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Abstract

Abstract. Data assimilation (DA) is an essential component of numerical weather and climate prediction. Efficient implemen-
tation of DA benefits both eperational-prediction-and-researchresearch and operational prediction. Currently, a variety of DA
software programs are available. One of the notable DA libraries is the Parallel Data Assimilation Framework (PDAF) de-
signed for ensemble data assimilation. The DA framework is widely used with complex high-dimensional climate models and
is applied for research on atmosphere, ocean, sea ice and marine ecosystem modelling, as well as operational ocean forecast-
ing. Meanwhile, there exists increasing need for flexible and efficient DA implementations using Python due to the increasing
amount of intermediate complexity models as well as machine learning based models coded in Python. To accommodate for
such needs, here;-we introduce a Python interface to PDAF, pyPDAF. The-Python-interface-pyPDAF allows for flexible DA
system development while retaining the efficient implementation of the core DA algorithms in the Fortran-based PDAF. The
ideal use-case of pyPDAF is a DA system where the model integration is independent from the DA program, which reads the
model forecast ensemble, produces a model analysis and update-updates the restart files of the model, or a DA system where the
model can be used in Python. With implementations of both PDAF and pyPDAF, this study demonstrates the use of pyPDAF
and PDAF for coupled data assimilation (CDA) in a coupled atmosphere-and-ocean-atmosphere-ocean model, the Modular
Arbitrary-Order Ocean-Atmosphere Model (MAOOAM). Using-both-weakly-and-strongly-CDA-we-demonstrate-This study
demonstrates that pyPDAF allows for the utilisation of nyheﬂ-baseér Python user- supplled functions in-the-Fortran-based-DA

he-with PDAF functionalities.
The study also shows that pyPDAF can be used with high-dimensional systems with little slow-down of the BA-system-based

onpyPPAE-Our-per analysis step of only up to 13% for the localized ensemble Kalman filter LETKF. In addition, our CDA
experiments confirm the benefit of strongly coupled data assimilation eempared%e%hewveak&eemaleekda&a%ﬁ%ﬂlaﬁeﬂ%

se-for improving both the instantaneous state

and the long-term trend of the coupled dynamical system.



25

30

35

40

45

50

55

1 Introduction

Data assimilation (DA) is widely used in weather and climate modelling where observations are used to constrain the model pre-
diction based on the uncertainty of both the observations and the model forecast. Due to the limited predictability and imperfect
models, DA has become one of the most important techniques for the numerical weather and climate predictions. Progresses of
the DA methodology development can be found in various review articles and books

., Bannister, 2017; Carrassi et al., 2018; Vetra-Carvalho et al., 2018; Evensen et al., 2022).

To ameliorate the difficulties in the implementation of different DA approaches, several DA software programs and libraries
have been proposed (e.g., Nerger et al., 2005; Anderson et al., 2009; Raanes et al., 2024; Trémolet and Auligne, 2020). Even
though the implementation of the core DA algorithms is similar, these software programs/libraries are typically tailored to dif-
ferent purposes. For example, the Joint Effort for Data assimilation Integration GGEBH- (JEDI, Trémolet and Auligne, 2020)
is a piece of self-contained software that includes a variety of functionalities that can be used for all aspects of a DA sys-
tem mainly for operational purposes while DA software for methodology research such as DAPPER (Raanes et al., 2024) is
designed for identical twin experiments equipped with low complexity models.

One widely used DA framework is the Parallel Data Assimilation Framework (PDAF) developed and maintained by the
Alfred Wegener Institute (Nerger et al., 2005; Nerger and Hiller, 2013b). The framework is designed for efficient implementa-

tions of ensemble-based DA systems for complex weather and climate models but is also used for research on data assimilation

methods with low-dimensional “toy” models. The DA implementations require user-supplied functions to provide case-specific
information about the DA system including the treatment of observations and localisation. A-variety-ofsaeeessful-use-cases-of

Medel—vefﬂeié{GI:MéM/—S%febelreh}l—@Q%‘More than 100 studies have used PDAF, including atmosphere (e.g., Shao and Nerger, 20

., Losa et al., 2012; Pohlmann et al., 2023), seaice (e.g., Williams et al., 2023; Zhao et al., 2024), land surface (e.

hydrolo ., Tang et al., 2024; Doll et al., 2024), and coupled systems (e.g., Nerger et al., 2020). Further use-cases of
PDAF can be found in the PDAF website (PDAF
PDAF - the Parallel Data Assimilation Framework, last access: 2024-02-13). Even though PDAF provides a-highly—flexible

framework-for-the- DA-system;-the-highly optimised DA algorithms, the flexible framework relies on the user-supplied functions
to couple DA with model system and observations. The implementation of user-supplied functions still require additional code

X3

development, which can be time-consuming especially when the routines have to be written in Fortran, a popular programming
language for weather and climate applications.

In recent years, Python is gaining popularity in weather and climate communities due to its flexibility and ease of im-
plementation. For example, Python is adopted by some low- to intermediate-complexity models (e.g., De Cruz et al., 2016;

Abernathey et al., 2022), models with a Python wrapper (e.g., McGibbon et al., 2021), and machine learning based mod-
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els (e.g., Kurth et al., 2023; Lam et al., 2023; Bi et al., 2023). For the application of DA in Python, DAPPER provides a
variety of DA algorithms for twin experiments using low-dimensional Python models. The Ensemble and Assimilation Tool,

EAT (Bruggeman et al., 2024) was proposed to set up a 1D ocean-biogeochemical DA system—The-Python-tool-only-has-a

Pythoninterface-to-afewPDAF routines-while-the rest-of-the-system oded-inTortran-, which is a wrapper to a Fortran data
assimilation system based on PDAF including the 1D ocean-biogeochemical model, GOTM-FABM. There are also Python

ackages designed mainly for pedagogical purposes in low-dimensional systems such as openDA (Ahmed et al., 2020) and

lications, there are efficient implementations of DA

ackages such as HIPPYIib by Villa et al. (2021) and ADAO (SALOME The Open Source Integration Platform for Numerical Simulation,

but HIPPY]1ib does not have a focus on ensemble data assimilation approaches whereas ADAO provides various ensemble DA

methodologies but it has no support for the localisation used in weather and climate applications. More recently, NEDAS (Ying, 2024)

was introduced for offline ensemble DA in climate applications but it currently only supports limited DA algorithms.

Here;-Targeted at applications to high-dimensional ensemble data assimilation systems, here, we introduce a Python interface
to PDAF, pyPDAF. Compared-to-the-user-suppliedfunetions-implemented-inFortran,the Python-based-implementation

tlised—Using pyPDAF, one can implement aPython-based-offline DA
system-where-the-medel-outputis-both offline and online DA systems using Python. For offline DA systems, DA is performed
utilising files written onto a disk—, e.g., model restart files. If a numerical model is available in Python, pyPDAF allows for

online DA system implementation where DA algorithms can be used with the Python model with in-memory data exchange

witheut-that does not need I/0 operations —bringing about more efficiency than an offline system. Compared to user-supplied
functions implemented in Fortran, the Python implementation can facilitate easier code development thanks to a variety of

ackages readily available in Python. In the meantime, DA algorithms provided by PDAF that are efficiently implemented in
Fortran can still be utilised.

In this study, we demonstrate the use of pyPDAF in a coupled data assimilation (CDA) setup with the Modular Arbitrary-Order

Ocean-Atmosphere Model (MAOOAM, De Cruz et al., 2016) where an arbitrary number of erid points can be specified without

changing the model dynamics making it suitable to provide benchmarks of pyPDAF. The research on CDA is motivated by the
use of coupled earth system models, especially for the-coupled atmosphere and ocean simulations (Eyring et al., 2016; Walters

et al., 2019). Traditionally, each model component is assimilated individually and the state of each model component inter-
acts with the others only in the coupled model forecast. This approach is called weakly coupled DA (WCDA). It is desirable
to perform DA jointly for all model components simultaneously, usually denoted as strongly coupled DA (SCDA). Studies
report a suite of benefits of using SCDA. For example, Smith et al. (2015) shows that the SCDA can improve dynamiecally
bataneed-dynamical balance in the analysis leading to reduced initialisation shocks. Sluka et al. (2016) reported improvements
in analysis with SCDA in an intermediate complexity model. Tang et al. (2021) performed SCDA of ocean observations into
the coupled atmosphere-ocean model AWI-CM and found positive effects in particular in the polar regions. Further studies can
be found in a suite of review articles on CDA (Penny and Hamill, 2017; Zhang et al., 2020; de Rosnay et al., 2022; Kalnay
et al., 2023).
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In-this-paperHere, we will first introduce ensemble-based data assimilation, the principal objective of PDAF, in Sect. 2.
Section 3 will describe the design and implementation of PDAF and pyPDAF. In Sect. 22;theconceptof CDA-will-be-diseussed-
H-Seet—4, the experiment-experimental and model setup will be described. Section 5 will report the performance of PDAF and
pyPDAF in CDA setup. We will conclude in Sect. 6.

2 Ensemble-based data assimilation

The-parallel-data-assimilationframewerk-Although PDAF supports a few deterministic DA methods, it focuses on ensemble-
based DA methods. Ensemble-based DA is a class of DA approaches that approximate the statistics of the model state and

its uncertainty using an ensemble of model realisations —Fhe-ensemble-based-DA-was-motivated by DA approaches based on
Bayes theorem where the prior, typically a model forecast, and posterior (analysis) distributions can be approximated by a
Monte Carlo approach. Fhis-The ensemble model forecast allows for an embarrassingly parallel implementation which means
that, with sufficient computational resources, the wall clock computational time of the forecast does not increase with the
ensemble size.

Under the Gaussian assumption of the forecast and analysis distributions, one of the most notable ensemble-based DA meth-

ods is the ensemble Kalman ﬁlter%ﬂKlléEveﬁseﬂ—}‘)QéF% EnKEF, Evensen, 1994). The EnKF approximates the forecast and

analysis error distribution by an ensemble

. The method was proven to be successful in many
applications (e.g., Houtekamer et al., 2005; Feng et al., 2009; Hamill et al., 2011; Sakov et al., 2012). To further improve
the efficiency and reliability of the EnKF, multiple variants of the EnKF were proposed, such as singular evolutive intepo-
lated Kalman filter (SEIK, Pham, 2001), ensemble transform Kalman filter (ETKF, Bishop et al., 2001), error space transform
Kalman filter (ESTKEF, Nerger et al., 2012), and the deterministic ensemble Kalman filter (Sakov and Oke, 2008). In practice
computational resources limit the feasible ensemble size, which is typically of an order of 10 to 100, in the high-dimensional
realistic DA applications in the Earth system due to the cost of model forecasts. The ensemble-based DA approaches typically
suffer from sampling errors from limited ensemble size. To counter these deficiencies, covariance matrix inflation and locali-
sation are commonly used (e.g., Pham et al., 1998; Hamill et al., 2001; Hunt et al., 2007). In particular, the domain localisation
is tailored for efficient parallel implementations that are commonly used in high-dimensional DA systems.

Ensemble-based DA can also treat fully non-linear non-Gaussian problems. The most notable example is particle fil-
ters (vanbeeuwen-etal;2019)(see, van Leeuwen et al., 2019). They can be used to solve fully non-linear problems without
assumptions on the prior and posterior distribution. However, for high-dimensional geoscience applications, the classical parti-
cle filters suffer from the “curse of dimensionality” where the required ensemble size grows exponentially with the dimension
of the state vector making the approach computationally infeasible. Recent developments of the particle filters significantly
improve the stability and reduce the required ensemble size of the approach making it a potential choice for low-to-medium
complexity models, such as implicit equal-weights particle filters (Zhu et al., 2016) and the particle flow filter (Hu and van

Leeuwen, 2021). An overview of other developments of particle filters can be found in van Leeuwen et al. (2019).



The ensemble-based DA approaches are adopted by many operational centres where traditionally variational methods are

125 used (e.g., Clayton et al., 2013; Caron et al., 2015; Bonavita et al., 2016; Hersbach et al., 2020). In variational methods,
ensemble approaches are used to achieve flow-dependent background covariance matrix, and/or to avoid explicit computation

of the adjoint model in the minimisation process by using an ensemble approximation. These goals can be realised using

various different methodologies and a detailed review of these methods can be found in Bannister (2017).

3 PDAF and PyPDAF

130 The-ParallelData-AssimilationFramework-(PDAF)-PDAF is designed for research and operational DA systems. As a Python
interface to PDAF, pyPDAF uses-inherits the DA algorithms implemented in PDAF and the same implementation approach to

build a DA system.

3.1 Parallel Data Assimilation Framework (PDAF)

PDAF is a Fortran-based DA framework providing fully optimised, paral-

135 lelised ensemble-based DA algorithms. The framework provides a software library and defines a suite of workflows based on
different DA algorithms provided by PDAF including various ensemble Kalman filters/smoothers, ensemble-based 3DVar (Bannister, 2017)
, particle filters (van Leeuwen et al., 2019) and other non-linear filters (Todter and Ahrens, 2015; Nerger, 2022). To deal with
sampling errors in the ensemble-based DA, the framework also provides options for adaptive inflation sehemes—and—foer
toeatizationand localisation schemes.

140 As a framework for ensemble DA, the—framework—it comes with the functionality to generate the initial ensemble. Fhe

One possibility is to use the second-order exact sampling (Pham, 2001) where the ensemble is generated based on the model
trajectory of the modelled truthusing-the-second-erderexactsampling(Pham;2001). The assumption is that the uncertainty of

the model initial condition lies in the phase space of the model trajectory. The space is represented by the singular values and
its corresponding vectors using an empirical orthogonal function (EOF) decomposition. In-the-second-order-exactsampling

mhla of AL _dirmencion datevectorcand-A—ancermblemermbercicoanarated-by—pe
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To ensure that PDAF can be flexibly adapted to any models and observations, it requires users to provide case-specific infor-

150 mation. This includes the information on the state vector, observations and localisation. The framework obtains this information
via user-supplied functions which are external callback subroutinesin-Fertran. Figure 1 shows a schematic diagram of an online
DA system where the EFKF-LETKEF is used. Here, the user-supplied functions connect PDAF with models. Called within the
PDAF routines, these user-supplied functions collect state vectors from model forecasts and distribute the analysis back to the
model for the following forecast phase. During the analysis step, user-supplied functions also pre- and post-process the ensem-

155 ble, handle observations-localisations and observations, and provide the number of model time steps for the next forecast phase
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Figure 1. A schematic diagram of an online EFKF-LETKF DA system using (py)PDAF. In the case of an offline DA system, the model can

be its restart files.

to PDAF. As the user-supplied functions depend on the chosen DA algorithm, other algorithms may require additionat-different

functions. For example, the lecal-ensembleKalman e 2 B)-requiresroutines—used-to-handle-the-domainlocalisatio

and-3DVar requires routines for the adjoint observation operator and control vector transformation. To ameliorate the diffi-

culty in the observation handling, PDAF provides a scheme called observation module infrastructure (OMI). The OMI routines

eurrently-support spatial-interpotationshandle the processing of observation vectors and error covariance matrix used by DA
algorithms, and provide support for the complex distance computation used by localisation. In the current version of PDAF
V2.3, it also supports spatial interpolations on structured and unstructured grids, direct observation operator, and a diagonal
or non-diagonal observation error covariance matrix. One can also implement PDAF without OMI, but additional functions
would be required.

In an online DA system, the collection and distribution of state vector is an in-memory data exchange handled by PDAF
efficiently. It is possible to implement an offline DA system with PDAF where the model in Fig. 1 ean-be-simply-would be
replaced by model restart files while the user-supplied collection and distribution routines manage the I/O operations —of these

restart files. Offline DA implementation is a crucially supported feature of PDAF and a potentially important use-case for
PDAF, but we will not discuss it in detail for the sake of brevity. We will provide details of the use of user-supplied functions
in the context of pyPDAF in Sect. 3.1.

3.2 pyPDAF

Implementation of user-supplied functions can be laborious in Fortran and typical code development in Python can be less
time consuming. Pue-Thanks to the integrated package management, code development in Python can rely on well op-
timised packages without the need for compilation. For these reasons, a variety of numerical models are implemented in
Python (e.g., De Cruz et al., 2016; Abernathey et al., 2022; McGibbon et al., 2021; Bi et al., 2023). Hence, a Python interface
to PDAF allows fer-designing-the design of an online DA system with such Python-based models;-and-also-aHowsfor-an

opment-and-modif ons {o DA-system—. These range from low-dimensional toy dynamical systems
to high-dimensional weather and climate systems. Compared to a Fortran-coded DA system, a Python DA system can be
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Figure 2. An illustration of the design of the pyPDAF interface to the Fortran-based framework PDAF. Here, only the Python component is
exposed to pyPDAF users, and the Cython and Fortran implementations are internal implementations of pyPDAF.

implemented efficiently and allows for easier modifications such that users can focus on scientific problems. These-features
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The pyPDAF package can also be applied for offline DA systemsystems, i.e. coupling the model and data assimilation

185 program through restart files;—where-. Here pyPDAF can be used without the restriction of the programming language of

the numerical model. When computation-intensive user-supplied functions are well optimised ;-(e.g., using just-in-time (JIT)
compilation), this could also be used for complex modelsas-pyPDAFfully-supports-. Thus, depending on the requirements
of the users, an offline DA system can be used to prototype a Fortran DA system as well. The application of pyPDAF in
high-dimensional models can also be shown by its support of the parallel features of PDAFusing-, which use the Message Pass-
package for MPT support. The pyPDAF system can also support shared memory parallelisation in PDAF when built with
OpenMP.

As the reference implementation of Python is based on the C programming language {ef-The Pythenanguage Reference last-aceess: 2

The Python Language Reference, last access: 2024-02-13), the design of pyPDAF is based on the interoperability between the
195 programming languages of C and Fortran using the ise—e—binding-iso_c_binding module of Fortran. As shown in Fig. 2, the C

interface of PDAFisimplemented-in-, PDAFc, is developed in pyPDAF, which includes essential PDAF interfaces and interfaces
for user-supplied functions. Hence, PDAFc could be used independently from pyPDAF as a C interface to the PDAF package.
The core of the pyPDAF implementation uses the C-extension for Python (Cython). Here Python datatypes are converted into
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C pointers to allow for information exchange between PDAF and pyPDAF. pyPDAF implements C callable functions which

can call user-supplied functions in Python such that PDAF can utilise the user-supplied Python functions.

With-the-design-of pyPDAFthe-packagepyPDAF is designed so that a DA system can be coded purely in Python includin,
the user-supplied functions and function calls to algorithms implemented in PDAF. The interface to PDAF is provided through
functions implemented using Cython, which provides the interface for calls from Python. Thus, the pyPDAF package itself

is a mixed program of C, Fortran and Python. Moreover, as DA algorithms require high-dimensional matrix multiplications,
PDAF relies on the numerical libraries LAPACK (linear algebra package) and BLAS (basic linear algebra subprograms). These
libraries lead to a complex compilation process especially when users could use different operating systems. To fully utilise the
cross-platform support of Python environment, pyPDAF is distributed via the package manager conda to provide an out-of-box
user experience with pyPDAF where users can use pyPDAF without the need for compiling the package from the source code.
Detailed installation instructions can be found at: https://yumengch.github.io/pyPDAF/install.htm].

pyPDATF allows for the use of efficient DA algorithms in PDAF. However, a DA system purely based on pyPDAF could still
be less efficient than a DA system purely based on PDAF coded in Fortran. The loss of efficiency is partly due to the operations

in user-supplied Python functions and the overhead from the conversion of data types between Fortran and Pythonebjeets
leading-a-computational-overhead. We will evaluate the implications of these loss of efficiency in Sect. 5.2.

3.1 Construction of data assimilation systems usin PDAF

To illustrate the application of pyPDAF to an existing numerical model, as an example, we present key components of an
LETKF DA system. This example follows the schematic diagram in Fig. 1. Here, we assume that the number of processors is
equal to the ensemble size. In this setup, each ensemble member of the model forecast runs on one processor, and the analysis
is performed serially on a single processor. We further assume that observations are co-located on the model grid but are of
lower resolution, and they have a diagonal error covariance matrix.

observattons-are-assimitated-sertaly-which-is-pessible-Hf-the-observatio OFS—¢ 3 ated e e-the-two-componen
T
o i = 1 2 . i

%r&teﬁfeeﬁerr%ér—I%—Weﬂ%umeﬂﬁ%eﬂe#eempeﬁem—eFC0m ared to Fortran implementations, a Python DA

system can better utilise the object-oriented features. Here, we assume the existence of a generic model object that containg


https://yumengch.github.io/pyPDAF/install.html

235

240

245

250

255

p! Bupt VBiB2pis
VB1B2pd, Bop}

PDAF functionalities should be initialised b
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information on the type of filters (filtertype and subtype) is given to PDAF by this function. It also takes parameters of these

filters. Here, the size of the state vector (dim_p) and the ensemble size (dim_ens) are specified in the param_int array, and

the inflation factor is specified in param _real array. These parameters allow PDAF to allocate arrays such as the ensemble
mean (state_p) and the ensemble matrix (ens p) used by the DA. The MPI communicators of model, the filter and the
coupling between model and filter are also specified here by COMM _model, COMM_filter, COMM_couple respectively. The
initialisation function also obtain other parallelisation information from the function call including the index of the parallel
model tasks by rask_id, the total number of parallel model tasks by n_modeltasks, a boolean variable that determine if the filter

is performed on current process by filterpe. Detailed explanations of the parallelisation strategy used by PDAF can be found

in Nerger and Hiller (2013a). Also, the initialisation function takes the initial time step, stepnull, as a step counter in PDAF.

uiny, ens_p, flag) is used to initialise PDAF ensemble, ens_p. In the user-supplied function, the error-vartance-of-the-i-th-modet

; input arguments are given by the PDAF, and the
returned arguments are received by PDAF to perform DA. Here, uinv is a variable used for the second-order exact sampling.
The ensemble generation method can be used with pyPDAF.PDAF.eofcovar and pyPDAF, PDAF.SampleEns when starting from

a deterministic run. If OMI is used, pyPDAF.PDAF.omi_init(n_obs) is used to initialise the n_obs types of observations.
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Figure 3. A flowchart of the sequence of LETKF operations in PDAF. These operations include user-supplied functions and core LETKF

algorithm. The arrows indicate the order in which the user-supplied functions are executed. They do not imply that one routine calls the other.

The observation operators and the global and local domain update are represented by multiple boxes as they are performed by each ensemble

member.

In each model integration step, the analysis of-®y-after-assimilating 415~
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oxst =
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step is executed b

status = pyPDAF.PDAF.omi_assimilate_local(collect_state,distribute_state,init_dim_obs,

obs_op, prepostprocess,init_n_domains,

init_dim_l,init_dim_obs_l,

g2l_state,[2g_state,next_observation)

and-pijiswhere status is a flag for the error code of the DA step, and the arguments of pyPDAEPDAF.omi_assimilation_local
are user-supplied functions, which will be discussed in detail. In the analysis step, each user-supplied function will next be
executed by PDAF to collect necessary information, or perform case-specific operations for the DA. A flow chart is given in
Fig 3.

As shown in Fig. 1, the model and PDAF exchanges information by user-supplied functions. The user-supplied function
state_p = collect_state(dim_p, state p) is executed by PDAF for each ensemble member to fill model forecast fields into a
one-dimensional array, state_p. Similarly, state_p = distribute_state(dim_p, state_p) distributes analysis (state_p) to model
fields for the initialisation of the next forecast cycle. These user-supplied functions allow users to adapt a DA system with

different models.

10
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To handle different observations, with the OMI functionality, only three user-supplied functions need to be implemented. One
is dim_obs = init_dim_obs(step, dim_obs_p). The primary purpose of the function is to obtain the dimension of observation
vector, dim_obs, with an initial dimension given by dim_obs _p at the current time step, step, as implied by its name. In this
function, one has to provide further observation information to OMI. The OMI obtains the information in two approaches. One
roach is by calling the function: dim_obs = pyPDAF.PDAF.omi
The function returns the total dimension of the observation vector (dim_obs) of i obs-th observation type which is returned
by the user-supplied function init_dim._obs. As function arguments, pyPDAF.PDAF.omi_gather_obs provides PDAF with the
observation vector (occord_p). inverse of the observation variance (ivar. obs_p). the observation coordinates (ocoord p), and

a localisation radius for the

ather_obs(i_obs, obs_p, ivar_obs_p, ocoord_p, cradius).

Pii = p‘fé=\/61/3229{2(1—(61p{+r1)_1/51p{) and

st = B (Pg — (Brp] +T1)71/31P§C1P{2> .

T 5 Isis varianee s

pr=Bip] (1= Bip{ (Bupf +70)7") = (05" +72) " pidti.

The-first-term-in-Eq—(2?)-is—current observation type (cradius). The other approach sets attributes of the derived data t

obs_f, in PDAE In obs_f, the attributes include the switch of the inerement-due-to-assimilation of the observation type. the
index of the observation in the state vector, id_obs_p, the domain size and the WEDA-in-model-componentt—while-the
second-term-is-options for distance computation in localisation. While these attributes can be set by direct initialisation in
Fortran, in pyPDAF, these attributes can be set by setter functions, e.g., id_obs p can be set using the pyPDAF function
pYPDAEPDAE omi_set_id_obs_p(i_obs, id_obs_p)..

The observation operator is implemented by the user-supplied function m_state_p = obs_op(step, dim_p, dim_obs_p, state_p,
m_state_p). It takes a state vector (state_p) as input and returns a vector in observation space (m_state_p). In our example, it
can be handled directly by the OMI function m_state p = pyPDAEPDAF.omi_obs _op, gridpoint(i_obs, state_p, m. state_p).
Note that other observation operators are also available with pyPDAF but not discussed here. The last user-supplied function
related to observations is dim_obs, I = init_dim_obs_l(domain_p, step, dim_obs. dim_obs_) which tells PDAF the number
of observations being assimilated in the current local domain (dim_obs I). This function can be simplified by the OMI

function dim_obs_I = pyPDAF.PDAF.omi_init_dim_obs_I_iso(i_obs, coords_l, locweight, cradius, sradius, dim_obs_l) which

and the localisation radius (cradius) as well as the support radius of localisation function (sradius).
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The domain localisation requires four additional user-supplied functions. The number of local domains (n_domains

is provided by
provided by dim_I= init_dim _I(step, domain_p, dim 1). The conversion of the full global state vector to a state vector on
local domain and vice versa is controlled bystare_ = 21 _state(step, domain_p, dim_p, state_p, dim_l, state l) and state p =
I2g_state(step, domain_p, dim_L state I, dim_p, state_p). The user-supplied function g2/ state and [2g_state are not used in
‘PDAFlocal’ modules as will be discussed in Sect. 3.2.
The pyPDAF analysis step requires two additional user-supplied functions. The state_p, uiny, ens,_p = prepostprocess(step,
. dim_ens, dim_ens_p, dim_obs_p, state_p, uinv, ens ag) function is called by PDAF to preprocess the forecast
ensemble (ens_p) before the LETKE and post-process the analysis ensemble (ens_p) after the LETKF assimilated the observations.

The user-su

steps between two DA executions, nsteps. Given the current time step and other uninitialised input arguments, PDAF also

obtains the information of the

n_domains_p = init_n_domains(step, n_domains_p), the dimension of domain_p-th local domain, dim_1, is

lied function, nsteps, doexit, time = next_observation(step, nsteps, doexit, time), tells PDAF the number of time

components-based-on-avatlable-observations-current model time, time and a flag for the completion of all DA cycles doexit in
next_observation. To control the memory allocation in the DA cycle, the DA system can be finalised by function pyPDAF.PDAF.deallocate(

PDAF can handle much more complex cases including non-isotropic localisation, or non-diagonal observation error covariance
matrices. Besides LETKEF, other filters might require different user-supplied functions as they utilise different case-specific
information. The code that exists can support a wide range of filters without changes.

4 Model and DA setup

To demonstrate the application of pyPDAF and to evaluate its performance in a coupled DA setup, the- Modular Arbitrary-Order

amMAOOAM (De Cruz et al., 2016) version 1.4 is coupled with PDAF
and pyPDAF. The original MAOOAM model is implemented in Fortran that is coupled directly with PDAF, and a wrapper for

Python is developed in this study such that MAOOAM can be coupled with pyPDAF. This means that two online DA systems
using Fortran and Python respectively are developed to allow for a comparison between the PDAF and pyPDAF implementa-
tion. In these DA systems, a suite of twin experiments are-is carried out using the ensemble transform Kalman filter (ETKF,

Bishop et al., 2001) and its domain localisation variant, LETKF.
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4.1 Coupled model MAOOAM

The MAOOAM solves a reduced-order non-dimensionalised quasi-geostrophic (QG) equation (De Cruz et al., 2016). Using
the beta-plane approximation, the model has a two-layer QG atmosphere component and one-layer QG shallow-water ocean
component with both thermal and mechanical coupling. For the atmosphere, the model domain is zonally periodic and has a
no-flux boundary condition meridionally. For the ocean, no-flux boundary conditions are applied in both directions. This setup
represents a channel in the atmosphere and a basin in the ocean. The model variables for the two-layer atmosphere are averaged
into one layer. Accordingly, MAOOAM consists of four model variables: the atmospheric streamfunction, 1),, the atmospheric
temperature, T, the ocean streamfunction, 1, and the ocean temperature, T,,. The model variables are solved in a spectral
space. The spectral basis functions are orthonormal eigenfunctions of the Lapace operator subject to the boundary condition,
and the number of spectral modes is characterised by harmonic wave numbers P, H, M (Cehelsky and Tung, 1987).

We integrate MAOOAM with (py) PDAFwi
Fig. 1, the key ingredient of coupling MAOOAM with (py)PDAF is the collection and distribution of state vector. In common

. As shown in

setups of ocean and atmospheric DA, the observations are available in the physical space. Hence, in the user-supplied function
that collects the state vector for pyPDAF (ef-see Fig. 1), spectral modes of the model are transformed from the spectral space

to physical space using the transformation equation,

f(a,y,t) Zcz 1)

where f(x,y,t) is any model variable in the physical space, K is the number of modes, ¢;(t) is the spectral coefficient of the
model variable, F;(x,y) is the spectral basis function of mode ¢ outlined in De Cruz et al. (2016). In the user-supplied function
that distribute-distributes the state vector for pyPDAF (ef-see Fig. 1), the analysis has to be transformed back to the spectral
space to initialise the following model forecast. The inverse transformation from the physical space to the spectral space can

be obtained by

=53 / / z,y,t) Fi(z,y)dzdy. 2
0

Here, each basis function corresponds to a spectral coefficient of the model variable. The basis functions are evaluated on an
equidistant model grid. The spectral coefficients are obtained via the Romberg numerical integration. To ensure the accuracy
of the numerical integration, the number of grid points is 2* 4+ 1 with k € Z+.

Our model configuration adopts the strongly coupled ocean and atmosphere configuration (36st) of Tondeur et al. (2020)
using a time step of 0.1 time units corresponding to around 16 minutes. Using the notation of H™%*x— P™*"y of De Cruz et al.
(2016) with the superscript max the maximum number of harmonic wave numbers, the configuration chooses 2x — 4y modes
for the ocean component and 2x — 2y modes for the atmosphere component. This leads to a total of 36 spectral coefficients with
10 modes for 1), and T, respectively and 8 modes for 1), and T}, respectively. The model runs on a rectangular domain with a

reference coordinate system of (z x y) € [0, 2] x [0, 7], where n = 1.5 is the aspect ratio between the z and y dimensions.
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In contrast to Tondeur et al. (2020) who assimilate in the spectral space, we assimilate in the physical space in which

the observations are usually available.

a-A sensitivity exper-
iment was performed to study the transformation error. The experiment shows that when the number of grid points reaches
129142927 +1 x 27 + 1) = (129 x 129), the transformation error becomes negligible and the physical grid points resolve

the features in the spectral space. In practice, due to the chaotic nature of the model and long simulation time, the error from the

transformation can accumulate which subsequently leads to model errors. For-thesake-of-efficieney; 129-x129-grid points-are
ehesenThe transformation between the spectral and physical space allows us to investigate the computational cost of the DA in
PYPDAF and PDAF with the same model dynamics. As the ensemble size is determined by the dimension of unstable subspace
of the dynamical system, a fixed ensemble size can be used (Tondeur et al., 2020). Therefore, for benchmarking computational
cost, we conduct a suite of SCDA experiments with 2" + 1 x 2" + 1 number of grid points where 7 < k < 11. This gives us
an-orderstate vectors with dimension ranging from a magnitude of 10* grid-pointsforeach-model-variable-in-the-state-veetor
for-DAto 107, The size of a state vector with around 107 elements is closer to operational setups. We also implement SCDA
experiments using LETKF on a grid number of 257 x 257 with observations on every 4 and 8 grid points to investigate the
efficiency of the domain localisation in pyPDAF.

4.2 Experiment design

In a twin experiment, a long model run is considered truth. The model state is simulated with an initial condition sampled
in the spectral space which follows a Gaussian distribution, A/(0,0.01). The DA experiments are started after 10 time steps
corresponding to around 277 years of model integration to ensure the dynamical consistency of the model state.

The observations are generated from the truth of the model state based on pre-defined error statistics of the observations. Both
Except for the LETKF experiments, both atmosphere and ocean observations are sampled every 8 model grid points feading-to
+7<t7ebservationsfor each model field—The-grid setup. In all cases, the observation error standard deviatien-deviations are set
to 50% and 70% of the temporal standard deviation of the true model trajectory for the atmosphere and ocean respectively. The
resulting standard deviation of the atmosphere observations is on a similar magnitude with the ensemble spread of the free run
(cf. Fig. 5) while the magnitude of the observation error in the ocean is typically larger than in the atmosphere in real observing
networks. Fhe-As an example, the obtained standard deviation fields on a grid with 17 x 17 grid points are shown in Fig. 4.
With our chosen model configuration, the highest observation error is in the ocean temperature while the ocean streamfunction
shows the least uncertainty due to its slow variability. Meanwhile;-the-The atmospheric processes in MAOOAM show fast
vartability-and-sherter-timeseale-variability on shorter timescales than the ocean. Hence, the ocean observations are assimilated
around every 7 days (630 time steps) while the atmosphere observations are assimilated around every day (90 time steps).

As shown by Tondeur et al. (2020), DA in the model configuration using 36 spectral coefficients can achieve sufficient
accuracy with an-ensemble-size-of-15 ensemble members. In this study, 16 members are used and each ensemble member runs

serially with a single process.

‘Without tuning, a forgetting factor of

0.8 is applied to maintain the ensemble spread and ensure a stable DA process.
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Figure 4. The observation error standard deviation fields used for generating the synthetic observations. The spatial mean of the error standard

deviation is shown in the bracket.

Using the second-order exact sampling provided by PDAF (ef-—see Sect. 3.1), the ensemble is generated from a model
trajectory by sampling the modelled truth every 10 days over 100 years after around 1000 years from the beginning of the
simulation. This leads to 36 non-zero singular values equaling to the number of spectral modes in the model. The perturbation
from the second-order exact sampling could violate the dynamical consistency of the model, so that the ensemble would need
to be spun up to reach dynamical consistency. To reduce the spin up time, the initial perturbation is scaled down by a factor
of 0.2, 0.15, 0.4 for ¥,, T, and T, respectively. Because the ocean streamfunction has very low variability, its perturbation is
unchanged.

The DA experiments are started after 15 days from the beginning of the ensemble generation. In this setup, the forecast error
is solely a result of inaccuracy of initial conditions. As shown in Fig. 5, the ensemble spread generally captures the trend and
is in a similar magnitude of the model forecast error. This suggests that the forecast uncertainty from the free run ensemble

initialised by the second-order exact sampling is able to reflect the forecast errors even though the spread is lower than the

RMSE after 200 years.

In the free run (upper panel of Fig. 5), the ocean temperature shows the highest uncertainty eompared-to-other-of all model
variables. The ocean streamfunction shows a very slow error growth rate. This is also shown by the error and ensemble

uncertainty which are two magnitude-magnitudes smaller than those of other model variables. Sensitivity tests (not shown)
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Figure 5. The-Ensemble spread and RMSE of the (top) free run and (bottom) SCDA analysis on a 129 x 129 grid. Shown are the time series
of the spatial mean of ensemble spread (red) s-and the RMSE of the ensenble-mean with-regard-to-the-truth-analysis (black)and-ebservation
tati > tod. The atmosphere shows fast variability and oscillatory RMSE of

t=}

the ensemble mean while the RMSE of the ocean ensemble mean is smooth. Fhe-temperal-mean-of-the RMSEs-ealeulated-overobserved-and

suggest that an increased error of the ocean streamfunction has a significant impact on the model dynamics consistent with the
theoretical discussion given in Tondeur et al. (2020). The error of the atmosphere components shows a wave-like behaviour in
time. Tondeur et al. (2020) describe the periods associated with fast dynamics with high and oscillatory errors as active regimes

and the periods associated with slow dynamics with low and stable errors as passive regimes.

5 Results

In this section, we evaluate the aceuracy-of-WEDA-and-SCDA-in-DA skill of the MAOOAM-(py)PDAF online DA system

evaluate the computational efficiency of pyPDAF and PDAF ;—we-alse-and the potential practical applications of pyPDAF,
we compare the wallclock time required-by-the-WEDA-and-in the SCDA system. The online DA systems using PDAF and
pyPDAF produce quantitatively the same results in all WEDA-and-SEDA-experiments up to machine precision.

5.1 Weakly Effect of coupled data assimilation

In WCDA, the e oupling only

occurs during the model forecast. This means that the sparse-observations only influence their own model component in the

analysis step. In this setup, each model component has its own DA system with only two model variables, the streamfunction
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Figure 6. Left: The time-averaged RMSE of the analysis using WCDA and free run where the RMSE of the observed (non-hatched bars),
denoted by “obs.” in the legend, and unobserved gridpoints (hatched bars), denoted by “no obs.”, are compared separately. Right: comparison
of RMSE:s for weakly and strongly coupled DA for all grid points. The y-axis is plotted in the log-scaleand-the-hatehed-bars-represent-the

RMSE it ; " , ons.

and temperature, on the same model grid. The-implementation-ofsuch-This implies two separate DA systems. In an online DA
systemrequires-setup in PDAF, two separate state vectors have to be defined in each analysis step which is not straightforward

with PDAF due to its assumption that each analysis step has only one state vector. {In the case of AWI-CM in Tang et al.
(2021), two separate state vectors were obtained by using a parallelizationparallelisation, but here the two model components
of MAOOAM are run using the same processor. »-This-restriction-is-cireumvented-In our implementation we obtain WCDA by
resetting the time step counter in PDAF in our implementation such that even if the assimilation of two state vectors are done
by using PDAF twice, PDAF only counts it as one analysis time step. An alternative approach could be to use the loealized
LETKF method and define the local state vector as either the atmosphere or ocean variables. The-WCEDA-—results-aresuitable

Figure 6 shows that the time averaged RMSE of WCDA is smaller than that of the unconstrained free runthus-that-, Thus,

the error growth is successfully controlled. This also demonstrates that the ETKF leads to a converged analysis even though

our observations are less accurate than the forecast at the start of the DA period.
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anyloealisationThe results also show that sparse observations can successfully control errors in regions without observations.

This is likely-caused-by-the-speetral-medel-setup-where-the-medel-is-mestly-compesed-ef long-wavesleading-smooth-spatia
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grid points; the effective state dimension-is-mueh-Jower-due to the fact that the model fields are rather smooth.
5.2 Strengly-eoupled-data-assimilation

Compared to the WCDA, atmosphere observations influence the ocean part of the state vector and vice versa in the SCDA.
This means that the coupling occurs for both the analysis step and model forecast. In this case, the DA system only has one
unified state vector that contains the streamfunction and temperature of both model components. The implementation of an
online SCDA system aligns with the design of PDAF and does not require special treatment.

As expected, the SCDA yields lower analysis errors than the free run as shown in Fig. 5, and the errors are also lower than
the WCDA as shown in the right panel of Fig. 6. The improved analysis in the SCDA in each model component is a result
of assimilating observations from the other model component. The effective use of these additional observations relies on the
error cross-covariance matrix between model components estimated by the forecast ensemble. The improvements suggest a
reliable error cross-covariance matrix in the coupled DA system.

To further understand the effect of the cro ovariances. and the advantage of assimilatin

model-compeonent,—wefurthershow the performance of pyPDAF in a SCDA setup, we carry out experiments in which only
one model component is observed. In the SCDA, the analysis increment of a model component without observations relies

on the error cross-covariance matrix with the model components that have observations. Fhis-set-up-correspondstoEe¢—22)

which-also-shows-that-the-analysisinerementis-prepertional-to-the-inflation—~/S>-In this experiment, inflation is only applied
to the unobserved-component—Hereto-aveid-anobserved model component to avoid excessive analysis increment /315
set-te-one—Thisto the unobserved model components. The partial inflation is achieved in the post-processing routines as PDAF

applies inflation uniformly to the entire state vector by default.
Figure 7 shows the time-averaged RMSE of fields that are smoothed in time by a moving average as a function of the

averaging time-window. The RMSEs of the instantaneous model fields are represented by zero moving average window length.

Assimilating observations from the other model component with SCDA can improve the analysis of the unobserved model
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Figure 7. Time averaged RMSE when only one model component has-ebservationsis observed. The y-axis is in log-scale.

As-shown-inFig—75-the-The assimilation not only improves the instantaneous model fields but also the long-term trend of the
atmosphere and ocean climate even though the error dynamics of atmosphere and ocean shows strong time-scale differences
in Fig. 5. This means that the ocean dynamics benefit from atmosphere observations even if the transient atmosphere processes
are smoothed by the moving average. Notably, the RMSE of the ocean streamfunction when only atmespherie-atmosphere
observations are assimilated does not decrease monotonically with the moving average window length. This could be explained
by the fact that the time averaged ocean streamfunction shows periodic features in time and an moving average of ~ 60 years
leads to a time series of nearly constant streamfunction. This improves the skill of the DA. However, this feature is not captured

by the analysis that assimilates ocean observations perhaps due to the large observation uncertainties.

5.2 Computational performance of PDAF and pyPDAF

One motivation of developing a Python interface to PDAF is that the efficient DA algorithms in PDAF can be used by pyPDAF
while the user-supplied functions can be developed with the ease of Python. However, the user-supplied functions provided by

Python are expected to be slower than a pure Fortran implementation. The slow-down is both a result of lack of compilation

in Python and the type cast between Fortran arrays and Python objects. Here we present a comparison of the wall clock time
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Figure 8. Wall clock time of PDAF-andpyPDAF foreach-(dark colour bars) and PDAF (light colour bars) systems per analysis step averaged
overH0 analysis-steps-over-50-repeated-broken down by functionalities in SCDA ETKF experiments —Only-subroutines-that-use-more-than
10—5seeondsFfor-each-and their total wallclock time per analysis step are-presentedin log-scale Fhe-hatched-barsrepresent-WEDAresults:

of both PDAF and pyPDAF experiments with standard SCDA and-WEDA-brewken-broken down to the level of subroutines.
Each experiment runs +6°-100 analysis steps and each experiment is repeated 56-10 times. The computation runs on the
Yk-—computingfacthity JASMIN-computing facility of University of Reading on a node with two AMD EPYC 7462-24-Ceore
proeessors-which-has-a2.87513 32-Core processors which have a 2.6GHz frequency. With 16 ensemble members, each member
uses a single proeess-processor for model forecast and the DA is performed serially on a single proeess—tn-these-comparisons;

~Processor.
As shown in Fig. 8, the PDAF-internal procedures (labeled ‘internal’), which are the core DA algorithm, take nearly the

same amount of time per analysis step for PDAF and pyPDAF in-both-WEDA-and-SC€DAregardless of the number of grid
P,QanL As expected the ﬁseﬁsupphedfeﬂ&ﬂeﬁequﬁ&user-su lied functions take more computational time in the Pythen

DA system based on pyPDAF than PDAF.
In this study, the pre- and post-processing of the state vector (labeled ‘pre-post’) calculates the square root of the spatial

lied function (see Sect. 3.1) which is

computationally intensive. The intensive computations suit well for the use of the Python JIT compilation. The computational
time of the pre- and post-processing increases with the size of the state vector, and Python is in general slower than the
Fortran implementation. The difference of wall clock time between the pyPDAF and PDAF-based DA system decreases with
increasing state vector size as the overhead in pyPDAF becomes less significant compared to the floating-point computations.

mean of ensemble variance. The pre- and post-processing is implemented as a user-su
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As a comparison, on a 129 x 129 grid, the PDAF system takes 0.04 seconds while the pyPDAF system takes 0.09 seconds
per analysis, thus a factor of 2.15 longer time. However, on a 2049 x 2049 grid, the PDAF system takes around 40.09 seconds
per_analysis step while the pyPDAFE system takes 67.96_seconds per analysis step, thus a factor of only 1.7 longer time.
The overhead in pyPDAF system is also comparatively small in high-dimensional systems for the distribution and collection
outines-thatexchange-information-between PDAF -and-models require signifieantty of state vector (labeled ‘distribute state’
and ‘collect state’). For example, the pyPDAF system takes a factor of 2.9 more computational time in-Python-than-pure Hortran
routines—Thiscould berelated-to-the-than the PDAF system on a 129 > 129 grid but only a factor of 1.3 more time is taken by
the pyPDAF system than the PDAF system. The overhead in these functions is proportional to the ensemble size as they are
called by each ensemble member respectively. In addition to assigning a state vector to model fields and vice versa in Python,
these user-supplied functions perform conversion between physical and spectral space —The-mestprominent-differences-come

om-the—init-dimobs™routine-which-invelves—thereading-of observationsfromafile—and-based on Eq. (1) and (2). The
transformation utilises the same Fortran subroutines for both PDAF and pyPDAF system. In the pyPDAF system, the Fortran
subroutines are converted to Python functions by ‘f2py’. The computational time taken by these functions is proportional to
the number of grid points. The MPI communications are internal to PDAF which show little differences between pyPDAF and
PDAF system.

The wall clock time used for handling observations shows that a pyPDAF DA system is in general slower than a PDAF
system. With low-dimensional state vector, the observation operator (labeled ‘obs. operator’) is slower in a pyPDAF system
than PDAF even if the observation operator function only calls a PDAF subroutine provided by OML. The slow-down of the
PYPDAF system is again a result of overhead in the conversion of Fortran and Python arrays. Here, similar to the collection and

distribution of the state vector, the

oever-different-observations—In-this-ease;function is called by each ensemble member. The overhead becomes less significant

for high-dimensional state vectors when the observation operator computation dominates the total computational time. The
internal operations of OMI (labeled “OMI internal’) are very efficient and the pyPDAF systems can be more efficient than
PDAF systems. Qur experiments do not show clear benefits between pyPDAF and PDAF system for these operations, as
expected. The setup of the OMI functionality is implemented in the Fortran-subroutine eatts-the Python-eati-back funetion;
whieh-eatls-a-Fortran-subroutine-user-supplied function of inir_dim_obs (see Sect. 3.1). This includes reading and processing
the observation data and their errors. In this case, the pyPDAF-based system is more expensive than the PDAF system. The
PYPDAF system is 2.15 (8.57) times slower in executing init_dim_obs than the PDAF system on a 129 > 129 (2049 x 2049)
grid. The relative increase is due to a larger number of observations that needs to be processed.

Our comparison shows that the interfacing between Python and Fortran yields overheads in pyPDAF system even if we
utilise JIT compilation of Python. Users need to consider a trade-off between these overheads and the ease of implementation
in pyPDAF compared to PDAF: The differences of the computational cost can be less significant for high-dimensional systems
for ETKF DA system without localisation.
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Figure 9. Wall clock time of pyPDAF (light colour bars) and PDAF (dark colour bars) system per analysis step broken down by functionalities

in SCDA LETKF experiments and their total wallclock time per analysis step in log-scale. The left four bars (blue and purple bars) represent

the case without using the PDAFlocal module while the rest uses the PDAFlocal module. For the sake of conciseness, the functionalities

shared by both ETKF and LETKF are omitted.

In practice, localisation is used to avoid sampling errors in high-dimensional weather and climate systems. To make full use
of the computational resources, these high-dimensional systems are parallelised by domain decomposition. PDAF exploits the
feature of these models for domain localisation where the state vector is also domain decomposed. Here, we choose a domain
with 257 > 257 grid points to assess the LETKF with a localisation radius of 1 spatial unit. As no domain decomposition is
implemented for MAOOAM, each processor contains 257 x 257 x 4 local domains which is similar to the number of local
domains used in a single processor of a domain decomposed global climate model.

E%%%&%MMWWHWC@ the
-computational cost depends on the observation density. To
investigate the effect of increased intensity of computations on the pyPDAF overhead, we add experiments that observe every.
4 grid points.

As shown in Fig. 9, the increased observation density leads to an increase in computational time for the internal operations,
observation operator, and the OMl-internal operations due to the larger number of locally assimilated observations. The
increased observation density shows little influence on the computational cost of other user-supplied functions. However,
as the increased observation density leads to more intensive computations, this mitigates the gap of the total computational
time between pyPDAF and PDAF system. In particular, the run times for the internal operations of PDAF (not shown) and
OMI (‘OMl:-internal’) dominate the overall run time of the analysis step and show little difference for the pyPDAF and PDAE
DA systems.
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We notice significant overhead in the pyPDAF system for user-supplied functions related to domain localisation. The

increased computational time when the number of domains is specified (labeled ‘no. domains’) is still of an order of 10~*

er analysis step which is negligible. The computation is 5.65 times slower in pyPDAF than the PDAF system for the

. The increased computational cost is a result of

‘init local domain’

~tepeated execution of the user-supplied functions for
each local domain. Specifically, in our experiment, this user-supplied function is used 257 x 257 x 4 times per analysis step.
The overhead is exp i ith- i i i i i
even higher for the user-supplied functions that convert between local state vector and global state vector (g2l state” and ‘12g
state’), which are called for each ensemble member, due to the conversion of arrays instead of integers. In this experiment, the
execution of these routines in pyPDAF system is around 400 times slower than the PDAF system. As these operations are not
computationally intensive, the overhead cannot be mitigated by JIT compilation. Without modifications in the PDAF workflow,
the overhead can become comparatively less significant with high observation density arising from increased computational
cost of other routines, or increased parallelisation of model domains leading to reduced number of local domains on each
processor.

To overcome this run time issue of ‘g2l state’ and ‘12¢ state’, we developed a PDAFlocal module in PDAF, included in
release version 2.3, where the user-supplied functions of “g2l state” and ‘12¢ state’ are circumvented in the PDAF interface
as their operations are performed in the compiled Fortran code of PDAFlocal. This leads to similar computational cost of
these functions between pyPDAF and PDAF system. With PD AFlocal, users need to implement an index vector providing
the relationship between the state vector in the current local domain and the global state vector when local domain is initialised.
Due to this, with PDAFlocal, we see an increased computational time in “init local domain’ in pyPDAF which is around 150
times slower than the PDAF system. The pyPDAF overhead for “init local domain” is smaller than that of “g21 state” and ‘12¢g
state’ (around 400 times slowdown) due to reduced number of array conversions between Fortran and Python. Further, only.
one instead of three user-supplied functions are implemented in Python. Due to this, the total computing time is nearly equal
for pyPDAF and PDAF with only 6% — 13% higher time for pyPDAF. Overall-the-time needed-for pyPDAF-is-approximately

arthan-th or-the Eo - _implemen on—when oo PDAE dire

function specifying the dimension of the local state vector

These results demonstrate that pyPDAF can be used with high-dimensional systems with slightly increased overhead per
analysis step.

6 Conclusions

We introduce aPythen—package—pyPDAF-the Python package pyPDAF, which provides an interface to the Parallel Data
Assimilation Framework (PDAF)and-. We outline its implementation and design. pyPDAF allows for a Python-based DA

system for models coded in Python or interfaced to Python. Furthermore it allows for the implementation of a Python-based
offline DA system where the DA is performed separately from the model and data is exchanged between the model and DA
code through files. The pyPDAF package ;—which-provides-an-interface;-allows one to implement user-supplied functions in
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Python for flexible code development while the DA system is-stitl-benefiting-still benefits from PDAF’s efficient DA algorithm
implementation in Fortran.

Using a CDA setup, we demonstrate that pyPDAF can be used with the Python model MAOOAM. Both strongly coupled
data assimilation (SCDA) and weakly coupled data assimilation (WCDA) are demonstrated. Our results confirm that the SCDA
performs better than WCDA, and additional observations from other model components can improve the overall performance of
DA using SCDA. We also investigate the scenario where only one model component is observed. In this case, the error cross-
covariance matrix from the ETKF is sufficiently reliable for updating the unobserved model variables leading to improved
analyses states for both observed and un-observed model variables. We also show that the DA can improve the long-term trend
of the model state in the MAOOAM model.

Using the WEDA-and-SCDA setup, the computational costs of using pyPDAF and a Fortran-only implementation with
PDAF are compared. We show that the computational time stays the same for the core DA algorithm executed in PDAF
while pyPDAF yields an overhead in user-supplied functions. This overhead is a result of both the Python implementation

and the requirement of data conversion between Python and Fortran. These overheads may-be-mitigated-by-a-mere-effieient

implementation—of-the-become comparatively less significant when the analysis becomes computationally more intensive
with increased spatial resolution or observation density. To mitigate the overhead in domain localisation implementations,
we introduce a new “PDAFlocal” module in PDAF such that a DA system using pyPDAF can achieve similar computational
cost as a pure Fortran based system. This module is included in the release v2.3 of PDAF. We note that JIT compilation or
“f2py’ can be used with the Python user-supplied functions and-data-type-definitions—for computationally intensive tasks to
speed up the Python DA system. Our benchmark shows that, with a global filter, 70% more time is used, and with a domain
localised filter, 6% — 13% more time is used when applying the Python DA system build with pyPDAF in high-dimensional
dynamical systems.

PYPDAF opens the possibility to apply sophisticated efficient parallel ensemble DA to large-scale Python models such as
machine learning models. pyPDAF also allows for the construction of efficient offline Python DA systems. In particular,
PYPDAF can be integrated to machine learning models as long as the state vector can be converted to numpy arrays. A
pYPDAF-based DA system allows users to utilise sophisticated parallel ensemble DA methods. However, a pyPDAF system
does not support GPU parallelisation like TorchDA (Cheng et al., 2025), which is designed based on the machine learning
framework pyTorch. The TorchDA package may also have limitation on the application of DA on machine learning models
implemented by other frameworks.

Code availability. The Fortran and Python code and corresponding configuration and plotting scripts including the randomly generated
initial condition for the coupled DA experiments are available at: https://doi.org/10.5281/zenodo.11367123. The MAOOAM V1.4 model
used for our experiments is available at https://github.com/Climdyn/MAOOAM/releases/tag/v1.4 with a version available at https://doi.org/
10.5281/zenodo.1308192. The Fortran version of the experiment depends on PDAF V2.3 which is released at https://doi.org/10.5281/zenodo.
13789628 and can be also found at https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3 (Nerger, 2024). The source code of pyPDAF
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635 s available at https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0 with the exactly same version at https://doi.org/10.5281/zenodo.
10950130.
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