LETKF operations in PDAF. These operations include user-supplied functions and core LETKF

algorithm. The arrows indicate the order in which the user-supplied functions are executed. They do not imply that one routine calls the other.

The observation operators and the global and local domain update are represented by multiple boxes as they are performed by each ensemble

member.

:::::
vector

:
(
::::::
state_p

:
)
::::
from

:
model forecast fieldsinto a one-dimensional array, state_p. Similarly, state_p = distribute_state(dim_p,

state_p) distributes analysis (
:
.
:::::::
Further,

:::
one

:::
has

::
to

:::::::
provide

:
a
:::::::::::
user-supplied

:::::::
function

:
(state_p

:
=

:::::::::::::::::::
distribute_state(dim_p,

:::::::
state_p))

::::
such

::::
that,

::::
after

:::
the

:::::::
analysis

::::
step,

:::
the

::::::::
analysed

::::
state

::::::
vector

:::
can

:::
be

:::::::::
distributed

::::
back

:
to model fields for the initialisation of the300

next forecast cycle. These user-supplied functions allow users to adapt a DA system with different models.
:::
For

:::::::
example,

:::
as

::::::::
mentioned

:::
in

::::
Sect.

::::
2.2,

::::::
optimal

:::::
state

:::::::::
estimation

:
is
::::::::

achieved
:::
by

:::::::::::::
ensemble-based

:::::::
Kalman

:::::
filters

:::::
under

::
a

::::::::
Gaussian

::::::::::
assumption.

:::
The

:::::
state

:::::
vector

:::::::::
collection

::::
and

::::::::::
distribution

:::::::
function

::::
can

::
be

:::::
used

::
to

:::::::
perform

::::::::
Gaussian

::::::::::::
anamorphosis

::::::
where

::::::::::::
non-Gaussian

:::::::
variables

:::
can

:::
be

::::::::::
transformed

::
to

::::::::
Gaussian

::::::::
variables

:::::::::::::::::::::
(Simon and Bertino, 2012)

:
.

To handle different observations, with the OMI functionality, only three user-supplied functions need to be implemented. One305

is dim_obs = init_dim_obs(step, dim_obs_p). The primary purpose of the function is to obtain the dimension of observation

vector, dim_obs, with an initial dimension given by dim_obs_p at the current time step, step, as implied by its name. In this

function, one has to provide further observation information to OMI. The OMI obtains the information in two approaches.

One approach is by calling the function:
::::
With

:::::
OMI,

:::::
users

::::
can

:::::::
provide

:::::::
multiple

:::::::
aspects

::
of

::::::::::
observation

::::::::::
information

:::
in

:::
the

:::::::::::
user-supplied

:::::::
function

:
(dim_obs = pyPDAF.PDAF.omi

:::
init_gather

:::
dim_obs(i_obs

:::
step, obs

:::
dim_p, ivar_obs_p, ocoord_p, cradius).310

The function returns the total dimension of the
:
)
::::
that

::::::::
primarily

::::::
serves

:::
the

:::::::
purpose

::
of

:::::::::
providing

:::
the

:::::::::
dimension

::
of

:
observa-

tion vector (dim_obs) of
:::::::
dim_obs

:
)
::
to

::::::
PDAF.

::::
This

:::::::::::
information

:::
for

:::
the

:
i_obs-th observation type which is returned by the

user-supplied function init_dim_obs. As function arguments, pyPDAF.PDAF.omi_gather_obs provides PDAF with the
:::
can

::
be

:::::::::
calculated

::
by

::::::
PDAF

:::::::
function

::
(
::::::
dim_obs

::
=
::::::::::::::::::::::::::::::::

pyPDAF.PDAF.omi_gather_obs(i_obs,
::::::
obs_p,

::::::::::
ivar_obs_p,

:::::::::
ocoord_p,

:::::::
cradius)

:
)

::::::
directly

:::
by

::::::::
providing observation vector (occord

::
obs_p), inverse of the observation

::::
error variance (ivar_obs_p), the observation315

coordinates
:::::
spatial

::::::::::
coordinates

::
of

:::::::::::
observations

:
(ocoord_p), and a localisation radius for the current observation type

::::::
cut-off

:::::::::
localisation

::::::
radius (cradius). The other approach sets attributes of the derived data type,

:
In

::::
this

:::::::::::
user-supplied

::::::::
function,

::::
one

11



:::
also

::::
sets

::::::::
additional

::::::::::
observation

::::::::
attributes

:
(obs_f , in PDAF. In obs_f, the attributes include the switch of the assimilation of the

observation type , the index of the )
:::::::::

including
:::
the

::::::
switch

::
for

:::::::::::
assimilating

:::
the

:
observation

::::
type

:
(
:::::::
doassim

:
),

:::
the

::::::
indices

:::
of

:::
the

::::::::::
observations

:
in the state vector , (id_obs_p), the domain size and the options for distance computation in localisation. While320

these
::::
These

:
attributes can be set by direct initialisation in Fortran, in pyPDAF, these attributes can be set by setter functions ,

::::
setter

::::::::
functions

:
(e.g., id_obs_p can be set using the pyPDAF function pyPDAF.PDAF.omi_set_id_obs_p(i_obs, id_obs_p)

:
).

The observation operator is implemented by the

:::::::
Another

:::::
piece

::
of

:::::::::::
case-specific

::::::::::
information

::::::::
provided

:::
by

:
a
:

user-supplied function
:
is
::::

the
::::::::::
observation

:::::::
operator

::
(m_state_p

= obs_op(step, dim_p, dim_obs_p, state_p, m_state_p). It takes a
::
).

:::
The

::::::::::
observation

::::::::
operator

:::::::::
transforms

::::
the state vector325

(state_p) as input and returns a vector in
:::
into

:
observation space (m_state_p). In our example, it can be handled directly by the

OMI function
:::::
PDAF,

::::::::::
observation

::::::::
operators

::::
that

::::::::
transform

:
a
::::::

model
::::
field

::
to
:::::::::::
observations

::::::
located

:::
on

::::
grid

:::::
points

::
(m_state_p =

pyPDAF.PDAF.omi_obs_op_gridpoint(i_obs, state_p, m_state_p). Note that other observation operators are also available with

pyPDAF but )
:::
are

::::::::
provided.

::::
One

:::
can

::::::::
construct

:::::
more

:::::::
complex

::::::::::
observation

::::::::
operators

::
in

::::::::
pyPDAF

::::::::::::::::::::::::
(e.g., Shao and Nerger, 2024)

:
,
:::
but

:
is
:

not discussed here . The last user-supplied function related to observations is dim_obs_l = init_dim_obs_l(domain_p,330

step, dim_obs, dim_obs_l) which tells PDAF
::
for

:::
the

::::
sake

::
of

:::::::::
simplicity.

::
In

:::
the

:::::::
LETKF,

:::
one

::::
also

:::
has

::
to

::::::
specify

:
the number of ob-

servations being assimilated in the current
:::
each

:
local domain (dim_obs_l) . This functioncan be simplified by the OMI function

::
in

:::
the

:::::::::::
user-supplied

:::::::
function

:
(
:::::::::
dim_obs_l

::
=

:::::::::::::::::::::
init_dim_obs_l(domain_p,

:::::
step,

::::::::
dim_obs,

:::::::::
dim_obs_l)

:
).
::
In
::::

this
::::::::
function,

::::
users

::::
can

:::::
simply

::::::
utilise

::
an

:::::
OMI

:::::::
function

:::::::
without

::::::
further

:::::::::::::
implementations

::
(dim_obs_l = pyPDAF.PDAF.omi_init_dim_obs_l_iso(i_obs,

coords_l, locweight, cradius, sradius, dim_obs_l)which automatically handles observation vectors and its
::
).

:::
The

:::::
OMI

:::::::
function335

:::::::::::
automatically

:::::::
handles

::::::::::
observations

::::
and

::::
their error variances used in the local domain given the coordinate of

:::::::::
coordinates

::
of

::
a

local domain (coords_l), the type of localisation weight (locweight), and the
::::::
cut-off localisation radius (cradius) as well as the

support radius of
:::::::
specified

:
localisation function (sradius).

The domain localisation requires
:::::
Users

::::
must

:::::::
specify

::::::::::
information

:::
for

:::::::
domain

:::::::::
localisation

:::
in four additional user-supplied

functions. The
:::::
These

::::::
include

:::
the number of local domains (n_domains_p) is provided by n_domains_p = init_n_domains(step,340

n_domains_p)
:
), the dimension of

::
the

::::
state

:::::
vector

::
in

:::
the

:
domain_p-th local domain , dim_l, is provided by (dim_l= init_dim_l(step,

domain_p, dim_l). The
:
),
:::
the conversion of the full global state vector to a state vector on local domain

:
a
:::::
local

::::::
domain

:
(
::::::
state_l

:
=
:::::::::::::
g2l_state(step,

::::::::
domain_p,

::::::
dim_p,

:::::::
state_p,

::::::
dim_l,

::::::
state_l)

:
) and vice versa is controlled bystate_l = g2l_state(step, domain_p,

dim_p, state_p, dim_l, state_l) and
:
(state_p = l2g_state(step, domain_p, dim_l, state_l, dim_p, state_p)

:
). The user-supplied

function g2l_state and l2g_state are not used in ‘PDAFlocal’
:::::::::::
“PDAFlocal” modules as will be discussed in Sect. 4.2.345

The pyPDAF analysis step requires two additional
::
In

::::::
addition

::
to
::::::::::
information

:::
on

::
the

::::
state

::::::
vector,

:::::::::::
observations

:::
and

::::::::::
localisation,

::
the

::::
pre-

::::
and

:::::::::::::
post-processing

::
of

:::
the

::::::::
ensemble

::
is

:::
also

::::::::::::
case-specific.

:::::::::
Therefore,

:::
this

::::::::
operation

::::
must

::::
also

:::
be

::::::::
performed

:::
by

:
a
:
user-

supplied functions. The state_p, uinv, ens_p = prepostprocess(step, dim_p, dim_ens, dim_ens_p, dim_obs_p, state_p, uinv,

ens_p, flag) function is called by PDAF to preprocess the forecast ensemble (
:::::::
function

:
(
::::::
state_p,

::::
uinv,

:
ens_p

:
=

:::::::::::::::::
prepostprocess(step,

::::::
dim_p,

:::::::
dim_ens,

::::::::::
dim_ens_p,

::::::::::
dim_obs_p,

::::::
state_p,

:::::
uinv,

:::::
ens_p,

::::
flag))before the LETKF and post-process the analysis ensemble350

:
.
::::
This

:::::::
function

:::::
allows

:::
the

::::
user

::
to

:::::::
perform

:::::::
arbitrary

:::::::::
operations

::
on

:::
the

::::::::
ensemble

:::::::
directly

:::::
before

::::::::::::::
(pre-processing)

::
or

::::
after

:
(ens_p)

after the LETKF assimilated the observations. The
:::::::::::::
post-processing)

:::
the

:::::::
analysis

::::
step

::::::
update.

:

12



:::
One

::::
last

::::
piece

::
of

:::::::::::
case-specific

::::::::::
information

::
is

:::
the

::::::
control

::
of

:::
DA

::::::
cycles.

::
In

:::
the

:
user-supplied function ,

:
(nsteps, doexit, time =

next_observation(step, nsteps, doexit, time), tells PDAF
:
),
:::::
users

::::::
specify

:
the number of time steps between two DA executions,

:
(nsteps)

:::::
until

:::
the

::::
next

:::::::
analysis

::::
step

::
is
:::::::::

computed
:::::
(thus

:::
the

:::::::
duration

:::
of

:::
the

:::::::
forecast

::::::
phase). Given the current time stepand355

other uninitialised input arguments, PDAF also obtains the information of the current model time ,
:
(time

:
)
:
and a flag for the

completion of all DA cycles
:
(doexitin next_observation. To

:
).
:

::
In

:::
the

:::::::::
completion

::
of

:::
the

:::
DA

:::::::
system,

::
to control the memory allocation in the DA cycle

::::::
process, the DA system can

:::::
should

:
be

finalised by function
:
a
:::::::
clean-up

:::::::
function

::
(pyPDAF.PDAF.deallocate()).

PDAF can handle much more complex cases including non-isotropic localisation, or non-diagonal observation error covari-360

ance matrices. Besides LETKF, other filters might require different user-supplied functions as they utilise different case-specific

information. The
:::::::
provided

::::::::
pyPDAF

:::::::
example code that exists can support a wide range of filters without changes.

3 Model and DA setup
:::::::::
Application

::::::::
example

To demonstrate the application of pyPDAF and to evaluate its performance in a coupled DA setup,
::::::::::
comparison

::
to

::::::
PDAF,

:::
we

::
set

:::
up

:::::::
coupled

:::
DA

::::::::::
experiments

:::::
with MAOOAM (De Cruz et al., 2016) version 1.4is coupled with PDAF and pyPDAF. The365

original MAOOAM model is implemented
:::::
written

:
in Fortran that is coupled

::::::::::
implemented

:
directly with PDAF, and a wrapper

for Python is developed in this study such that MAOOAM can be coupled with pyPDAF. This means that two online DA

systems using Fortran and Python respectively are developed
:::
are

:::::::::
developed

::::::::::
respectively to allow for a comparison between

the PDAF and pyPDAF implementation. In these DA systems, a suite of twin experiments is carried out using the ensemble

transform Kalman filter (ETKF, Bishop et al., 2001) and its domain localisation variant, LETKF.370

3.1 Coupled model MAOOAM
:::::::::::
configuration

The MAOOAM solves a reduced-order non-dimensionalised quasi-geostrophic (QG) equation (De Cruz et al., 2016). Using

the beta-plane approximation, the model has a two-layer QG atmosphere component and one-layer QG shallow-water ocean

component with both thermal and mechanical coupling. For the atmosphere, the model domain is zonally periodic
:
,
:
and has

a no-flux boundary condition meridionally. For the ocean, no-flux boundary conditions are applied in both directions. This375

setup represents a channel in the atmosphere and a basin in the ocean. The model variables for the two-layer atmosphere are

averaged into one layer. Accordingly, MAOOAM consists of four model variables: the atmospheric streamfunction, ψa, the

atmospheric temperature, Ta, the ocean streamfunction, ψo, and the ocean temperature, To. The model variables are solved

in a spectral space. The spectral basis functions are orthonormal eigenfunctions of the Lapace
::::::
Laplace

:
operator subject to the

boundary condition, and the number of spectral modes is characterised by harmonic wave numbers P , H , M (Cehelsky and380

Tung, 1987).

:::
Our

::::::
model

:::::::::::
configuration

::::::
adopts

:::
the

:::::::
strongly

:::::::
coupled

:::::
ocean

::::
and

::::::::::
atmosphere

:::::::::::
configuration

:::::
‘36st’

:::
of

::::::::::::::::::
Tondeur et al. (2020)

::::
using

::
a

::::
time

:::
step

::
of

:::
0.1

::::
time

::::
units

::::::::::::
corresponding

::
to

::::::
around

::
16

::::::::
minutes.

:::::
Using

:::
the

:::::::
notation

::
of

::::::::::::::
Hmaxx−Pmaxy

::
of

::::::::::::::::::
De Cruz et al. (2016)

::::
with

:::
the

:::::::::
superscript

::::
max

:::
the

:::::::::
maximum

::::::
number

:::
of

::::::::
harmonic

::::
wave

::::::::
numbers,

:::
the

:::::::::::
configuration

:::::::
chooses

:::::::
2x− 4y

::::::
modes

:::
for

:::
the

13



:::::
ocean

:::::::::
component

::::
and

:::::::
2x− 2y

:::::
modes

:::
for

:::
the

::::::::::
atmosphere

::::::::::
component.

::::
This

:::::
leads

::
to

::
a

::::
total

::
of

::
36

:::::::
spectral

::::::::::
coefficients

::::
with

:::
10385

:::::
modes

:::
for

:::
ψa::::

and
::
Ta:::::::::::

respectively
:::
and

::
8

::::::
modes

:::
for

::
ψo::::

and
:::
To ::::::::::

respectively.
::::
The

::::::
model

::::
runs

::
on

::
a
:::::::::
rectangular

:::::::
domain

::::
with

::
a

:::::::
reference

:::::::::
coordinate

::::::
system

:::
of

::::::::::::::::::::
(x× y) ∈ [0, 2πn ]× [0,π],

::::::
where

::::::
n= 1.5

::
is
:::
the

::::::
aspect

::::
ratio

:::::::
between

:::
the

::
x

:::
and

:
y
:::::::::::
dimensions.

::
In

:::::::
contrast

::
to

::::::::::::::::::
Tondeur et al. (2020)

:::
who

:::::::::
assimilate

::
in

:::
the

:::::::
spectral

:::::
space,

:::
we

:::::::::
assimilate

::
in

:::
the

:::::::
physical

:::::
space

:::
in

:::::
which

::::
real

::::::::::
observations

:::
are

::::::
usually

::::::::
available.

:::::::::::
Assimilating

::
in

:::
the

:::::::
physical

:::::
space

::
is

:::
not

::::
only

::::
more

:::::::
realistic

:::
but

::::
also

:::::::
provides

:::
the

:::::::::
possibility

::
to

:::::::::
investigate

::
the

::::::::::::
computational

:::::::::
efficiency

::
of

:::::::
pyPDAF

:::::::
without

:::::::
changing

:::
the

::::::
model

::::::::
dynamics.

::::
This

::
is

:::::::
because

:::
the

::::
same

:::::::
number390

::
of

:::::::
spectral

:::::
modes

::::
can

::
be

:::::::::::
transformed

::
to

:::::::
different

:::::::
number

::
of

::::
grid

::::::
points.

:::::
This

:::::
allows

:::
us

::
to

:::::
focus

:::
on

:::
the

::::::::::::
computational

::::
cost

::
of

:::
the

::::
DA.

:::::::::
Therefore,

:::
for

::::::::::::
benchmarking

::::::::::::
computational

::::
cost,

:::
we

:::::::
conduct

:
a
:::::

suite
::
of

::::::
SCDA

::::::::::
experiments

::::
with

::::::::::::::
2k +1× 2k +1

:::
grid

::::::
points

:::::
where

::::::::::
7≤ k ≤ 11.

::::
This

:::::
gives

:::
us

::::
state

::::::
vectors

::::
with

::::::::::
dimensions

:::::::
ranging

::::
from

::
a
:::::::::
magnitude

::
of

::::
104

::
to

::::
107.

:::
We

::::
also

:::::::::
implement

:::::
SCDA

::::::::::
experiments

:::::
using

:::::::
LETKF

::
on

::
a

:::
grid

:::::::
number

:::
size

::
of

:::::::::
257× 257

::::
with

::::::::::
observations

:::
on

:::::
every

:
4
:::
and

::
8

:::
grid

::::::
points

::
to

:::::::::
investigate

:::
the

::::::::
efficiency

::
of

:::
the

::::::
domain

::::::::::
localisation

::
in

::::::::
pyPDAF.

:
395

We integrate MAOOAM with (py)PDAF. As shown in Fig. 1, the key ingredient of coupling MAOOAM with (py)PDAF is

the collection and distribution of state vector. In common setups of ocean and atmospheric DA, the observations are available

in the physical space. Hence, in the
:::::::
vectors.

::
In

:::
the user-supplied function that collects the state vector for pyPDAF (see Fig. 1),

spectral modes of the model are transformed from the spectral space to physical space using the transformation equation,

f(x,y, t) =

K∑
i=1

ci(t)Fi(x,y), (1)400

where f(x,y, t) is any model variable in the physical space, K is the number of modes, ci(t) is the spectral coefficient of the

model variable, Fi(x,y) is the spectral basis function of mode i outlined in De Cruz et al. (2016). In the user-supplied function

that distributes the state vector for pyPDAF (see Fig. 1), the analysis has to be transformed back to the spectral space to initialise

the following model forecast. The inverse transformation from the physical space to the spectral space can be obtained by

ci(t) =
n

2π2

π∫
0

2π
n∫

0

f(x,y, t)Fi(x,y)dxdy. (2)405

:::::
where

::
n

::
is

:::
the

::::
ratio

::::::::
between

:::::::::
meridional

::::
and

:::::
zonal

::::::
extents

::
of
::::

the
:::::
model

::::::::
domain. Here, each basis function corresponds to

a spectral coefficient of the model variable. The basis functions are evaluated on an equidistant model grid. The spectral

coefficients are obtained via the Romberg numerical integration. To ensure the
:::
The

:
accuracy of the numerical integration , the

:::::::
depends

::
on

:::
the

::::::
spatial

::::::::
resolution

::::
and

:::
the number of grid points is 2k +1 with k ∈ Z+.

Our model configuration adopts the strongly coupled ocean and atmosphere configuration (36st) of Tondeur et al. (2020)410

using a time step of 0.1 time units corresponding to around 16 minutes. Using the notation ofHmaxx−Pmaxy of De Cruz et al. (2016)

with the superscript max the maximum number of harmonic wave numbers, the configuration chooses 2x− 4y modes for the

ocean component and 2x− 2y modes for the atmosphere component. This leads to a total of 36 spectral coefficients with 10

modes for ψa and Ta respectively and 8 modes for ψo and To respectively. The model runs on a rectangular domain with a

reference coordinate system of (x× y) ∈ [0, 2πn ]× [0,π], where n= 1.5 is the aspect ratio between the x and y dimensions.415

14



In contrast to Tondeur et al. (2020) who assimilate in the spectral space, we assimilate in the physical space in which the

observations are usually available. A sensitivity experiment was performed to study the transformation error. The experiment

shows that when the
:::
with

:::
an

::::
error

::
of

:::::::::::
O(n−2log2n)

::::::
where

:
n
::
is
:::
the

:
number of grid pointsreaches

:
.
::::
Our

::::::::::
experiments

::::::
suggest

::::
that

::
the

:::::::::
numerical

:::::::::
integration

:::::
error

:
is
:::::::::

negligible
::::
once

:::
we

::::
have

:
(27 +1× 27 +1) = (129× 129), the transformation error becomes

negligible and the physical grid pointsresolve the features in the spectral space. In practice, due to the chaotic nature of the420

model and long simulation time, the error from the transformation can accumulate which subsequently leads to model errors.

The transformation between the spectral and physical space allows us to investigate the computational cost of the DA in

pyPDAF and PDAF with the same model dynamics. As the ensemble size is determined by the dimension of unstable subspace

of the dynamical system, a fixed ensemble size can be used (Tondeur et al., 2020). Therefore, for benchmarking computational

cost, we conduct a suite of SCDA experiments with 2k +1× 2k +1 number of grid points where 7≤ k ≤ 11. This gives us425

state vectors with dimension ranging from a magnitude of 104 to 107. The size of a state vector with around 107 elements

is closer to operational setups. We also implement SCDA experiments using LETKF on a grid number of 257× 257 with

observations on every 4 and 8 grid points to investigate the efficiency of the domain localisation in pyPDAF
::::::::::
(129× 129)

::::
grid

:::::
points.

::
In

:::
this

::::::
study,

:::
for

:::
the

::::
sake

::
of

:::::::::
efficiency,

:::
the

:::::::::::::
transformation

:::::::
between

:::::::
spectral

::::::
modes

:::
and

::::
grid

::::::
points

:::
are

:::::::::::
implemented

::
in

:::::::
Fortran.

::
In

::::::::
pyPDAF

:::::::
systems,

:::
the

:::::::
Fortran

::::::::::::
transformation

::::::::
routines

:::
are

::::
used

:::
by

::::::
Python

:::::
with

::::::
“f2py”.

::::
This

::::::::::::::
implementation430

::::::
ensures

::::
that

:::
the

::::::::
numerical

::::::::::::
computations

::
do

:::
not

::::::
render

::::::::
rounding

:::::
errors

:::::
when

:::::::::
conducted

::
in

:::::::
different

::::::::::::
programming

:::::::::
languages.

::::::::
Moreover,

::
it
::::
also

:::::::::::
demonstrates

::::
that

:::
the

::::::::::::::
computationally

::::::::
intensive

:::::::::
component

::
of

::::::::::::
user-supplied

::::::::
functions

:::
can

:::
be

::::
sped

:::
up

:::
by

::::::::
optimised

::::::
Fortran

:::::
code.

:

3.2 Experiment design

In a twin experiment, a long model run is considered
:
to

::::::::
represent

:::
the truth. The model state is simulated with an initial condition435

sampled in the spectral space which follows
:::::::
following

:
a Gaussian distribution, N (0,0.01). The DA experiments are started

after 105
::::::
9× 105 time steps corresponding to around 277 years of model integration to ensure the dynamical consistency of

the model state
:::
that

:::
the

:::::
initial

::::
state

::::::::
corrected

:::
by

:::
the

:::
DA

:::::::
follows

::
the

:::::::::
trajectory

::
of

:::
the

:::::::::
dynamical

:::::
model.

The observations are generated from the truth of the model state based on pre-defined error statistics of the observations.

Except for the LETKF experiments, both atmosphere and ocean observations are sampled every 8 model grid points for each440

model grid setup. In all cases, the observation error standard deviations are set to 50% and 70% of the temporal standard devia-

tion of the true model trajectory
::
at

::::
each

:::
grid

:::::
point for the atmosphere and ocean respectively. The resulting standard deviation of

the atmosphere observations is on a similar magnitude with the ensemble spread of the free run (cf. Fig. 4) while the magnitude

of the observation error in the ocean is typically larger than in the atmosphere in real observing networks. As an example, the

obtained standard deviation fields on a grid with 17× 17 grid points are shown in Fig. ??. The observation error standard445

deviation fields used for generating the synthetic observations. The spatial mean of the error standard deviation is shown in

the bracket. With our chosen model configuration, the highest observation error is in the ocean temperature while the ocean

streamfunction shows the least uncertainty due to its slow variability.
:::
This

:::::
leads

::
to

::::::::
spatially

::::::
varying

::::::::::
observation

::::::
errors

::::
with

::::::
regions

::
of

:::::
larger

::
or

::::::
smaller

::::::::::
observation

::::::
errors. The atmospheric processes in MAOOAM show variability on shorter timescales

15



0 100 200
year

0.00

0.02

0.04

0.06
a

0 100 200
year

0.00

0.01

0.02

0.03
Ta

0 100 200
year

0.00000

0.00025

0.00050

0.00075

0.00100

o

0 100 200
year

0.00

0.02

0.04

0.06

To

0 100 200
year

0.000

0.001

0.002

a

0 100 200
year

0.00000

0.00025

0.00050

0.00075

0.00100
Ta

0 100 200
year

0.00005

0.00010

0.00015
o

0 100 200
year

0.002

0.004

0.006

To

Time series of free run on 129 × 129 grid points

Time series of SCDA analysis on 129 × 129 grid points

err. std dev.

Figure 4. Ensemble spread
::::::
standard

:::::::
deviation

:
and RMSE of the (top) free run and (bottom) SCDA analysis on a 129× 129 grid. Shown are

the time series of the spatial mean of ensemble spread (red) and the RMSE of the analysis (black). The atmosphere shows fast variability

and oscillatory RMSE of the ensemble mean while the RMSE of the ocean ensemble mean is smooth.
:::
The

:::::::
horizontal

::::
grey

:::
line

::
is

:::
the

:::::
spatial

::::::
averaged

:::::::::
observation

:::::
error.

than the ocean. Hence, the ocean observations are assimilated around every 7 days (630 time steps) while the atmosphere450

observations are assimilated around every day (90 time steps).
:::
This

::
is

::
in

:::
line

::::
with

:::
the

::::::::::
experiment

::::
setup

::
in
::::::::::::::::::
Tondeur et al. (2020)

:
.

As shown by Tondeur et al. (2020), DA in the model configuration using 36 spectral coefficients can achieve sufficient

accuracy with 15 ensemble members. In this study, 16
::::::::
ensemble members are used,

:
and each ensemble member runs serially

with a single process. Without tuning, a forgetting factor of 0.8 is applied to maintain the ensemble spreadand ensure a stable455

DA process. .
::::
The

::::::::
forgetting

:::::
factor

:::::::::::::::::
(Pham et al., 1998)

:
is
:::
an

:::::::
efficient

::::::::
approach

::
to

::::::::::::
multiplicative

::::::::
ensemble

:::::::
inflation

::
in

::::::
which

::
the

::::::::::
covariance

:::::
matrix

::
is

:::::::
inflated

::
by

:::
the

::::::
inverse

::
of

:::
the

:::::::::
forgetting

:::::
factor

::
as

::::::
shown

::
in

:::
the

::::::::::
formulation

::
in

::::::::::::::::
Nerger et al. (2012).

:

Using the
:::::
PDAF

:::::::
provides

:::::::::::
functionality

::
to

:::::::
generate

:::
the

:::::::::
ensemble.

::::
Here,

::
to
:::::::::::
demonstrate

::
its

:::::::::::
functionality,

:::
we

:::
use second-order

exact sampling provided by PDAF (see Sect. 2.1),
:::::::::::
(Pham, 2001),

::
in

::::::
which the ensemble is generated from a model trajectory

by sampling the modelled truth
:::::::::
covariance

::::::
matrix.

::::
The

:::::::::
covariance

::::::
matrix

::
is

::::::::
estimated

:::::
using

::::::
model

:::::
states

:::::::
sampled

:
every 10460

days over
:
a 100years after around

::::
-year

:::::::
period,

:::::
based

::
on

:::
the

::::::::
trajectory

::
of

:::
the

:::::
truth

:::::
model

::::
after

::::::::::::
approximately

:
1000 years from

the beginning
::::
start of the simulation. This leads to

:
a

:::::::::
covariance

::::::
matrix

::::
with 36 non-zero singular values equaling

::::::::
equalling to

the number of spectral modes in the model. The perturbation from the second-order exact sampling
::::::::
ensemble

::::::::
generated

:::::
from

::
the

::::::::::
covariance

:::::
matrix

:
could violate the dynamical consistency of the model, so that the ensemble would need to be spun up to

reach dynamical consistency. To reduce the spin up time, the initial perturbation is scaled down by a factor of 0.2, 0.15, 0.4 for465

Ψa, Ta and To respectively. Because the ocean streamfunction has very low variability, its perturbation is unchanged.

16



The DA experiments are started after 15 days from the beginning of the ensemble generation.
:::
The

::::
DA

::::::::::
experiments

:::
are

::::
then

:::
run

::
for

:::::::
another

:::::::
9× 105

::::
time

::::
steps

:::::
which

::
is
::::::
around

::::
277

:::::
years.

:
In this setup, the forecast error is solely a result of inaccuracy of

initial conditions. As shown in Fig. 4, the ensemble spread generally captures the trendand is in
:
,
:::
and

:::
has

:
a similar magnitude

of
::
as

:
the model forecast error. This suggests that the forecast uncertainty from

::
of the free run ensemble initialised by the470

second-order exact sampling is able to reflect the forecast errors even though the spread is lower than the RMSE after 200

years.

In the free run (upper panel of Fig. 4), the ocean temperature shows the highest uncertainty of all model variables. The

ocean streamfunction shows a very slow error growth rate. This is also shown by the error and ensemble uncertaintywhich are

two magnitudes smaller than those of other model variables
::::::::
ensemble

:::::::::
uncertainty. Sensitivity tests (not shown) suggest that475

an increased error
:::::
RMSE

:
of the ocean streamfunction has a significant

:::::
strong impact on the model dynamics consistent with

the theoretical discussion given in Tondeur et al. (2020). The error
:::::
RMSE

:
of the atmosphere components shows a wave-like

behaviour in time. Tondeur et al. (2020) describe the periods associated with fast dynamics with high and oscillatory errors

::::::
RMSEs

:
as active regimes and the periods associated with slow dynamics with low and stable errors

::::::
RMSEs

:
as passive regimes.

3.3
::::::::::

Comparison
::
of

::::::::
pyPDAF

::::
and

::::::
PDAF

::::::::::::::
implementation

::
of

::::
CDA480

::
As

::::::::
pyPDAF

::
is

::
an

::::::::
interface

::
to

::::::
PDAF,

:::
the

::::
same

:::::::
number

::
of

:::::::::::
user-supplied

::::::::
functions

:::
are

:::::
used

::
for

::::
DA

:::::::
systems

:::::::::::
implemented

::::
with

:::::::
pyPDAF

:::
and

::::::
PDAF.

:::
As

:::::::
detailed

::
in

::::
Sect.

::::
2.4,

:::
the

:::::
ETKF

:::::::
system

:::::::
requires

:
7
:::::::::::
user-supplied

:::::::::
functions.

:::
For

:::
the

:::::::
LETKF

::::::
system,

:::
an

::::::::
additional

::
5

:::::::::::
user-supplied

::::::::
functions

:::
are

::::::
needed.

::::::::
However,

:::
as

:::
will

:::
be

::::::::
discussed

::
in

::::
Sect.

::::
4.2,

::
if

:::::::::::
“PDAFlocal”

:::::::
modules

:::
are

:::::
used,

::
the

:::::::::
additional

:::::::::::
user-supplied

:::::::
function

:::::::::
necessary

::
for

:::::::
domain

::::::::::
localisation

:::
can

::
be

:::::::
reduced

::
to

::
3.

:

:::
One

::
of

:::
the

:::::
major

:::::::::
advantages

:::
of

:::::::
pyPDAF

::
is

::
the

::::
ease

::
of

::::::::::::::
implementation.

:::::
Here,

:
to
:::::::
partially

::::::
reflect

:::
the

::::::::
difference

::
in

:::::::::::::
implementation485

:::::::
difficulty

:::::::
between

::::::::
pyPDAF

:::
and

::::::
PDAF,

:::
the

::::::
number

::
of

::::
lines

::
of

:::::
code

:::::::
between

:::::::
pyPDAF

:::
and

::::::
PDAF

::
in

::::
each

:::::::::::
user-supplied

::::::::
functions

:
is
:::::::::

compared
::
in

::::
Tab.

:::
1.

:::
We

:::::::::
recognise

:::
that

:::::
such

::::::::::
comparison

:::
can

:::
be

:::::::::
inaccurate

::::
due

::
to

::::::::
different

::::::
coding

:::::
styles

::::
and

::::::::
potential

::::::::::
unaccounted

:::::::::
boilerplate

:::::
code.

:::::::::
Moreover,

:::::
fewer

::::
lines

::
of

::::
code

:::
do

:::
not

:::::::::
necessarily

::::::::
represent

::::::::
improved

::::
ease

::
of
::::::::::::::
implementation

::
as

::
the

::::
DA

::::::
system

:::::
setup

::::::::
typically

:::::::
involves

::::::::
scientific

:::::::
research

:::::::
besides

::::
code

::::::::::::::
implementation.

:::::::::::
Nevertheless,

:::
we

:::::
show

:::
that

:::::::
Python

:::::::::::::
implementation

::::
needs

:::::
fewer

:::::
lines

::
of

::::
code

::::
than

::::::
Fortran

:::::::::::::
implementation

::
for

:::
all

:::::::::::
user-supplied

::::::::
functions.

::::
The

::::::
reduced

:::::::::::::
implementation490

:::::::
difficulty

::::
can

::
be

::::::::
attributed

:::
to:

::
1)
::::

the
::::::
Python

:::::::::::::
implementation

:::
can

:::::
make

::::
use

::
of

:::::::
efficient

:::::::::
third-party

:::::::
Python

::::::::
packages

:::::::
utilising

::::::::::
vectorisation

::::::::
avoiding

:::::
loops

:::
and

:::::::
manual

:::::::::::::
implementation;

::
2)

:::
the

:::::::
Python

:::::::::::
programming

::::::::
language

::::
does

:::
not

::::::
require

:::::
static

::::::
typing

:::::
which

::
is

:::::::
required

:::
by

:::::::
Fortran;

::
3)

:::
the

::::::
Python

::::::::::::
programming

::::::::
language

:::::
allows

:::
for

:::::::::
extensible

:::
and

:::::::
flexible

:::::::::::::
implementation

::::
due

::
to

::
its

::::::::
language

:::::::
features.

4 Results495

In this section, we evaluate the DA skill of the
:
to

:::::::
validate

:::
the

:
MAOOAM-(py)PDAF online DA systemusing the ETKF

:
,
:::
we

:::::::
evaluate

::
its

::::
DA

::::
skill. For the sake of efficiency, the skill of DA is assessed on a domain with 129× 129 grid points. To

17



Table 1.
::::::
Number

::
of

::::
lines

::
of

::::
code

:::::
broken

::::
down

:::
by

::::::::::
user-supplied

:::::::
functions

::::::
between

::::::
Fortran

:::
and

:::::
Python

::::::::::::
implementation

::
of

:
a
:::::::
strongly

::::::
coupled

:::
DA

:::::
system.

::::
The

::::
count

:::::::
removes

::::::::
comments

:::
and

:::::
empty

::::
blank

::::
lines.

::
In

:::
the

::::::::::::
“init_dim_obs”

::::::
function,

:::
we

::::
count

:::
the

::::
total

::::
lines

::
of

:::
code

::::::::
including

:::::::
functions

:::::
called

:::::
within

:::
the

::::::::::
user-supplied

::::::::
functions

:::
and

::::::::
boilerplate

::::
code

:::
for

::::
class

::::::::
definition.

::::
The

:::::::::::::
“prepostprocess”

::
is

::::::
divided

:::
into

:::::
three

:::::::
functions

::
in

:::::
Python

:::::
where

::
we

:::::
count

:::
the

:::
total

::::
lines

::
of

::::
code

::::
here.

User-supplied functions
Lines of code

:::::
Fortran

: :::::
Python

:

::::::::::
init_ens_pdaf

::
11

:
3
:

:::::::::
collect_state

::
18

:
6
:

:::::::::::
distribute_state

::
41

::
32

::::::::::
init_dim_obs

:::
261

: :::
173

:

::::::
obs_op

::
25

:
9
:

::::::::::
prepostprocess

: ::
46

::
36

::::::::::::
init_n_domains

:
7
: :

3
:

::::::::
init_dim_l

:
9
: :

3
:

:::::::::::
init_dim_obs_l

::
35

::
27

::::::
g2l_state

: ::
11

:
3
:

::::::
l2g_state

: ::
10

:
3
:

::::::::::::
next_observation

: ::
19

::
11

evaluate the computational efficiency of pyPDAF and PDAF and the potential practical applications of pyPDAF, we compare

the wallclock time in the SCDA system.

The online DA systems using PDAF and pyPDAF produce quantitatively the same results in all experiments up to machine500

precision.
::::
This

::
is

::::::
because

:::
the

::::::::::::
user-supplied

:::::::
functions

::::::
mainly

:::::::
perform

:::
file

::::::::
handling

:::
and

:::::::
variable

:::::::::::
assignments,

:::
but

::
no

:::::::::
numerical

:::::::::::
computations.

::::
An

::::::::
exception

::
is
:::::

only
:::
the

:::::::
spectral

:::::::::::::
transformation

::::::::
described

:::
in

:::::
Sect.

::::
3.1.

:::
To

::::::
ensure

::::::::::
comparable

:::::::::
numerical

:::::::
outcome,

::::
the

::::::::
numerical

::::::::::::
computations

:::
that

::::::
affect

:::
the

:::::::
forecast

:::
and

::::::::
analysis,

::
in
:::::::::

particular
:::
the

:::::::
spectral

:::::::::::::
transformation,

:::
are

:::
all

::::::::
conducted

::
in
:::::::

Fortran
::
in

::::
this

:::::
work.

:::::
These

:::::::
Fortran

::::::::::::::
implementations

:::
are

::::
used

:::
by

::::::
Python

:::::::::::
user-supplied

::::::::
functions

:::::
using

:::::::
“f2py”.

::::
Note

::::
that,

::::
when

:::::::::
numerical

:::::::::::
computations

::::::
involve

::::::::
different

:::::::::::
programming

:::::::::
languages,

:::
the

:::::
model

::::::::
trajectory

::
of

:::
the

::::::::
nonlinear

::::::
system505

::::
could

:::::
differ

:::::::
because

::
of

:::::
errors

:::
in

::
the

::::::
initial

::::::::
conditions

::::::
arising

:::::
from

::::::::
rounding

:::::
errors.

:

4.1 Effect
::::
Skill of coupled data assimilation

::
As

::
a

::::
case

:::::
study

::
to

::::::::::
demonstrate

:::
the

::::::::
capability

:::
of

:::::::
pyPDAF,

:::::
both

:::::
SCDA

::::
and

::::::
WCDA

:::
are

::::::::::::
implemented. In WCDA, the coupling

only occurs during the model forecast
::::
each

:::::
model

::::::::::
component

:::::::
performs

::::
DA

::::::::::::
independently

::::
even

::::::
though

:::
the

:::::::
forecast

:
is
::::::::
obtained

::
by

:::
the

:::::::
coupled

:::::
model. This means that the observations only influence their own model component in the analysis step . In this510

setup, each model component has its own DA system with only two model variables, the streamfunction and temperature, on

the same model grid. This
:::::
which

:
implies two separate DA systems. In an online DA setup in PDAF, two separate state vectors

18



Ψa Ta Ψo To

10−4

10−3

10−2

Ψa Ta Ψo To

10−4

10−3

analysis RMSE (obs.)
freerun RMSE (obs.)

analysis RMSE (no obs.)
freerun RMSE (no obs.) WCDA RMSE SCDA RMSE

Figure 5. Left: The time-averaged RMSE of the analysis using WCDA and free run where the RMSE of the observed (non-hatched bars),

denoted by “obs.” in the legend, and unobserved gridpoints (hatched bars), denoted by “no obs.”, are compared separately. Right: comparison

of RMSEs for weakly and strongly coupled DA for all grid points. The y-axis is plotted in the log-scale.

have to be defined in each analysis step which is not straightforward with PDAF due to its assumption that each analysis step

has only one state vector. In the case of AWI-CM in Tang et al. (2021), two separate state vectors were obtained by using a

parallelisation, but here the two model components of MAOOAM are run using the same processor. In our implementation we515

obtain WCDA by resetting the time step counter in PDAF in our implementation such that even if the assimilation of two state

vectors are done by using PDAF twice, PDAF only counts it as one analysis time step. An alternative approach could be to use

the LETKF method,
:
and define the local state vector as either the atmosphere or ocean variables.

Figure 5 shows that the time averaged RMSE of WCDA is smaller than that of the unconstrained free run. Thus, the error

growth is successfully controlled
::
by

:::
DA. This also demonstrates that the ETKF leads to a converged analysis even though our520

observations are less accurate than the forecast at the start of the DA period. The results also show that sparse observations

can successfully control errors in regions without observations. This is due to the fact that the model fields are rather smooth

::::::
leading

::
to

::::
long

::::::::
ensemble

::::::::::
correlations.

Compared to the WCDA, atmosphere observations influence the ocean part of the state vector and vice versa in the SCDA.

This means that the coupling occurs for both the analysis step and model forecast. In this case, the DA system only has one525

unified state vector that contains the streamfunction and temperature of both model components. The implementation of an

online SCDA system aligns with the design of PDAF,
:
and does not require special treatment.

As expected, the SCDA yields lower analysis errors
::::::
RMSEs

:
than the free run as shown in Fig. 4, and the errors

::::::
RMSEs are

also lower than the WCDA as shown in the right panel of Fig. 5. The improved analysis in the SCDA in each model component

is a result of assimilating observations from the other model component. The effective use of these additional observations530

relies on the error cross-covariance matrix between model components estimated by the forecast ensemble. The improvements

suggest a reliable error cross-covariance matrix in the coupled DA system.

Time averaged RMSE when only one model component is observed. The y-axis is in log-scale.

19



internal
pre-post

distribute state
collect state MPI

obs. operator
OMI-internal

OMI setup total

10 5

10 4

10 3

10 2

10 1

100

101

Ti
m

e 
pe

r 
an

al
ys

is
 s

te
p 

(s
) 

 in
 lo

g-
sc

al
e

129 × 129 (fort)
129 × 129 (py)

257 × 257 (fort)
257 × 257 (py)

513 × 513 (fort)
513 × 513 (py)

1025 × 1025 (fort)
1025 × 1025 (py)

2049 × 2049 (fort)
2049 × 2049 (py)

Figure 6. Wall clock time of pyPDAF (dark colour bars) and PDAF (light colour bars) systems per analysis step broken down by function-

alities in SCDA ETKF experiments and their total wallclock time per analysis step in log-scale
:::::::
log-scale.

To further show the performance of pyPDAF in a SCDA setup, we carry out experiments in which only one model component

is observed. In the SCDA, the analysis increment of a model component without observations relies on the error cross-covariance535

matrix with the model components that have observations. In this experiment, inflation is only applied to the observed model

component to avoid excessive analysis increment to the unobserved model components. The partial inflation is achieved in the

post-processing routines as PDAF applies inflation uniformly to the entire state vector by default.

Figure ?? shows the time-averaged RMSE of fields that are smoothed in time by a moving average as a function of the

averaging time-window. The RMSEs of the instantaneous model fields are represented by zero moving average window length.540

Assimilating observations from the other model component with SCDA can improve the analysis of the unobserved model

component. The assimilation not only improves the instantaneous model fields but also the long-term trend of the atmosphere

and ocean climate even though the error dynamics of atmosphere and ocean shows strong time-scale differences in Fig. 4. This

means that the ocean dynamics benefit from atmosphere observations even if the transient atmosphere processes are smoothed

by the moving average. Notably, the RMSE of the ocean streamfunction when only atmosphere observations are assimilated545

does not decrease monotonically with the moving average window length. This could be explained by the fact that the time

averaged ocean streamfunction shows periodic features in time and an moving average of ∼ 60 years leads to a time series of

nearly constant streamfunction. This improves the skill of the DA . However, this feature is not captured by the analysis that

assimilates ocean observations perhaps due to the large observation uncertainties.

:::::
These

:::::
results

:::::::
suggest

:::
that

:::::
both

:::::::
pyPDAF

:::
and

::::::
PDAF

:::
can

:::
be

::::
used

::
to

:::::::::
implement

:
a
::::
DA

::::::
system

::
as

::::::::
expected.550

20



Table 2.
:::
Wall

:::::
clock

:::
time

:::
per

:::::::
analysis

:::
step

::
of
:::::::

pyPDAF
:::
and

::::::
PDAF

::
for

::::
each

:::::::::
component

::
of

:::::
SCDA

:::::
ETKF

:::::
using

::::::::
129× 129

::::
grid

:::::
points

:::
and

:::::::::
2049× 2049

::::
grid

:::::
points

::
in

::::::
seconds.

:::
The

::::
table

::::
also

:::::
shows

::
the

::::
ratio

::
of

:::
the

:::
wall

:::::
clock

::::
time

::::::
between

::::::
Python

:::
and

::::::
Fortran.

:::
The

::::
wall

::::
clock

::::
time

:
is
:::
the

::::
same

::
as

:::
the

:::
wall

::::
clock

::::
time

:::::
shown

::
in

:::
Fig.

::
6.

PDAF

component

129× 129 2049× 2049

:::::
Python

: :::::
Fortran

: :::
ratio

: :::::
Python

: :::::
Fortran

: :::
ratio

:

::::::
internal

:::::::::
1.88× 10−3

: :::::::::
1.64× 10−3

: :::
1.15

: :::
0.47

: :::
0.44

: :::
1.08

:

::::::
pre-post

: :::::::::
1.02× 10−2

: :::::::::
1.81× 10−3

: :::
5.62

: :::
1.13

: :::
0.56

: :::
2.04

:

:::::::
distribute

::::
state

:::::::::
8.37× 10−3

: :::::::::
2.19× 10−3

: :::
3.82

: :::
2.14

: :::
0.60

: :::
3.58

:

:::::
collect

::::
state

:::::::::
1.23× 10−2

: :::::::::
1.38× 10−3

: :::
8.89

: :::
2.99

: :::
0.35

: :::
8.60

:

:::
MPI

: :::::::::
1.62× 10−2

: :::::::::
4.69× 10−3

: :::
3.46

: :::
0.75

: :::
0.79

: :::
0.94

:

:::
obs.

:::::::
operator

:::::::::
1.24× 10−4

: ::::::::
2.8× 10−5

:::
4.43

: :::::::::
1.13× 10−2

: :::::::::
9.73× 10−3

: :::
1.16

:

::::::::::
OMI-internal

:::::::
6× 10−6

: :::::::
3× 10−6

: :::
2.00

: :::::::::
3.79× 10−3

: :::::::::
2.82× 10−3

: :::
1.34

:

::::
OMI

::::
setup

:::::::::
2.75× 10−2

: :::::::::
8.31× 10−3

: :::
3.30

: :::::::::
7.98× 10−2

: :::::::::
2.31× 10−2

: :::
3.46

:

:::
total

: :::::::::
7.83× 10−2

: :::::::::
2.07× 10−2

: :::
3.79

: :::
7.66

: :::
2.86

: :::
2.68

:

4.2 Computational performance of PDAF and pyPDAF

One motivation of developing a Python interface to PDAF is that the efficient DA algorithms in PDAF can be used by pyPDAF

while the user-supplied functions can be developed with the ease of Python. However, the user-supplied functions provided by

Python are expected to be slower than a pure Fortran implementation. The slow-down is both a result of lack of compilation

in Python and the type cast between Fortran arrays and Python objects. Here we present a comparison of the wall clock time555

of both PDAF and pyPDAF experiments with standard SCDA broken down to the level of subroutines. Each experiment runs

100 analysis steps,
:
and each experiment is repeated 10 times. The computation runs on the computing facility of University

of Reading on a node with two AMD EPYC 7513 32-Core processors which have a 2.6GHz frequency. With 16 ensemble

members, each member uses a single processor for model forecast,
:
and the DA is performed serially on a single processor.

:::
The

:::::
serial

:::
DA

:::::::::
execution

::
is

::::::::
primarily

:::
due

::
to
::::

the
::::::
default

::::::::::::
parallelisation

:::::::
strategy

::
in

::::::
PDAF.

:::
The

::::::
ETKF

:::
has

::
a
:::::::::::::
straightforward560

:::::::::::
parallelisation

:::::
since

:::
the

:::::
global

:::::::::
transform

:::::
matrix

::::
can

::
be

::::::::
computed

::
in
::
a
:::::::::
distributed

::::
form

::::::::
followed

::
by

::
a

:::::
global

::::
sum.

::::
The

:::::::
LETKF

:
is
:::::::::::::
embarrassingly

:::::::
parallel

::
for

:::::
each

::::
local

::::::
domain

:::::
after

:::::::::::::
communicating

:::
the

::::::::
necessary

:::::::::::
observations.

::::
Each

:::::::::
processor

:::
can

:::::::
perform

::::::
LETKF

::::::::::::
independently

:::
for

:::::
their

::::
local

::::::::
domains.

:::
In

::::::
PDAF,

:::
the

::::::::::::
parallelisation

:::
of

::::
both

::::::
ETKF

:::
and

:::::::
LETKF

::
is
:::::::::::
implemented

:::
in

::::::::::
combination

::::
with

:::::::
domain

::::::::::::
decomposition

::
of

:::
the

::::::::
numerical

::::::
model.

::
In

::::
this

:::::
study,

::
no

:::::::
domain

::::::::::::
decomposition

::
is

::::::
carried

:::
out

:::
for

:::
the

::::::::
numerical

::::::
model

:::::
itself.

:::::
Thus,

::
all

:::::
local

:::::::
domains

:::
are

::::::
located

::
in

::::
one

:::::
single

::::::::
processor

:::
for

:::::::
LETKF.

::::
The

::::::::::::
parallelisation

:::::::
strategy

::
of565

:::::
PDAF

::
is

::::::
further

::::::::
explained

::
in

::::::::::::::::
Nerger et al. (2005)

:::
and

:
a
::::::::
pyPDAF

::::::::::::
documentation

::
is

:::::::
available

::::::::::::::::::::::::::::::::::::::::::
(Parallelisation Strategy, Accessed: 20 March 2025)

:
.

As shown in Fig. 6
::
and

::::
Tab.

::
2, the PDAF-internal procedures (labeled

::::::
labelled

:
‘internal’), which are the core DA algorithm,

take nearly the same amount of time per analysis step for PDAF and pyPDAF regardless of the number of grid points. As

21



expected, the user-supplied functions take more computational time in the DA system based on pyPDAF than PDAF. In this570

study, the pre- and post-processing of the state vector (labeled
::::::
labelled

:
‘pre-post’) calculates the square root of the spatial

mean of ensemble variance. The pre- and post-processing is implemented as a user-supplied function (see Sect. 2.4) which is

computationally intensive. The intensive computations suit well for the use of the Python JIT compilation. The computational

time of the pre- and post-processing increases with the size of the state vector, and Python is in general slower than the

Fortran implementation. The difference of wall clock time between the pyPDAF and PDAF-based DA system decreases with575

increasing state vector size as the overhead in pyPDAF becomes less significant
::::
takes

:::::::
smaller

::::::
portion

::
of

:::
the

::::
total

:::::::::::
computation

::::
time compared to the floating-point computations. As a comparison , on a 129× 129 grid, the PDAF system takes 0.04 seconds

while the pyPDAF system takes 0.09 seconds per analysis, thus a factor of 2.15 longer time . However, on a 2049× 2049 grid,

the PDAF system takes around 40.09 seconds
:::::
shown

::
in

::::
Tab.

::
2,
::::

the
::::
ratio

::
of

::::
total

::::::::::::
computational

:::::
time per analysis step while

the pyPDAF system takes 67.96 seconds per analysis step, thus a factor of only 1.7 longer time
:::::::
between

::::::::
pyPDAF

:::
and

::::::
PDAF580

:::::::::::::
implementation

::::::
reduces

::
to
:::::

2.04
::
on

::
a

::::::::::
2049× 2049

::::
grid

:::::
from

::::
5.62

::
on

::
a
:::::::::
129× 129

::::
grid. The overhead in

::
the

:
pyPDAF system

is also comparatively small in high-dimensional systems for the distribution and collection of state vector (labeled
:::::::
labelled

‘distribute state’ and ‘collect state’). For example, the pyPDAF system takes a factor of 2.9 more computational time than
::::
3.82

:::
and

::::
8.89

:::::
times

::
of

::::::::::::
computational

::::
time

::
of

:
the PDAF system

:::
for

::::::::
‘distribute

:::::
state’

::::
and

::::::
‘collect

:::::
state’

::::::::::
respectively

:
on a 129× 129

grid but only a factor of 1.3 more time is taken by the pyPDAF system than the PDAF system. The overhead in these functions585

is proportional to the ensemble size as they are called by each ensemble member respectively
:::
the

::::
ratio

::
is

::::
only

::::
2.04

:::
and

::::
3.58

:::
for

::::::::
‘distribute

:::::
state’

:::
and

:::::::
‘collect

::::
state’

::::::::::
respectively

:::
on

:
a
:::::::::::
2049× 2049

:::
grid. In addition to assigning a state vector to model fields and

vice versa in Python, these user-supplied functions perform conversion between physical and spectral space based on Eq. (1)

and (2). The
:::
As

:::::::::
mentioned

::
in

::::
Sect.

::::
3.1,

:::
the transformation utilises the same Fortran subroutines for both PDAF and pyPDAF

system. In the pyPDAF system, the Fortran subroutines are converted to Python functions by ‘
:
“f2py’

:
”. The computational time590

taken by these functions is proportional to the number of grid points. The
::
In

::::
this

:::::
study,

:::
the

:
MPI communications are

::::
only

::::
used

::
to

:::::
gather

:::
an

::::::::
ensemble

::::::
matrix

::::
from

:::
the

:::::
state

:::::
vector

:::
of

::::
each

::::::::
ensemble

:::::::
member

:::::::
located

::
at

::::
their

:::::::
specific

::::::::
processor.

::::::
These

::::::::::::::
communications,

:::::
which

:::
are internal to PDAF which

:::
and

:::
are

:::
not

:::::::
exposed

::
to

:::::
users, show little differences between pyPDAF and

PDAF system.

The wall clock time used for handling observations shows that a pyPDAF DA system is in general slower than a PDAF595

system. With
:
a low-dimensional state vector, the observation operator (labeled

::::::
labelled

:
‘obs. operator’) is slower in a pyPDAF

system than PDAF even if the observation operator function only calls a PDAF subroutine provided by OMI. The slow-down of

the pyPDAF system is again a result of overhead in the conversion of Fortran and Python arrays. Here, similar to the collection

and distribution of the state vector, the function is called by each ensemble member. The overhead becomes less significant

::::
takes

::::
only

::
a
:::::
small

:::::::
fraction

::
of
::::

the
::::
total

:::::::::::
computation

::::
time

:
for high-dimensional state vectorswhen the observation operator600

computation
:
,
:::::
while

:::
the

:::::::::
computing

::
of

:::
the

::::::::::
observation

:::::::
operator dominates the total computational time

::
of

:::
the

:::
call. The internal

operations of OMI (labeled
::::::
labelled

:
‘OMI internal’) are very efficient and

:::::::
efficient

::::
and,

::
in

:::::
some

:::::
cases,

:
the pyPDAF systems

can be more efficient than PDAF systems. Our experiments do not show clear benefits between pyPDAF and PDAF system for

these operations, as expected
::::::::
especially

::::::::::
considering

:::
the

::::
short

::::
wall

:::::
clock

::::
time

::
at
:::
an

:::::
order

::
of

:::::
10−6

::::
with

::::::::
129× 129

::::
grid

::::::
points

22



::::
used

::
in

::::
these

:::::::::
operations. The setup of the OMI functionality is implemented in the user-supplied function of init_dim_obs (see605

Sect. 2.4). This includes reading and processing the observation data and their errors. In this case, the pyPDAF-based system is

more expensive than the PDAF system. The pyPDAF system is 2.15 (8.57) times slower in executing
:::::
takes

::::
3.30

:::::
(3.46)

:::::
times

::
of

::
the

::::::::::::
computational

::::
time

:::::
used

::
to

::::::
execute

:
init_dim_obs than the

::
in PDAF system on a 129×129 (2049×2049) grid. The relative

increase is due to
::
of

::::::::::::
computational

::::
time

:::::::
between

:::
the

:::::::
pyPDAF

::::
and

:::::
PDAF

::::::
system

::
is

:::
not

::::::
evident

:::::
even

::::::
though a larger number of

observations that needs to be processed.610

Our comparison shows that the interfacing between Python and Fortran yields overheads in
::
the

:
pyPDAF system even if we

utilise JIT compilation of Python. Users need to consider a trade-off between these overheads and the ease of implementation

in pyPDAF compared to PDAF. The differences of the computational cost can be less significant
:::
take

::
a
::::::
smaller

:::::::
portion

::
of

:::
the

::::
total

::::::::::
computation

::::
time

:
for high-dimensional systems for

:::
the ETKF DA system without localisation

:::
due

::
to

::::::::
increased

:::::::::
numerical

:::::::::::
computations.615

In practice, localisation is used to avoid sampling errors in high-dimensional weather and climate systems. To make full use

of the computational resources, these high-dimensional systems are parallelised by domain decomposition. PDAF exploits the

feature of these models for domain localisation where the state vector is also domain decomposed. Here, we choose a domain

with 257× 257 grid points to assess the LETKF with a
:::::
cut-off

:
localisation radius of 1

:::::::::::::::::
non-dimensionalised spatial unit.

::::
This

::::::::::
corresponds

::
to

::::
3000

:
km

:::::::
covering

::::::
around

:
a
:::::
third

::
of

:::
the

:::::::
domain. As no domain decomposition is implemented for MAOOAM,620

each processor contains 257× 257× 4
::::::::
257× 257

:
local domains which is similar to the number of local domains used in a

single processor of a domain decomposed global climate model.

For each local domain, the LETKF computes an analysis using observations with a localisation cut-off radius. Hence, the

computational cost depends on the observation density. To investigate the effect of increased intensity of computations on the

pyPDAF overhead, we add experiments that observe every 4 grid points.625

As shown in Fig. 7, the increased observation density leads to an increase in computational time for the internal opera-

tions, observation operator, and the OMI-internal operations due to the larger number of locally assimilated observations.
:::
For

:::::::
example,

:::
for

::::::::
applying

::
the

::::::::::
observation

::::::::
operator,

:::::
when

::::
every

::
8
::::
grid

:::::
points

:::
are

::::::::
observed,

:::::::::::
∼ 2.4× 10−4

:
s
:::
and

::::::::::::
∼ 1.4× 10−4 s

:::
are

::::::::::
respectively

::::
used

::
in

::::::::
pyPDAF

:::
and

::::::
PDAF

:::::::
systems,

:::
but

::
in

:::
the

::::
case

:::
of

::::::::::
observations

:::
for

:::::
every

::
4

:::
grid

::::::
points,

::::::::::::
∼ 8.4× 10−4 s

:::
and

:::::::::::
∼ 7.4× 10−4 s

:
is

::::
used

::
in

::::::::
pyPDAF

:::
and

:::::
PDAF

:::::::
systems

::::::::::
respectively.

:
The increased observation density shows little influence on630

the computational cost of other user-supplied functions.
:::
For

::::::::
example,

::
in

:::
the

::::
case

::
of

:::
the

:::::
OMI

:::::
setup,

:::::
when

:::::
every

:
8
::::

grid
::::::
points

::
are

:::::::::
observed,

:::::::
∼ 0.047 s

::
and

:::::::
∼ 0.014

:
s
::
is

::::
used

::
in

:::
the

:::::::
pyPDAF

::::
and

:::::
PDAF

:::::::
systems

:::::::::::
respectively,

:::
and

::
in

:::
the

::::
case

::
of

:::::::::::
observations

::
for

:::::
every

::
4
::::
grid

::::::
points,

::
a
::::::
similar

::::::::::::
computational

::::
time

:::
of

:::::::
∼ 0.035

:
s

:::
and

::::::::
∼ 0.0137

:
s

:
is

::::
used

:::
in

:::::::
pyPDAF

::::
and

::::::
PDAF

:::::::
systems

::::::::::
respectively. However, as the increased observation density leads to more intensive computations, this mitigates the gap of the

total computational time between pyPDAF and PDAF system. In particular,
:
as

::::::
shown

::
in

::::
Tab.

::
3 the run times for the internal635

operations of PDAF (not shown) and OMI (‘OMI-internal’) dominate the overall run time of the analysis step and show little

difference for the pyPDAF and PDAF DA systems.
:::::
Here,

::::
when

:::::::::
executing

::::::::::::
‘OMI-internal’

:::::::::
operations,

:::::
when

:::::
every

::
8

:::
grid

::::::
points

::
are

:::::::::
observed,

::::::
∼ 3.07

:
s

:::
and

::::::
∼ 2.69

:
s

:
is
:::::

used
::
in

::::::::
pyPDAF

:::
and

::::::
PDAF

:::::::
systems

::::::::::
respectively,

:::
but

:::
in

:::
the

::::
case

::
of

:::::::::::
observations

:::
for

::::
every

::
4
::::
grid

:::::
points,

::::::::
∼ 11.04 s

:::
and

:::::::
∼ 10.74

:
s

:
is
:::::
used

::
in

:::::::
pyPDAF

::::
and

:::::
PDAF

:::::::
systems

::::::::::
respectively.

:

23



obs. o
perator

OMI-internal

OMI se
tup

no. domains

init lo
cal domain

g2l sta
te

l2g sta
te total

10 5

10 3

10 1

101
Ti

m
e 

pe
r 

an
al

ys
is

 s
te

p 
(s

) 
 in

 lo
g-

sc
al

e

every 8 gp (fort)
every 8 gp (py)

every 4 gp (fort)
every 4 gp (py)

every 8 gp (PDAFlocal) (fort)
every 8 gp (PDAFlocal) (py)

every 4 gp (PDAFlocal) (fort)
every 4 gp (PDAFlocal) (py)

Figure 7. Wall clock time of pyPDAF (light colour bars) and PDAF (dark colour bars) system per analysis step broken down by functionalities

in SCDA LETKF experiments and their total wallclock time per analysis step in log-scale
::::::
log-scale

:::
with

:
a
:::::::::
257× 257

:::
grid

:::::
points. The left

four bars (blue and purple bars) represent the case without using the PDAFlocal module while the rest uses the PDAFlocal module. For the

sake of conciseness, the functionalities shared by both ETKF and LETKF are omitted.
:::
The

:::::::::::
computational

::::
time

::
of

:::::
PDAF

::::::
system

::
for

::::
‘no.

:::::::
domains’

:
is
::::::::
negligible

::::
when

:::::
every

:
8
:::
grid

:::::
points

:::
are

:::::::
observed

:::::
which

:::
lead

::
to

::
an

:::::
empty

:::
bar.

Table 3.
:::
Wall

:::::
clock

:::
time

:::
per

:::::::
analysis

:::
step

::
of
:::::::

pyPDAF
::::

and
:::::
PDAF

::
for

::::
each

:::::::::
component

::
of

:::::
SCDA

::::::
LETKF

:::::
using

::::::::
257× 257

::::
grid

:::::
points

::
in

::::::
seconds

:::::
where

:::::::::
observations

:::
are

::::
taken

::::
every

::
4
:::
grid

:::::
points.

::::
The

::::
table

:::
also

:::::
shows

:::
the

:::
ratio

::
of

:::
the

:::
wall

:::::
clock

:::
time

:::::::
between

:::::
Python

::::
and

::::::
Fortran.

:::
The

:::
wall

:::::
clock

:::
time

::
is

:::
the

::::
same

::
as

::
the

::::
wall

::::
clock

::::
time

:::::
shown

::
in

:::
Fig.

::
7.

:::::
PDAF

::::::::
component

: :::::
Python

: :::::
Fortran

: :::
ratio

: :::::
Python

::::::::::
(PDAFlocal)

:::::
Fortran

::::::::::
(PDAFlocal)

: :::
ratio

:

::::::
internal

::::
18.33

::::
17.85

:::
1.03

::::
18.24

::::
17.85

:::
1.02

:

::::::
pre-post

: :::::::::
2.35× 10−2

: :::::::::
9.01× 10−3

: :::
2.61

:::::::::
2.36× 10−2

: :::::::::
9.01× 10−3

: :::
2.62

:

:::::::
distribute

::::
state

:::::::::
3.16× 10−2

: :::::::::
8.28× 10−3

: :::
3.81

:::::::::
3.16× 10−2

: :::::::::
8.28× 10−3

: :::
3.81

:

:::::
collect

::::
state

:::::::::
4.68× 10−2

: :::::::::
5.55× 10−3

: :::
8.44

:::::::::
4.67× 10−2

: :::::::::
5.55× 10−3

: :::
8.42

:

:::
MPI

: :::::::::
3.13× 10−2

: :::::::::
2.59× 10−2

: :::
1.21

:::::::::
5.27× 10−2

: :::::::::
2.59× 10−2

: :::
2.03

:

:::
obs.

:::::::
operator

:::::::::
8.40× 10−4

: :::::::::
7.37× 10−4

: :::
1.14

:::::::::
8.33× 10−4

: :::::::::
7.37× 10−4

: :::
1.13

:

::::::::::
OMI-internal

::::
11.04

::::
10.74

:::
1.03

::::
11.25

::::
10.74

:::
1.05

:

::::
OMI

::::
setup

:::::::::
3.53× 10−2

: :::::::::
1.38× 10−2

: :::
2.56

:::
0.16

: :::::::::
1.38× 10−2

: ::::
11.59

:::
no.

::::::
domains

: :::::::::
1.80× 10−5

: :::::::::
1.00× 10−6

: ::::
18.00

: :::::::::
8.0× 10−6

::::::::
1.0× 10−6

:::
8.00

:

:::
init

::::
local

:::::
domain

: :::::::::
4.96× 10−2

: :::::::::
7.68× 10−3

: :::
6.45

:::
1.26

: :::::::::
7.68× 10−3

: :::::
164.68

:

:::
g2l

:::
state

: ::::
10.69

:::::::::
2.25× 10−2

: :::::
475.52

:::::::::
4.58× 10−2

: :::::::::
2.25× 10−2

: :::
2.04

:

:::
l2g

:::
state

: ::::
10.36

:::::::::
1.86× 10−2

: :::::
557.48

:::::::::
3.99× 10−2

: :::::::::
1.86× 10−2

: :::
2.15

:

:::
total

: :::::
140.82

: :::::
111.88

: :::
1.26

:::::
118.95

: :::::
111.88

: :::
1.06

:

24



We notice significant
::::
large

:
overhead in the pyPDAF system for user-supplied functions related to domain localisation. The640

increased computational time when the number of domains is specified (labeled ‘no. domains’ ) is still of an order of 10−4

:::::::::::
user-supplied

:::::::
function

:::::
takes

:::::::::::
∼ 1.8× 10−5

:
s per analysis step which is negligible. The computation is 5.65 times slower in

pyPDAF than the PDAF
::
for

::::::::
pyPDAF

::::::
system

:::
but

::::
only

::::::::::
∼ 1.× 10−6

:
s

:
is
:::::
taken

::
by

:::
the

::::::
PDAF

::::::
system.

::::
The

:::::
latter

:::
can

::
be

:::::::::
negligible

::::
when

:::::
every

::
8
::::
grid

:::::
points

::::
are

::::::::
observed.

::
In

::::
this

:::::::::::
user-supplied

::::::::
function,

::::
only

::::
one

:::::::::
assignment

::
is
::::::::
executed

::
in

:::
the

::::::::::::
user-supplied

:::::::
function.

:::::::::
Therefore,

:::
the

::::::::
overhead

::
is

::::::::
primarily

:
a
:::::
result

:::
of

:::::::::
conversion

:::::::
between

:::
the

::::::::::::
interoperation

:::::::
between

:::::::
Fortran

:::
and

:::::::
Python.645

::::
This

::::::::
operation

:::
has

::::
little

::::::
impact

:::
on

:::
the

::::::
overall

:::::::::
efficiency

::
of

:::
the

:::::::
system.

::::
The

::::::::::
computation

:::::
takes

::::
6.45

:::::
times

:::
of

::::::::::::
computational

::::
time

::
of

::::::
PDAF

::::::
system

::
in

:::
the

::::::::
pyPDAF system for the function specifying the dimension of the local state vector (‘init local

domain’) .
:
as

::::::
shown

::
in

::::
Tab.

::
3. The increased computational cost is a result of repeated execution of the user-supplied functions

for each local domain. Specifically, in our experiment, this user-supplied function is used 257× 257× 4 times per analysis

step. The overhead is even higher for the user-supplied functions that convert between local state vector and global state vector650

(‘g2l state’ and ‘l2g state’
::::::::::
respectively), which are called for each ensemble member, due to the conversion of arrays instead of

integers. In this experiment, the execution of these routines in pyPDAF system is around 400
::
can

:::
be

::::
even

::::
more

::::
than

::::
500 times

slower than
:
in
:
the PDAF system. As these operations are not computationally intensive, the overhead cannot be mitigated by

JIT compilation. Without modifications in the PDAF workflow, the overhead can become comparatively less significant
::::::
smaller

with high observation density arising from increased computational cost of other routines, or increased parallelisation of model655

domains leading to reduced number of local domains on each processor.

To overcome this
::
the

:::::::
specific run time issue of ‘g2l state’ and ‘l2g state’, we developed a PDAFlocal module in PDAF,

included in release version 2.3, where the user-supplied functions of ‘g2l state’ and ‘l2g state’ are circumvented in the PDAF

interface as their operations are performed in the compiled Fortran code of PDAFlocal. This leads to similar computational

cost of these functions between
::
in

:::
the

:
pyPDAF and PDAF system

:::::::
systems. With PDAFlocal, users need to implement an660

index vector providing the relationship between the state vector in the current local domain and the global state vector when

local domain is initialised
::
in

::::
‘init

::::
local

:::::::
domain’. Due to this, with PDAFlocal, we see an increased computational time in ‘init

local domain’ in pyPDAF, which is around 150
:::
160

:
times slower than the PDAF system. The

:::::::
However,

::::
this pyPDAF overhead

for ‘init local domain’ is smaller than that of ‘g2l state’ and ‘l2g state’ (around 400 times slowdown) due to reduced
:::
due

::
to

:::
the

:::::::
different

::::
types

:::
of

::::::::
operations

::::
and

:::::
hence

:
a
:::::
lower

:
number of array conversions between Fortran and Python

::
in

::::
‘init

::::
local

:::::::
domain’.665

Further, only one instead of three user-supplied functions are implemented in Python. Due to this
::::
With

:::
the

:::::::::::
enhancement

:::
by

:::::::::::
PDAFlocal, the total computing time is nearly equal for pyPDAF and PDAF with only 6%− 13% higher time for pyPDAF.

::
As

:::::
both

::::::::
numerical

:::::::::::
computation

::::
and

:::::::::::
user-supplied

:::::::::
functions

:::
can

:::
be

::::::::
sensitive

::
to

:::
the

:::::::
number

:::
of

::::::::
ensemble

:::::::::
members,

:::
we

:::::
further

::::::::
compare

:::
the

:::::::::::::
computational

::::
time

:::
for

::::::::
different

::::::::
ensemble

::::::::
members

::::
with

:::::::::
257× 257

::::
grid

::::::
points

::::::::
observed

:::
by

:::::
every

::
8

:::
grid

::::::
points.

:::
As

::::::
shown

:::
in

::::
Tab.

::
4,

:::
the

::::::
ETKF

:::::
takes

::::::
longer

::::::::::::
computational

::::
time

:::
for

::
a
:::::
larger

:::::::::
ensemble.

::::::::::
Consistent

::::
with

:::::
other670

::::::::::
experiments

:::
and

::
as

::::::::
expected,

:::
the

:::::::
internal

:::::
PDAF

:::::::::
operations

::::
take

::::::
similar

::::::::::::
computational

::::
time

:::::::
between

::::::::::::
Fortran-based

:::::
PDAF

::::
and

:::::::::::
Python-based

::::::::
pyPDAF.

:::
For

:::
all

:::::::::::
user-supplied

:::::::::
functions,

::::::::
compared

:::
to

:::
the

::::
pure

::::::
Fortran

::::::::::::::
implementation,

:::
the

::::::::
pyPDAF

:::::
leads

::
to

::::::::
increased

:::::::::::
computational

:::::
time.

:::
The

::::::::
overhead

:::::::
depends

:::
on

:::
the

::::::
specific

:::::::::::::
implementation

::
of

::::
each

::::::::
function.

:::
For

::::::::
example,

::
in

:::
the

::::
state

:::::
vector

::::::::
collection

::::
and

::::::::::
distribution,

::::
even

::::::
though

:::
the

:::::::::::
computational

::::
cost

::::::
should

::
be

:::::::::::
theoretically

::::::::::
proportional

::
to

:::
the

::::::::
ensemble

::::
size,

25



Table 4.
:::
Wall

::::
clock

::::
time

:::
per

::::::
analysis

::::
step

::
of

:::::::
pyPDAF

:::
and

:::::
PDAF

::
for

::::
each

:::::::::
component

::
of

:::::
SCDA

:::::
ETKF

::
in

::::::
seconds

::::
with

::::::
different

::::::::
ensemble

:::::::
members

::::
using

::::::::
257× 257

:::
grid

:::::
points

:::::
where

::::::::::
observations

::
are

::::
taken

:::::
every

:
8
::::
grid

:::::
points.

:::
The

::::
table

:::
also

:::::
shows

:::
the

::::
ratio

::
of

::
the

::::
wall

::::
clock

::::
time

::::::
between

::::::
Python

:::
and

::::::
Fortran.

PDAF

component

64 members 128 members

:::::
Python

:::::
Fortran

:::
ratio

: :::::
Python

:::::
Fortran

:::
ratio

:

::::::
internal

:::
0.07

:::
0.07

:::
1.03

: :::
0.27

:::
0.26

:::
1.03

:

::::::
pre-post

: :::
0.15

:::
0.02

:::
6.52

: :::
0.25

:::
0.04

:::
6.41

:

:::::::
distribute

::::
state

:::
0.04

:::
0.01

:::
3.88

: :::
0.04

:::
0.01

:::
3.98

:

:::::
collect

::::
state

:::
0.06

:::
0.01

:::
8.89

: :::
0.05

:::
0.01

:::
9.08

:

:::
MPI

: :::
0.14

:::
0.08

:::
1.69

: :::
0.44

:::
0.52

:::
0.84

:

:::
obs.

:::::::
operator

::::::::
1.2× 10−3

: ::::::::
7.1× 10−4

: :::
1.67

: ::::::::
2.6× 10−3

: ::::::::
1.4× 10−3

: :::
1.83

:

::::::::::
OMI-internal

::::::::
8.1× 10−5

: ::::::::
1.1× 10−4

: :::
0.72

: ::::::::
1.7× 10−3

: ::::::::
2.8× 10−4

: :::
5.97

:

::::
OMI

::::
setup

:::
0.04

:::
0.01

:::
3.46

: :::
0.04

:::
0.01

:::
3.78

:

:::
total

: :::
0.50

:::
0.21

:::
2.40

: :::
1.10

:::
0.86

:::
1.28

:

::
the

::::::
overall

::::::::
overhead

::
is

:::::
stable

::::::::
regardless

:::
of

::
the

::::::::
ensemble

::::
size.

:::
In

::
the

::::
pre-

:::
and

:::::::::::::
post-processing

:::::::::
functions,

:::
the

:::::::
overhead

:::::::
relative

::
to675

::
the

:::::::
Fortran

:::::::::::::
implementation

::::
gets

::::::
smaller

::::
with

::::::::
increased

::::::::
ensemble

::::
size

::
as

:::
the

:::::::::
numerical

:::::::::::
computations

::::
take

:
a
::::::
higher

:::::::::
proportion

::
of

:::
the

::::
total

::::::::::::
computational

:::::
time.

::::
The

:::::
effect

::
of

::::::::
increased

:::::::::
ensemble

:::
size

::
is
::::

also
::::::::
revealed

::
in

:::
the

::::::::::::::::
observation-related

:::::::::
functions.

::
In

::::
both

:::
the

:::::::::::
user-supplied

::::::::
function

:::
for

:::
the

:::::::::
observation

::::::::
operator

:::
and

:::
the

:::::::
internal

:::::::::
PDAFomi

::::::::
functions,

:::
the

:::::::::::::
computational

::::
time

:::::::
increases

::::
with

:::
the

::::::::
ensemble

::::
size.

:::
In

:::
our

::::::
specific

::::::::::
experiment

:::::
setup,

:::
the

::::::::
overhead

::::
does

:::
not

:::::
show

::::
large

:::::::::
differences

::::
with

::::::::
different

::::::::
ensemble

:::
size

:::
for

:::::
these

::::::::::::::::
observation-related

::::::::
functions.

:::::::::::
Nevertheless,

:::::
when

:::
the

::::::
overall

::::::::::::
computational

::::
time

:::::::
between

:::
the

:::::::
Fortran680

:::
and

:::::::
pyPDAF

:::::::::::::
implementation

::
is

:::::::::
compared,

::::::::
increasing

:::
the

::::::::
ensemble

::::
size

::::
leads

::
to

::::::::::::
comparatively

:::::
lower

::::::::
overhead

:::
due

::
to

::::::::
increased

::::::::
numerical

::::::::::::
computations.

:::
We

::::::::
recognise

:::
that

:::
the

:::::
exact

::::::::::::
computational

::::
time

::::
can

::
be

:::::::::::
case-specific.

::::
For

::::::::
example,

::
we

::::
can

::::::::
postulate

::::
that,

::::::::
compared

::
to

::::
this

:::::
study,

:::
the

::::::::
overhead

:::
can

::
be

::::::::::::
comparatively

:::::::
smaller

:::
for

::::::::::::
computational

:::::::
intensive

::::::::::::
user-supplied

::::::::
functions

:::::
where

:::
JIT

::::
can

::
be

:::::
used.

::::
This

:::::
could

::
be

:::
the

::::
case

:::::
when

:::::::::
correlated

::::::::::
observation

::::
error

::::::::::
covariances

:::
are

:::::
used.

:::::
Even

::::::
though

::::
this

:::::
study

::::
only

::::::::::
investigates

:::
the685

:::::::::
commonly

::::
used

:::::
ETKF

::::
and

:::::::
LETKF,

:::
the

::::::
relative

::::
run

:::::
times

::
of

::::
pure

::::::
PDAF

:::
and

::::::::
pyPDAF

::::::
should

::
be

::::::
similar

:::
for

:::::
other

:::::
global

::::
and

::::
local

::::::
filters.

::::
This

::::::::::
expectation

:::::
results

:::::
from

:::
the

::::::::::
algorithmic

::::::::
similarity

::
of

:::::
many

:::::
filters

::::
and

:::
the

::::
fact

:::
that

:::
the

::::
user

:::::::
routines

::::::
which

::
are

::::::
coded

::
in

::::::
Python

:::::
when

:::::
using

::::::::
pyPDAF

:::
are

::::::
mainly

:::
the

:::::
same.

:::::::::
However,

:::
the

::::::::
overhead

::::
may

::::
also

::::
vary

:::::::::
depending

::
on

:::
the

::::
DA

:::::::::
algorithms,

::
in

::::::::
particular

:::
for

:::::::
variants

:::
of

::::::
3DVar. These results demonstrate that pyPDAF can

:::
has

:::
the

::::::::
potential

::
to be used with

high-dimensional systems with slightly
::::
some

:
increased overhead per analysis step.690

26



5 Conclusions

We introduce the Python package pyPDAF, which provides an interface to the Parallel Data Assimilation Framework (PDAF).

We outline its implementation and design. pyPDAF allows for a Python-based DA system for models coded in Python or

interfaced to Python. Furthermore it allows for the implementation of a Python-based offline DA system where the DA is

performed separately from the model and data is exchanged between the model and DA code through files. The pyPDAF695

package allows one to implement user-supplied functions in Python for flexible code development while the DA system still

benefits from PDAF’s efficient DA algorithm implementation in Fortran.

Using a CDA setup, we demonstrate that pyPDAF can be used with the Python model MAOOAM. Both strongly coupled

data assimilation (SCDA) and weakly coupled data assimilation (WCDA) are demonstrated. Our results confirm that the SCDA

performs better than WCDA, and additional observations from other model components can improve the overall performance700

of DA using SCDA. We also investigate the scenario where only one model component is observed. In this case, the error

cross-covariance matrix from the ETKF is sufficiently reliable for updating the unobserved model variables leading to improved

analyses states for both observed and un-observed model variables. We also show that the DA can improve the long-term trend

of the model state in the MAOOAM model.
:::
The

:::::::::
advantage

::
of

::::::::
pyPDAF

::
in

:::::
terms

::
of

:::
the

:::::
ease

::
of

:::::::::::::
implementation

::
is
::::::::
reflected

::
by

:
a
::::::::::

comparison
:::
of

:::
the

::::::
number

::
of

:::::
lines

::
of

::::
code

:::
by

:::::::::::
user-supplied

::::::::
functions

::
in

:::
the

::::::
SCDA

:::::
setup.

::::
The

::::::::
pyPDAF

:::::::::::::
implementation705

::::::::::
consistently

:::
uses

:::::
fewer

::::
lines

:::
of

::::
code

:::::::::
showcasing

:::
the

::::::::::
requirement

:::
for

:
a
:::::
lower

:::::::::::::
implementation

:::::
effort

::::
than

:::::
PDAF

::::::::::::::
implementation.

Using the SCDA setup, the computational costs of using pyPDAF and a Fortran-only implementation with PDAF are com-

pared. We show that the computational time stays the same
::::::
similar for the core DA algorithm executed in PDAF while pyPDAF

yields an overhead in user-supplied functions. This overhead is a result of both the Python implementation and the require-710

ment of data conversion between Python and Fortran. These overheads become comparatively less significant
::::::
smaller when

the analysis becomes computationally more intensive with increased spatial resolution or observation density. To mitigate the

overhead in domain localisation implementations, we introduce a new
::::::::
introduced

::
a

:::
new

:::::::
module “PDAFlocal” module in PDAF

such that a DA system using pyPDAF can achieve similar computational cost as a pure Fortran based system. This module

is included in
:::::
since the release v2.3 of PDAF

:::
and

::
is

::::
now

::::
also

::::::::::::
recommended

:::
for

:::
the

::::::
Fortran

:::::::::::::
implementation

::::
due

::
to

:::
the

:::::
lower715

:::::::::::::
implementation

::::
effort. We note that JIT compilation or ‘f2py’ can be used with the Python user-supplied functions for compu-

tationally intensive tasks to speed up the Python DA system. Our
::
In

:::
the

:::::
scope

::
of

:::
our

:::::::
specific

:::::::::
experiment

:::::
setup,

:::
our

:
benchmark

shows that , with a global filter, 70% more time is used , and with a domain localised filter ,
::::
with

:::
the

:::::
global

:::::
filter

:::::
while

::::
only

6%−13% more time is used
:::::::
required

::::
with

:
a
:::::::::::::::
domain-localized

::::
filter

:
when applying the Python DA system build with pyPDAF

in
:
a high-dimensional dynamical systems

::::::
system.720

:::
We

::::::::
recognise

:::
that

:::
the

::::::::::::
computational

::::
cost

::
of

:::
the

:::::::
pyPDAF

::::
and

:::::
PDAF

::::
can

::::
vary

:::::::::::
case-by-case.

:::
Our

::::::
results

::::::::::
demonstrate

::::
that

:::
the

::::::::
additional

:::::::::::
“PDAFlocal”

:::::::
module

:::
was

:::::::
essential

::
to
:::::::
mitigate

:::
the

::::::::::::
computational

::::::::
overhead

::
in

:::
the

::::
case

::
of

::::::
domain

::::::::::
localisation.

::::::
When

:::::::
pyPDAF

::
is

::::
used

:::
for

:::::
other

:::
DA

:::::::::
algorithms

::::
and

::::::::::
applications,

::::::::
potential

::::::::
efficiency

::::
gain

::::
can

::
be

:::::::::::
implemented

::
in

::::::
future

::::::
releases

:::
of

::::
both

:::::
PDAF

:::
and

::::::::
pyPDAF

::
as

::::
both

::::::::
pyPDAF

:::
and

::::::
PDAF

:::
are

:::
still

:::::
under

:::::
active

:::::::::::
development

:::
and

::::::::::::
maintenance.

27



pyPDAF opens the possibility to apply sophisticated efficient parallel ensemble DA to large-scale Python models such725

as machine learning models. pyPDAF also allows for the construction of efficient offline Python DA systems. In particular,

pyPDAF can be integrated to machine learning models as long as the state vector
::::
data

::::::::
structures

:::
of

::::
such

:::::::
models can be

converted to numpy arrays
::
the

::::::
numpy

::::::
arrays

::::
used

::
by

:::::::
pyPDAF. A pyPDAF-based DA system allows users to utilise sophisticated

parallel ensemble DA methods. However, a pyPDAF system does not support GPU parallelisation like TorchDA (Cheng et al.,

2025), which is designed based on the machine learning framework pyTorch. The TorchDA package may also have limitation730

on
::::::::

limitations
:::
for the application of DA on machine learning models implemented by other frameworks.

Code availability. The Fortran and Python code and corresponding configuration and plotting scripts including the randomly generated

initial condition for the coupled DA experiments are available at: https://doi.org/10.5281/zenodo.11367123. The MAOOAM V1.4 model

used for our experiments is available at https://github.com/Climdyn/MAOOAM/releases/tag/v1.4 with a version available at https://doi.org/

10.5281/zenodo.1308192. The Fortran version of the experiment depends on PDAF V2.3 which is released at https://doi.org/10.5281/zenodo.735

13789628 and can be also found at https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3 (Nerger, 2024). The source code of pyPDAF

is available at https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0 with the exactly same version at https://doi.org/10.5281/zenodo.

10950130.

Author contributions. YC coded and distributed the pyPDAF package, conducted the experiments, performed the data analysis, and wrote

the paper. LN coded PDAF and the PDAFlocal module. All authors contribute to the conceptual experiment design and the paper writing.740

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors acknowledge the UK National Environment Research Council’s support for the National Centre for Earth

Observation (Contract Number: PR140015).

28

https://github.com/Climdyn/MAOOAM/releases/tag/v1.4
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.1308192
https://doi.org/10.5281/zenodo.13789628
https://doi.org/10.5281/zenodo.13789628
https://doi.org/10.5281/zenodo.13789628
https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3
https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0
https://doi.org/10.5281/zenodo.10950130
https://doi.org/10.5281/zenodo.10950130
https://doi.org/10.5281/zenodo.10950130


References

Abernathey, R., rochanotes, Ross, A., Jansen, M., Li, Z., Poulin, F. J., Constantinou, N. C., Sinha, A., Balwada, D., SalahKouhen, Jones, S.,745

Rocha, C. B., Wolfe, C. L. P., Meng, C., van Kemenade, H., Bourbeau, J., Penn, J., Busecke, J., Bueti, M., and Tobias: pyqg/pyqg: v0.7.2,

Zenodo [code], https://doi.org/10.5281/zenodo.6563667, 2022.

Ahmed, S. E., Pawar, S., and San, O.: PyDA: A Hands-On Introduction to Dynamical Data Assimilation with Python, Fluids, 5,

https://doi.org/10.3390/fluids5040225, 2020.

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The Data Assimilation Research Testbed: A Community750

Facility, Bulletin of the American Meteorological Society, 90, 1283 – 1296, https://doi.org/https://doi.org/10.1175/2009BAMS2618.1,

2009.

Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 129, 2884 – 2903,

https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal755

Meteorological Society, 143, 607–633, https://doi.org/https://doi.org/10.1002/qj.2982, 2017.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks,

Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023.

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical As-

pects, Monthly Weather Review, 129, 420 – 436, https://doi.org/https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2,760

2001.

Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the ECMWF hybrid data assimilation system, Quarterly Journal of the

Royal Meteorological Society, 142, 287–303, https://doi.org/https://doi.org/10.1002/qj.2652, 2016.

Bruggeman, J., Bolding, K., Nerger, L., Teruzzi, A., Spada, S., Skákala, J., and Ciavatta, S.: EAT v1.0.0: a 1D test bed for physical–

biogeochemical data assimilation in natural waters, Geoscientific Model Development, 17, 5619–5639, https://doi.org/10.5194/gmd-17-765

5619-2024, 2024.

Caron, J.-F., Milewski, T., Buehner, M., Fillion, L., Reszka, M., Macpherson, S., and St-James, J.: Implementation of Deterministic Weather

Forecasting Systems Based on Ensemble–Variational Data Assimilation at Environment Canada. Part II: The Regional System, Monthly

Weather Review, 143, 2560 – 2580, https://doi.org/10.1175/MWR-D-14-00353.1, 2015.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-770

tives, WIREs Climate Change, 9, e535, https://doi.org/https://doi.org/10.1002/wcc.535, 2018.

Cehelsky, P. and Tung, K. K.: Theories of Multiple Equilibria and Weather Regimes—A Critical Reexamination. Part

II: Baroclinic Two-Layer Models, Journal of Atmospheric Sciences, 44, 3282 – 3303, https://doi.org/10.1175/1520-

0469(1987)044<3282:TOMEAW>2.0.CO;2, 1987.

Cheng, S., Min, J., Liu, C., and Arcucci, R.: TorchDA: A Python package for performing data assimilation with deep learning forward and775

transformation functions, Computer Physics Communications, 306, 109 359, https://doi.org/https://doi.org/10.1016/j.cpc.2024.109359,

2025.

Clayton, A. M., Lorenc, A. C., and Barker, D. M.: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system

at the Met Office, Quarterly Journal of the Royal Meteorological Society, 139, 1445–1461, https://doi.org/https://doi.org/10.1002/qj.2054,

2013.780

29

https://doi.org/10.5281/zenodo.6563667
https://doi.org/10.3390/fluids5040225
https://doi.org/https://doi.org/10.1175/2009BAMS2618.1
https://doi.org/10.1175/1520-0493(2001)129%3C2884:AEAKFF%3E2.0.CO;2
https://doi.org/https://doi.org/10.1002/qj.2982
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/https://doi.org/10.1175/1520-0493(2001)129%3C0420:ASWTET%3E2.0.CO;2
https://doi.org/https://doi.org/10.1002/qj.2652
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.5194/gmd-17-5619-2024
https://doi.org/10.1175/MWR-D-14-00353.1
https://doi.org/https://doi.org/10.1002/wcc.535
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C3282:TOMEAW%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.cpc.2024.109359
https://doi.org/https://doi.org/10.1002/qj.2054


De Cruz, L., Demaeyer, J., and Vannitsem, S.: The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0, Geoscientific Model

Development, 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016, 2016.

de Rosnay, P., Browne, P., de Boisséson, E., Fairbairn, D., Hirahara, Y., Ochi, K., Schepers, D., Weston, P., Zuo, H., Alonso-Balmaseda,

M., Balsamo, G., Bonavita, M., Borman, N., Brown, A., Chrust, M., Dahoui, M., Chiara, G., English, S., Geer, A., Healy, S., Hers-

bach, H., Laloyaux, P., Magnusson, L., Massart, S., McNally, A., Pappenberger, F., and Rabier, F.: Coupled data assimilation at785

ECMWF: current status, challenges and future developments, Quarterly Journal of the Royal Meteorological Society, 148, 2672–2702,

https://doi.org/https://doi.org/10.1002/qj.4330, 2022.

Döll, P., Hasan, H. M. M., Schulze, K., Gerdener, H., Börger, L., Shadkam, S., Ackermann, S., Hosseini-Moghari, S.-M., Müller Schmied, H.,

Güntner, A., and Kusche, J.: Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological

model: evaluation of three ensemble-based approaches for the Mississippi River basin, Hydrology and Earth System Sciences, 28, 2259–790

2295, https://doi.org/10.5194/hess-28-2259-2024, 2024.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,

Journal of Geophysical Research: Oceans, 99, 10 143–10 162, https://doi.org/https://doi.org/10.1029/94JC00572, 1994.

Evensen, G., Vossepoel, F. C., and van Leeuwen, P. J.: Data assimilation fundamentals: A unified formulation of the state and parameter

estimation problem, Springer Nature, 2022.795

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Feng, L., Palmer, P., Bösch, H., and Dance, S.: Estimating surface CO 2 fluxes from space-borne CO 2 dry air mole fraction observations

using an ensemble Kalman Filter, Atmospheric chemistry and physics, 9, 2619–2633, 2009.800

filterpy PyPI: https://pypi.org/project/filterpy/, last access: 2024-08-29.

Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensem-

ble Kalman Filter, Monthly Weather Review, 129, 2776 – 2790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2,

2001.

Hamill, T. M., Whitaker, J. S., Fiorino, M., and Benjamin, S. G.: Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with805

an Ensemble Kalman Filter, Monthly Weather Review, 139, 668 – 688, https://doi.org/10.1175/2010MWR3456.1, 2011.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-810

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, 2020.

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B.: Atmospheric Data Assimilation with

an Ensemble Kalman Filter: Results with Real Observations, Monthly Weather Review, 133, 604 – 620, https://doi.org/10.1175/MWR-

2864.1, 2005.815

Hu, C.-C. and van Leeuwen, P. J.: A particle flow filter for high-dimensional system applications, Quarterly Journal of the Royal Meteoro-

logical Society, 147, 2352–2374, https://doi.org/https://doi.org/10.1002/qj.4028, 2021.

30

https://doi.org/10.5194/gmd-9-2793-2016
https://doi.org/https://doi.org/10.1002/qj.4330
https://doi.org/10.5194/hess-28-2259-2024
https://doi.org/https://doi.org/10.1029/94JC00572
https://doi.org/10.5194/gmd-9-1937-2016
https://pypi.org/project/filterpy/
https://doi.org/10.1175/1520-0493(2001)129%3C2776:DDFOBE%3E2.0.CO;2
https://doi.org/10.1175/2010MWR3456.1
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/MWR-2864.1
https://doi.org/10.1175/MWR-2864.1
https://doi.org/10.1175/MWR-2864.1
https://doi.org/https://doi.org/10.1002/qj.4028


Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman

filter, Physica D: Nonlinear Phenomena, 230, 112–126, https://doi.org/https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Installation - pyPDAF documentation: https://yumengch.github.io/pyPDAF/, last access: 2025-03-25.820

Kalnay, E., Sluka, T., Yoshida, T., Da, C., and Mote, S.: Review article: Towards strongly coupled ensemble data assimilation with additional

improvements from machine learning, Nonlinear Processes in Geophysics, 30, 217–236, https://doi.org/10.5194/npg-30-217-2023, 2023.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., Miele, A., Kashinath, K., and Anandkumar, A.: FourCastNet:

Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators, in: The Platform for Advanced

Scientific Computing 2023, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3592979.3593412, 2023.825

Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M., Vereecken, H., and Hendricks Franssen, H.-J.: TerrSysMP–

PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land

surface–subsurface model, Geoscientific Model Development, 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, 2016.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W.,

Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful medium-range830

global weather forecasting, Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336, 2023.

Losa, S. N., Danilov, S., Schröter, J., Nerger, L., Maβmann, S., and Janssen, F.: Assimilating NOAA SST data into the BSH oper-

ational circulation model for the North and Baltic Seas: Inference about the data, Journal of Marine Systems, 105-108, 152–162,

https://doi.org/https://doi.org/10.1016/j.jmarsys.2012.07.008, 2012.

McGibbon, J., Brenowitz, N. D., Cheeseman, M., Clark, S. K., Dahm, J. P. S., Davis, E. C., Elbert, O. D., George, R. C., Harris, L. M., Henn,835

B., Kwa, A., Perkins, W. A., Watt-Meyer, O., Wicky, T. F., Bretherton, C. S., and Fuhrer, O.: fv3gfs-wrapper: a Python wrapper of the

FV3GFS atmospheric model, Geoscientific Model Development, 14, 4401–4409, https://doi.org/10.5194/gmd-14-4401-2021, 2021.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1, https://www.mpi-forum.org/docs/mpi-4.1/

mpi41-report.pdf, 2023.

Nerger, L.: Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter, Quarterly Journal of the Royal840

Meteorological Society, 148, 620–640, https://doi.org/https://doi.org/10.1002/qj.4221, 2022.

Nerger, L.: PDAF Version 2.3, Zenodo [code], https://doi.org/10.5281/zenodo.13789628, 2024.

Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation systems—Implementation strategies and scalability, Computers

& Geosciences, 55, 110–118, https://doi.org/https://doi.org/10.1016/j.cageo.2012.03.026, ensemble Kalman filter for data assimilation,

2013a.845

Nerger, L. and Hiller, W.: Software for Ensemble-based Data Assimilation Systems - Implementation Strategies and Scalability, Computers

& Geosciences, 55, 110–118, 2013b.

Nerger, L., Hiller, W., and Schröter, J.: PDAF - The parallel data assimilation framework: experiences with Kalman filtering, in: Use of High

Performance Computing in Meteorology, pp. 63–83, https://doi.org/10.1142/9789812701831_0006, 2005.

Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A Unification of Ensemble Square Root Kalman Filters, Monthly Weather Review, 140,850

2335 – 2345, https://doi.org/https://doi.org/10.1175/MWR-D-11-00102.1, 2012.

Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework:

example of AWI-CM (AWI-CM-PDAF 1.0), Geoscientific Model Development, 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-

2020, 2020.

Parallelisation Strategy: https://yumengch.github.io/pyPDAF/parallel.html, Accessed: 20 March 2025.855

31

https://doi.org/https://doi.org/10.1016/j.physd.2006.11.008
https://yumengch.github.io/pyPDAF/
https://doi.org/10.5194/npg-30-217-2023
https://doi.org/10.1145/3592979.3593412
https://doi.org/10.5194/gmd-9-1341-2016
https://doi.org/10.1126/science.adi2336
https://doi.org/https://doi.org/10.1016/j.jmarsys.2012.07.008
https://doi.org/10.5194/gmd-14-4401-2021
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/https://doi.org/10.1002/qj.4221
https://doi.org/10.5281/zenodo.13789628
https://doi.org/https://doi.org/10.1016/j.cageo.2012.03.026
https://doi.org/10.1142/9789812701831_0006
https://doi.org/https://doi.org/10.1175/MWR-D-11-00102.1
https://doi.org/10.5194/gmd-13-4305-2020
https://doi.org/10.5194/gmd-13-4305-2020
https://doi.org/10.5194/gmd-13-4305-2020
https://yumengch.github.io/pyPDAF/parallel.html


PDAF - the Parallel Data Assimilation Framework: https://pdaf.awi.de/, last access: 2024-02-13.

Penny, S. G. and Hamill, T. M.: Coupled data assimilation for integrated earth system analysis and prediction, Bulletin of the American

Meteorological Society, 98, ES169–ES172, 2017.

Pham, D. T.: Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Monthly Weather Review, 129, 1194 –

1207, https://doi.org/https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001.860

Pham, D. T., Verron, J., and Christine Roubaud, M.: A singular evolutive extended Kalman filter for data assimilation in oceanography,

Journal of Marine Systems, 16, 323–340, https://doi.org/https://doi.org/10.1016/S0924-7963(97)00109-7, 1998.

Pohlmann, H., Brune, S., Fröhlich, K., Jungclaus, J. H., Sgoff, C., and Baehr, J.: Impact of ocean data assimilation on climate predictions

with ICON-ESM, Climate Dynamics, 61, 357–373, https://doi.org/10.1007/s00382-022-06558-w, 2023.

Raanes, P. N., Chen, Y., and Grudzien, C.: DAPPER: Data Assimilation with Python: a Package for Experimental Research, Journal of Open865

Source Software, 9, 5150, https://doi.org/10.21105/joss.05150, 2024.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters, Tellus A,

60, 361–371, https://doi.org/10.1111/j.1600-0870.2007.00299.x, 2008.

Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the

North Atlantic and Arctic, Ocean Science, 8, 633–656, https://doi.org/10.5194/os-8-633-2012, 2012.870

SALOME The Open Source Integration Platform for Numerical Simulation: http://www.salome-platform.org/, last access: 2024-08-29.

Shao, C. and Nerger, L.: WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework,

Geoscientific Model Development, 17, 4433–4445, https://doi.org/10.5194/gmd-17-4433-2024, 2024.

Simon, E. and Bertino, L.: Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D

ocean ecosystem model, Journal of Marine Systems, 89, 1–18, https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.07.007, 2012.875

Sluka, T. C., Penny, S. G., Kalnay, E., and Miyoshi, T.: Assimilating atmospheric observations into the ocean using strongly coupled ensemble

data assimilation, Geophysical Research Letters, 43, 752–759, https://doi.org/https://doi.org/10.1002/2015GL067238, 2016.

Smith, P. J., Fowler, A. M., and Lawless, A. S.: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmo-

sphere–ocean model, Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.3402/tellusa.v67.27025, 2015.

Strebel, L., Bogena, H. R., Vereecken, H., and Hendricks Franssen, H.-J.: Coupling the Community Land Model version 5.0 to880

the parallel data assimilation framework PDAF: description and applications, Geoscientific Model Development, 15, 395–411,

https://doi.org/10.5194/gmd-15-395-2022, 2022.

Tang, Q., Mu, L., Goessling, H. F., Semmler, T., and Nerger, L.: Strongly coupled data assimilation of ocean observations into an ocean-

atmosphere model, Geophys. Res. Lett., 48, e2021GL094 941, 2021.

Tang, Q., Delottier, H., Kurtz, W., Nerger, L., Schilling, O. S., and Brunner, P.: HGS-PDAF (version 1.0): a modular data assimi-885

lation framework for an integrated surface and subsurface hydrological model, Geoscientific Model Development, 17, 3559–3578,

https://doi.org/10.5194/gmd-17-3559-2024, 2024.

The Python Language Reference: https://docs.python.org/3/reference/introduction.html#alternate-implementations, last access: 2024-02-13.

Tondeur, M., Carrassi, A., Vannitsem, S., and Bocquet, M.: On temporal scale separation in coupled data assimilation with the ensemble

kalman filter, Journal of Statistical Physics, 179, 1161–1185, https://doi.org/10.1007/s10955-020-02525-z, 2020.890

Trémolet, Y. and Auligne, T.: The Joint Effort for Data Assimilation Integration (JEDI), JCSDA Q, 66, 1–5, 2020.

Tödter, J. and Ahrens, B.: A Second-Order Exact Ensemble Square Root Filter for Nonlinear Data Assimilation, Monthly Weather Review,

143, 1347 – 1367, https://doi.org/10.1175/MWR-D-14-00108.1, 2015.

32

https://pdaf.awi.de/
https://doi.org/https://doi.org/10.1175/1520-0493(2001)129%3C1194:SMFSDA%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/S0924-7963(97)00109-7
https://doi.org/10.1007/s00382-022-06558-w
https://doi.org/10.21105/joss.05150
https://doi.org/10.1111/j.1600-0870.2007.00299.x
https://doi.org/10.5194/os-8-633-2012
 http://www.salome-platform.org/
https://doi.org/10.5194/gmd-17-4433-2024
https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.07.007
https://doi.org/https://doi.org/10.1002/2015GL067238
https://doi.org/10.3402/tellusa.v67.27025
https://doi.org/10.5194/gmd-15-395-2022
https://doi.org/10.5194/gmd-17-3559-2024
https://docs.python.org/3/reference/introduction.html#alternate-implementations
https://doi.org/10.1007/s10955-020-02525-z
https://doi.org/10.1175/MWR-D-14-00108.1


van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A

review, Quarterly Journal of the Royal Meteorological Society, 145, 2335–2365, https://doi.org/https://doi.org/10.1002/qj.3551, 2019.895

Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., and Beckers, J.-M.: State-of-the-art

stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A, 70, 1445 364, 2018.

Villa, U., Petra, N., and Ghattas, O.: HIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs:

Part I: Deterministic Inversion and Linearized Bayesian Inference, ACM Trans. Math. Softw., 47, https://doi.org/10.1145/3428447, 2021.

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy,900

J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A.,

Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S.,

Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere

7.0/7.1 and JULES Global Land 7.0 configurations, Geoscientific Model Development, 12, 1909–1963, https://doi.org/10.5194/gmd-12-

1909-2019, 2019.905

Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation without Perturbed Observations, Mon. Wea. Rev., 130, 1913–1927, 2002.

Williams, N., Byrne, N., Feltham, D., Van Leeuwen, P. J., Bannister, R., Schroeder, D., Ridout, A., and Nerger, L.: The effects of assimi-

lating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system, The Cryosphere, 17, 2509–2532,

https://doi.org/10.5194/tc-17-2509-2023, 2023.

Ying, Y. M.: nansencenter/NEDAS: v1.0-beta, Zenodo [code], https://doi.org/10.5281/zenodo.10525331, 2024.910

Zhang, S., Liu, Z., Zhang, X., Wu, X., Han, G., Zhao, Y., Yu, X., Liu, C., Liu, Y., Wu, S., et al.: Coupled data assimilation and parameter esti-

mation in coupled ocean–atmosphere models: a review, Climate Dynamics, 54, 5127–5144, https://doi.org/https://doi.org/10.1007/s00382-

020-05275-6, 2020.

Zhao, F., Liang, X., Tian, Z., Li, M., Liu, N., and Liu, C.: Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the

system and evaluation of synoptic-scale sea ice forecasts, Geoscientific Model Development, 17, 6867–6886, https://doi.org/10.5194/gmd-915

17-6867-2024, 2024.

Zhu, M., van Leeuwen, P. J., and Amezcua, J.: Implicit equal-weights particle filter, Quarterly Journal of the Royal Meteorological Society,

142, 1904–1919, https://doi.org/https://doi.org/10.1002/qj.2784, 2016.

33

https://doi.org/https://doi.org/10.1002/qj.3551
https://doi.org/10.1145/3428447
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.5194/tc-17-2509-2023
https://doi.org/10.5281/zenodo.10525331
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/https://doi.org/10.1007/s00382-020-05275-6
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/10.5194/gmd-17-6867-2024
https://doi.org/https://doi.org/10.1002/qj.2784

