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Abstract

Abstract. Data assimilation (DA) is an essential component of numerical weather and climate prediction. Efficient implemen-

tation of DA benefits both operational prediction and research
:::::::
research

:::
and

::::::::::
operational

::::::::
prediction. Currently, a variety of DA

software programs are available. One of the notable DA libraries is the Parallel Data Assimilation Framework (PDAF) de-

signed for ensemble data assimilation. The DA framework is widely used with complex high-dimensional climate models and5

is applied for research on atmosphere, ocean, sea ice and marine ecosystem modelling, as well as operational ocean forecast-

ing. Meanwhile, there exists increasing need for flexible and efficient DA implementations using Python due to the increasing

amount of intermediate complexity models as well as machine learning based models coded in Python. To accommodate for

such needs, here, we introduce a Python interface to PDAF, pyPDAF. The Python interface
:::::::
pyPDAF

:
allows for flexible DA

system development while retaining the efficient implementation of the core DA algorithms in the Fortran-based PDAF. The10

ideal use-case of pyPDAF is a DA system where the model integration is independent from the DA program, which reads the

model forecast ensemble, produces a model analysis and update
::::::
updates the restart files of the model, or a DA system where the

model can be used in Python. With implementations of both PDAF and pyPDAF, this study demonstrates the use of pyPDAF

and PDAF for coupled data assimilation (CDA) in a coupled atmosphere and ocean
:::::::::::::::
atmosphere-ocean

:
model, the Modular

Arbitrary-Order Ocean-Atmosphere Model (MAOOAM). Using both weakly and strongly CDA, we demonstrate
::::
This

:::::
study15

:::::::::::
demonstrates that pyPDAF allows for the utilisation of Python-based

:::::
Python

:
user-supplied functions in the Fortran-based DA

framework. We also show that the Python-based user-supplied routine can be a main reason for the
::::
with

:::::
PDAF

:::::::::::::
functionalities.

:::
The

:::::
study

::::
also

:::::
shows

::::
that

:::::::
pyPDAF

::::
can

::
be

::::
used

::::
with

:::::::::::::::
high-dimensional

:::::::
systems

::::
with

::::
little slow-down of the DA system based

on pyPDAF. Our
:::
per

:::::::
analysis

::::
step

::
of

::::
only

::
up

:::
to

::::
13%

:::
for

:::
the

:::::::
localized

:::::::::
ensemble

::::::
Kalman

:::::
filter

:::::::
LETKF.

::
In

::::::::
addition,

:::
our

:
CDA

experiments confirm the benefit of strongly coupled data assimilation compared to the weakly coupled data assimilation. We20

also demonstrate that the CDA not only improves the instantaneous analysis but also
:::
for

::::::::
improving

::::
both

:::
the

::::::::::::
instantaneous

::::
state

:::
and the long-term trend of the coupled dynamical system.
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1 Introduction

Data assimilation (DA) is widely used in weather and climate modelling where observations are used to constrain the model pre-

diction based on the uncertainty of both the observations and the model forecast. Due to the limited predictability and imperfect25

models, DA has become one of the most important techniques for the numerical weather and climate predictions. Progresses of

the DA methodology development can be found in various review articles and books (e.g., ?Carrassi et al., 2018; Vetra-Carvalho et al., 2018; Evensen et al., 2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bannister, 2017; Carrassi et al., 2018; Vetra-Carvalho et al., 2018; Evensen et al., 2022).

To ameliorate the difficulties in the implementation of different DA approaches, several DA software programs and libraries

have been proposed (e.g., Nerger et al., 2005; Anderson et al., 2009; Raanes et al., 2024; Trémolet and Auligne, 2020). Even30

though the implementation of the core DA algorithms is similar, these software programs/libraries are typically tailored to dif-

ferent purposes. For example, the Joint Effort for Data assimilation Integration (JEDI)
:::::::::::::::::::::::::::::::
(JEDI, Trémolet and Auligne, 2020)

is a piece of self-contained software that includes a variety of functionalities that can be used for all aspects of a DA sys-

tem mainly for operational purposes while DA software for methodology research such as DAPPER
:::::::::::::::::
(Raanes et al., 2024) is

designed for identical twin experiments equipped with low complexity models.35

One widely used DA framework is the Parallel Data Assimilation Framework (PDAF) developed and maintained by the

Alfred Wegener Institute (Nerger et al., 2005; Nerger and Hiller, 2013b). The framework is designed for efficient implementa-

tions of ensemble-based DA systems for complex weather and climate models
:::
but

::
is

:::
also

:::::
used

::
for

:::::::
research

:::
on

::::
data

::::::::::
assimilation

:::::::
methods

::::
with

::::::::::::::
low-dimensional

::::
“toy”

::::::
models. The DA implementations require user-supplied functions to provide case-specific

information about the DA system including the treatment of observations and localisation. A variety of successful use-cases of40

PDAFwere developed for complex weather and climate models. For example, an ensemble DA system was developed for the

Alfred-Wegener-Institute Climate Model (AWI-CM, Sidorenko et al., 2015) using PDAF (Nerger et al., 2020). The framework

is also used with the Los Alamos Sea Ice Model (CICE) to develop an Arctic sea iceDA system to assimilate CryoSat-2 sea

ice thickness datasets (Williams et al., 2023). In the case of land surfacemodelling, PDAF is coupled with the Community Land

Model version 5 (CLM5) by Strebel et al. (2022).
:::::
More

::::
than

:::
100

::::::
studies

::::
have

::::
used

::::::
PDAF,

::::::::
including

:::::::::
atmosphere

::::::::::::::::::::::::
(e.g., Shao and Nerger, 2024)45

:
,
:::::
ocean

:::::::::::::::::::::::::::::::::::::
(e.g., Losa et al., 2012; Pohlmann et al., 2023),

:::
sea

:::
ice

:::::::::::::::::::::::::::::::::::::
(e.g., Williams et al., 2023; Zhao et al., 2024),

::::
land

::::::
surface

::::::::::::::::::::::::::::::::::::
(e.g., Strebel et al., 2022; Kurtz et al., 2016)

:
,
:::::::::
hydrology

:::::::::::::::::::::::::::::::::
(e.g., Tang et al., 2024; Döll et al., 2024),

::::
and

:::::::
coupled

::::::::
systems

:::::::::::::::::::::
(e.g., Nerger et al., 2020).

:
Further use-cases of

PDAF can be found in the PDAF website (PDAF - the Parallel Data Assimilation Framework, last access: 2024-02-13, https://pdaf.awi.de)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(PDAF - the Parallel Data Assimilation Framework, last access: 2024-02-13). Even though PDAF provides a highly flexible

framework for the DA system, the
:::::
highly

:::::::::
optimised

:::
DA

:::::::::
algorithms,

:::
the

:::::::
flexible

:::::::::
framework

::::
relies

:::
on

:::
the

:::::::::::
user-supplied

::::::::
functions50

::
to

:::::
couple

::::
DA

::::
with

:::::
model

::::::
system

::::
and

:::::::::::
observations.

:::
The

:
implementation of user-supplied functions still require additional code

development, which can be time-consuming especially when the routines have to be written in Fortran, a popular programming

language for weather and climate applications.

In recent years, Python is gaining popularity in weather and climate communities due to its flexibility and ease of im-

plementation. For example, Python is adopted by some low- to intermediate-complexity models (e.g., De Cruz et al., 2016;55

Abernathey et al., 2022), models with a Python wrapper (e.g., McGibbon et al., 2021), and machine learning based mod-
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els (e.g., Kurth et al., 2023; Lam et al., 2023; Bi et al., 2023). For the application of DA
:
in

:::::::
Python, DAPPER provides a

variety of DA algorithms for twin experiments using low-dimensional Python models. The Ensemble and Assimilation Tool,

EAT (Bruggeman et al., 2024) was proposed to set up a 1D ocean-biogeochemical DA system. The Python tool only has a

Python interface to a few PDAF routines while the rest of the system is coded in Fortran ,
::::::
which

::
is

:
a
:::::::
wrapper

::
to

::
a

::::::
Fortran

::::
data60

::::::::::
assimilation

::::::
system

:::::
based

:::
on

::::::
PDAF including the 1D ocean-biogeochemical model, GOTM-FABM.

::::
There

:::
are

::::
also

:::::::
Python

:::::::
packages

::::::::
designed

::::::
mainly

:::
for

:::::::::::
pedagogical

::::::::
purposes

::
in

::::::::::::::
low-dimensional

:::::::
systems

::::
such

:::
as

:::::::
openDA

::::::::::::::::::
(Ahmed et al., 2020)

:::
and

::::::
filterpy

::::::::::::::::::::::::::::::::
(filterpy PyPI, last access: 2024-08-29).

:::
For

:::::::::::::::
high-dimensional

:::::::::::
applications,

::::
there

:::
are

:::::::
efficient

::::::::::::::
implementations

::
of

::::
DA

:::::::
packages

::::
such

::
as

:::::::::
HIPPYlib

::
by

:::::::::::::::
Villa et al. (2021)

:::
and

::::::
ADAO

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(SALOME The Open Source Integration Platform for Numerical Simulation, last access: 2024-08-29)

:
,
::
but

:::::::::
HIPPYlib

::::
does

:::
not

::::
have

:
a
:::::
focus

:::
on

::::::::
ensemble

:::
data

::::::::::
assimilation

::::::::::
approaches

:::::::
whereas

::::::
ADAO

:::::::
provides

::::::
various

::::::::
ensemble

::::
DA65

::::::::::::
methodologies

:::
but

:
it
:::
has

:::
no

::::::
support

:::
for

:::
the

:::::::::
localisation

::::
used

::
in

:::::::
weather

:::
and

::::::
climate

:::::::::::
applications.

:::::
More

:::::::
recently,

:::::::
NEDAS

:::::::::::
(Ying, 2024)

:::
was

:::::::::
introduced

:::
for

::::::
offline

::::::::
ensemble

:::
DA

::
in

::::::
climate

:::::::::::
applications

:::
but

:
it
::::::::
currently

::::
only

:::::::
supports

::::::
limited

::::
DA

:::::::::
algorithms.

:

Here,
:::::::
Targeted

::
at

::::::::::
applications

::
to

::::::::::::::
high-dimensional

::::::::
ensemble

::::
data

::::::::::
assimilation

:::::::
systems,

::::
here,

:
we introduce a Python interface

to PDAF, pyPDAF. Compared to the user-supplied functions implemented in Fortran, the Python-based implementation can

facilitate code development thanks to a variety of packages readily available in Python. In the meantime, DA algorithms that70

are efficiently implemented in Fortran can still be utilised. Using pyPDAF, one can implement a Python-based offline DA

system where the model output is
::::
both

::::::
offline

:::
and

:::::
online

::::
DA

:::::::
systems

::::
using

:::::::
Python.

:::
For

::::::
offline

:::
DA

::::::::
systems,

:::
DA

::
is

:::::::::
performed

:::::::
utilising

::::
files written onto a disk. ,

::::
e.g.,

::::::
model

:::::
restart

:::::
files. If a numerical model is available in Python, pyPDAF allows for

online DA system implementation where DA algorithms can be used with
::
the

::::::
Python

::::::
model

::::
with

:
in-memory data exchange

without
:::
that

::::
does

:::
not

::::
need

:
I/O operations .

:::::::
bringing

:::::
about

::::
more

:::::::::
efficiency

::::
than

::
an

::::::
offline

::::::
system.

:::::::::
Compared

::
to
::::::::::::
user-supplied75

:::::::
functions

::::::::::::
implemented

::
in

:::::::
Fortran,

:::
the

::::::
Python

::::::::::::::
implementation

:::
can

::::::::
facilitate

:::::
easier

:::::
code

::::::::::
development

::::::
thanks

:::
to

:
a
::::::
variety

:::
of

:::::::
packages

::::::
readily

::::::::
available

::
in

:::::::
Python.

::
In

:::
the

:::::::::
meantime,

::::
DA

:::::::::
algorithms

:::::::
provided

:::
by

:::::
PDAF

::::
that

:::
are

:::::::::
efficiently

:::::::::::
implemented

::
in

::::::
Fortran

:::
can

::::
still

::
be

:::::::
utilised.

In this study, we demonstrate the use of pyPDAF in a coupled data assimilation (CDA) setup
:::
with

:::
the

:::::::
Modular

::::::::::::::
Arbitrary-Order

::::::::::::::::
Ocean-Atmosphere

:::::
Model

:::::::::::::::::::::::::::::
(MAOOAM, De Cruz et al., 2016)

:::::
where

::
an

:::::::
arbitrary

:::::::
number

::
of

:::
grid

:::::
points

::::
can

::
be

:::::::
specified

:::::::
without80

:::::::
changing

:::
the

::::::
model

::::::::
dynamics

::::::
making

::
it

:::::::
suitable

::
to

::::::
provide

::::::::::
benchmarks

::
of

::::::::
pyPDAF. The research on CDA is motivated by the

use of coupled earth system models, especially for the coupled atmosphere and ocean simulations (Eyring et al., 2016; Walters

et al., 2019). Traditionally, each model component is assimilated individually and the state of each model component inter-

acts with the others only in the coupled model forecast. This approach is called weakly coupled DA (WCDA). It is desirable

to perform DA jointly for all model components simultaneously, usually denoted as strongly coupled DA (SCDA). Studies85

report a suite of benefits of using SCDA. For example, Smith et al. (2015) shows that the SCDA can improve dynamically

balanced
::::::::
dynamical

:::::::
balance

::
in

::
the

:
analysis leading to reduced initialisation shocks. Sluka et al. (2016) reported improvements

in analysis with SCDA in an intermediate complexity model. Tang et al. (2021) performed SCDA of ocean observations into

the coupled atmosphere-ocean model AWI-CM and found positive effects in particular in the polar regions. Further studies can

be found in a suite of review articles on CDA (Penny and Hamill, 2017; Zhang et al., 2020; de Rosnay et al., 2022; Kalnay90

et al., 2023).
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In this paper
::::
Here, we will first introduce ensemble-based data assimilation, the principal objective of PDAF, in Sect. 2.

Section 3 will describe the design and implementation of PDAF and pyPDAF. In Sect. ??, the concept of CDA will be discussed.

In Sect. 4, the experiment
::::::::::
experimental

:
and model setup will be described. Section 5 will report the performance of PDAF and

pyPDAF in CDA setup. We will conclude in Sect. 6.95

2 Ensemble-based data assimilation

The parallel data assimilation framework
:::::::
Although

::::::
PDAF

:::::::
supports

:
a
::::

few
:::::::::::
deterministic

:::
DA

::::::::
methods,

::
it focuses on ensemble-

based DA methods. Ensemble-based DA is a class of DA approaches that approximate the statistics of the model state and

its uncertainty using an ensemble of model realisations . The ensemble-based DA was motivated by DA approaches based on

Bayes theorem where the prior, typically a model forecast, and posterior (analysis) distributions can be approximated by a100

Monte Carlo approach. This
:::
The

::::::::
ensemble

::::::
model

:::::::
forecast allows for an embarrassingly parallel implementation which means

that, with sufficient computational resources, the wall clock computational time
::
of

:::
the

:::::::
forecast

:
does not increase with the

ensemble size.

Under the Gaussian assumption of the forecast and analysis distributions, one of the most notable ensemble-based DA meth-

ods is the ensemble Kalman filter, EnKF (Evensen, 1994).
::::::::::::::::::::
(EnKF, Evensen, 1994).

:
The EnKF approximates the forecast and105

analysis error distribution by an ensembleunder the Gaussian assumption. The method was proven to be successful in many

applications (e.g., Houtekamer et al., 2005; Feng et al., 2009; Hamill et al., 2011; Sakov et al., 2012). To further improve

the efficiency and reliability of the EnKF, multiple variants of the EnKF were proposed, such as singular evolutive intepo-

lated Kalman filter (SEIK, Pham, 2001), ensemble transform Kalman filter (ETKF, Bishop et al., 2001), error space transform

Kalman filter (ESTKF, Nerger et al., 2012), and the deterministic ensemble Kalman filter (Sakov and Oke, 2008). In practice110

computational resources limit the feasible ensemble size
:
,
:::::
which

::
is
::::::::
typically

::
of

::
an

:::::
order

::
of

:::
10

::
to

::::
100,

:
in the high-dimensional

realistic DA applications in the Earth system
:::
due

::
to

:::
the

::::
cost

::
of

:::::
model

::::::::
forecasts. The ensemble-based DA approaches typically

suffer from sampling errors from limited ensemble size. To counter these deficiencies, covariance matrix inflation and locali-

sation are commonly used (e.g., Pham et al., 1998; Hamill et al., 2001; Hunt et al., 2007). In particular, the domain localisation

is tailored for efficient parallel implementations that are commonly used in high-dimensional DA systems.115

Ensemble-based DA can also treat fully non-linear non-Gaussian problems. The most notable example is particle fil-

ters (van Leeuwen et al., 2019)
:::::::::::::::::::::::::
(see, van Leeuwen et al., 2019). They can be used to solve fully non-linear problems without

assumptions on the prior and posterior distribution. However, for high-dimensional geoscience applications, the classical parti-

cle filters suffer from the “curse of dimensionality” where the required ensemble size grows exponentially with the dimension

of the state vector making the approach computationally infeasible. Recent developments of the particle filters significantly120

improve the stability and reduce the required ensemble size of the approach making it a potential choice for low-to-medium

complexity models, such as implicit equal-weights particle filters (Zhu et al., 2016) and the particle flow filter (Hu and van

Leeuwen, 2021). An overview of other developments of particle filters can be found in van Leeuwen et al. (2019).
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The ensemble-based DA approaches are adopted by many operational centres where traditionally variational methods are

used (e.g., Clayton et al., 2013; Caron et al., 2015; Bonavita et al., 2016; Hersbach et al., 2020). In variational methods,125

ensemble approaches are used to achieve flow-dependent background covariance matrix, and/or to avoid explicit computation

of the adjoint model in the minimisation process by using an ensemble approximation. These goals can be realised using

various different methodologies and a detailed review of these methods can be found in Bannister (2017).

3 PDAF and PyPDAF

The Parallel Data Assimilation Framework (PDAF )
:::::
PDAF

:
is designed for research and operational DA systems. As a Python130

interface to PDAF, pyPDAF uses
::::::
inherits the DA algorithms implemented in PDAF and the same implementation approach to

build a DA system.

3.1 Parallel Data Assimilation Framework (PDAF)

The parallel data assimilation framework, PDAF ,
:::::
PDAF

:
is a Fortran-based DA framework providing fully optimised, paral-

lelised ensemble-based DA algorithms. The framework provides a software library and defines a suite of workflows based on135

different DA algorithms provided by PDAF including various ensemble Kalman filters/smoothers, ensemble-based 3DVar
::::::::::::::
(Bannister, 2017)

, particle filters
:::::::::::::::::::::::
(van Leeuwen et al., 2019) and other non-linear filters

::::::::::::::::::::::::::::::::::
(Tödter and Ahrens, 2015; Nerger, 2022). To deal with

sampling errors in the ensemble-based DA, the framework also provides options for adaptive inflation schemes and for

localization
:::
and

::::::::::
localisation

:::::::
schemes.

As a framework for ensemble DA, the framework
:
it
:

comes with the functionality to generate the initial ensemble. The140

:::
One

:::::::::
possibility

::
is
::
to

::::
use

:::
the

:::::::::::
second-order

::::
exact

::::::::
sampling

::::::::::::
(Pham, 2001)

:::::
where

:::
the

:
ensemble is generated based on the model

trajectory of the modelled truthusing the second-order exact sampling (Pham, 2001). The assumption is that the uncertainty of

the model initial condition lies in the phase space of the model trajectory. The space is represented by the singular values and

its corresponding vectors using an empirical orthogonal function (EOF) decomposition. In the second-order exact sampling

an ensemble of Nx-dimensional state vectors and Ne ensemble members is generated by perturbations that preserve the mean145

and represent, up to the rank Ne − 1, the same covariance matrix as the singular vectors. This is achieved by multiplying a

matrix, A ∈ RNx×(Ne−1), consisting of Ne − 1 singular vectors scaled by the singular values with an orthonormal random

matrix generated from Householder reflections.

To ensure that PDAF can be flexibly adapted to any models and observations, it requires users to provide case-specific infor-

mation. This includes the information on the state vector, observations and localisation. The framework obtains this information150

via user-supplied functions which are external callback subroutinesin Fortran. Figure 1 shows a schematic diagram of an online

DA system where the ETKF
:::::::
LETKF is used. Here, the user-supplied functions connect PDAF with models. Called within the

PDAF routines, these user-supplied functions collect state vectors from model forecasts and distribute the analysis back to the

model for the following forecast phase. During the analysis step, user-supplied functions also pre- and post-process the ensem-

ble, handle observations
::::::::::
localisations

:::
and

:::::::::::
observations, and provide the number of model time steps for the next forecast phase155
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User supplied routines

PDAF/pyPDAF
(LETKF)

Model

Observation handling
● Number of observations
● Read observation data
● Observation error
● Observation operator

● Postprocess ensemble
● Set number of model 

time steps for next 
assimilation

Preprocess 
ensemble

User supplied routinesCollect 
state vector

Distribute 
state vector

Localisation handling
● Number of local domains
● Relationship between 

local domain and global 
domain

● Localisation radius

Figure 1. A schematic diagram of an online ETKF
::::::
LETKF DA system using (py)PDAF. In the case of an offline DA system, the model can

be its restart files.

to PDAF. As the user-supplied functions depend on the chosen DA algorithm, other algorithms may require additional
:::::::
different

functions. For example, the local ensemble Kalman filter (LETKF) requires routines used to handle the domain localisation

and 3DVar requires routines for the adjoint observation operator and control vector transformation. To ameliorate the diffi-

culty in the observation handling, PDAF provides a scheme called observation module infrastructure (OMI). The OMI routines

currently support spatial interpolations
::::::
handle

:::
the

:::::::::
processing

::
of

::::::::::
observation

::::::
vectors

::::
and

::::
error

::::::::::
covariance

:::::
matrix

:::::
used

::
by

::::
DA160

:::::::::
algorithms,

::::
and

::::::
provide

:::::::
support

:::
for

:::
the

:::::::
complex

::::::::
distance

::::::::::
computation

:::::
used

::
by

:::::::::::
localisation.

::
In

:::
the

::::::
current

:::::::
version

::
of

::::::
PDAF

::::
V2.3,

::
it
::::
also

:::::::
supports

::::::
spatial

::::::::::::
interpolations

:::
on

::::::::
structured

::::
and

::::::::::
unstructured

:::::
grids, direct observation operator, and a diagonal

::
or

:::::::::::
non-diagonal

:
observation error covariance matrix.

:::
One

:::
can

::::
also

:::::::::
implement

::::::
PDAF

:::::::
without

:::::
OMI,

:::
but

:::::::::
additional

::::::::
functions

:::::
would

::
be

::::::::
required.

:

In an online DA system, the collection and distribution of state vector is an in-memory data exchange handled by PDAF165

::::::::
efficiently. It is possible to implement an offline DA system with PDAF where the model in Fig. 1 can be simply

:::::
would

:::
be

replaced by model restart files while the
:::::::::::
user-supplied

:
collection and distribution routines manage the I/O operations .

::
of

:::::
these

:::::
restart

:::::
files.

::::::
Offline

:::
DA

::::::::::::::
implementation

::
is

:
a
::::::::

crucially
:::::::::
supported

::::::
feature

::
of

::::::
PDAF

::::
and

:
a
::::::::::

potentially
::::::::
important

::::::::
use-case

:::
for

:::::::
pyPDAF,

:::
but

:::
we

::::
will

:::
not

::::::
discuss

:
it
::
in
:::::
detail

:::
for

:::
the

::::
sake

::
of

:::::::
brevity.

:::
We

:::
will

:::::::
provide

:::::
details

:::
of

::
the

::::
use

::
of

:::::::::::
user-supplied

::::::::
functions

::
in

:::
the

:::::::
context

::
of

::::::::
pyPDAF

::
in

::::
Sect.

::::
3.1.170

3.2 pyPDAF

Implementation of user-supplied functions can be laborious in Fortran and typical code development in Python can be less

time consuming. Due
::::::
Thanks to the integrated package management, code development in Python can rely on well op-

timised packages without the need for compilation. For these reasons, a variety of numerical models are implemented in

Python (e.g., De Cruz et al., 2016; Abernathey et al., 2022; McGibbon et al., 2021; Bi et al., 2023). Hence, a Python interface175

to PDAF allows for designing
:::
the

::::::
design

::
of

:
an online DA system with

::::
such

:
Python-based models, and also allows for an

efficient code development and modifications for a DA system .
::::::

These
:::::
range

::::
from

:::::::::::::::
low-dimensional

:::
toy

:::::::::
dynamical

:::::::
systems

::
to

::::::::::::::
high-dimensional

:::::::
weather

::::
and

:::::::
climate

:::::::
systems.

:::::::::
Compared

:::
to

:
a
::::::::::::
Fortran-coded

::::
DA

:::::::
system,

:
a
:::::::

Python
:::
DA

:::::::
system

:::
can

:::
be

6
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Figure 2. An illustration of the design of the pyPDAF interface to the Fortran-based framework PDAF.
::::
Here,

:::
only

:::
the

::::::
Python

::::::::
component

::
is

::::::
exposed

::
to

::::::
pyPDAF

:::::
users,

:::
and

:::
the

::::::
Cython

:::
and

:::::
Fortran

:::::::::::::
implementations

::
are

::::::
internal

:::::::::::::
implementations

::
of

:::::::
pyPDAF.

::::::::::
implemented

:::::::::
efficiently

::::
and

:::::
allows

:::
for

::::::
easier

:::::::::::
modifications

:
such that users can focus on scientific problems. These features

can also be attractive for a prototypical DA system before performing an optimised implementation for high-dimensional180

Fortran-based models. Generally, it would also be possible to interface a Fortran-based model to pyPDAF, which then interfaces

to PDAF. However, this latter approach might be inefficient due to in-memory copies of large arrays between Fortran and

Python.

The pyPDAF package can also be applied for offline DA system
::::::
systems, i.e. coupling the model and data assimilation

program through restart files, where .
:::::
Here pyPDAF can be used without the restriction of the programming language of185

the numerical model. When
::::::::::::::::::
computation-intensive user-supplied functions are well optimised ,

::::
(e.g.,

:::::
using

::::::::::
just-in-time

:::::
(JIT)

:::::::::::
compilation), this could also be used for complex modelsas pyPDAF fully supports

:
.
:::::
Thus,

:::::::::
depending

::
on

::::
the

:::::::::::
requirements

::
of

:::
the

:::::
users,

:::
an

::::::
offline

:::
DA

:::::::
system

:::
can

:::
be

::::
used

::
to

:::::::::
prototype

:
a
:::::::

Fortran
:::
DA

:::::::
system

::
as

:::::
well.

::::
The

:::::::::
application

:::
of

:::::::
pyPDAF

:::
in

::::::::::::::
high-dimensional

::::::
models

:::
can

::::
also

::
be

::::::
shown

::
by

:::
its

::::::
support

::
of

:
the parallel features of PDAFusing ,

::::::
which

:::
use the Message Pass-

ing Interface (MPI, ?).
::::::::::::::::::::::::::::::::::::::
(MPI, Message Passing Interface Forum, 2023)

:
.
:::
For

::::
this,

:
a
::::::::
pyPDAF

:::
DA

::::::
system

:::::
relies

::
on

:::
the

:::::::::
“mpi4py”190

:::::::
package

:::
for

::::
MPI

:::::::
support.

::::
The

::::::::
pyPDAF

::::::
system

::::
can

::::
also

::::::
support

::::::
shared

::::::::
memory

::::::::::::
parallelisation

::
in

::::::
PDAF

:::::
when

::::
built

:::::
with

::::::::
OpenMP.

:

As the reference implementation of Python is based on the C programming language (cf. The Python Language Reference, last access: 2024-02-13)

:::::::::::::::::::::::::::::::::::::::::::::::
(The Python Language Reference, last access: 2024-02-13), the design of pyPDAF is based on the interoperability between the

programming languages
::
of C and Fortran using the iso_c_binding

:::::::::::
iso_c_binding module of Fortran. As shown in Fig. 2, the C195

interface of PDAFis implemented in ,
:
PDAFc,

::
is

::::::::
developed

::
in
::::::::
pyPDAF,

:
which includes essential PDAF interfaces and interfaces

for user-supplied functions. Hence, PDAFc could be used independently from pyPDAF as a C interface to the PDAF package.

The core of the pyPDAF implementation uses the C-extension for Python (Cython). Here Python datatypes are converted into

7



C pointers to allow for information exchange between PDAF and pyPDAF. pyPDAF implements C callable functions which

can call user-supplied functions in Python such that PDAF can utilise the user-supplied Python functions.200

With the design of pyPDAF , the package
:::::::
pyPDAF

::
is
::::::::
designed

::
so

::::
that

:
a
:::
DA

::::::
system

:::
can

:::
be

:::::
coded

::::::
purely

::
in

::::::
Python

::::::::
including

::
the

::::::::::::
user-supplied

::::::::
functions

:::
and

:::::::
function

::::
calls

::
to

:::::::::
algorithms

:::::::::::
implemented

::
in

::::::
PDAF.

::::
The

:::::::
interface

::
to

::::::
PDAF

:
is
::::::::
provided

:::::::
through

:::::::
functions

::::::::::::
implemented

:::::
using

:::::::
Cython,

:::::
which

::::::::
provides

:::
the

:::::::
interface

:::
for

:::::
calls

::::
from

:::::::
Python.

:::::
Thus,

:::
the

::::::::
pyPDAF

:::::::
package

:::::
itself

is a mixed program of C, Fortran and Python. Moreover, as DA algorithms require high-dimensional matrix multiplications,

PDAF relies on the numerical libraries LAPACK (linear algebra package) and BLAS (basic linear algebra subprograms). These205

libraries lead to a complex compilation process especially when users could use different operating systems. To fully utilise the

cross-platform
::::::
support

::
of

:
Python environment, pyPDAF is distributed via the package manager conda to provide an out-of-box

user experience with pyPDAF where users can use pyPDAF without the need for compiling the package from the source code.

Detailed installation instructions can be found at: https://yumengch.github.io/pyPDAF/install.html
:
.

pyPDAF allows for the use of efficient DA algorithms in PDAF. However, a DA system purely based on pyPDAF could still210

be less efficient than a DA system purely based on PDAF
:::::
coded

::
in

::::::
Fortran. The loss of efficiency is partly due to the

:::::::::
operations

::
in user-supplied Python functions and the

:::::::
overhead

:::::
from

:::
the

:
conversion of data

::::
types

:
between Fortran and Pythonobjects

leading a computational overhead. We will evaluate the
::::::::::
implications

::
of

::::
these

:
loss of efficiency in Sect. 5.2.

4 Coupled data assimilation

To demonstrate the use of pyPDAF and PDAF, a coupled data assimilation (CDA) setup is used. In coupled models, information215

between model components are exchanged during the model forecast at specified time intervals.In WCDA systems, in contrast

to the coupled model forecast, each model component performs its own DA without considering the state of other model

components. In SCDA systems, the DA system updates the model components jointly where the observations from each model

component can affect other model components

3.1
:::::::::::

Construction
::
of

::::
data

:::::::::::
assimilation

:::::::
systems

:::::
using

::::::::
pyPDAF220

::
To

::::::::
illustrate

:::
the

::::::::::
application

::
of

::::::::
pyPDAF

::
to

::
an

:::::::
existing

:::::::::
numerical

::::::
model,

:::
as

::
an

::::::::
example,

:::
we

:::::::
present

:::
key

:::::::::::
components

::
of

:::
an

::::::
LETKF

::::
DA

::::::
system.

::::
This

::::::::
example

::::::
follows

:::
the

::::::::
schematic

::::::::
diagram

::
in

:::
Fig.

::
1.
:::::
Here,

:::
we

:::::::
assume

:::
that

:::
the

:::::::
number

::
of

:::::::::
processors

::
is

::::
equal

::
to
:::
the

::::::::
ensemble

:::::
size.

::
In

:::
this

:::::
setup,

::::
each

:::::::::
ensemble

:::::::
member

::
of

:::
the

:::::
model

:::::::
forecast

::::
runs

::
on

::::
one

::::::::
processor,

::::
and

:::
the

:::::::
analysis

:
is
:::::::::
performed

:::::::
serially

::
on

::
a
:::::
single

:::::::::
processor.

:::
We

::::::
further

:::::::
assume

:::
that

:::::::::::
observations

:::
are

:::::::::
co-located

:::
on

:::
the

:::::
model

::::
grid

:::
but

:::
are

:::
of

:::::
lower

:::::::::
resolution,

:::
and

::::
they

::::
have

:
a
::::::::
diagonal

::::
error

:::::::::
covariance

::::::
matrix.225

To facilitate the discussion of the effects of SCDA in the numerical experiments performed in Sec. 5, we illustrate the SCDA

by a system with two components where each component has only one scalar variable. Here, in order to simplify the equations,

observations are assimilated serially which is possible if the observation errors are uncorrelated. We write the two-component

state vector is x=
(
x1 x2

)T

. We assume that each component of
:::::::::
Compared

::
to

:::::::
Fortran

::::::::::::::
implementations,

::
a
::::::
Python

::::
DA

::::::
system

:::
can

:::::
better

::::::
utilise

:::
the

::::::::::::
object-oriented

::::::::
features.

:::::
Here,

:::
we

::::::
assume

:::
the

::::::::
existence

:::
of

:
a
:::::::
generic

:::::
model

:::::
object

:::
that

::::::::
contains230

8
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:::::
model

::::::::::
information.

:::
In

:::
this

::::::
sytem, the state vector is directly observed (i.e. the observation operator is an identity matrix) . Thus

we have an observation yi with an error variance of ri for the i-th component. Even though the ensemble formulation is not

used in the discussion here, we assume for the i-th model component an inflation factor
√
βi for the forecast error, or ensemble

anomaly in the context of ensemble DA. Thus the covariance matrix is written as

Pf =

 β1p
f
1

√
β1β2p

f
12√

β1β2p
f
21 β2p

f
2

235

:::::::
pyPDAF

::::::::::::
functionalities

::::::
should

::
be

:::::::::
initialised

::
by

:

param_int,param_real,f lag = pyPDAF.PDAF.init
::::::::::::::::::::::::::::::::::::::::::::::

(filtertype,subtype,stepnull,
:::::::::::::::::::::::::

param_int,param_real,
:::::::::::::::::::::

COMM_model,COMM_filter,COMM_couple,
:::::::::::::::::::::::::::::::::::::::::::

task_id,n_modeltasks,filterpe, init_ens_pdaf).
::::::::::::::::::::::::::::::::::::::::::

240

Applying this to the analysis equations of the Kalman filter (e.g., Asch et al., 2016) one obtains the increment of x1 as

δx1 =
β1p

f
1d1

β1p
f
1 + r1

+
pa1
12

pa1
2 + r2

(d2 − δxa1
2 ) ,

where the superscript f represents the forecast, while a1 represents the analysis after assimilating observation y1, pi is
:::
The

:::::::::
information

:::
on

:::
the

::::
type

::
of

:::::
filters

::
(
:::::::
filtertype

:::
and

:::::::
subtype

:
)
::
is

:::::
given

::
to

:::::
PDAF

:::
by

:::
this

::::::::
function.

::
It

::::
also

::::
takes

::::::::::
parameters

::
of

:::::
these

:::::
filters.

:::::
Here,

:::
the

::::
size

::
of

:::
the

:::::
state

:::::
vector

::
(
:::::
dim_p)

::::
and

:::
the

::::::::
ensemble

::::
size

:
(
:::::::
dim_ens

:
)
:::
are

::::::::
specified

::
in

:::
the

:::::::::
param_int

::::
array,

::::
and245

::
the

::::::::
inflation

:::::
factor

::
is

::::::::
specified

::
in

::::::::::
param_real

::::
array.

::::::
These

:::::::::
parameters

:::::
allow

::::::
PDAF

::
to

:::::::
allocate

::::::
arrays

::::
such

::
as

:::
the

:::::::::
ensemble

::::
mean

::
(
::::::
state_p)

::::
and

:::
the

:::::::::
ensemble

::::::
matrix

:
(
:::::
ens_p

:
)
::::
used

:::
by

:::
the

::::
DA.

::::
The

:::::
MPI

:::::::::::::
communicators

::
of

:::::::
model,

:::
the

:::::
filter

:::
and

::::
the

:::::::
coupling

:::::::
between

::::::
model

:::
and

:::::
filter

:::
are

:::
also

::::::::
specified

::::
here

:::
by

::::::::::::
COMM_model

:
,
:::::::::::
COMM_filter

:
,
:::::::::::::
COMM_couple

::::::::::
respectively.

::::
The

::::::::::
initialisation

:::::::
function

::::
also

::::::
obtain

:::::
other

::::::::::::
parallelisation

::::::::::
information

::::
from

:::
the

::::::::
function

:::
call

::::::::
including

::::
the

:::::
index

::
of

:::
the

:::::::
parallel

:::::
model

::::
tasks

:::
by

::::::
task_id

:
,
:::
the

::::
total

::::::
number

::
of

:::::::
parallel

:::::
model

:::::
tasks

::
by

:::::::::::
n_modeltasks

:
,
:
a
:::::::
boolean

:::::::
variable

:::
that

:::::::::
determine

::
if

::
the

:::::
filter250

:
is
:::::::::
performed

:::
on

::::::
current

:::::::
process

::
by

:::::::
filterpe.

:::::::
Detailed

:::::::::::
explanations

::
of

:::
the

::::::::::::
parallelisation

:::::::
strategy

::::
used

:::
by

::::::
PDAF

:::
can

::
be

::::::
found

::
in

:::::::::::::::::::::
Nerger and Hiller (2013a).

:::::
Also,

:::
the

:::::::::::
initialisation

:::::::
function

:::::
takes

:::
the

:::::
initial

:::::
time

::::
step,

:::::::
stepnull,

:::
as

:
a
::::
step

:::::::
counter

::
in

::::::
PDAF.

::
In

:::
the

:::::::::::
initialisation,

:
a
::::::::::::
user-supplied

:::::::
function

::
of

:::::::
state_p,

::::
uinv,

::::::
ens_p,

:::
flag

::
=
::::::::::::::::::::
init_ens_pdaf(filtertype,

::::::
dim_p,

::::::::
dim_ens,

:::::::
state_p,

::::
uinv,

:::::
ens_p,

::::
flag)

:
is
::::
used

::
to
::::::::
initialise

:::::
PDAF

:::::::::
ensemble,

:::::
ens_p.

:::
In

:::
the

:::::::::::
user-supplied

:::::::
function,

:
the error variance of the i-th model

component and di = yi −xfi is the innovation of the i-th model component
::::
input

:::::::::
arguments

:::
are

:::::
given

:::
by

:::
the

::::::
PDAF,

::::
and

:::
the255

:::::::
returned

:::::::::
arguments

:::
are

:::::::
received

::
by

::::::
PDAF

::
to

:::::::
perform

::::
DA.

:::::
Here,

::::
uinv

:
is

:
a
:::::::
variable

:::::
used

::
for

::::
the

:::::::::::
second-order

::::
exact

:::::::::
sampling.

:::
The

::::::::
ensemble

:::::::::
generation

::::::
method

::::
can

::
be

::::
used

::::
with

::::::::::::::::::::
pyPDAF.PDAF.eofcovar

:::
and

::::::::::::::::::::::
pyPDAF.PDAF.SampleEns

::::
when

::::::
starting

:::::
from

:
a
:::::::::::
deterministic

:::
run.

::
If
:::::
OMI

::
is

::::
used,

::::::::::::::::::::::::::
pyPDAF.PDAF.omi_init(n_obs)

::
is

::::
used

::
to

:::::::
initialise

:::
the

::::::
n_obs

::::
types

::
of
::::::::::::
observations.
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Figure 3.
:

A
:::::::
flowchart

::
of

:::
the

:::::::
sequence

::
of

::::::
LETKF

::::::::
operations

::
in
::::::
PDAF.

::::
These

::::::::
operations

::::::
include

:::::::::::
user-supplied

:::::::
functions

:::
and

::::
core

::::::
LETKF

:::::::
algorithm.

::::
The

:::::
arrows

::::::
indicate

:::
the

::::
order

::
in

::::
which

:::
the

::::::::::
user-supplied

:::::::
functions

:::
are

:::::::
executed.

::::
They

::
do

:::
not

::::
imply

::::
that

:::
one

:::::
routine

::::
calls

::
the

:::::
other.

:::
The

:::::::::
observation

:::::::
operators

:::
and

::
the

:::::
global

:::
and

::::
local

::::::
domain

:::::
update

:::
are

::::::::
represented

:::
by

::::::
multiple

:::::
boxes

::
as

:::
they

:::
are

::::::::
performed

::
by

::::
each

:::::::
ensemble

::::::
member.

::
In

::::
each

:::::
model

:::::::::
integration

::::
step, the analysis of x2 after assimilating y1 is

δxa1
2 =

√
β1β2p

f
21d1

β1p
f
1 + r1

,260

:::
step

::
is

::::::::
executed

::
by

:

status= pyPDAF.PDAF.omi_assimilate_local(
:::::::::::::::::::::::::::::::::::::::::::

collect_state,distribute_state, init_dim_obs,
::::::::::::::::::::::::::::::::::::::

obs_op,prepostprocess, init_n_domains,
:::::::::::::::::::::::::::::::::::

init_dim_l, init_dim_obs_l,
:::::::::::::::::::::::

g2l_state, l2g_state,next_observation)
:::::::::::::::::::::::::::::::::

265

and pa1
12 is

:::::
where

:::::
status

:
is
::
a

:::
flag

:::
for

:::
the

::::
error

::::
code

::
of
:::
the

::::
DA

::::
step,

:::
and

:::
the

:::::::::
arguments

::
of

::::::::::::::::::::::::::::::::
pyPDAF.PDAF.omi_assimilation_local

::
are

::::::::::::
user-supplied

::::::::
functions,

::::::
which

::::
will

::
be

:::::::::
discussed

::
in

:::::
detail.

:::
In

:::
the

:::::::
analysis

::::
step,

:::::
each

:::::::::::
user-supplied

:::::::
function

::::
will

::::
next

:::
be

:::::::
executed

:::
by

:::::
PDAF

::
to
::::::
collect

:::::::::
necessary

::::::::::
information,

::
or

:::::::
perform

:::::::::::
case-specific

:::::::::
operations

:::
for

:::
the

::::
DA.

::
A

::::
flow

:::::
chart

::
is

:::::
given

::
in

:::
Fig

::
3.

::
As

::::::
shown

::
in

::::
Fig.

::
1,
:::
the

::::::
model

::::
and

:::::
PDAF

:::::::::
exchanges

::::::::::
information

:::
by

::::::::::::
user-supplied

::::::::
functions.

::::
The

:::::::::::
user-supplied

::::::::
function270

::::::
state_p

::
=

:::::::::::::::::
collect_state(dim_p,

:::::::
state_p)

::
is

::::::::
executed

::
by

::::::
PDAF

:::
for

::::
each

::::::::
ensemble

::::::::
member

::
to

:::
fill

:::::
model

:::::::
forecast

:::::
fields

::::
into

::
a

:::::::::::::
one-dimensional

:::::
array,

:::::::
state_p.

:::::::::
Similarly,

::::::
state_p

::
=
::::::::::::::::::::

distribute_state(dim_p,
:::::::
state_p)

::::::::
distributes

:::::::
analysis

:
(
::::::
state_p

:
)
::
to

::::::
model

::::
fields

:::
for

:::
the

:::::::::::
initialisation

::
of
::::

the
::::
next

:::::::
forecast

:::::
cycle.

::::::
These

:::::::::::
user-supplied

::::::::
functions

:::::
allow

:::::
users

::
to

:::::
adapt

::
a
:::
DA

::::::
system

:::::
with

:::::::
different

:::::::
models.
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::
To

::::::
handle

:::::::
different

:::::::::::
observations,

::::
with

:::
the

::::
OMI

:::::::::::
functionality,

::::
only

::::
three

:::::::::::
user-supplied

::::::::
functions

::::
need

::
to
:::
be

:::::::::::
implemented.

::::
One275

:
is
::::::::
dim_obs

::
=

:::::::::::::::
init_dim_obs(step,

::::::::::
dim_obs_p)

:
.
:::
The

:::::::
primary

:::::::
purpose

:::
of

:::
the

:::::::
function

::
is

::
to

::::::
obtain

:::
the

:::::::::
dimension

::
of

::::::::::
observation

:::::
vector,

::::::::
dim_obs,

::::
with

:::
an

:::::
initial

:::::::::
dimension

:::::
given

:::
by

:::::::::
dim_obs_p

:
at

:::
the

:::::::
current

::::
time

::::
step,

::::
step,

:::
as

::::::
implied

:::
by

::
its

::::::
name.

::
In

::::
this

:::::::
function,

::::
one

:::
has

::
to

::::::
provide

::::::
further

::::::::::
observation

::::::::::
information

::
to

:::::
OMI.

:::
The

::::
OMI

:::::::
obtains

:::
the

::::::::::
information

::
in

:::
two

::::::::::
approaches.

::::
One

:::::::
approach

::
is
:::
by

::::::
calling

:::
the

:::::::
function:

:::::::
dim_obs

::
=
::::::::::::::::::::::::::::::::
pyPDAF.PDAF.omi_gather_obs(i_obs,

::::::
obs_p,

::::::::::
ivar_obs_p,

::::::::
ocoord_p,

:::::::
cradius)

:
.

:::
The

:::::::
function

:::::::
returns

:::
the

::::
total

:::::::::
dimension

::
of

:::
the

::::::::::
observation

::::::
vector

:::::::::
(dim_obs)

::
of

:::::
i_obs

::
-th

::::::::::
observation

::::
type

:::::
which

::
is
::::::::

returned280

::
by

:::
the

:::::::::::
user-supplied

::::::::
function

:::::::::::
init_dim_obs.

:::
As

:::::::
function

::::::::::
arguments,

::::::::::::::::::::::::::
pyPDAF.PDAF.omi_gather_obs

:::::::
provides

::::::
PDAF

::::
with

:::
the

:::::::::
observation

::::::
vector

:
(
::::::::
occord_p

:
),

::::::
inverse

::
of

:::
the

::::::::::
observation

:::::::
variance

:
(
:::::::::
ivar_obs_p

::
),

:::
the

::::::::::
observation

:::::::::
coordinates

::
(
:::::::
ocoord_p

:
),
::::
and

:
a
::::::::::
localisation

:::::
radius

:::
for the cross error covariance between two model components after assimilating y1:

pa1
21 = pa1

12 =
√
β1β2p

f
12

(
1− (β1p

f
1 + r1)

−1β1p
f
1

)
and

pa1
2 = β2

(
pf2 − (β1p

f
1 + r1)

−1β1p
f
21p

f
12

)
.285

The corresponding analysis variance is :

p1 = β1p
f
1

(
1−β1p

f
1 (β1p

f
1 + r1)

−1
)
− (pa1

2 + r2)
−1pa1

12p
a1
21.

The first term in Eq. (??) is
::::::
current

::::::::::
observation

::::
type

:
(
::::::
cradius

:
).
::::
The

:::::
other

::::::::
approach

:::
sets

::::::::
attributes

:::
of

:::
the

::::::
derived

::::
data

:::::
type,

::::
obs_f

:
,
::
in

::::::
PDAF.

::
In

:::::
obs_f

:
,
:::
the

::::::::
attributes

:::::::
include

:::
the

::::::
switch

::
of

:
the increment due to

::::::::::
assimilation

::
of

:::
the

::::::::::
observation

:::::
type,

:::
the

::::
index

:::
of

:::
the

::::::::::
observation

::
in
::::

the
::::
state

::::::
vector,

::::::::
id_obs_p

:
,
:::
the

:::::::
domain

::::
size

:::
and

:
the WCDA in model component 1, while the290

second term is
::::::
options

:::
for

:::::::
distance

:::::::::::
computation

::
in

::::::::::
localisation.

::::::
While

:::::
these

::::::::
attributes

:::
can

:::
be

:::
set

::
by

::::::
direct

::::::::::
initialisation

:::
in

::::::
Fortran,

:::
in

::::::::
pyPDAF,

:::::
these

::::::::
attributes

:::
can

:::
be

:::
set

:::
by

:::::
setter

:::::::::
functions,

::::
e.g.,

::::::::
id_obs_p

:::
can

::
be

:::
set

:::::
using

:::
the

::::::::
pyPDAF

::::::::
function

::::::::::::::::::::::::::::::::
pyPDAF.PDAF.omi_set_id_obs_p(i_obs,

:::::::::
id_obs_p).

:

:::
The

::::::::::
observation

:::::::
operator

::
is

::::::::::
implemented

:::
by

:::
the

:::::::::::
user-supplied

:::::::
function

::::::::
m_state_p

::
=

:::::::::::
obs_op(step,

:::::
dim_p,

::::::::::
dim_obs_p,

:::::::
state_p,

:::::::::
m_state_p).

::
It
:::::
takes

:
a
:::::
state

:::::
vector

:
(
::::::
state_p

:
)
::
as

:::::
input

:::
and

::::::
returns

::
a

:::::
vector

::
in

::::::::::
observation

:::::
space

:
(
:::::::::
m_state_p

:
).

::
In

:::
our

::::::::
example,

::
it295

:::
can

::
be

:::::::
handled

:::::::
directly

:::
by

:::
the

::::
OMI

:::::::
function

:::::::::
m_state_p

::
=

:::::::::::::::::::::::::::::::::::::
pyPDAF.PDAF.omi_obs_op_gridpoint(i_obs,

:::::::
state_p,

:::::::::
m_state_p)

:
.

::::
Note

:::
that

:::::
other

::::::::::
observation

::::::::
operators

:::
are

::::
also

:::::::
available

:::::
with

:::::::
pyPDAF

:::
but

:::
not

:::::::::
discussed

::::
here.

::::
The

:::
last

:::::::::::
user-supplied

::::::::
function

:::::
related

:::
to

::::::::::
observations

::
is
:::::::::

dim_obs_l
:::

=
:::::::::::::::::::::
init_dim_obs_l(domain_p,

:::::
step,

::::::::
dim_obs,

:::::::::
dim_obs_l)

:::::
which

::::
tells

::::::
PDAF

:::
the

:::::::
number

::
of

:::::::::::
observations

:::::
being

::::::::::
assimilated

::
in

:::
the

:::::::
current

:::::
local

:::::::
domain

:
(
::::::::
dim_obs_l

::
).

::::
This

::::::::
function

:::
can

:::
be

:::::::::
simplified

:::
by

:::
the

:::::
OMI

:::::::
function

:::::::::
dim_obs_l

:
=
::::::::::::::::::::::::::::::::::::::
pyPDAF.PDAF.omi_init_dim_obs_l_iso(i_obs,

::::::::
coords_l,

:::::::::
locweight,

:::::::
cradius,

:::::::
sradius,

:::::::::
dim_obs_l)

:::::
which300

:::::::::::
automatically

::::::
handles

::::::::::
observation

::::::
vectors

::::
and

::
its

::::
error

::::::::
variances

::::
used

:::
in

::
the

:::::
local

::::::
domain

:::::
given

:::
the

:::::::::
coordinate

::
of

::::
local

:::::::
domain

:
(
:::::::
coords_l

:
), the SCDA effect. Thus, if the second term in Eq. (??) becomes zero, the increment is equivalent to a WCDA

update for δx1 as the observation y2 has no impact on the analysis of x1. Similarly, in Eq. (??), the second term associated

with cross error covariance reduces the amount of uncertainty from the WCDA which only contains the first term of the

equation. Equation (??) and (??) demonstrate the importance of cross-covariance in
:::
type

:::
of

:::::::::
localisation

:::::::
weight

:
(
::::::::
locweight

:
),305

:::
and

:::
the

::::::::::
localisation

:::::
radius

:
(
::::::
cradius

:
)
::
as

::::
well

::
as

:::
the

::::::
support

::::::
radius

::
of

::::::::::
localisation

:::::::
function

:
(
::::::
sradius

:
).
:
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:::
The

:::::::
domain

::::::::::
localisation

:::::::
requires

::::
four

:::::::::
additional

::::::::::::
user-supplied

::::::::
functions.

::::
The

:::::::
number

:::
of

::::
local

::::::::
domains

:
(
:::::::::::
n_domains_p

:
)

:
is
::::::::
provided

:::
by

:::::::::::
n_domains_p

::
=

:::::::::::::::::
init_n_domains(step,

::::::::::::
n_domains_p)

:
,
:::
the

:::::::::
dimension

::
of

:::::::::
domain_p

::
-th

:::::
local

:::::::
domain,

:::::
dim_l

:
,
::
is

:::::::
provided

:::
by

::::::
dim_l=

::::::::::::::
init_dim_l(step,

:::::::::
domain_p,

::::::
dim_l)

:
.
:::
The

::::::::::
conversion

::
of

:::
the

::::
full

::::::
global

::::
state

::::::
vector

::
to

::
a
::::
state

::::::
vector

:::
on

::::
local

::::::
domain

::::
and

::::
vice

::::
versa

::
is
:::::::::
controlled

:::
by

:::::
state_l

::
=

::::::::::::
g2l_state(step,

:::::::::
domain_p,

::::::
dim_p,

:::::::
state_p,

::::::
dim_l,

::::::
state_l)

:::
and

::::::
state_p

::
=310

::::::::::::
l2g_state(step,

:::::::::
domain_p,

:::::
dim_l,

:::::::
state_l,

::::::
dim_p,

:::::::
state_p)

:
.
:::
The

::::::::::::
user-supplied

:::::::
function

::::::::
g2l_state

:::
and

::::::::
l2g_state

::
are

:::
not

:::::
used

::
in

::::::::::
‘PDAFlocal’

::::::::
modules

::
as

:::
will

:::
be

::::::::
discussed

::
in

::::
Sect.

::::
5.2.

:::
The

::::::::
pyPDAF

:::::::
analysis

:::
step

:::::::
requires

::::
two

::::::::
additional

::::::::::::
user-supplied

::::::::
functions.

::::
The

:::::::
state_p,

::::
uinv,

:::::
ens_p

::
=

:::::::::::::::::
prepostprocess(step,

::::::
dim_p,

:::::::
dim_ens,

::::::::::
dim_ens_p,

::::::::::
dim_obs_p,

:::::::
state_p,

:::::
uinv,

::::::
ens_p,

::::
flag)

:::::::
function

::
is

:::::
called

:::
by

::::::
PDAF

::
to

:::::::::
preprocess

::::
the

:::::::
forecast

::::::::
ensemble

:
(
::::
ens_p

:
)
:::::
before

:::
the

:::::::
LETKF

:::
and

::::::::::
post-process

:::
the

:::::::
analysis

::::::::
ensemble

:
(
:::::
ens_p)

::::
after

:::
the

:::::::
LETKF

:::::::::
assimilated

:::
the

:::::::::::
observations.315

:::
The

:::::::::::
user-supplied

::::::::
function,

::::::
nsteps,

::::::
doexit,

::::
time

::
=

::::::::::::::::::
next_observation(step,

::::::
nsteps,

::::::
doexit,

:::::
time),

::::
tells

::::::
PDAF

:::
the

::::::
number

:::
of

::::
time

::::
steps

:::::::
between

::::
two

::::
DA

:::::::::
executions,

::::::
nsteps.

::::::
Given

:::
the

:::::::
current

::::
time

::::
step

:::
and

:::::
other

:::::::::::
uninitialised

:::::
input

:::::::::
arguments,

::::::
PDAF

::::
also

::::::
obtains

:::
the

::::::::::
information

::
of the SCDA system. This discussion likewise applies to the analysis update of x2 as a similar equation

can be obtained when y2 is assimilated before y1 to update x2.

In the case that not all model components have observations , SCDA can provide an estimate of the un-observed model320

components based on available observations
::::::
current

:::::
model

:::::
time,

::::
time

:::
and

::
a
:::
flag

:::
for

:::
the

::::::::::
completion

::
of

::
all

::::
DA

:::::
cycles

::::::
doexit

::
in

::::::::::::::
next_observation.

:::
To

::::::
control

:::
the

:::::::
memory

::::::::
allocation

::
in

:::
the

:::
DA

:::::
cycle,

:::
the

:::
DA

::::::
system

:::
can

::
be

:::::::
finalised

:::
by

:::::::
function

::::::::::::::::::::::
pyPDAF.PDAF.deallocate().

For example, when only the first model component is observed, the analysis increment and variance of the un-observed second

model component is δxa1
2 and pa1

2 as detailed in Eq. (??) and (1). Equation (??) shows that, the DA increment of unobserved

variable depends entirely on the cross error covariance. A similar result has been shown under an incremental 4DVar setup325

by Smith et al. (2020) where they investigated the error covariance matrix using a single observation in each model component.

Note that Eq. (??) can also be used to understand multivariate DA and parameter estimations that will not be discussed here

:::::
PDAF

:::
can

::::::
handle

:::::
much

::::
more

:::::::
complex

:::::
cases

::::::::
including

:::::::::::
non-isotropic

::::::::::
localisation,

::
or

:::::::::::
non-diagonal

::::::::::
observation

::::
error

:::::::::
covariance

:::::::
matrices.

:::::::
Besides

:::::::
LETKF,

:::::
other

:::::
filters

::::::
might

::::::
require

::::::::
different

:::::::::::
user-supplied

::::::::
functions

:::
as

::::
they

:::::
utilise

::::::::
different

:::::::::::
case-specific

::::::::::
information.

::::
The

::::
code

:::
that

:::::
exists

::::
can

::::::
support

::
a

::::
wide

:::::
range

::
of

:::::
filters

:::::::
without

:::::::
changes.330

4 Model and DA setup

To demonstrate the application of pyPDAF and to evaluate its performance in a coupled DA setup, the Modular Arbitrary-Order

Ocean-Atmosphere Model ()MAOOAM ,Cruz2016maooam
:::::::::
MAOOAM

::::::::::::::::::
(De Cruz et al., 2016) version 1.4 is coupled with PDAF

and pyPDAF. The original MAOOAM model is implemented in Fortran that is coupled directly with PDAF, and a wrapper for

Python is developed in this study such that MAOOAM can be coupled with pyPDAF. This means that two online DA systems335

using Fortran and Python respectively are developed to allow for a comparison between the PDAF and pyPDAF implementa-

tion. In these DA systems, a suite of twin experiments are
:
is

:
carried out using the ensemble transform Kalman filter (ETKF,

Bishop et al., 2001)
:::
and

::
its

:::::::
domain

::::::::::
localisation

::::::
variant,

:::::::
LETKF.

12



4.1 Coupled model MAOOAM

The MAOOAM solves a reduced-order non-dimensionalised quasi-geostrophic (QG) equation (De Cruz et al., 2016). Using340

the beta-plane approximation, the model has a two-layer QG atmosphere component and one-layer QG shallow-water ocean

component with both thermal and mechanical coupling. For the atmosphere, the model domain is zonally periodic and has a

no-flux boundary condition meridionally. For the ocean, no-flux boundary conditions are applied in both directions. This setup

represents a channel in the atmosphere and a basin in the ocean. The model variables for the two-layer atmosphere are averaged

into one layer. Accordingly, MAOOAM consists of four model variables: the atmospheric streamfunction, ψa, the atmospheric345

temperature, Ta, the ocean streamfunction, ψo, and the ocean temperature, To. The model variables are solved in a spectral

space. The spectral basis functions are orthonormal eigenfunctions of the Lapace operator subject to the boundary condition,

and the number of spectral modes is characterised by harmonic wave numbers P , H , M (Cehelsky and Tung, 1987).

We integrate MAOOAM with (py)PDAFwith an application of the ensemble transform Kalman filter (ETKF). As shown in

Fig. 1, the key ingredient of coupling MAOOAM with (py)PDAF is the collection and distribution of state vector. In common350

setups of ocean and atmospheric DA, the observations are available in the physical space. Hence, in the user-supplied function

that collects the state vector for pyPDAF (cf.
:::
see Fig. 1), spectral modes of the model are transformed from the spectral space

to physical space using the transformation equation,

f(x,y, t) =

K∑
i=1

ci(t)Fi(x,y), (1)

where f(x,y, t) is any model variable in the physical space, K is the number of modes, ci(t) is the spectral coefficient of the355

model variable, Fi(x,y) is the spectral basis function of mode i outlined in De Cruz et al. (2016). In the user-supplied function

that distribute
::::::::
distributes

:
the state vector for pyPDAF (cf.

:::
see Fig. 1), the analysis has to be transformed back to the spectral

space to initialise the following model forecast. The inverse transformation from the physical space to the spectral space can

be obtained by

ci(t) =
n

2π2

π∫
0

2π
n∫

0

f(x,y, t)Fi(x,y)dxdy. (2)360

Here, each basis function corresponds to a spectral coefficient of the model variable. The basis functions are evaluated on an

equidistant model grid. The spectral coefficients are obtained via the Romberg numerical integration. To ensure the accuracy

of the numerical integration, the number of grid points is 2k +1 with k ∈ Z+.

Our model configuration adopts the strongly coupled ocean and atmosphere configuration (36st) of Tondeur et al. (2020)

using a time step of 0.1 time units corresponding to around 16 minutes. Using the notation ofHmaxx−Pmaxy of De Cruz et al.365

(2016)
:::
with

:::
the

::::::::::
superscript

::::
max

:::
the

:::::::::
maximum

::::::
number

::
of
:::::::::
harmonic

::::
wave

::::::::
numbers, the configuration chooses 2x− 4y modes

for the ocean component and 2x−2y modes for the atmosphere component. This leads to a total of 36 spectral coefficients with

10 modes for ψa and Ta respectively and 8 modes for ψo and To respectively. The model runs on a rectangular domain with a

reference coordinate
:::::
system

:
of (x× y) ∈ [0, 2πn ]× [0,π], where n= 1.5 is the aspect ratio between the x and y dimensions.
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In contrast to Tondeur et al. (2020) who assimilate in the spectral space, we assimilate in the physical space in which370

the observations are usually available. To determine the number of grid points for the physical space, a
:
A

:
sensitivity exper-

iment was performed to study the transformation error. The experiment shows that when the number of grid points reaches

129× 129
::::::::::::::
(27 +1× 27 +1)

::
=
::::::::::
(129× 129), the transformation error becomes negligible and the physical grid points resolve

the features in the spectral space. In practice, due to the chaotic nature of the model and long simulation time, the error from the

transformation can accumulate which subsequently leads to model errors. For the sake of efficiency, 129× 129 grid points are375

chosen
:::
The

::::::::::::
transformation

:::::::
between

:::
the

:::::::
spectral

:::
and

:::::::
physical

:::::
space

::::::
allows

::
us

::
to

:::::::::
investigate

:::
the

::::::::::::
computational

:::
cost

:::
of

::
the

::::
DA

::
in

:::::::
pyPDAF

:::
and

::::::
PDAF

::::
with

:::
the

::::
same

::::::
model

::::::::
dynamics.

:::
As

:::
the

::::::::
ensemble

:::
size

::
is
::::::::::
determined

::
by

:::
the

:::::::::
dimension

::
of

:::::::
unstable

::::::::
subspace

::
of

:::
the

::::::::
dynamical

:::::::
system,

:
a
:::::
fixed

::::::::
ensemble

:::
size

:::
can

:::
be

::::
used

::::::::::::::::::
(Tondeur et al., 2020).

:::::::::
Therefore,

:::
for

::::::::::::
benchmarking

::::::::::::
computational

::::
cost,

:::
we

:::::::
conduct

:
a
:::::
suite

::
of

::::::
SCDA

::::::::::
experiments

::::
with

:::::::::::::
2k +1× 2k +1

:::::::
number

::
of

::::
grid

::::::
points

:::::
where

::::::::::
7≤ k ≤ 11. This gives us

an order
::::
state

::::::
vectors

::::
with

:::::::::
dimension

:::::::
ranging

::::
from

::
a

:::::::::
magnitude of 104 grid points for each model variable in the state vector380

for DA
:
to

::::
107.

::::
The

::::
size

::
of

:
a
:::::
state

:::::
vector

::::
with

::::::
around

::::
107

::::::::
elements

::
is

:::::
closer

::
to

::::::::::
operational

::::::
setups.

:::
We

::::
also

:::::::::
implement

::::::
SCDA

::::::::::
experiments

:::::
using

:::::::
LETKF

::
on

::
a
::::
grid

::::::
number

:::
of

:::::::::
257× 257

::::
with

::::::::::
observations

:::
on

:::::
every

::
4

:::
and

::
8
::::
grid

:::::
points

::
to
::::::::::

investigate
:::
the

::::::::
efficiency

::
of

:::
the

::::::
domain

::::::::::
localisation

::
in

::::::::
pyPDAF.

4.2 Experiment design

In a twin experiment, a long model run is considered truth. The model state is simulated with an initial condition sampled385

in the spectral space which follows a Gaussian distribution, N (0,0.01). The DA experiments are started after 105 time steps

corresponding to around 277 years of model integration to ensure the dynamical consistency of the model state.

The observations are generated from the truth of the model state based on pre-defined error statistics of the observations. Both

::::::
Except

::
for

:::
the

:::::::
LETKF

:::::::::::
experiments,

::::
both atmosphere and ocean observations are sampled every 8 model grid points leading to

17× 17 observations for each model field. The
:::
grid

:::::
setup.

:::
In

::
all

:::::
cases,

:::
the observation error standard deviation

::::::::
deviations

:
are set390

to 50% and 70% of the temporal standard deviation of the true model trajectory for the atmosphere and ocean respectively. The

resulting standard deviation of the atmosphere observations is on a similar magnitude with the ensemble spread of the free run

(cf. Fig. 5) while the magnitude of the observation error in the ocean is typically larger than in the atmosphere in real observing

networks. The
::
As

:::
an

::::::::
example,

:::
the obtained standard deviation fields

::
on

::
a
::::
grid

::::
with

:::::::
17× 17

:::
grid

::::::
points are shown in Fig

:
. 4.

With our chosen model configuration, the highest observation error is in the ocean temperature while the ocean streamfunction395

shows the least uncertainty due to its slow variability. Meanwhile, the
:::
The

:
atmospheric processes in MAOOAM show fast

variability and shorter timescale
::::::::
variability

:::
on

::::::
shorter

::::::::
timescales

:
than the ocean. Hence, the ocean observations are assimilated

around every 7 days (630 time steps) while the atmosphere observations are assimilated around every day (90 time steps).

As shown by Tondeur et al. (2020), DA in the model configuration using 36 spectral coefficients can achieve sufficient

accuracy with an ensemble size of 15
::::::::
ensemble members. In this study, 16 members are used and each ensemble member runs400

serially with a single process. An ETKF without spatial localisation is used and, without
:::::::
Without tuning, a forgetting factor of

0.8 is applied to maintain the ensemble spread and ensure a stable DA process.

14



0 π
n

2π
n

0

π
2

π
Ψa (0.0169)

0.012

0.014

0.016

0.018

0.020

0 π
n

2π
n

0

π
2

π
Ta (0.0076)

0.006

0.007

0.008

0.009

0.010

0 π
n

2π
n

0

π
2

π
Ψo (0.0011)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 π
n

2π
n

0

π
2

π
To (0.049)

0.00

0.02

0.04

0.06

0.08

Figure 4. The observation error standard deviation fields used for generating the synthetic observations. The spatial mean of the error standard

deviation is shown in the bracket.

Using the second-order exact sampling provided by PDAF (cf.
::
see

:
Sect. 3.1), the ensemble is generated from a model

trajectory by sampling the modelled truth every 10 days over 100 years after around 1000 years from the beginning of the

simulation. This leads to 36 non-zero singular values equaling to the number of spectral modes in the model. The perturbation405

from the second-order exact sampling could violate the dynamical consistency of the model, so that the ensemble would need

to be spun up to reach dynamical consistency. To reduce the spin up time, the initial perturbation is scaled down by a factor

of 0.2, 0.15, 0.4 for Ψa, Ta and To respectively. Because the ocean streamfunction has very low variability, its perturbation is

unchanged.

The DA experiments are started after 15 days from the beginning of the ensemble generation. In this setup, the forecast error410

is solely a result of inaccuracy of initial conditions. As shown in Fig. 5, the ensemble spread generally captures the trend and

is in a similar magnitude of the model forecast error. This suggests that the forecast uncertainty from the free run ensemble

initialised by the second-order exact sampling is able to reflect the forecast errors
::::
even

::::::
though

:::
the

::::::
spread

::
is
::::::

lower
::::
than

:::
the

:::::
RMSE

:::::
after

:::
200

:::::
years.

In the free run
:::::
(upper

:::::
panel

::
of

::::
Fig.

::
5), the ocean temperature shows the highest uncertainty compared to other

::
of

::
all

:
model415

variables. The ocean streamfunction shows a very slow error growth rate. This is also shown by the error and ensemble

uncertainty which are two magnitude
:::::::::
magnitudes

:
smaller than those of other model variables. Sensitivity tests (not shown)
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Figure 5. The
::::::::
Ensemble

:::::
spread

:::
and

:::::
RMSE

::
of

:::
the

::::
(top)

:::
free

:::
run

:::
and

::::::
(bottom)

:::::
SCDA

:::::::
analysis

::
on

:
a
::::::::
129× 129

::::
grid.

:::::
Shown

:::
are

:::
the time series

of
::
the

:
spatial mean of ensemble spread (red) ,

:::
and

:::
the RMSE of the ensemble mean with regard to the truth

::::::
analysis (black)and observation

error standard deviation (grey) in the free run neglecting the spin-up period. The atmosphere shows fast variability and oscillatory RMSE of

the ensemble mean while the RMSE of the ocean ensemble mean is smooth. The temporal mean of the RMSEs calculated over observed and

un-observed gridpoints is also given.

suggest that an increased error of the ocean streamfunction has a significant impact on the model dynamics consistent with the

theoretical discussion given in Tondeur et al. (2020). The error of the atmosphere components shows a wave-like behaviour in

time. Tondeur et al. (2020) describe the periods associated with fast dynamics with high and oscillatory errors as active regimes420

and the periods associated with slow dynamics with low and stable errors as passive regimes.

5 Results

In this section, we evaluate the accuracy of WCDA and SCDA in
:::
DA

::::
skill

:::
of the MAOOAM-(py)PDAF online DA system

using ETKF.
::
the

::::::
ETKF.

::::
For

:::
the

::::
sake

:::
of

::::::::
efficiency,

::::
the

::::
skill

::
of

::::
DA

::
is

:::::::
assessed

:::
on

:
a
:::::::
domain

::::
with

:::::::::
129× 129

::::
grid

::::::
points.

:
To

evaluate the computational efficiency of pyPDAF and PDAF , we also
:::
and

:::
the

:::::::
potential

::::::::
practical

::::::::::
applications

:::
of

::::::::
pyPDAF,425

::
we

:
compare the wallclock time required by the WCDA and

::
in

:::
the

:
SCDA system. The online DA systems using PDAF and

pyPDAF produce quantitatively the same results in all WCDA and SCDA experiments up to machine precision.

5.1 Weakly
::::::
Effect

::
of coupled data assimilation

In WCDA, the error cross-covariances between atmosphere and ocean do not influence the analysis. Instead, the coupling only

occurs during the model forecast. This means that the sparse observations only influence their own model component in the430

analysis step. In this setup, each model component has its own DA system with only two model variables, the streamfunction
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Figure 6. Left: The time-averaged RMSE of the analysis using WCDA and free run where the RMSE of the observed
:::::::::
(non-hatched

::::
bars),

denoted by “obs.” in the legend, and unobserved gridpoints
:::::::
(hatched

::::
bars), denoted by “no obs.”, are compared separately. Right: comparison

of RMSEs for weakly and strongly coupled DA for all grid points. The y-axis is plotted in the log-scaleand the hatched bars represent the

RMSE in the regions without observations.

and temperature, on the same model grid. The implementation of such
::::
This

::::::
implies

::::
two

:::::::
separate

:::
DA

:::::::
systems.

:::
In an online DA

system requires
::::
setup

::
in

::::::
PDAF,

:
two separate state vectors

::::
have

::
to

:::
be

::::::
defined in each analysis step which is not straightforward

with PDAF due to its assumption that each analysis step has only one state vector. (In the case of AWI-CM in
:

Tang et al.

(2021), two separate state vectors were obtained by using a parallelization
:::::::::::
parallelisation, but here the two model components435

of MAOOAM are run using the same processor. ) This restriction is circumvented
:
In

:::
our

:::::::::::::
implementation

:::
we

::::::
obtain

::::::
WCDA

:
by

resetting the time step counter in PDAF in our implementation such that even if the assimilation of two state vectors are done

by using PDAF twice, PDAF only counts it as one analysis time step. An alternative approach could be to use the localized

LETKF method and define the local state vector as either the atmosphere or ocean variables. The WCDA results are suitable

to be a baseline to demonstrate the advantage of SCDA.440

Figure 6 shows that the time averaged RMSE of WCDA is smaller than that of the unconstrained free runthus that
:
.
:::::
Thus,

::
the

:
error growth is successfully controlled. This also demonstrates that the ETKF leads to a converged analysis even though

our observations are less accurate than the forecast at the start of the DA period.

The spatial error correlation of each model grid point with the grid point at (πn ,
π
2 ) using the ensemble anomaly after 200

years of WCDA.445

Similar to the free run, the WCDA results show comparable RMSEs on observed and unobserved grid points even though

only a selection of gridpoints are observed. The effectiveness of the DA on the unobserved grid points relies on the spatial error

correlations. In the ETKF, the error covariance matrix is estimated by the ensemble anomaly matrix which could be subjected

to the sampling error considering our DA system only contains 16 ensemble members. These sampling errors are commonly

controlled by spatial localisation in the ETKF when it is applied to high-dimensional models. Our ensemble DA system shows450

improved state estimates of the unobserved model grid points using the ensemble-sampled error covariance matrix without
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any localisation
:::
The

:::::
results

::::
also

:::::
show

:::
that

::::::
sparse

:::::::::::
observations

:::
can

::::::::::
successfully

::::::
control

::::::
errors

::
in

::::::
regions

:::::::
without

::::::::::
observations.

This is likely caused by the spectral model setup where the model is mostly composed of long waves leading smooth spatial

variations and the homogeneous spatial observation network. Figure ?? shows the error correlation of the grid point in the

centre of the domain with other grid points computed from the model forecast ensemble at the end of the experiment period.455

The spatial correlation field is smooth with long length-scale demonstrating that the ensemble size is sufficient for the system.

The smooth error correlation fields shows a wave-like structure with strong positive correlations for regions that are close to

the centre of the domain and negative correlations near the domain boundaries. Thus, despite a discretisation using 129× 129

grid points, the effective state dimension is much lower.
:::
due

::
to

:::
the

:::
fact

::::
that

:::
the

:::::
model

:::::
fields

:::
are

:::::
rather

:::::::
smooth.

:

5.2 Strongly coupled data assimilation460

Compared to the WCDA, atmosphere observations influence the ocean part of the state vector and vice versa in the SCDA.

This means that the coupling occurs for both the analysis step and model forecast. In this case, the DA system only has one

::::::
unified state vector that contains the streamfunction and temperature of both model components. The implementation of an

online SCDA system aligns with the design of PDAF and does not require special treatment.

As expected, the SCDA yields lower analysis errors than the
:::
free

::::
run

::
as

:::::
shown

:::
in

:::
Fig.

::
5,
::::
and

:::
the

:::::
errors

:::
are

::::
also

:::::
lower

::::
than465

::
the

:
WCDA as shown in the right panel of Fig. 6. The improved analysis in the SCDA in each model component is a result

of assimilating observations from the other model component. The effective use of these additional observations relies on the

error cross-covariance matrix between model components estimated by the forecast ensemble. The improvements suggest a

reliable error cross-covariance matrix in the coupled DA system.

To further understand the effect of the cross-covariances, and the advantage of assimilating observations from the other470

model component, we further
::::
show

:::
the

:::::::::::
performance

::
of

::::::::
pyPDAF

::
in

:
a
::::::
SCDA

::::::
setup,

:::
we carry out experiments in which only

one model component is observed. In the SCDA, the analysis increment of a model component without observations relies

on the error cross-covariance matrix with the model components that have observations. This set up corresponds to Eq. (??)

which also shows that the analysis increment is proportional to the inflation
√
β2 ::

In
:::
this

::::::::::
experiment,

:::::::
inflation

::
is
::::
only

:
applied

to the unobserved component . Here, to avoid an
:::::::
observed

::::::
model

:::::::::
component

::
to

:::::
avoid

:
excessive analysis increment ,

√
β2, is475

set to one. This
:
to

:::
the

::::::::::
unobserved

:::::
model

:::::::::::
components.

:::
The

::::::
partial

:::::::
inflation is achieved in the post-processing routines as PDAF

applies inflation uniformly to the entire state vector by default.

Figure 7 shows the time-averaged RMSE of fields that are smoothed in time by a moving average as a function of the

averaging time-window. The RMSEs of the instantaneous model fields are represented by zero moving average window length.

Assimilating observations from the other model component with SCDA can improve the analysis of the unobserved model480

component. This suggests again that the error cross-correlation between atmosphere and ocean is sufficiently reliable. The

atmosphere observations are more effective in controlling the ocean errors than the ocean observations themselves. This shows

the necessity to control the errors in the fast changing atmosphere as was discussed by Tondeur et al. (2020). Another possible

explanation for the effective SCDA of atmospheric observations might be that the ocean observations are less frequent and

accurate than the daily atmosphere observations.485
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Figure 7. Time averaged RMSE when only one model component has observations
:
is
:::::::
observed. The y-axis is in log-scale.

As shown in Fig. 7, the
:::
The assimilation not only improves the instantaneous model fields but also the long-term trend of the

atmosphere and ocean climate even though the error dynamics of atmosphere and ocean shows strong time-scale differences

in Fig. 5. This means that the ocean dynamics benefit from atmosphere observations even if the transient atmosphere processes

are smoothed by the moving average. Notably, the RMSE of the ocean streamfunction when only atmospheric
:::::::::
atmosphere

observations are assimilated does not decrease monotonically with the moving average window length. This could be explained490

by the fact that the time averaged ocean streamfunction shows periodic features in time and an moving average of ∼ 60 years

leads to a time series of nearly constant streamfunction. This improves the skill of the DA. However, this feature is not captured

by the analysis that assimilates ocean observations perhaps due to the large observation uncertainties.

5.2 Computational performance of PDAF and pyPDAF

One motivation of developing a Python interface to PDAF is that the efficient DA algorithms in PDAF can be used by pyPDAF495

while the user-supplied functions can be developed with the ease of Python. However, the user-supplied functions provided by

Python are expected to be slower than a pure Fortran implementation.
:::
The

::::::::::
slow-down

::
is

::::
both

:
a
:::::
result

::
of

::::
lack

:::
of

::::::::::
compilation

::
in

::::::
Python

:::
and

:::
the

::::
type

::::
cast

:::::::
between

:::::::
Fortran

:::::
arrays

:::
and

:::::::
Python

::::::
objects.

:
Here we present a comparison of the wall clock time
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Figure 8. Wall clock time of PDAF and pyPDAF for each
:::
(dark

:::::
colour

::::
bars)

:::
and

:::::
PDAF

:::::
(light

:::::
colour

::::
bars)

::::::
systems

::
per

:
analysis step averaged

over 105 analysis steps over 50 repeated
:::::
broken

::::
down

::
by

:::::::::::
functionalities

::
in

:::::
SCDA

:::::
ETKF experiments . Only subroutines that use more than

10−5 seconds for each
::
and

::::
their

::::
total

:::::::
wallclock

::::
time

:::
per analysis step are presented

::
in

:::::::
log-scale.The hatched bars represent WCDA results.

of both PDAF and pyPDAF experiments with standard SCDA and WCDA browken
::::::
broken down to the level of subroutines.

Each experiment runs 105
:::
100

:
analysis steps and each experiment is repeated 50

::
10

:
times. The computation runs on the500

UK computing facility JASMIN
:::::::::
computing

::::::
facility

:::
of

::::::::
University

:::
of

:::::::
Reading on a node with two AMD EPYC 7402 24-Core

processors which has a 2.8
::::
7513

:::::::
32-Core

:::::::::
processors

:::::
which

::::
have

:
a
:::
2.6GHz frequency. With 16 ensemble members, each member

uses a single process
::::::::
processor for model forecast and the DA is performed serially on a single process. In these comparisons,

each state vector has a dimension of 66,546 in the SCDA and a dimension of 33,273 in the WCDA. However, as the WCDA

computes the analysis separately for each model component, it conducts the DA twice for each analysis step. The number of505

observations varies as 578 atmospheric observations are assimilated every 90 time steps and a total of 1156 observations of

both atmosphere and ocean are assimilated every 630 time steps.
::::::::
processor.

:

As shown in Fig. 8, the PDAF-internal procedures
::::::
(labeled

:::::::::
‘internal’), which are the core DA algorithm, take nearly the

same amount of time
:::
per

:::::::
analysis

::::
step for PDAF and pyPDAF in both WCDA and SCDA

::::::::
regardless

:::
of

:::
the

::::::
number

:::
of

::::
grid

:::::
points. As expected, the user supplied routines require

:::::::::::
user-supplied

::::::::
functions

::::
take

:
more computational time in the Python510

implementation of pyPDAF than for the Fortran implementation with PDAF. The
:::
DA

::::::
system

::::::
based

::
on

::::::::
pyPDAF

::::
than

::::::
PDAF.

::
In

:::
this

::::::
study,

:::
the

::::
pre-

::::
and

:::::::::::::
post-processing

::
of

::::
the

::::
state

::::::
vector

:::::::
(labeled

:::::::::
‘pre-post’)

:::::::::
calculates

:::
the

::::::
square

::::
root

:::
of

:::
the

::::::
spatial

::::
mean

:::
of

::::::::
ensemble

:::::::
variance.

::::
The

::::
pre-

:::
and

:::::::::::::
post-processing

::
is
:::::::::::
implemented

::
as
::

a
:::::::::::
user-supplied

:::::::
function

::::
(see

:::::
Sect.

:::
3.1)

::::::
which

::
is

:::::::::::::
computationally

::::::::
intensive.

::::
The

:::::::
intensive

::::::::::::
computations

:::
suit

::::
well

:::
for

:::
the

:::
use

::
of

:::
the

::::::
Python

::::
JIT

::::::::::
compilation.

::::
The

::::::::::::
computational

::::
time

::
of

:::
the

::::
pre-

::::
and

:::::::::::::
post-processing

::::::::
increases

:::::
with

:::
the

::::
size

::
of

:::
the

:::::
state

::::::
vector,

::::
and

::::::
Python

::
is
:::

in
::::::
general

::::::
slower

:::::
than

:::
the515

::::::
Fortran

:::::::::::::
implementation.

::::
The

:::::::::
difference

::
of

::::
wall

:::::
clock

::::
time

:::::::
between

:::
the

::::::::
pyPDAF

:::
and

:::::::::::
PDAF-based

:::
DA

::::::
system

:::::::::
decreases

::::
with

::::::::
increasing

::::
state

::::::
vector

::::
size

::
as

:::
the

::::::::
overhead

::
in

:::::::
pyPDAF

::::::::
becomes

:::
less

:::::::::
significant

::::::::
compared

:::
to

:::
the

:::::::::::
floating-point

::::::::::::
computations.
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::
As

::
a
::::::::::
comparison,

:::
on

:
a
:::::::::
129× 129

:::::
grid,

:::
the

::::::
PDAF

::::::
system

::::
takes

:::::
0.04

:::::::
seconds

:::::
while

:::
the

::::::::
pyPDAF

::::::
system

:::::
takes

::::
0.09

:::::::
seconds

:::
per

:::::::
analysis,

::::
thus

:
a
:::::
factor

:::
of

::::
2.15

:::::
longer

:::::
time.

::::::::
However,

::
on

::
a
::::::::::
2049× 2049

:::::
grid,

:::
the

:::::
PDAF

::::::
system

:::::
takes

::::::
around

:::::
40.09

:::::::
seconds

:::
per

:::::::
analysis

::::
step

:::::
while

:::
the

::::::::
pyPDAF

::::::
system

:::::
takes

::::::
67.96

:::::::
seconds

:::
per

:::::::
analysis

:::::
step,

::::
thus

::
a

:::::
factor

::
of

:::::
only

:::
1.7

::::::
longer

:::::
time.520

:::
The

::::::::
overhead

::
in

::::::::
pyPDAF

::::::
system

::
is

::::
also

::::::::::::
comparatively

::::
small

:::
in

::::::::::::::
high-dimensional

:::::::
systems

:::
for

:::
the

:
distribution and collection

routines that exchange information between PDAF and models require significantly
::
of

::::
state

::::::
vector

:::::::
(labeled

:::::::::
‘distribute

:::::
state’

:::
and

::::::
‘collect

::::::
state’).

:::
For

::::::::
example,

:::
the

:::::::
pyPDAF

::::::
system

:::::
takes

:
a
:::::
factor

::
of

:::
2.9

:
more computational time in Python than pure Fortran

routines. This could be related to the
:::
than

:::
the

::::::
PDAF

::::::
system

::
on

::
a

::::::::
129× 129

::::
grid

:::
but

::::
only

::
a

:::::
factor

::
of

:::
1.3

:::::
more

::::
time

:
is
:::::
taken

:::
by

::
the

::::::::
pyPDAF

::::::
system

::::
than

:::
the

::::::
PDAF

:::::::
system.

:::
The

::::::::
overhead

::
in

:::::
these

::::::::
functions

::
is

::::::::::
proportional

:::
to

:::
the

::::::::
ensemble

:::
size

:::
as

::::
they

:::
are525

:::::
called

::
by

::::
each

:::::::::
ensemble

:::::::
member

::::::::::
respectively.

::
In

:::::::
addition

::
to
::::::::
assigning

::
a
::::
state

::::::
vector

::
to

:::::
model

:::::
fields

:::
and

::::
vice

:::::
versa

::
in

:::::::
Python,

::::
these

:::::::::::
user-supplied

::::::::
functions

:::::::
perform

:
conversion between physical and spectral space . The most prominent differences come

from the ‘init dim obs’ routine which involves the reading of observations from a file and
::::
based

:::
on

::::
Eq.

:::
(1)

:::
and

::::
(2).

::::
The

::::::::::::
transformation

::::::
utilises

:::
the

:::::
same

::::::
Fortran

::::::::::
subroutines

:::
for

::::
both

:::::
PDAF

::::
and

:::::::
pyPDAF

:::::::
system.

::
In

:::
the

::::::::
pyPDAF

::::::
system,

:::
the

:::::::
Fortran

:::::::::
subroutines

:::
are

:::::::::
converted

::
to

::::::
Python

::::::::
functions

:::
by

::::::
‘f2py’.

::::
The

::::::::::::
computational

::::
time

:::::
taken

::
by

:::::
these

::::::::
functions

::
is

:::::::::::
proportional

::
to530

::
the

:::::::
number

::
of

::::
grid

::::::
points.

:::
The

::::
MPI

::::::::::::::
communications

:::
are

:::::::
internal

::
to

:::::
PDAF

::::::
which

::::
show

::::
little

::::::::::
differences

:::::::
between

:::::::
pyPDAF

::::
and

:::::
PDAF

:::::::
system.

:::
The

::::
wall

:::::
clock

::::
time

:::::
used

:::
for

::::::::
handling

::::::::::
observations

::::::
shows

::::
that

:
a
::::::::
pyPDAF

:::
DA

:::::::
system

::
is

::
in

::::::
general

::::::
slower

::::
than

::
a
::::::
PDAF

::::::
system.

:::::
With

::::::::::::::
low-dimensional

::::
state

::::::
vector,

:::
the

::::::::::
observation

:::::::
operator

:::::::
(labeled

:::::
‘obs.

::::::::
operator’)

::
is
::::::
slower

::
in
::

a
::::::::
pyPDAF

::::::
system

:::
than

::::::
PDAF

::::
even

::
if
:::
the

::::::::::
observation

:::::::
operator

::::::::
function

::::
only

::::
calls

:
a
::::::

PDAF
:::::::::
subroutine

::::::::
provided

::
by

:::::
OMI.

::::
The

:::::::::
slow-down

:::
of

:::
the535

:::::::
pyPDAF

::::::
system

::
is

:::::
again

:
a
:::::
result

::
of

::::::::
overhead

::
in

:::
the

:::::::::
conversion

::
of

::::::
Fortran

:::
and

::::::
Python

::::::
arrays.

:::::
Here,

::::::
similar

::
to

:::
the

::::::::
collection

::::
and

:::::::::
distribution

::
of

::::
the

::::
state

::::::
vector, the construction of the relationship between the state vectorand observations. Comparatively,

the observation operator takes longer timein Python than Fortran, even if it only calls the Fortran PDAFroutine with a loop

over different observations. In this case,
::::::
function

::
is
::::::
called

::
by

:::::
each

::::::::
ensemble

:::::::
member.

::::
The

::::::::
overhead

:::::::
becomes

::::
less

:::::::::
significant

::
for

:::::::::::::::
high-dimensional

::::
state

:::::::
vectors

:::::
when

:::
the

::::::::::
observation

:::::::
operator

:::::::::::
computation

:::::::::
dominates

:::
the

::::
total

::::::::::::
computational

:::::
time.

::::
The540

::::::
internal

:::::::::
operations

::
of
:::::

OMI
:::::::
(labeled

:::::
‘OMI

:::::::::
internal’)

:::
are

::::
very

:::::::
efficient

::::
and

:::
the

::::::::
pyPDAF

:::::::
systems

:::
can

:::
be

::::
more

::::::::
efficient

::::
than

:::::
PDAF

::::::::
systems.

::::
Our

::::::::::
experiments

:::
do

:::
not

:::::
show

:::::
clear

:::::::
benefits

:::::::
between

::::::::
pyPDAF

::::
and

:::::
PDAF

:::::::
system

:::
for

:::::
these

:::::::::
operations,

:::
as

::::::::
expected.

:::
The

:::::
setup

:::
of

:::
the

::::
OMI

:::::::::::
functionality

::
is

:::::::::::
implemented

::
in
:

the Fortran subroutine calls the Python call-back function,

which calls a Fortran subroutine.
:::::::::::
user-supplied

:::::::
function

::
of

:::::::::::
init_dim_obs

:::
(see

::::
Sect.

::::
3.1).

::::
This

::::::::
includes

::::::
reading

::::
and

:::::::::
processing

::
the

::::::::::
observation

::::
data

::::
and

::::
their

::::::
errors.

::
In

::::
this

::::
case,

:::
the

:::::::::::::
pyPDAF-based

::::::
system

::
is
:::::
more

:::::::::
expensive

::::
than

:::
the

:::::
PDAF

:::::::
system.

::::
The545

:::::::
pyPDAF

::::::
system

::
is

::::
2.15

::::::
(8.57)

:::::
times

:::::
slower

:::
in

::::::::
executing

:::::::::::
init_dim_obs

:::
than

:::
the

::::::
PDAF

::::::
system

::
on

::
a
:::::::::
129× 129

::::::::::::
(2049× 2049)

::::
grid.

:::
The

:::::::
relative

:::::::
increase

::
is

:::
due

::
to

:
a
::::::
larger

::::::
number

::
of

:::::::::::
observations

:::
that

:::::
needs

:::
to

::
be

:::::::::
processed.

:::
Our

::::::::::
comparison

::::::
shows

::::
that

:::
the

:::::::::
interfacing

:::::::
between

:::::::
Python

:::
and

:::::::
Fortran

:::::
yields

:::::::::
overheads

::
in
::::::::

pyPDAF
::::::
system

:::::
even

::
if

:::
we

:::::
utilise

:::
JIT

::::::::::
compilation

::
of

:::::::
Python.

:::::
Users

::::
need

:::
to

:::::::
consider

:
a
::::::::
trade-off

:::::::
between

:::::
these

::::::::
overheads

::::
and

::
the

::::
ease

:::
of

:::::::::::::
implementation

::
in

:::::::
pyPDAF

::::::::
compared

::
to
::::::
PDAF.

::::
The

:::::::::
differences

::
of

:::
the

::::::::::::
computational

::::
cost

:::
can

::
be

::::
less

:::::::::
significant

::
for

:::::::::::::::
high-dimensional

:::::::
systems550

::
for

::::::
ETKF

:::
DA

::::::
system

:::::::
without

::::::::::
localisation.

:

21



obs. o
perator

OMI-internal

OMI se
tup

no. domains

init lo
cal domain

g2l sta
te

l2g sta
te total

10 5

10 3

10 1

101
Ti

m
e 

pe
r 

an
al

ys
is

 s
te

p 
(s

)

every 8 gp (fort)
every 8 gp (py)

every 4 gp (fort)
every 4 gp (py)

every 8 gp (PDAFlocal) (fort)
every 8 gp (PDAFlocal) (py)

every 4 gp (PDAFlocal) (fort)
every 4 gp (PDAFlocal) (py)

Figure 9.
:::
Wall

:::::
clock

:::
time

::
of

:::::::
pyPDAF

::::
(light

:::::
colour

::::
bars)

:::
and

:::::
PDAF

::::
(dark

:::::
colour

::::
bars)

:::::
system

:::
per

::::::
analysis

:::
step

::::::
broken

::::
down

::
by

:::::::::::
functionalities

:
in
::::::
SCDA

::::::
LETKF

:::::::::
experiments

:::
and

::::
their

:::
total

::::::::
wallclock

:::
time

:::
per

::::::
analysis

:::
step

::
in
::::::::
log-scale.

:::
The

:::
left

:::
four

::::
bars

::::
(blue

:::
and

:::::
purple

::::
bars)

:::::::
represent

::
the

::::
case

::::::
without

::::
using

:::
the

:::::::::
PDAFlocal

::::::
module

::::
while

:::
the

:::
rest

::::
uses

:::
the

::::::::
PDAFlocal

:::::::
module.

:::
For

:::
the

:::
sake

:::
of

:::::::::
conciseness,

:::
the

:::::::::::
functionalities

:::::
shared

::
by

::::
both

:::::
ETKF

:::
and

::::::
LETKF

::
are

:::::::
omitted.

::
In

:::::::
practice,

::::::::::
localisation

::
is

::::
used

::
to

:::::
avoid

:::::::
sampling

::::::
errors

::
in

::::::::::::::
high-dimensional

:::::::
weather

:::
and

:::::::
climate

:::::::
systems.

:::
To

::::
make

::::
full

:::
use

::
of

:::
the

::::::::::::
computational

::::::::
resources,

:::::
these

::::::::::::::
high-dimensional

:::::::
systems

:::
are

::::::::::
parallelised

::
by

:::::::
domain

::::::::::::
decomposition.

::::::
PDAF

:::::::
exploits

:::
the

::::::
feature

::
of

::::
these

:::::::
models

:::
for

::::::
domain

::::::::::
localisation

:::::
where

:::
the

::::
state

::::::
vector

::
is

:::
also

:::::::
domain

:::::::::::
decomposed.

:::::
Here,

:::
we

::::::
choose

:
a
:::::::
domain

::::
with

::::::::
257× 257

::::
grid

::::::
points

::
to

:::::
assess

:::
the

:::::::
LETKF

::::
with

::
a
::::::::::
localisation

:::::
radius

:::
of

:
1
::::::
spatial

::::
unit.

:::
As

:::
no

::::::
domain

:::::::::::::
decomposition

::
is555

::::::::::
implemented

:::
for

:::::::::::
MAOOAM,

::::
each

::::::::
processor

::::::::
contains

::::::::::::
257× 257× 4

::::
local

::::::::
domains

:::::
which

::
is
:::::::

similar
::
to

:::
the

:::::::
number

::
of

:::::
local

:::::::
domains

::::
used

::
in

:
a
::::::
single

::::::::
processor

::
of

:
a
:::::::
domain

::::::::::
decomposed

::::::
global

::::::
climate

::::::
model.

:

:::
For

::::
each

:::::
local

:::::::
domain,

:::
the

:::::::
LETKF

::::::::
computes

::
an

:::::::
analysis

:::::
using

:::::::::::
observations

::::
with

::
a

:::::::::
localisation

::::::
cut-off

::::::
radius.

:
Hence, the

difference between PDAF and pyPDAF implementation is partly
::::::::::::
computational

:::
cost

::::::::
depends

::
on

:::
the

::::::::::
observation

:::::::
density.

:::
To

:::::::::
investigate

:::
the

:::::
effect

::
of

::::::::
increased

:::::::
intensity

::
of

::::::::::::
computations

::
on

:::
the

::::::::
pyPDAF

::::::::
overhead,

:::
we

:::
add

:::::::::::
experiments

:::
that

:::::::
observe

:::::
every560

:
4
::::
grid

::::::
points.

::
As

::::::
shown

::
in

::::
Fig.

::
9,

:::
the

::::::::
increased

:::::::::
observation

:::::::
density

::::
leads

::
to
:::
an

:::::::
increase

::
in

::::::::::::
computational

::::
time

:::
for

:::
the

::::::
internal

::::::::::
operations,

:::::::::
observation

::::::::
operator,

::::
and

:::
the

::::::::::::
OMI-internal

:::::::::
operations

::::
due

::
to

:::
the

::::::
larger

:::::::
number

::
of

:::::::
locally

:::::::::
assimilated

::::::::::::
observations.

::::
The

::::::::
increased

::::::::::
observation

::::::
density

::::::
shows

::::
little

::::::::
influence

:::
on

:::
the

:::::::::::::
computational

::::
cost

::
of

:::::
other

::::::::::::
user-supplied

::::::::
functions.

:::::::::
However,

::
as

:::
the

::::::::
increased

::::::::::
observation

::::::
density

:::::
leads

::
to

:::::
more

::::::::
intensive

::::::::::::
computations,

:::
this

::::::::
mitigates

:::
the

::::
gap

::
of

:::
the

:::::
total

::::::::::::
computational565

::::
time

:::::::
between

::::::::
pyPDAF

:::
and

::::::
PDAF

::::::
system.

:::
In

:::::::::
particular,

:::
the

:::
run

:::::
times

:::
for

:::
the

:::::::
internal

:::::::::
operations

::
of

::::::
PDAF

::::
(not

::::::
shown)

::::
and

::::
OMI

::::::::::::::
(‘OMI-internal’)

::::::::
dominate

:::
the

::::::
overall

:::
run

::::
time

::
of

:::
the

:::::::
analysis

::::
step

:::
and

:::::
show

::::
little

::::::::
difference

:::
for

:::
the

::::::::
pyPDAF

:::
and

::::::
PDAF

:::
DA

:::::::
systems.

:
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:::
We

:::::
notice

::::::::::
significant

::::::::
overhead

::
in

:::
the

::::::::
pyPDAF

:::::::
system

:::
for

:::::::::::
user-supplied

:::::::::
functions

::::::
related

::
to

:::::::
domain

:::::::::::
localisation.

::::
The

::::::::
increased

::::::::::::
computational

::::
time

:::::
when

:::
the

:::::::
number

::
of

::::::::
domains

::
is

:::::::
specified

:::::::
(labeled

::::
‘no.

:::::::::
domains’)

::
is

::::
still

::
of

:::
an

:::::
order

::
of

:::::
10−4570

:::
per

:::::::
analysis

::::
step

::::::
which

::
is

:::::::::
negligible.

::::
The

:::::::::::
computation

::
is
:::::
5.65

:::::
times

::::::
slower

::
in
::::::::

pyPDAF
:::::

than
:::
the

::::::
PDAF

::::::
system

:::
for

::::
the

:::::::
function

::::::::
specifying

:::
the

:::::::::
dimension

::
of

:::
the

:::::
local

::::
state

:::::
vector

:::::
(‘init

::::
local

::::::::
domain’).

::::
The

::::::::
increased

::::::::::::
computational

::::
cost

:
is
:
a result of

computational overhead from data exchange between Python and Fortran.
:::::::
repeated

::::::::
execution

::
of

:::
the

:::::::::::
user-supplied

::::::::
functions

:::
for

::::
each

::::
local

:::::::
domain.

:::::::::::
Specifically,

::
in

:::
our

::::::::::
experiment,

::::
this

:::::::::::
user-supplied

:::::::
function

::
is

::::
used

::::::::::::
257× 257× 4

:::::
times

:::
per

:::::::
analysis

:::::
step.

The overhead is expected to be more evident with increasing ensemble size as the observation operator is called Ne +1 times575

::::
even

:::::
higher

:::
for

:::
the

:::::::::::
user-supplied

::::::::
functions

::::
that

::::::
convert

::::::::
between

::::
local

::::
state

::::::
vector

:::
and

::::::
global

::::
state

:::::
vector

:::::
(‘g2l

:::::
state’

:::
and

::::
‘l2g

:::::
state’),

::::::
which

:::
are

:::::
called

:::
for

::::
each

::::::::
ensemble

::::::::
member,

:::
due

::
to

:::
the

:::::::::
conversion

::
of

::::::
arrays

::::::
instead

::
of

:::::::
integers.

::
In

::::
this

::::::::::
experiment,

:::
the

::::::::
execution

::
of

:::::
these

:::::::
routines

::
in

:::::::
pyPDAF

::::::
system

::
is

::::::
around

::::
400

:::::
times

:::::
slower

::::
than

:::
the

::::::
PDAF

::::::
system.

:::
As

:::::
these

:::::::::
operations

:::
are

:::
not

:::::::::::::
computationally

::::::::
intensive,

:::
the

::::::::
overhead

:::::
cannot

:::
be

::::::::
mitigated

::
by

:::
JIT

:::::::::::
compilation.

:::::::
Without

:::::::::::
modifications

::
in

:::
the

:::::
PDAF

:::::::::
workflow,

::
the

::::::::
overhead

::::
can

:::::::
become

::::::::::::
comparatively

:::
less

:::::::::
significant

::::
with

:::::
high

:::::::::
observation

:::::::
density

::::::
arising

::::
from

:::::::::
increased

::::::::::::
computational580

:::
cost

:::
of

::::
other

::::::::
routines,

::
or
:::::::::

increased
::::::::::::
parallelisation

::
of

::::::
model

:::::::
domains

:::::::
leading

::
to

:::::::
reduced

:::::::
number

:::
of

::::
local

::::::::
domains

::
on

:::::
each

::::::::
processor.

:

::
To

:::::::::
overcome

:::
this

:::
run

::::
time

:::::
issue

::
of

::::
‘g2l

:::::
state’

::::
and

:::
‘l2g

::::::
state’,

:::
we

:::::::::
developed

:
a
:::::::::::
PDAFlocal

:::::::
module

::
in

::::::
PDAF,

::::::::
included

::
in

::::::
release

::::::
version

::::
2.3,

:::::
where

:::
the

::::::::::::
user-supplied

::::::::
functions

::
of

::::
‘g2l

:::::
state’

::::
and

:::
‘l2g

:::::
state’

::::
are

:::::::::::
circumvented

::
in

:::
the

::::::
PDAF

::::::::
interface

::
as

::::
their

:::::::::
operations

:::
are

:::::::::
performed

::
in

:::
the

::::::::
compiled

:::::::
Fortran

::::
code

:::
of

:::::::::::
PDAFlocal.

::::
This

:::::
leads

::
to

::::::
similar

:::::::::::::
computational

:::
cost

:::
of585

::::
these

::::::::
functions

:::::::
between

::::::::
pyPDAF

::::
and

:::::
PDAF

:::::::
system.

::::
With

::::::::::::
PDAFlocal,

:::::
users

::::
need

::
to

:::::::::
implement

:::
an

:::::
index

:::::
vector

:::::::::
providing

::
the

::::::::::
relationship

:::::::
between

:::
the

::::
state

::::::
vector

::
in

:::
the

::::::
current

::::
local

::::::
domain

::::
and

:::
the

:::::
global

::::
state

::::::
vector

::::
when

:::::
local

::::::
domain

::
is

:::::::::
initialised.

:::
Due

::
to
::::

this,
:::::
with

::::::::::
PDAFlocal,

::
we

::::
see

::
an

::::::::
increased

::::::::::::
computational

::::
time

::
in
::::
‘init

:::::
local

:::::::
domain’

::
in

::::::::
pyPDAF

:::::
which

::
is

::::::
around

::::
150

::::
times

::::::
slower

::::
than

:::
the

::::::
PDAF

::::::
system.

::::
The

::::::::
pyPDAF

:::::::
overhead

:::
for

::::
‘init

:::::
local

:::::::
domain’

::
is

::::::
smaller

::::
than

::::
that

::
of

::::
‘g2l

:::::
state’

:::
and

::::
‘l2g

::::
state’

:::::::
(around

::::
400

:::::
times

:::::::::
slowdown)

::::
due

::
to

:::::::
reduced

:::::::
number

::
of

:::::
array

::::::::::
conversions

:::::::
between

::::::
Fortran

::::
and

:::::::
Python.

:::::::
Further,

::::
only590

:::
one

::::::
instead

::
of

:::::
three

:::::::::::
user-supplied

::::::::
functions

:::
are

:::::::::::
implemented

::
in

:::::::
Python.

::::
Due

::
to

::::
this,

:::
the

::::
total

:::::::::
computing

::::
time

::
is
::::::
nearly

:::::
equal

::
for

::::::::
pyPDAF

:::
and

::::::
PDAF

::::
with

::::
only

:::::::::
6%− 13%

::::::
higher

::::
time

::
for

::::::::
pyPDAF. Overall, the time needed for pyPDAF is approximately

2 to 2.5 times longer than that for the Fortran-implementation when using PDAF directly.

:::::
These

::::::
results

::::::::::
demonstrate

::::
that

:::::::
pyPDAF

::::
can

::
be

:::::
used

::::
with

:::::::::::::::
high-dimensional

:::::::
systems

::::
with

::::::
slightly

:::::::::
increased

::::::::
overhead

:::
per

::::::
analysis

:::::
step.595

6 Conclusions

We introduce a Python package , pyPDAF,
:::
the

::::::
Python

:::::::
package

::::::::
pyPDAF,

::::::
which

::::::::
provides an interface to the Parallel Data

Assimilation Framework (PDAF)and .
::::

We outline its implementation and design. pyPDAF allows for a Python-based DA

system for models coded in Python or interfaced to Python. Furthermore it allows for the implementation of a Python-based

offline DA system where the DA is performed separately from the model and data is exchanged between the model and DA600

code through files. The pyPDAF package , which provides an interface, allows one to implement user-supplied functions in
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Python for flexible code development while the DA system is still benefiting
:::
still

:::::::
benefits from PDAF’s efficient DA algorithm

implementation in Fortran.

Using a CDA setup, we demonstrate that pyPDAF can be used with the Python model MAOOAM. Both strongly coupled

data assimilation (SCDA) and weakly coupled data assimilation (WCDA) are demonstrated. Our results confirm that the SCDA605

performs better than WCDA, and additional observations from other model components can improve the overall performance of

DA using SCDA. We also investigate the scenario where only one model component is observed. In this case, the error cross-

covariance matrix
::::
from

:::
the

::::::
ETKF

:
is sufficiently reliable for updating the unobserved model variables leading to improved

analyses states for both observed and un-observed model variables. We also show that the DA can improve the long-term trend

of the model state in the MAOOAM model.610

Using the WCDA and SCDA setup, the computational costs of using pyPDAF and a Fortran-only implementation with

PDAF are compared. We show that the computational time stays the same for the core DA algorithm executed in PDAF

while pyPDAF yields an overhead in user-supplied functions. This overhead is a result of both the Python implementation

and the requirement of data conversion between Python and Fortran. These overheads may be mitigated by a more efficient

implementation of the
::::::
become

:::::::::::::
comparatively

:::
less

::::::::::
significant

:::::
when

:::
the

:::::::
analysis

::::::::
becomes

::::::::::::::
computationally

:::::
more

::::::::
intensive615

::::
with

::::::::
increased

::::::
spatial

:::::::::
resolution

::
or

::::::::::
observation

:::::::
density.

:::
To

:::::::
mitigate

:::
the

::::::::
overhead

::
in
:::::::

domain
::::::::::
localisation

:::::::::::::::
implementations,

::
we

::::::::
introduce

::
a
::::
new

:::::::::::
“PDAFlocal”

:::::::
module

::
in

:::::
PDAF

:::::
such

:::
that

::
a

:::
DA

::::::
system

:::::
using

::::::::
pyPDAF

:::
can

:::::::
achieve

::::::
similar

::::::::::::
computational

:::
cost

:::
as

:
a
::::
pure

:::::::
Fortran

:::::
based

:::::::
system.

::::
This

::::::
module

::
is
::::::::

included
::
in

:::
the

::::::
release

:::::
v2.3

::
of

::::::
PDAF.

:::
We

::::
note

::::
that

:::
JIT

::::::::::
compilation

:::
or

:::::
‘f2py’

:::
can

:::
be

::::
used

::::
with

::::
the

::::::
Python user-supplied functions and data type definitions.

::
for

::::::::::::::
computationally

::::::::
intensive

:::::
tasks

::
to

:::::
speed

::
up

:::
the

::::::
Python

::::
DA

::::::
system.

::::
Our

::::::::::
benchmark

:::::
shows

::::
that,

::::
with

::
a
:::::
global

:::::
filter,

:::::
70%

::::
more

::::
time

::
is
:::::
used,

::::
and

::::
with

:
a
:::::::
domain620

:::::::
localised

:::::
filter,

:::::::::
6%− 13%

:::::
more

::::
time

::
is

::::
used

:::::
when

::::::::
applying

:::
the

::::::
Python

:::
DA

:::::::
system

::::
build

::::
with

::::::::
pyPDAF

::
in

:::::::::::::::
high-dimensional

::::::::
dynamical

::::::::
systems.

:::::::
pyPDAF

:::::
opens

:::
the

:::::::::
possibility

:::
to

:::::
apply

:::::::::::
sophisticated

:::::::
efficient

::::::
parallel

:::::::::
ensemble

:::
DA

::
to

:::::::::
large-scale

:::::::
Python

::::::
models

::::
such

:::
as

:::::::
machine

:::::::
learning

:::::::
models.

::::::::
pyPDAF

::::
also

::::::
allows

:::
for

:::
the

:::::::::::
construction

::
of

::::::::
efficient

::::::
offline

::::::
Python

::::
DA

:::::::
systems.

:::
In

:::::::::
particular,

:::::::
pyPDAF

::::
can

::
be

:::::::::
integrated

::
to
::::::::

machine
:::::::
learning

:::::::
models

::
as

:::::
long

::
as

:::
the

:::::
state

::::::
vector

:::
can

:::
be

:::::::::
converted

::
to

::::::
numpy

::::::
arrays.

:::
A625

::::::::::::
pyPDAF-based

::::
DA

::::::
system

::::::
allows

::::
users

:::
to

:::::
utilise

:::::::::::
sophisticated

:::::::
parallel

::::::::
ensemble

:::
DA

::::::::
methods.

::::::::
However,

::
a
::::::::
pyPDAF

::::::
system

::::
does

:::
not

:::::::
support

::::
GPU

::::::::::::
parallelisation

::::
like

::::::::
TorchDA

:::::::::::::::::
(Cheng et al., 2025),

::::::
which

::
is

::::::::
designed

:::::
based

:::
on

:::
the

:::::::
machine

::::::::
learning

:::::::::
framework

:::::::
pyTorch.

::::
The

::::::::
TorchDA

:::::::
package

::::
may

::::
also

:::::
have

::::::::
limitation

:::
on

:::
the

:::::::::
application

:::
of

:::
DA

:::
on

:::::::
machine

:::::::
learning

:::::::
models

::::::::::
implemented

:::
by

:::::
other

::::::::::
frameworks.

:

Code availability. The Fortran and Python code and corresponding configuration and plotting scripts including the randomly generated630

initial condition for the coupled DA experiments are available at: https://doi.org/10.5281/zenodo.11367123. The MAOOAM V1.4 model

used for our experiments is available at https://github.com/Climdyn/MAOOAM/releases/tag/v1.4 with a version available at https://doi.org/

10.5281/zenodo.1308192. The Fortran version of the experiment depends on PDAF V2.3 which is released at https://doi.org/10.5281/zenodo.

13789628 and can be also found at https://github.com/PDAF/PDAF/releases/tag/PDAF_V2.3 (Nerger, 2024). The source code of pyPDAF
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is available at https://github.com/yumengch/pyPDAF/releases/tag/v1.0.0 with the exactly same version at https://doi.org/10.5281/zenodo.635

10950130.
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