
1 Reviewer 1

General comment
This study evaluates the availability of the ensemble Kalman filter Python package, pyPDAF, for high-dimensional systems by comparing
its computational performance with the Fortran-based PDAF. The authors implemented both packages using a simple quasi-geostrophic
atmosphere-ocean coupled model. However, while the study aims to demonstrate pyPDAF’s applicability to high-dimensional systems,
the model’s dimensionality (104 −106) is far smaller than that of operational high-dimensional systems, which typically have 108 −109

grid points (see Comment #2).
Additionally, the ensemble size used in this study is only 16, which is insufficient for a system with dimensions of 104 − 106.

For instance, the 40-variable Lorenz-96 model with ETKF and LETKF requires an ensemble size of at least 40 and 10, respectively,
for reliable results. The small ensemble size chosen by the authors undermines the validity of their conclusions regarding pyPDAF’s
performance. It appears that the authors selected this ensemble size to avoid the computational expense of eigenvalue decomposition
for the ensemble-size square matrix in ETKF. However, operational systems commonly use ensemble sizes of 102, making it crucial to
assess the sensitivity to ensemble size in this study (see Comment #18). The study also suffers from additional shortcomings, including:

• Inaccurate or misleading terminologies (see Comment #1).

• Unrealistic experimental settings, particularly in the choice of observation errors and timescale definitions (see Comments #14-16).

• Inconsistent presentation and substandard English writing quality, which hinder readability and clarity (see Minor Comments).

Given these significant issues, this manuscript does not meet the standards required for publication in an international journal. To
address these concerns, the authors need to:

1. Align the model dimensionality and ensemble size with the stated objectives.

2. Improve the experimental design, particularly in terms of observation errors, timescales, and methodological rigour.

3. Correct terminological inaccuracies and enhance the clarity of descriptions.

4. Substantially improve the quality of English writing and presentation.

Without these major revisions, the study’s claims and findings cannot be considered robust or scientifically valid. The manuscript is
not suitable for publication in its current form.

Answer: We thank the reviewer for providing the critical review.
We regret the misunderstanding that the reviewer believes the primary goal of the manuscript is to evaluate the availability of EnKF

in pyPDAF for high-dimensional systems. We would like to stress that the primary goal of this paper is to introduce pyPDAF to the DA
and wider geoscience community regardless of the dimensionality of their applications.

The statement on ‘high-dimensional’ appears subjective given that highest-dimensional operational systems can hardly serve to
define what a high dimension for data assimilation is; see our responses to major comment #2. Additionally, we did not claim that
pyPDAF is aimed at operational data assimilation.

However, we agree that the evaluation of the computational performance of the pyPDAF package using ETKF is an important aspect
of this manuscript which can be strengthened by increased ensemble size. Therefore, we add experiments with ensemble sizes of 64 and
128 on 257×257 grid points.

The assumption that we used the rather small ensemble size of 16 to “avoid the computational expense of eigenvalue decomposition
for the ensemble-size square matrix in ETKF” is incorrect. Since the eigenvalue decomposition is computed in the compiled Fortran-part
of the program provided by PDAF, the execution time will be the same for the native PDAF and the pyPDAF cases. Actually, with a
larger ensemble more work is done in the compiled PDAF routines. Thus, increasing the ensemble size would decrease the relative time
overhead of the Python-coded part, which is demonstrated in our added experiments with larger ensemble sizes.

The claim that an ensemble size of at least 40 is required for reliable results with the ETKF is inconsistent with existing evidence. In
fact, with sufficient inflation, an ensemble size of 16 is sufficient to obtain a stable analysis for 40-variable Lorenz 96 model without any
localisation, e.g., see Figure 3 in Bocquet (2011). Even though increased ensemble size can produce better analysis, the improvements
are typically marginal. It is also known that one cannot extrapolate from the required ensemble size for the Lorenz 96 model to realistic
models. There are, e.g. successful applications of DA in the ocean with very small ensembles (e.g. Yu et al. (2025) using an ensemble
size of 8). For the MAOOAM model used in this study, the required ensemble size was examined by Tondeur et al. (2020). Their Figure
7 shows that even an ensemble size of 7 states is sufficient for the configuration we used. The dynamics of our model setup remain
unchanged, as grid points are merely a transformation from spectral coefficients.

The responses to the listed shortcomings can be found in comments #1, #14-16 and minor comments. Again, we would like to stress
the objective of this manuscript is to introduce a new Python tool for data assimilation implementation and the experiments are designed
to demonstrate the software capability instead of scientific aspects of data assimilation methodology and applications.

1

Major comment
1) L10 and elsewhere: Please remove the term “model” from phrases like “model forecast” and “model analysis.” While such

phrasing may appear in other papers, it is likely to be an incorrect use of terminology.

Answer: We agree that “model analysis” is less common. However, we keep the “model forecast” as it is quite commonly used.

2) L15 and elsewhere: Since operational centers use data assimilation systems with a dimensionality as high as 108 −109, the ideal-
ized data assimilation system employed in this study, with a dimensionality of 104 −106, cannot be considered high-dimensional.

Answer: We kindly disagree with the argument that a dimension O(106) cannot be high dimensional because operational assimila-
tion systems can have “a dimensionality as high as 108–109”. In particular, comparing to the systems with the highest dimensions
used today does not exclude that a dimension of O(106) is already high dimensional and there are also operational systems, e.g.
in the ocean, which are closer to a dimension 106 − 107. Nevertheless, we acknowledge that the term “high-dimensional” is
subjective.

3) L19–20: In the data assimilation (DA), the description that “observations constraint forecast and results in analyses” would not
be accurate. DA combines simulations and observations using dynamical systems theory and statistical methods. This process
provides optimal estimates (i.e., analyses), enables parameter estimation, and allows for the evaluation of observation networks.
These explanations would be more appropriate.

Answer: Changed.

4) L34: The term “user-supplied functions” in Section 1 is unclear, although the authors may provide a detailed explanation later.

Answer: We have adapted our manuscript as follows: “In this generic framework, DA methods accommodate case-specific
information about the DA system through functions provided by users including the model fields, treatment of observations, and
localisation. These functions are referred to as user-supplied functions.”.

5) First and second paragraphs in Section 2: The Kalman filter can be derived as a minimum variance estimator without assuming
Gaussian distributions. However, in most cases, the ensemble Kalman filter (EnKF) assumes Gaussian distributions in the forecast
fields, leading to the analysis field following the Gaussian distribution. For non-Gaussian assimilation, such as rainfall, transfor-
mations like the logarithm function might be applied. The authors’ discussion on ensemble data assimilation appears insufficient.
Since detailed discussions on data assimilation methods are not the focus of this study, it is suggested to remove these relevant
descriptions.

Answer: Following reviewer #3’s comments, the section is significantly shortened and reformulated such that the primary purpose
of this section is to provide information on available DA algorithms in PDAF.

We agree that the Kalman filter (KF) shares similar properties as a minimum variance estimator. However, the Kalman filter was
originally proposed as a Bayesian estimator which specifically assumes Gaussianity. Also, due to the need for the error covariance
propagation, the KF is almost always motivated by Gaussian random noises.

Although treating non-Gaussian variables is not the focus of this study, we recognise that it is useful to mention that pyPDAF
can perform Gaussian anamorphosis. In Sect. 2.4, we add the following sentences: “For example, as mentioned in Sect. 2.2,
optimal state estimation is achieved by ensemble-based Kalman filters under a Gaussian assumption. The state vector collection
and distribution function can be used to perform Gaussian anamorphosis where non-Gaussian variables can be transformed to
Gaussian variables (Simon and Bertino, 2012).”

6 - 8) L92–94:

• Please cite two typical EnKFs: the Ensemble Adjustment Kalman Filter (EAKF; Anderson et al. 2001) and the Ensemble
Square Root Filter (EnSRF; Whitaker and Hamill 2002).

• Please remove the mention of the deterministic ensemble Kalman filter (DEnKF), as it neglects quadratic terms such as
KRKT in its derivation, and therefore is no longer considered an EnKF.

• Please specify which EnKF and data assimilation (DA) methods are included in PDAF and pyPDAF.

Answer: The section mentioned in this comment is now used to describe available DA algorithms in PDAF. Though EAKF and
EnSRF are important DA algorithms, they are not yet implemented in PDAF yet. We added the following sentence: “Other typical
filtering algorithms, not implemented in current releases, such as ensemble adjustment Kalman filter (EAKF, Anderson, 2001) and
ensemble square root filters (EnSRF, Whitaker and Hamill, 2002) are planned to be included in future releases.”

The reference to DEnKF is removed as it is not implemented in PDAF. However, it is worth noting that the DEnKF was proposed
to mitigate the potential degeneracy of ensemble filters (ensemble collapse) while avoiding adding perturbations to observations.
The update of the error covariance matrix is described as a first order approximation in a Taylor expansion. The method loses its
value if it is not considered EnKF. We are not aware that the scientific community agrees on this view.

The KF variants and other DA algorithms provided by PDAF and pyPDAF are listed in Sect. 2.2.

2

9) L123–124: Even in twin experiments and Observing System Simulation Experiments (OSSEs), true values are never used to
generate forecast ensembles.

Answer: Sorry for the mistake. We removed this description. In fact, PDAF can generate an ensemble using any model trajectory.

10) L148–149: Since the amount of work required to implement additional Fortran and Python code depends on the users’ skill level,
this sentence may not be appropriate.

Answer: We add “Depending on the users’ programming skills....”

11) L301–303: Please clarify why the transformation errors decrease as the number of grid points increases.

Answer: We removed these discussions for the sake of brevity of the experimental setup. The Romberg integration is based on
repeatedly applying the trapezoidal rule and using Richardson extrapolation to cancel out the leading error terms. The accuracy of
the numerical integration depends on the number of grid points and the spatial resolution with an error of O(n−2log2 n) where n is
the number of grid points.

We add: “The accuracy of the numerical integration depends on the spatial resolution and the number of grid points with an error
of O(n−2log2 n) where n is the number of grid points. Our experiments suggest that the numerical integration error is negligible
once we have (27 +1×27 +1) = (129×129) grid points.”

12) L306–307: The minimum required ensemble size depends on various factors, such as sampling errors and system characteristics.
Please provide a detailed explanation of how the unstable subspace dimension influences the ensemble size.

Answer: The original sentence was removed for the sake of brevity. In response to the comment, without random model error,
the rank of the error covariance matrix of the ensemble Kalman filter converges onto the unstable-neutral subspace of a linear
dynamical model as proven mathematically by Bocquet et al. (2017), which is subjected to the observability condition. This might
be related to the system characteristics as mentioned by the reviewer.

The optimal ensemble size was studied in Tondeur et al. (2020); Bocquet (2011) for MAOOAM used in this study and Lorenz 96
respectively. In particular, Bocquet (2011) investigated the case with different inflation factors used to deal with sampling errors.

13) L318–321: The descriptions of the amplitude of the observation error variance are inconsistent.

Answer: It is unclear what inconsistency is suggested by the reviewer. We shortened the description following the suggestions
from reviewer 3.

14) Subsection 4.2: Please clarify why different variables with different units can be directly compared. Non-dimensional temperature
and stream function are typically normalized in a quasi-geostrophic equation.

Answer: Thank you for pointing out this issue. The comparison is removed.

15 - 17) Figure 5:

• Generally, observation error variances are much smaller than forecast error variances from free runs. The observation error
variances used in this study are quite large, as they are dominated by the last 100 years with quite large forecast error
variances in the free run. Since there are no model errors in the perfect twin experiments in this study, observation errors
should be set much smaller than the current values. For reference, forecast errors approach around five over time in the
Lorenz-63 and -96 models, while observation errors are prescribed to be one (i.e., 20% smaller).

• Please present temperature and stream function values using their respective units to enable comparison with practical sys-
tems.

• A model timestep of 0.1, corresponding to 16 minutes, is likely to be too short. Model drift continues even after 200 years,
and the error doubling time appears to be around 100 years, which is much longer than the error doubling time of 2 days in
the atmospheric system (Lorenz, 1996). Please clarify how the authors define the timescale.

Answer: The observation error is chosen as 70% of the standard deviation of a long model trajectory. Therefore, as shown in
the original Fig. 4, the observation errors are not spatially homogenous. This represents regionally high observation errors that
is common in ocean particularly satellite observations. Moreover, even though it is common to use an observation of one for
theoretical Lorenz systems, observation uncertainty can be high in real world. Further, the choice of the observation error does
not affect the primary purpose of demonstrating an application of pyPDAF.

As discussed in De Cruz et al. (2016), all variables including temperature and streamfunctions are non-dimensionalised. Consid-
ering the idealised experimental setup, we deem it unnecessary to present dimensionalised variables and compare it with realistic
systems.

The model parameters and time steps of the experiment follow Tondeur et al. (2020). In this study, as proposed in De Cruz et al.
(2016), a 4th order Runge-Kutta scheme is used for numerical integration. The accuracy of numerical integration increases with

3

smaller time step. Increased model time steps can lead to higher numerical integration error which is not intrinsic to the model
dynamics.

Based on Fig.4 of Tondeur et al. (2020), with our experiment setup of 36st, the largest Lyapunov exponent is 0.1 day−1. This
corresponds to an error doubling time of around 2 days. It is unclear to us how the reviewer reached the conclusion of an error
doubling time of 100 years.

18) The minimum ensemble size is 10 in the LETKF-based Lorenz-96 system with 40 variables. However, the authors set the ensemble
size to 16 members in a system with dimensions on the order of 104–106. Please demonstrate that an ensemble size of 16 members
is sufficient for this system.

Answer: The required ensemble size of our experiment setup is tested in Tondeur et al. (2020). Our experiments use the same
dynamical configuration. The only difference is that we assimilate in the grid point instead of spectral space. We explained the
relation between the ensemble size and model dynamics in comment #12. In Sect.3.1, we have: “As shown by Tondeur et al.
(2020), DA in the model configuration using 36 spectral coefficients can achieve sufficient accuracy with 15 ensemble members.”

19) In ETKF and LETKF, the most computationally expensive part is applying eigen-decomposition to a square matrix of size equal
to the ensemble size by ensemble size. This study intentionally reduces the ensemble size to 16, but operational systems typically
require an ensemble size on the order of 102 to achieve sufficient accuracy. Therefore, it is necessary to assess the sensitivity to
ensemble size using a high-dimensional system in order to investigate the computational performance of PDAF and pyPDAF.

Answer: The investigation of computational cost focuses on the differences between pyPDAF (Python) and PDAF (Fortran).
In both cases, the eigen-decomposition is performed in Fortran-based PDAF routines. Therefore, the consideration of eigen-
decomposition is not the reason for our choice of the ensemble size.

However, we agree that increasing the ensemble size can lead to more intensive numerical computations, and we acknowledge the
need for investigate the sensitivity to ensemble size. Hence, we add a new experiments with an ensemble size of 64 and 128. This
shows that an increased ensemble size reduces the relative overhead between Python and Fortran in pyPDAF as the numerical
computations take a higher proportion of the total computational time compared to a small ensemble.

20) L333–336: If the authors intend to maintain a dynamical balance in the initial conditions, it would be better to extract them
from the free run rather than applying second-order exact sampling. Multiplying by a factor smaller than one may degrade the
dynamical balance.

Answer: We agree that utilising a free run can avoid any issues in dynamical consistency. However, part of the reason for using
second-order exact sampling is to demonstrate the functionality of generating ensembles from a covariance matrix in PDAF. Also,
generating a covariance from a long model trajectory can also provide more statistical information of the system than randomly
selecting snapshots of the free run.

We add one sentence here, which hopefully clarify the issue: “PDAF provides functionality to generate the ensemble. Here,
to demonstrate its functionality, we use second-order exact sampling (Pham, 2001), in which the ensemble is generated from a
covariance matrix.”

21) L326: Please clarify why a daily assimilation interval is chosen in this study, given that a 6-hour interval is typically used in the
atmospheric data assimilation community.

Answer: We add: “This is in line with the experiment setup in Tondeur et al. (2020).”

22) L345 and elsewhere: The term “significant” should only be used if statistical tests are applied.

Answer: We removed all “significant”.

23) Please clarify whether the authors calculate RMSEs and ensemble spread for forecasts or analyses throughout the manuscript (e.g.,
forecast RMSEs).

Answer: We always calculate the analysis RMSE and ensemble spread except for the free run in this paper as suggested by the
descriptions and figure captions.

24) L366–367: Please clarify how the authors control error growth and forecast errors.

Answer: We add “controlled by DA” here.

25) L368–369: The explanation of analysis accuracy at grid points without observations is not reasonable, as the authors have not
consider the impact of ensemble correlation.

Answer: We rephrased the sentences to: “This is due to the fact that the model fields are rather smooth leading to long ensemble
correlations.”

26 - 27) Figure 6:

• Please show not only the RMSEs but also the ensemble spread for comparison at the same time.

4

• Please apply a paired t-test to compare the RMSEs between weak and strong coupled data assimilation.

Answer: Following the suggestion by reviewer 3, to keep the CDA results discussion concise, we decide not to provide additional
ensemble spread statistics here.

Also, we removed paragraphs for discussions on the SCDA and WCDA comparison to ensure they are not the focus of this study.
Besides, a t-test here can provide little additional information for SCDA and WCDA in general as we only perform one specific
MAOOAM configuration for demonstration purpose. Hence, we do not provide an additional t-test here.

28) The term “error” typically refers to an instantaneous error, whereas “RMSE” represents the statistical expectation of errors. Please
use these terms appropriately to clarify the distinction between them.

Answer: Changed.

29) L389: Please clarify what is meant by “transient atmosphere processes.”

Answer: The phrase is removed.

30) L390–394: Please demonstrate that the ocean exhibits a 60-year timescale in the stream function field, which results in minimum
RMSEs at a 60-year smoothing window.

Answer: This is removed.

31-32) Subsection 5.2:

• Figures 8 and 9 show computational times at the analysis timestep on a logarithmic scale, making it difficult to directly
compare the differences between PDAF and pyPDAF. Please clarify these differences by providing the ratio.

• Please include a description of the total computation time for one assimilation cycle, including both the forecast and analysis
steps.

Answer: We acknowledge that it is difficult to understand the real computational time in logarithmic scale. However, it appears
to be the only graphical solution due to the sheer differences in computational time.

To mitigate the limitation of the figures, we present computational time of selected experiments in Tab. 2, 3 and 4 with the ratio
between the Python and Fortran implementations.

We do not see the need for including the computational time of forecast because they are implemented by the same Fortran code,
leading to same forecast time. The forecast step is also irrelevant to the comparison between pyPDAF and PDAF.

33) L431: The term “very” is subjective. Please describe this in a more objective manner.

Answer: Removed.

34) L497: This sentence is inconsistent because the computational times for PyPDAF and PDAF are different. Please revise it to
reflect the results obtained in this study.

Answer: We changed “the same” the “similar”.

Minor comment
35) L5: “exists” → “are”

Answer: Done

36) L5 and elsewhere: “need” → “demands”

Answer: Done.

37) L15-16: Incorrect spelling of LEKTF (Local Ensemble Transform Kalman Filter).

Answer: Changed.

38) L19 and elsewhere: “weather and climate” → “atmosphere and ocean”

Answer: We believe that “weather and climate” is more inclusive than “atmosphere and ocean”.

39) L29: Please spell out “DAPPER”.

Answer: Done.

40) L38: Please specify which models are coupled.

Answer: Done.

5

41) L39 and elsewhere: There are no URLs, although the authors mention the date of last access.

Answer: The URLs are given as references. This follows the journal policy on webpage references (https://www.geoscientific-model-development.
net/submission.html#references)

42) L74: “initialization” → “initial”

Answer: “initialisation shock” is a term used by the cited reference Smith et al. (2015). This sentence is removed in the revised
manuscript.

43) L78: Incorrect grammar.

Answer: Rephrased.

44) L97: “counter” → “mitigate”

Answer: Changed.

45) L119: “ensemble-based 3DVar” → “ensemble variational data assimilation”

Answer: This sentence is removed.

46) L137 and elsewhere: “observation vectors and error covariance matrix” → “observations and observation error covariance matrix”

Answer: We changed two occurrences of “observation vector”. However, we keep the phrase when describing use of OMI in
pyPDAF in Sect.2.4 because it should be treated as a vector there.

47) L139: Please specify the “direct” observation operator.

Answer: We change it to: “an observation operator for observations located on grid points”

48) L142: “would be” → “is”

Answer: Changed.

49) L179: Please add the last access date.

Answer: Done.

50) L266: “coupled” → “implemented”, “implemented” → “written”, “that is coupled directly” →“and is implemented”

Answer: Done.

51) When connecting two sentences, please insert a comma before “and” to enhance readability.

Answer: Done.

52) The use of “respectively” seems incorrect. A comma should be added before “respectively”. For example, insert “each” before
“Fortran” and remove “respectively” in L268.

Answer: In examples of the Cambridge dictionary, a comma only appears for American English version (https://dictionary.
cambridge.org/dictionary/english/respectively, last accessed: 2025-03-25). Therefore, we don’t think it is essential
here.

53) Eqation (2): Please add an explanation for “n”.

Answer: Added.

54) L315: Please specify the meaning of “ensure ... model state”.

Answer: This is rephrased as “ensure that the initial state corrected by the DA follows the trajectory of the dynamical model”

55) L329: Please specify a forgetting factor. Is this the same as the relaxation parameter in the relaxation-to-prior perturbation and
spread methods?

Answer: We add the following explanation: “The forgetting factor (Pham et al., 1998) is an efficient approach to multiplicative
ensemble inflation in which the covariance matrix is inflated by the inverse of the forgetting factor as shown in the formulation
in Nerger et al. (2012)”

56) L338: Please remove “generally”.

Answer: Done

57) L357–358: Please check the meaning of the sentence.

Answer: Rephrased.

58) L464: “respectively” should be added after “l2g state”.

Answer: Done.

6

Reviewer 2
Thank the authors for this revision. My comments have been well addressed, and I have no further issues. The manuscript can be
accepted.

Answer: We thank the comments and suggestions from the reviewer.

Reviewer 3
This manuscript introduces a newly developed Python interface to the Fortran-based Parallel Data Assimilation Framework (PDAF)
software, pyPDAF. This tool aims to ease the development of new data assimilation systems by utilizing the Python programming
language while only sacrificing the computational speed to an acceptable extent. It demonstrates an example of coupled data assimilation
(CDA) using the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) and ensemble transform Kalman filter (ETKF)/local
ensemble transform Kalman filter (LETKF) algorithms, showing that the CDA systems developed based on PDAF and pyPDAF both
work correctly and produce identical results, with their computational speeds measured for comparison. The idea of developing a Python
interface to an existing data assimilation software package targeting efficient parallel computing is very useful to the community and
worth publication. However, I find that this manuscript may need to be improved for its readability and strategy to present this topic.
Therefore, I recommend that the manuscript can only be considered for publication after a major revision.

Answer: We thank for the reviewer’s opinion that the package is useful to the community and worth publication.

Major comments
Overall, the strategy to present the topic of this manuscript may be reconsidered. The primary purpose of this article should be to
introduce this newly developed pyPDAF, describe its concept, strengths, and weaknesses, and thus promote it to the community. A
use-case example certainly needs to be included in this article, but it does not need to be too complicated or advanced in its experimental
design or the presentation of the results. Several parts of the contents regarding the data assimilation methods and experiments may be
shortened or removed. On the other hand, some other information about the development of data assimilation systems using pyPDAF
should be better detailed or presented, such as the comparison of implementation difficulties between using PDAF and pyPDAF. I find
that the manuscript has been improved in response to the comments of Referee #2 in the previous round of the review, with which I share
similar opinions, but room for improvement still exists.

Answer: The DA methods described here are mainly existing methods in (py)PDAF. We have reformulated and shortened the
description for better readability. The experimental description is mainly for the reproducibility purposes. We have shortened these
descriptions in the revised manuscript.

We add a section “Comparison of pyPDAF and PDAF implementation of CDA” to compare the implementation difficulties between
the Fortran and Python version using lines of code. We also provide the following description in the conclusion: “The advantage of
pyPDAF in terms of the ease of implementation is reflected by a comparison of the number of lines of code by user-supplied func-
tions in the SCDA setup. The pyPDAF implementation consistently uses fewer lines of code showcasing the requirement for a lower
implementation effort than PDAF implementation.”

1. I feel that the authors intended to provide much information and demonstrate some scientific findings regarding CDA in this
manuscript; however, these may not be all necessary, considering that the focus of this manuscript should be introducing a new
software tool for data assimilation development. Regarding the data assimilation experiment, I think its most important aspect
should be to serve as an example of the data assimilation development using PDAF and pyPDAF, and the scientific insight may
not be of the first concern. Therefore, I would suggest keeping the experimental design and the analysis and presentation of the
results as simple as possible, so readers can easily understand the experiment results and focus on understanding the pyPDAF.
Since the authors referred a lot to Tondeur et al. (2020), which used the same MAOOAM model, one option may be (only if the
authors think this is appropriate) to repeat or mimic a few experiments in Tondeur et al. (2020) but using PDAF and pyPDAF so
that the authors could save some words describing the experiments and interpreting the results.

In addition, a review of the ensemble-based data assimilation methods (Section 2) may not need to be too comprehensive as long
as sufficient information relevant to this study is provided; for example, the particle filter method is not used in this study, so it
may not be reviewed in too much detail. Besides, the ensemble generation method (i.e., “second-order exact sampling”) is not
very relevant to this study, either, as long as the approach is reasonable and a spin-up period is excluded from the analysis of the
results (as in Lines 333-341).

Answer: In deed, the coupled data assimilation is not the focus of this study. We removed some descriptions of CDA in the
abstract and the introduction. We also shortened the description of model and experiment setup in the revised manuscript.

Our experiment setup follows Tondeur et al. (2020) with the following differences:

(a) DA is performed in spectral space in Tondeur et al. (2020) but we chose to perform DA in the physical space.

(b) Observation errors are slightly higher in our experiment setup.

7

This is because our setup can be used to conduct experiments for different number of grid points with the same dynamical setup.
Besides, using observations in actual, grid point, spaces is what is done in real DA applications.

We have moved the ensemble data assimilation section to be a subsection under the PDAF and pyPDAF section as Sect. 2.2. The
subsection is repurposed to describe available DA methods in PDAF instead of a general introduction to ensemble DA.

2. The authors added Section 3.3 in the previous review process describing the things a developer needs to take care of from the
aspect of several pyPDAF library interfaces, which was good. However, some of these contents appear too technical and too much
like technical documentation of the software, but not easily understood by readers without having used the software. On the other
hand, some critical information is still missing or not clearly presented: (1) to run the CDA experiments in the current study, what
exactly are the programming tasks one needs to do by using PDAF and pyPDAF; how many “user-supplied functions” (simply
listing them) are needed to be written by the users to fulfill the capability of running the current CDA experiments? (2) Were
all the user-supplied functions written in Fortran and in Python, respectively, in the experiments using PDAF and pyPDAF? For
example, for the spectral transformation calculation in Eqs. (1) and (2), were they coded separately in Fortran and Python in the
two experiments? This information is important for readers to understand the relative implementation difficulties of using PDAF
and pyPDAF.

Answer: We agree that Sect. 3.3 (now 2.4) is quite technical. To improve the readability, we have revised the section and put
technical details into parenthesis. We hope this can reduce the intrusion of technical details in the main text while still providing
a sufficient explanation of the user implementation with PDAF.

We add a section “Comparison of pyPDAF and PDAF implementation of CDA” to compare the implementation difficulties be-
tween the Fortran and Python version using the number of lines of code.

We add the following explanation for the implementation of Eqns. (1) and (2) which was mentioned in Sect. 4.2: “In this study,
for the sake of efficiency, the transformation between spectral modes and grid points are implemented in Fortran. In pyPDAF
systems, the Fortran transformation routines are used by Python with “f2py”. This implementation ensures that the numerical
computations do not render rounding errors when conducted in different programming languages. Moreover, it also demonstrates
that the computation intensive component of user-supplied functions can be sped up by optimised Fortran code.”

3. An important result I expect to see is the identicality of the data assimilation experiment results using PDAF and pyPDAF. The
author did describe it but only in a brief sentence: “The online DA systems using PDAF and pyPDAF produce quantitatively the
same results in all experiments up to machine precision.” (Lines 353-354) I feel that this important aspect may deserve a bit more
detailed discussion. In particular, given that a lot of user-supplied functions are written in different programming languages, it
seems unlikely to me that their results can be “the same up to machine precision” It would be helpful if the authors could provide
precise numbers of the analysis RMSEs of the two experiments using PDAF and pyPDAF.

Answer: This is indeed a relevant aspect. If the actual numerical computation is conducted in different languages, even though the
differences of numerical computation is minimal in one time step, they can get magnified in nonlinear systems. In our experiments,
the user-supplied functions are used to read observations and assign forecast fields to state vectors of Fortran PDAF arrays. User-
supplied functions do not perform any numerical computations. Therefore, the user-supplied functions do not affect the DA
step. However, our experiments indeed suggest divergent results if numerical computations are involved with two programming
languages. For example, the transformation between spectral coefficients and grid point values. These motivate us to use the same
Fortran subroutines and call them from Python in our experiments.

We add the following paragraph in the beginning of Sect. 4: “The online DA systems using PDAF and pyPDAF produce quantita-
tively the same results in all experiments up to machine precision. This is because, the user-supplied functions mainly perform file
handling and variable assignments, but no numerical computations. An exception is only the spectral transformation described in
Sect. 3.1. To ensure comparable numerical outcome, the numerical computations that affect the forecast and analysis, in particular
the spectral transformation, are all conducted in Fortran in this work. These Fortran implementations are used by Python user-
supplied functions using “f2py”. Note that, when numerical computations involve different programming languages, the model
trajectory of the nonlinear system could differ because of errors in the initial conditions arising from rounding errors.”

4. The comparison of the computational performance of PDAF and pyPDAF is undoubtedly an important part of this study. The
authors attempted to state that the computational speed of pyPDAF is only slightly slower than PDAF, especially when they are
used with high-dimensional systems. However, from the results presented, it seems to me that their difference is actually not very
small, particularly noting that Figs. 8 and 9 are plotted on a logarithmic scale, which may visually underestimate the differences.
In addition, the study shows that in the case of LETKF (filters with domain localization), the difference in computational speed
can be even more significant if the additional “PDAFlocal” module is not developed. Although this issue can be satisfactorily
mitigated by the additional development presented, it also implies that the degree of the computational speed loss of using pyPDAF
compared to PDAF could be very different case by case (different filters, observation operators, etc.). I feel that these results do
not significantly detract from the value of pyPDAF, as enabling rapid development of data assimilation systems remains crucial.
However, I suggest the authors moderate their claims about the advantage of pyPDAF in the computational aspect and clearly
describe the limitations.

8

Answer: We understand the concern of using figures on log-scales. The reason for plotting on the log-scale is primarily due to
the drastic differences of computational time between different spatial resolution and partially different functionalities instead of
the differences between the pyPDAF and PDAF implementation.

To mitigate this issue, we add “in log-scale” in the y-axis of the figures and make the caption of “log-scale” bold. We also added
Tab. 2, 3 and 4 to present computational time of selected experiments. In these tables, we include the ratio of computational time
between pyPDAF and PDAF.

To address the concerns on the computational efficiency, we specify that the 13% slow down of LETKF is a result of our specific
example. We also state that the overhead of the computational cost can vary case by case. For example, we changed the last
sentence in the abstract to “The study also shows that pyPDAF can be used with high-dimensional systems with little slow-down
per analysis step of only up to 13% for the localized ensemble Kalman filter LETKF in the example used in this study. The
study also shows that, compared to PDAF, the overhead of pyPDAF is comparatively smaller when computationally intensive
components dominate the DA system. This can be the case for systems with high-dimensional state vectors.”

We also add the following discussions in the manuscript: “We recognise that the exact computational time can be case-specific. For
example, we can postulate that, compared to this study, the overhead can be comparatively smaller for computationally intensive
user-supplied functions where JIT can be used. This could be the case when correlated observation error covariances are used.
Even though this study only investigates the commonly used ETKF and LETKF, the relative run times of pure PDAF and pyPDAF
should be similar for other global and local filters. This expectation results from the algorithmic similarity of many filters and the
fact that the user routines which are coded in Python when using pyPDAF are mainly the same. However, the overhead may also
vary depending on the DA algorithms, in particular for variants of 3DVar.”

We stated that the “PDAFLocal” module is designed specifically to mitigate the overhead in pyPDAF in Sect. 4.2. “To overcome
the specific run time issue of ‘g2l state’ and ‘l2g state’, we developed a PDAFlocal module in PDAF, included in release version
2.3...” In the conclusion, we also recognise the possibility to improve the efficiency in future development: “We recognise that
the computational cost of the pyPDAF and PDAF can vary case-by-case. Our results demonstrate that the additional “PDAFlocal”
module was essential to mitigate the computational overhead in the case of domain localisation. When pyPDAF is used for other
DA algorithms and applications, potential efficiency gain can be implemented in future releases of both PDAF and pyPDAF as
both pyPDAF and PDAF are still under active development and maintenance. ”

Please note, the “PDAFlocal” is now used as the default, so that the overhead occurring when not using “PDAFlocal” is no longer
a concern. The discussion on the overhead without “PDAFlocal” and the solution obtained by introducing it is now intended to
serve as a example of issues one can encounter when combining Python code with Fortran.

Minor comments:
1. Lines 14 (in Abstract) and 34: These are the first appearances of the terminology “user-supplied function” in PDAF. In my

understanding (after reading more contents in the manuscript and the PDAF documentation), it stands for the additional code
users need to write to complete a data assimilation system based on PDAF, but this is not very straightforwardly understood in the
beginning. I suggest that this term be better explained in its first appearance.

Answer: In the abstract, we avoid the word “user-supplied function” and use a more descriptive sentence: “This study demon-
strates that pyPDAF allows for PDAF functionalities from Python where users can utilise Python functions to handle case-specific
information from observations and numerical model.”

In the introduction, we provide an explanation of the user-supplied functions: “In this generic framework, DA methods accommo-
date case-specific information about the DA system through functions provided by users including the model fields, treatment of
observations, and localisation. These functions are referred to as user-supplied functions.”

2. Section 4.2, experiment design: What is the length of the cycled data assimilation experiments? Is it 3̃00 years? This seems to be
implied in Fig. 5 but is not explicitly provided.

Answer: We add a sentence: “The DA experiments are then run for another 9×105 time steps which is around 277 years.”

3. Lines 329-330: What does the “forgetting factor” mean? Does it represent some parameters in a specific covariance inflation
scheme?

Answer: The ’forgetting factor’ relates to a computationally particularly efficient scheme for multiplicative inflation introduced
by Pham et al. (1998). While the factor itself specifies the inflation, it is also synonymous for the method. Explaining details
would be beyond the scope of the manuscript. To this end, we only add the following explanation: “The forgetting factor (Pham
et al., 1998) is an efficient approach to multiplicative ensemble inflation in which the covariance matrix is inflated by the inverse
of the forgetting factor as shown in the formulation in Nerger et al. (2012).”

4. Lines 384-385, “the time-averaged RMSE of fields that are smoothed in time by a moving average as a function of the averaging
time-window”: I find that the meaning of Fig. 7 is difficult to understand. Does it mean first applying a moving average (with
variable time-window lengths in the x-axis) to the spatial RMSEs across the 300-year experiment period (related: Minor comment

9

#2) and then computing the temporal average of the moving average results? If this is correct, the scientific meaning behind this
figure remains difficult to me: Why do the authors want to do the “double temporal average” (average of moving average)? Is this
meaningful? Following my Major comment #1, to keep the experiment results as simple as possible, this figure may be removed
if it is not critical to the theme of this manuscript.

Answer: The moving average in time is applied to the actual model field to obtain a temporally smoothed field, and the RMSE is
calculated for the smoothed field afterwards. The idea was to compare the RMSE of slow processes of the system, e.g., seasonal
climate. We removed the figure and corresponding discussion.

5. Lines 402-403: Why is the data assimilation calculation performed on a single processor instead of 16 processors used for running
ensemble model forecasts? Is there any practical restriction of PDAF to parallelize the data assimilation calculation with an
arbitrary number of processors?

Answer: In our experiments, we tested both ETKF and the local ETKF (LETKF). ETKF can be easily parallelised with a dis-
tributed computation of the global transform matrix. The LETKF can be embarrassingly parallel for each local domain. The
default MPI parallelisation strategy in PDAF utilises the domain decomposition of numerical models. For example, assume we
have 3 ensemble members, each of which is decomposed to 4 processors, during the forecast, PDAF collects the full ensemble
from the 3 ensemble members to the first ensemble member without affecting the domain decomposition. During the analysis
step, the domain-decomposed ensemble states are processed on the 4 processors of the first ensemble member. The LETKF is
performed on local domains on these processors. This approach was found to be efficient in particular when using models with
unstructured grids which cannot easily be further decomposed. However, an analysis using more processors is possible with a
change in PDAF’s communication routine. In our experiment, the numerical model is not parallelised leading to a single proces-
sor for LETKF. In PDAF, one can further utilise shared memory parallelisation with OpenMP. However, this is less straightforward
in pyPDAF because the global interpretor lock (GIL). To enable shared memory parallelism, frequent acquirement and release of
the GIL is needed which can degrade the performance of LETKF.

We add the following paragraph: “The ETKF has a straightforward parallelisation since the global transform matrix can be
computed in a distributed form followed by a global sum. The LETKF is embarrassingly parallel for each local domain after
communicating the necessary observations. Each processor can perform LETKF independently for their local domains. In PDAF,
the parallelisation of both ETKF and LETKF is implemented in combination with domain decomposition of the numerical model.
In this study, no domain decomposition is carried out for the numerical model itself. Thus, all local domains are located in one
single processor for LETKF. The parallelisation strategy of PDAF is further explained in Nerger et al. (2005) and a pyPDAF
documentation is available (Parallelisation Strategy, Accessed: 20 March 2025).”

6. Figure 8, Lines 423-424: The “MPI” communication time is long and accounts for a large portion of the total computation time
(in both PDAF and pyPDAF). Given that the number of processors (16?) is not many, why does the MPI communication time take
so long? Could the authors briefly explain where this MPI communication time is mostly spent?

Answer: In this study, because DA is performed serially, the MPI communication only occurs when the ensemble is collected
from the state vector in each ensemble member before the analysis and distributed to the state vector after the analysis. This
involves data exchange between different processors. Therefore, we see an increased MPI communication time with larger state
vector. The lack of computer memory can also lead to slow MPI communications due to the use of swap memory. In the revised
manuscript, we increased the memory allocation for each experiment that leads to reduced MPI communication time.

We add the following sentence: “In this study, the MPI communications are only used to gather an ensemble matrix from the
state vector of each ensemble member located at their specific processor. These communications are internal to PDAF, and are not
exposed to users, which show little differences between pyPDAF and PDAF system.”

7. Lines 444-445: What exactly is the localization length scale or cut-off radius used in this study? What do the authors mean by the
“1 spatial unit”?

Answer: We clarified this by writing: “Here, we choose a domain with 257×257 grid points to assess the LETKF with a cut-off
localisation radius of 1 non-dimensionalised spatial unit. This corresponds to 3000 km covering around a third of the domain..”

8. Figure 9: Why are there two missing bars in the “no. domains” part? Are they excessively small so it does not appear in this
figure? This needs to be corrected or explained.

Answer: Yes. The computational time is below 10−5 seconds in Fortran as they are a simply a constant assignment which may
even be inline optimised by the compiler. We add the following explanation in the manuscript: “The ‘no. domains’ user-supplied
function takes ∼ 1.8× 10−5 s per analysis step for pyPDAF system but only ∼ 1.× 10−6 s is taken by the PDAF system. The
latter can be negligible when every 8 grid points are observed. In this user-supplied function, only one assignment is executed in
the user-supplied function. Therefore, the overhead is primarily a result of conversion between the interoperation between Fortran
and Python. This operation has little impact on the overall efficiency of the system. ”

We also add a note in the figure caption: “The computational time of PDAF system for ‘no. domains’ is negligible when every 8
grid points are observed which lead to an empty bar.”

10

References
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 129, 2884 – 2903,

https://doi.org/10.1175/1520-0493(2001)129⟨2884:AEAKFF⟩2.0.CO;2, 2001.

Bocquet, M.: Ensemble Kalman filtering without the intrinsic need for inflation, Nonlinear Processes in Geophysics, 18, 735–750,
https://doi.org/10.5194/npg-18-735-2011, 2011.

Bocquet, M., Gurumoorthy, K. S., Apte, A., Carrassi, A., Grudzien, C., and Jones, C. K. R. T.: Degenerate Kalman Filter Error
Covariances and Their Convergence onto the Unstable Subspace, SIAM/ASA Journal on Uncertainty Quantification, 5, 304–333,
https://doi.org/10.1137/16M1068712, 2017.

De Cruz, L., Demaeyer, J., and Vannitsem, S.: The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0, Geoscientific
Model Development, 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016, 2016.

Nerger, L., Hiller, W., and Schröter, J.: PDAF - The parallel data assimilation framework: experiences with Kalman filtering, in: Use of
High Performance Computing in Meteorology, pp. 63–83, https://doi.org/10.1142/9789812701831 0006, 2005.

Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A Unification of Ensemble Square Root Kalman Filters, Monthly Weather Review,
140, 2335 – 2345, https://doi.org/https://doi.org/10.1175/MWR-D-11-00102.1, 2012.

Parallelisation Strategy: https://yumengch.github.io/pyPDAF/parallel.html, Accessed: 20 March 2025.

Pham, D. T.: Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Monthly Weather Review, 129, 1194
– 1207, https://doi.org/https://doi.org/10.1175/1520-0493(2001)129⟨1194:SMFSDA⟩2.0.CO;2, 2001.

Pham, D. T., Verron, J., and Christine Roubaud, M.: A singular evolutive extended Kalman filter for data assimilation in oceanography,
Journal of Marine Systems, 16, 323–340, https://doi.org/https://doi.org/10.1016/S0924-7963(97)00109-7, 1998.

Simon, E. and Bertino, L.: Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to
a 1D ocean ecosystem model, Journal of Marine Systems, 89, 1–18, https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.07.007,
2012.

Smith, P. J., Fowler, A. M., and Lawless, A. S.: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmo-
sphere–ocean model, Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.3402/tellusa.v67.27025, 2015.

Tondeur, M., Carrassi, A., Vannitsem, S., and Bocquet, M.: On temporal scale separation in coupled data assimilation with the ensemble
kalman filter, Journal of Statistical Physics, 179, 1161–1185, https://doi.org/10.1007/s10955-020-02525-z, 2020.

Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation without Perturbed Observations, Mon. Wea. Rev., 130, 1913–1927,
2002.

Yu, H.-C., Zhang, Y. J., Nerger, L., Lemmen, C., Yu, J. C., Chou, T.-Y., Chu, C.-H., and Terng, C.-T.: Development of a flexible
data assimilation system for a 3D unstructured-grid ocean model under Earth System Modeling Framework, Ocean Modelling, 196,
102 546, https://doi.org/https://doi.org/10.1016/j.ocemod.2025.102546, 2025.

11

