Spatial and temporal variability of sea surface temperatures and monsoon dynamics in the northwestern Arabian Sea during the last 43 kyr

Jan Maier¹,², Nicole Burdanowitz¹,³, Gerhard Schmiedl¹,³, Birgit Gaye¹,³

¹ Institute for Geology, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
² Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Geographie und Geowissenschaften; 91054, Erlangen, GeoZentrum Nordbayern, Schlossgarten 5, Germany
³ Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Correspondence to: Jan Maier (jan.m.maier@fau.de)

Abstract

In this study, we present the first well-dated, high-resolution alkenone-based sea surface temperature (SST) record (SL167) from the northeastern Oman Margin (Gulf of Oman) in the northwestern Arabian Sea. The SST reconstructions spanning the last 43 kyr reveal fluctuations of approximately 7 °C (20.1 °C to 27.4 °C) and demonstrate a higher sensitivity to climate variations compared to similar core locations in the Arabian Sea. SSTs remained low during Heinrich events (H2, H3, H4), the Younger Dryas, early and late Holocene, and were high during Dansgaard-Oeschger interstadials (D-O 11, D-O 4 - 9, Bølling-Allerød (B-A), and mid-Holocene. SST was predominantly influenced by the SW monsoon during warmer periods and the NE monsoon during cold intervals. The dynamics of strengthening and weakening monsoon periods were likely controlled by shifts in the Intertropical Convergence Zone prompted by changes in solar radiation in the Northern Hemisphere. The last glacial maximum exhibited no intense cooling probably due to stronger NW winds and an eastward shift of the SST gradient in the Gulf of Oman, resulting in a brief and moderate cooling period. Strong SW winds during the early Holocene transported cold water masses from Oman upwelling into the Gulf of Oman, lowering SSTs. A rapid temperature increase of approx. 2 °C during the mid-Holocene was induced by an abrupt eastward shift of the SST gradient.

1 Introduction

The Arabian Sea is impacted by one of the world's largest and most complex climate systems - the Indian monsoon system (Gupta et al., 2020). Seasonal monsoon winds (Figure 1), driven by alternating atmospheric pressure gradients, induce regional and annual fluctuations in sea surface temperature (SST) patterns (Figure 2a, b). The SW monsoon significantly influences precipitation patterns in the monsoon region, accounting for approximately 80% of the total annual precipitation (Gadgil, 2003). This monsoon system also dictates environmental conditions, affecting phenomena such as droughts, floods,
and terrestrial vegetation coverage. Moreover, it plays a crucial role in shaping the economies and societies of southern Asia and the Arabian Peninsula (Clift and Plumb, 2008; Krishna Kumar et al., 2004). The strength of the monsoon has undergone shifts due to past global climate variability. The monsoon variability is associated with significant hydrological changes, i.e. alternating phases of excessive and deficient precipitation, causing severe challenges for civilizations in the region (Gadgil, 2003; Krishna Kumar et al., 2004). The Indian monsoon system is an important component of the global climate system and sustains the livelihoods of over a billion people worldwide (Gupta et al., 2020). Therefore, utilizing high-resolution paleo-reconstructions is essential to enhance our understanding of forcing mechanisms and their impact on monsoon variability in the past, as well as to improve forecasting and future climate modeling.

The last glacial period was characterized by significant climate variability in the northern North Atlantic, known as D-O oscillations and Heinrich Events (Bond et al., 1993; Dansgaard et al., 1993; Heinrich, 1988; Johnsen et al., 1992). These oscillations are linked to instabilities in the Northern Hemisphere glacial ice sheet, resulting in a significant freshwater influx into the North Atlantic. This, in turn, impacts the Atlantic Meridional Overturning Circulation (AMOC) and can lead to a substantial reduction or even a complete shutdown (Broecker, 1994; Dansgaard et al., 1993; Heinrich, 1988; Hemming, 2004; Ganopolski and Rahmstorf, 2001; McManus et al., 2004). Building upon these insights, previous studies (e.g., Leuschner and Sirocko, 2000; Reichart et al., 1998; Sirocko et al., 1996; Schulte et al., 1999; Schulz et al., 1998) have described a strong connection between the North Atlantic Ocean and the Indian monsoon climate in the Arabian Sea during stadial periods (Heinrich Events, Last Glacial Maximum) and interstadial periods (D-O cycles, Bölling-Allerød (B-A), Holocene). To enhance our understanding of both, the Indian monsoon system and the identification of supraregional connections, SST reconstructions have been conducted in various regions of the Arabian Sea in the past, as detailed in an overview by Gaye et al. (2018).

Depending on the location, these reconstructions exhibited significant variations in SST, responding differently to warm and cold periods, as well as local influencing factors such as atmospheric and oceanic circulations.

This study is centered around an alkenone-derived SST record (SL167) obtained from the northeastern continental Oman margin in the Gulf of Oman in the northwestern Arabian Sea. This high-resolution sediment core spans the past 43 kyr, providing insights into the last glacial period and the transition to the current Holocene period. The new record is particularly significant since it represents the first high-resolution alkenone-derived SST record in the southeastern part of the Gulf of Oman. Previous high-resolution SST records either do not extend as far into the past (e.g., Böll et al., 2015; Huguet et al., 2006), or exhibit lower SST resolution in the Arabian Sea (e.g., Schulte and Müller, 2001). By comparing our SST data with existing records from the Pakistan Margin (93KL, Böll et al., 2015) (136KL; Schulte and Müller, 2001), Oman upwelling (MD00-2354, Böll et al., 2015) and the Horn of Africa within the Gulf of Aden (P178-15, Tierney et al., 2016), we aim to unravel the relationship between the SW and NE monsoons within the complex Indian monsoon system. Investigating the regional SST influences in the Gulf of Oman over the past 43 kyr is crucial for advancing our comprehension of regional climatic dynamics. Additionally, we compare the obtained SST data with supra-regional δ18O data from the eastern Mediterranean region (Sofular Cave, Held et al., 2024) and northern high latitudes (NGRIP, Svensson et al., 2008). This comparative analysis aims to elucidate global climate impacts in the Gulf of Oman during both, warm and cold periods.
2 Study Area

During the Indian summer monsoon (SW monsoon), the heating of the Asian continent (low-pressure cell) and development of a high pressure cell over the southern Indian Ocean (high pressure cell), lead to the development of strong, warm and moist low-level winds from SW direction and drive surface ocean currents in clockwise circulation (Somali Current and East Arabian Current) in the Arabian Sea. In contrast, with the onset of the Indian winter monsoon (NE monsoon) the pressure gradient reverses, due to stronger cooling of the Tibetan Plateau (high-pressure cell) than the warmer Indian Ocean (low-pressure cell) resulting in moderate, dry NE winds and a switch to an anticlockwise surface ocean circulation (Bansod et al., 2003; Clemens et al., 1991; Clemens and Prell, 2003; Clift and Plumb, 2008; Findlater, 1969; Fleitmann et al., 2007; Schott et al., 2002; Webster et al., 1998; Webster, 2020; Wyrtki, 1973). SW monsoonal winds in spring and summer and the development of a clockwise circulation pattern induce seasonal upwelling of cold, saline and nutrient-rich deeper water masses through Ekman transport, especially alongshore the eastern coasts off Oman and Somalia (de Boyer Montégut et al., 2007; Honjo et al., 1999; Izumo et al., 2008; Rixen et al., 2000). Ekman pumping lowers the SSTs in boreal summer by about 2-3 °C on annual average, compared to the northern, eastern and southern Arabian Sea (Levitus and Boyer, 1994). Almost simultaneously to SW monsoon conditions, NW winds transport dust plumes predominantly from the Arabian Peninsula into the Arabian Sea and can also affect the regional SST pattern, depending on their intensity and variability (Leuschner and Sirock, 2000; Sirocko and Sarnthein, 1989). A substantial SST gradient is generated with the onset of the SW monsoon within several hundred kilometers (4-5 °C), displaying a temperature low off the coast of Oman and a temperature high (ca. 29 °C) in the western Gulf of Oman (Figure 2a). The northern, NW and NE Arabian Sea (north of 20 °N) indicate a clear seasonal SST signal with warmer temperatures during Northern Hemisphere summer, which rapidly decreases in fall and displays the lowest SSTs (ca. 23.5 °C) in the main stage of winter (Figure 2b; Dahl and Oppo, 2006; Kumar and Prasad, 1996; Levitus and Boyer, 1994).

The Arabian Sea High Salinity Water, Indian Ocean Central Water, Persian Gulf Water (PGW) and Red Sea Water (RSW) constitute the four major sources of water masses in the Arabian Sea (Shetye et al., 1994). Dry air from the Himalaya during the NE monsoon causes high evaporative cooling, increases the density of surface water, and forms the Arabian Sea High Salinity Water, particularly in the northern Arabian Sea (Madhupratap et al., 1996; Prasad and Ikeda, 2002; Kumar and Prasad, 1996, 1999; Shetye et al., 1994). The Indian Ocean Central Water, a combination of Indonesian Intermediate Water and Antarctic Intermediate Water, flows into the Arabian Sea through the SW Somali current (500-1500m water depths) and becomes increasingly oxygen-depleted on its way to the Arabian Sea (Emery and Meincke, 1986; Resplandy et al., 2012; You, 1998). Postglacial sea-level rise started the flooding of the Persian Gulf at around 14 ka, resulting in the transport of relatively young, warm, less oxygenated and saline PGW through the Strait of Hormuz (25 to 70 m) into the Gulf of Oman and the Arabian Sea (Lambeck, 1996; Shetye et al., 1994). High saline PGW sinks below less-saline waters and produces a salinity maximum at depths between 200 to 400m (Bower and Furey, 2012; Pous et al., 2004; Prasad et al., 2001; Premchand et al., 1986; Shetye et al., 1994; Wyrtki, 1973). Similary, RSW is a warm, less oxygenated and high-saline water mass with an
intermediate salinity maximum (500-1000m water depths) in the Arabian Sea after flowing through the Strait of Bab al Mandeb (ca. 150m) and mixing with Gulf of Aden water masses (Bower et al., 2000; Pathak et al., 2021; Rochford, 1964; Wyrtki, 1973).

Mesoscale eddies are cyclonic and anticyclonic rotating water masses, contrary to the surrounding main currents and play a crucial role in the regulation of surface ocean circulation (Al Saafani et al., 2007; Fischer et al., 2002; de Marez et al., 2019; Trott et al., 2019). Their upwelling and downwelling capabilities significantly affect the stratification of the upper ocean layers through the transport and redistribution of oxygen, nutrients, salinity and heat-driven or thermohaline water flows. The resulting influences on vertical and horizontal heat transport alter the regional and annual SST patterns in the Arabian Sea (Bower and Furey, 2012; Carton et al., 2012; Trott et al., 2019; Vic et al., 2015; Yao and Johns, 2010). Consequently, eddies that predominantly carry warmer waters can result in rising SSTs, while colder eddies can lead to a SST decrease. However, eddy-driven circulations are variable, transient and changing, depending on the location and seasonal climate variations (SW/NE monsoon), implying that local fluctuations in SSTs may be intense and potentially temporary (Dong et al., 2011; L’Hegaret et al., 2016; de Marez et al., 2019; Piontkovski et al., 2019; Trott et al., 2019).

3 Material and methods

The piston core SL167 (741 cm long) was collected in the northeastern part offshore the Oman margin in the Gulf of Oman in the northwestern Arabian Sea (22° 37.15' N, 059° 41.49' E; 774 m water depth) during RV METEOR cruise 74/1b in September 2007 (Bohmann et al., 2010). The age model of SL167 is based on twenty-one radiocarbon dates of surface-dwelling planktonic foraminifera and is published in Burdanowitz et al. (2024). The core includes the time period from about 3 to 43 ka. The sediment core was partitioned into sediment sample slices containing 2 cm of sediment. For the alkenone analyses 219 freeze-dried and homogenized samples were used.

3.1 Alkenone analyses

Alkenones were measured containing 2 cm of sediment for the upper 162 cm in 2 cm and 4 cm of sediment below 162 cm, due to lower organic content (<1.5 %). To obtain total lipid extract (TLE) about 3 to 18g sediment were extracted by a Dionex Accelerated Solvent Extractor (ASE 200) using dichloromethane (DCM) and methanol (MeOH) (ratio 9:1) as solvent as described in Burdanowitz et al. (2024). Temperature and pressure were kept constant at 100 °C and 1000 PSI for five minutes. This procedure was performed three times. Before extraction, a known amount of an internal standard was added to the samples. Each ASE 200 running sequence (17 to 18 cells in total) included a blank (combusted sea sand), a standard (combusted sea sand and internal standard) and a known working sediment standard. The TLEs were rotary evaporated until almost dryness. Asphaltene separation was carried out using sodium sulfate (Na2SO4) column chromatography for separation of the hexane-insoluble fraction. The hexane-soluble fraction was saponified with 500 μl of a 5% potassium hydroxide solution (KOH) in MeOH and placed in the oven for 2h at 85 °C. N-hexane is added to the saponified fraction, vortexed, followed by
extra ction of the upper, non-mixing neutral fraction. Then the neutral fraction was separated by column chromatography into an apolar, ketone (containing alkenones) and polar fractions utilizing deactivated silica gel (5% H₂O) and different solvents (DCM for ketone separation). All samples were completely dried over night after each preparation step.

Quantification of alkenones was carried out by using a Thermo Scientific Trace 1310 gas chromatograph (GC), which used H₂ as carrier gas (35 mL min⁻¹) and is equipped with PTV injector (temperature 50 °C ramped with 10 °C s⁻¹ to 325 °C, splitless mode), Thermo Scientific TG 5MS column (30 m, 0.25 mm thickness, 0.25 μm film). The GC is coupled to a flame ionization detector (FID). GC-FID was programmed to held temperature at 50 °C for 1 min, then heat to 230 °C (20 °C min⁻¹), to 260 (4.5 °C min⁻¹) and to 320 °C (1.5°C min⁻¹) where the temperature is held for 15 minutes. Identification of C₃₇:2- and C₃₇:3-alkenones was performed by comparing peak retention times of the samples with an internal working sediment standard and was followed by quantification through integrating the peak areas of C₃₇-alkenones and the internal standard (14-heptacosanone).

For calculation of the alkenone-based of unsaturation index for C₃₇-alkenones we used the calculation by Prahl et al. (1988):

\[\frac{C_{37:2}}{C_{37:2} + C_{37:3}} \]

The \(U_{37}^{57} \) ratios were converted to SSTs by using the regional surface calibration of the Indian Ocean (Sonogni et al., 1997):

\[SST = \frac{U_{37}^{57} - 0.043}{0.033} \]

At least duplicate measurement was performed for each sample. The analysis of the duplicate measurement indicates an average accuracy of 0.1 °C.

3.2 Statistical analyses

We carried out spectral and wavelet analyses in R (v.4.3, R Core Team, 2023) to identify periodicities in the reconstructed SST data set. We used the REDFIT function of the package dplR v.1.7.4 (Bunn et al., 2022; Bunn, 2008, 2010) for the spectral analysis of the reconstructed SST. It is based on the Fortran 90 REDFIT source code developed by Schulz and Mudelsee (2002). For the wavelet analyses we used the R package biwavelet v.0.20.21 (Gouhier et al., 2021) using the morlet wavelet function and bias-corrected power spectrum, which is based on Torrence and Compo (1998). Prior to the wavelet analysis, we first interpolated the reconstructed SST data to an evenly spaced data set by using the package ncdf4.helpers v.0.3-6 (Bronough, 2021) and the approx. function.
4 Results

4.1 Alkenone-based SST record of SL167

Based on our SST calculations using the $U_{37 \delta}^{S}$ index, we observed a range of approx. 7 °C, ranging from 27.4 °C to 20.1 °C (Figure 4a). SSTs were relatively high (26.3 to 27.4 °C) during several periods, including the mid-Holocene and periods that can be chronologically attributed to the Bølling-Allerød interstadial (B-A) and D-O interstadial 4, 5 and 7. Periods of low SSTs (20.1 to 25 °C) comprise the late and early Holocene including the 4.2 and 8.2 ka BP events. During the Pleistocene, the periods of low SST can be assigned to the Younger Dryas (YD), and Heinrich event 2, 3 and 4 (H2, H3, H4). SSTs around the H4 (37 to 39 ka) are low but exhibit pronounced fluctuations of three to four degrees. The SSTs of the Last Glacial Maximum (LGM; 18 to 23 ka) do not show significant cooling. They remain relatively warm (>25 °C), with a short SST drop to about 24.4 °C between 19 and 20 ka. A marked increase of about 2 °C occurred during the mid-Holocene around 7.4 ka. Spectral and wavelet analyses show significant periodicities ($\chi^2 > 95\%$), including a 7200-year cycle and shorter periodicities of about 525- to 401-years.

5 Discussion

Several studies from the Arabian Sea have shown, that alkenone based SST reconstructions reflect, at least for the Holocene, an annual mean temperature signal (Böll et al., 2014; Doose-Rolinski et al., 2001; Sonzogni et al., 1997). Therefore, we assume that our reconstructed SST record reflects changes in annual mean SST. Various factors can impact the SST pattern at the core site. This includes the impact of NW winds, intensities of the SW and NE monsoons (Figure 1), the impact of the upwelling system along the southeast coast of Oman (Figure 2a), the influence of mesoscale eddies and their vertical and horizontal thermohaline water flow (Figure 3a, b), the input from various water sources, as well as the development of a pronounced SST gradient between the Oman upwelling area and the Gulf of Oman/northern Oman margin (Figure 2a). The movement of the SST gradient during the summer months from west-to-east and vice versa significantly impacts the local SST signal, given its spatial extent of only a few hundred kilometers (Figure 2a). In order to differentiate regional relationships, differences and anomalies of the Arabian climate and monsoon cycle, we compare our SST record with other alkenone-derived SST records from different areas in the Arabian Sea (Figure 4), as well as additional regional proxy-derived climate patterns (e.g., $\delta^{18}O$ isotope data in speleothems) from the monsoon area and adjacent regions.

The overall high variations of our alkenone-based SST of up to 7°C during the last 43 kyr (Figure 4a) can be attributed to several climatic phases and events, which will be discussed in the following.
5.1 Sea surface temperature changes in the Gulf of Oman during the late Pleistocene and Holocene

5.1.1 SST variation during Heinrich Events

The SL167 SST record indicates a sharp temperature decrease during the H4 cold event, experiencing the lowest SST during the past 43 kyr. This temperature drop might be linked to abrupt monsoon changes with an intense NE monsoon and/or NW winds, which could cause lower SSTs at the core site within cold stages. Research conducted in the northwestern Arabian Sea (e.g., Sirocko and Lange, 1991; Sirocko et al., 1991) has linked increased dust loads during the last glaciation to an amplified impact of NW winds. Consequently, during the cold event, intensified NW winds may have mitigated SSTs by displacing warmer surface waters and promoting vertical mixing. Concurrently, the impact of the SW monsoon decreases due to variations in solar radiation, resulting in a southward migration of the Intertropical Convergence Zone (ITCZ) and weakened ISM (Clemens et al., 1991; Godad et al., 2022; Prell and Kutzbach, 1992; Prell and van Campo, 1986). Besides the solar insolation and the NE/SW monsoon correlation, mid-latitude westerly winds are also implicated in monsoon conditions. Cold events can lead to a southward shift (south of the Tibetan Plateau) and intensification of westerly winds, resulting in an intensified NE monsoon and a fast retreat of the SW monsoon (Fang et al., 1999).

The analysis of oxygenation levels in both the water column (Figure 4f) and bottom water (Figure 4g) from the same core reveals different impacts of the H4 event (Burdanowitz et al., 2024). While the observed increase in water column oxygenation corresponds with the decline in SST, the changes in bottom water oxygenation are less marked. The simultaneous strong oxygenation of the upper water column and decreasing SST indicate a significant impact of changing atmospheric rather than oceanic currents on SST in the study region. In addition, our SST record (Figure 4a) reveals a notable and highly fluctuating signal during and in the immediate aftermath of the H4 cold event. During this period, the SST signal is subject to a growing influence of the NE monsoon. Further, enhanced SW monsoon conditions can also strongly impact the SST signal, occasionally leading to substantial fluctuations. The OMZ is much stronger during the H4 event compared to its lower intensity during H3, H2 and H1, when the OMZ was comparably weak. The OMZ in the water column was even stronger than during the D-O Interstadials (see below) and the entire Holocene while the OMZ in bottom waters was similar to the D-O Interstadials. It is conceivable that during the prolonged cold phase of H4 productivity was enhanced in the northern Arabian Sea and lead to the intensification of the OMZ.

5.1.2 Dansgaard-Oeschger Interstadials

Compared to the striking cold H4 event, higher SST characterize periods of moderate warming, during several D-O interstadials, including the D-O 11, D-O 4 – D-O 9 and B-A in the NW Arabian Sea. The warm interstadials typically exhibit only a short-term increase in SST (e.g., B-A, D-O 4) and are significantly more pronounced in the northwestern Arabian Sea compared to other Arabian Sea records (Figure 4b-e). No obvious warming trend was observed during D-O 2 and 3. During the warmer interstadials, the SW monsoon intensified while the NE monsoon weakened (Clemens et al., 1991; Prell and Kutzbach, 1992; Prell and van Campo, 1986), along with a northward shift of the ITCZ, due to a northward atmospheric energy
transport across the equator (Schneider et al., 2014). The south-to-north movement of the ITCZ during D-O interstadials is associated with an increase in solar radiation and precipitation, indicating an opposite pattern to cold events (Cheng et al., 2012; Jaglan et al., 2021). In contrast, mid-latitude westerly lose strength during interstadials and shifted northward or remain entirely north of the Tibetan Plateau (Fang et al., 1999). Furthermore, the presence of low δ¹⁸O values in speleothem records from Mawmluh Cave in India indicates elevated precipitation rates and intensified SW monsoon activity during a wet phase at 33.5 and 32.5 ka (Dutt et al., 2015; Jaglan et al., 2021), occurring almost simultaneously with the D-O 6 interstadial. Recent observations suggest a direct correlation between precipitation and temperatures, suggesting increased rainfall during warm interstadials and decreased precipitation during cold stadials (Allan and Soden, 2008; Trenberth et al., 2003).

Notably, reconstructed strong OMZ during D-O 10 and 4 events at the core site (Figure 4f, Burdanowitz et al., 2024) are in line with somewhat lower SST. We attribute this to an enhanced influence of the SW monsoon winds and/or more northward-extended influence of the Oman upwelling area at the core site. Shortly after D-O 2 and with the onset of the LGM, at around 23 ka, an increase in SST is observed, which could be associated with D-O 2, similar to the findings at site 93KL (Figure 4d) and also supported by Böll et al. (2015). However, our record exhibits a distinct cold signal during D-O 2, which is even lower comparable to H2, and a subsequent SST increase. Burdanowitz et al. (2024) noted a less pronounced OMZ in the water column but sub-/anoxic conditions in the bottom water at the core site. They attributed this to an intensified inflow of oxygen depleted RSW at intermediate depths and/or weak inflow of Antarctic Intermediate Water into the Gulf of Oman. However, stronger winds (NW/NE winds) could have facilitated enhanced mixing and ventilation of the water column, potentially contributing to the observed ventilation differences.

5.1.3 Unusual SST pattern during the Last Glacial Maximum

During the LGM, SSTs do not indicate a strong cooling, except around 19 ka (Figure 4). The northern Arabian Sea (site 93KL; site 136KL) and the upwelling area (site MD00-2354) experienced a rapid SST drop. In contrast, the NW Arabian Sea displayed a much lower decrease in SST compared to 93KL, and SSTs were not as low as observed at 93KL, 136KL, and MD00-2354 over the entire LGM period. This phenomenon can be possibly be attributed to an intensified NE monsoon and weaker SW monsoon, observed in large parts of the Arabian Sea during the LGM (Duplessy, 1982; Jaglan et al., 2021; Sirocko et al., 2000). The lower glacial land temperatures in Central Asia (Annan and Hargreaves, 2013) and low boreal summer insolation (Böll et al., 2014, 2015; Gaye et al., 2018) resulted in an intensification of the NE monsoon and associated low SSTs. Previous studies have also sustained the hypothesis of a weakened SW monsoon during the entire glacial period (Böll et al., 2015; Naidu and Malmgren, 2005; Schulte and Müller, 2001) and may offer a potential explanation for the moderately warm SSTs observed during the entire LGM. While a prolonged winter monsoon is anticipated for the LGM, the onset and related SST reduction in the NE Arabian Sea may be postponed due to its geographical location in relation to the northern Arabian Sea. This may account for the regional annual average SST contrast between the Pakistan margin (93KL, 136KL) and the Gulf of Oman (Figure 2). Further, elevated dust levels can also lead to a decrease in SST at the surface (Yue et al., 2011). However, as stronger winds and input of dust could lower the SST, other factors may responsible for the moderate warm SST.
at the SL167 core site. In contrast, the SST could also be influenced by mesoscale eddies as well as the SST gradient in the Arabian Sea. During the main period of the LGM, there may have been an increased transport of warmer water masses into the Gulf of Oman, resulting in elevated annual mean SST compared to other locations in the Arabian Sea. Furthermore, a pronounced eastward shift in the SST gradient during this period could have also influenced the SST signal. Lowest LGM-SSTs between 19 and 20 ka at the core site are in line with other Arabian Sea records (P178-15, MD00-2354, 93KL; Figure 4). Afterwards, SST reconstructions of SL167 (Figure 4a) best resemble the pattern exhibited at site P178-15P (Figure 4b). Both temperature records display a continuous rise in SSTs, at least until the midpoint of the B-A interstadial (~14 ka). However, the northern Arabian Sea (93KL, 136KL) and the Oman upwelling region (MD00-2354) show a significant shift in warming, with the rise in SSTs beginning earlier around ~17 ka. Previous studies indicate that the intensification of the ISM and weakening of the NE monsoon at the end of the LGM led to a transition from a dry phase to a wet phase during the B-A interstadial (Böll et al., 2015; Dutt et al., 2015; Herzschuh, 2006; Jaglan et al., 2021). Warming of the high latitudes and the resulting reduction of the snow cover on the Tibetan Plateau is considered to be the most dominant factor (Herzschuh, 2006; Overpeck et al., 1996; Wang et al., 2001; Zhou et al., 1999). NW winds, peaking between 15 and 13 ka (Sirocko et al., 2000), may have contributed to the earlier warming as they moved in the opposite direction to the SW monsoon (Leuschner and Sirocko, 2000; Sirocko et al., 2000). While the B-A interstadial indicates a strengthening of the SW monsoon, coastal parallel SW winds are too weak to produce upwelling, explaining the temperature increase observed in the upwelling area (MD00-2354) after the LGM (Böll et al., 2015; Huguet et al., 2006; Saher et al., 2007). Although IOCW and RSW intermediate and deep-water masses may have had an impact on SSTs during this period, it is unlikely that their influence was substantial. This is because coccolithophores are limited to the euphotic zone (0-150 m; Baumann et al., 1999, 2005) and IOCW and RSW occur at substantial depths.

Although SSTs in the western Arabian Sea continued the warming trend, a decline in SSTs was observed during the transition from the B-A interstadial to the YD period. Analysis of dust plumes in these regions reveals a marked reduction in dust input from the Persian Gulf, but only a minor decrease in the central Arabia (Sirocko et al., 2000). Consequently, NW winds may continue transporting warm air masses to central Arabia, whereas their impact on SSTs in the northern region declined. Furthermore, cooling of the Northern Hemisphere could also have played a vital role, resulting in the strengthening of the NE monsoon and weakening of the SW monsoon (Chen et al., 1997; Dutt et al., 2015; Fuchs and Buerkert, 2008; Herzschuh, 2006; Wang et al., 2001). The synchronous SST decrease in the northern (93KL, 136KL) and northwestern Arabian Sea (SL167) during this period, suggest a more substantial impact from the winter monsoon at the core site (SL167) during the YD compared to the LGM. This finding supports the hypothesis that the SST pattern may be influenced by variations in the intensity of NW winds, which can either strengthen or weaken over time. Moreover, it is worth noting that the inundation of the Persian Gulf, which began around 14 ka via the Strait of Hormuz (Lambeck, 1996) constitutes a crucial factor that must be taken into account, as it likely contributed to a significant decrease in SSTs during the YD period.
5.1.4 Strong and rapid SST changes during the Holocene

Fluctuations in SST are much more pronounced at site SL 167 compared to all other regions of the Arabian Sea (Figure 4). While other records predominantly exhibit glacial-interglacial cycles, our record stands out by high-amplitude millennial-scale SST oscillations. At the transition from the YD into the early Holocene, SSTs remained low (Figure 4a). With the onset of the early Holocene, SST at site SL167 increasingly resembled the SST signal from the Oman upwelling (MD00-2354). Similar SSTs from the Oman upwelling and the NW Arabian Sea are also observed during the early and late Holocene. The SST signal during the mid-Holocene exhibits a close correlation with the northern Arabian Sea cores (93KL, 136KL). In contrast, during early Holocene, the SW monsoon intensified gradually in response to orbital forcing, i.e. intensification of summer insolation at 30°N with a maximum at around 11 ka. This was expressed in enhanced precipitation in Oman, Yemen, and south and southeast Asia (Dutt et al., 2015; Dykoski et al., 2005; Fleitmann et al., 2003, 2007; Fuchs and Buerkert, 2008; Herschuh, 2006; Kessarkar et al., 2013). Low δ¹⁸O values in speleothems indicate a rapid northward shift of the ITCZ and higher Northern Hemisphere temperatures, resulting in a stronger ISM and a weaker NE monsoon (Fleitmann et al., 2007).

The 8.2 ka cold event interrupted the warm and humid early Holocene period and weakened the ISM due to an amplified southward migration during this event of the generally northward-shifted ITCZ (Cheng et al., 2009; Dixit et al., 2014). Several studies suggested that invigorated SW monsoon winds led to a more vigorous upwelling during this stage, which reflects lower SST and a δ¹⁵N maximum (Böll et al., 2015; Rostek et al., 1997). These findings propose that strong SW winds move the water masses northward into the Gulf of Oman and affect the SST at the core site. Another study also suggested that these upwelled water masses were transported northward through gyres and eddies, affecting the oceanic stratification in the Gulf of Oman (Watanabe et al., 2017). This is supported by the lower SSTs at site SL167 and MD00-2354 during the early and late Holocene. In response to a decrease in solar radiation, the ITCZ migrated continuously southward during the mid to late Holocene, accompanied by a continuous decrease in SW monsoon intensity and precipitation (Fleitmann et al., 2003, 2009; Fuchs and Buerkert, 2008; Gupta et al., 2005).

With the beginning of the mid-Holocene, the transport of upwelled water masses was probably temporarily interrupted, and NE monsoon conditions increasingly influenced the core location. However, the increasing influence of NE monsoon conditions cannot be the sole driver of the rapid increase in temperature from about two degrees at 7.5 ka. One potential explanation for the observed changes in SST could be the inflow of water masses from the Persian Gulf into the Gulf of Oman. This hypothesis is supported by the fact that the Persian Gulf experienced increased flooding during this period and reached its present coastline at around 6 ka (Lambeck, 1996). However, the impact of PGW on the SST pattern in the Gulf of Oman may have been relatively small, given that the high-salinity PGW does not mix with the overlaying surface water, where the coccolithophores live (Baumann et al., 1999, 2005; Wyrtki, 1973). The strong SST gradient seems more likely to be the reason for the SST jump. An abrupt shift from a west-to-east SST gradient at approx. 7.5 ka may have increased the SST signal, followed by a gradual movement back in a westerly direction, resulting in a slow decrease in surface temperature. The upwelling region exerted an increased influence from 5 ka onwards, evident from similar SST signals in the Gulf of Oman.
(SL167) and Oman upwelling area (MD00-2354) and suggest that an increased influx of upwelling water masses could have gradually shifted the SST gradient back in western direction.

During the mid-late Holocene transition period, the SST record captures a pronounced 4.2 ka BP event. Despite the prevailing aridity in significant parts of western Asia during this period (Giesche et al., 2019), SSTs demonstrate substantial variability throughout the transition and early Holocene. Consequently, as the SSTs fluctuate considerably, it becomes challenging to establish a conclusive link between a SST drop and the 4.2 ka event.

Overall, even during the Holocene, it becomes evident that we observe strong SST variations, with a particularly pronounced signal from the 4.2 ka and 8.2 ka cold events. This phenomenon could be attributed to several potential factors. The unique geographical and topographic features of the core site location in the Gulf of Oman may render it more sensitive to atmospheric and oceanographic changes, including pronounced local oceanographic processes such as currents and upwelling. Additionally, the region's geographic location and exposure could amplify the impacts of weather events, such as storms or strong winds. The coastal features and topography of the Gulf of Oman could also contribute to faster warming or cooling of the water, particularly in shallower areas or near landmasses. Finally, alterations in ocean circulation patterns specific to the Gulf of Oman may result in increased SST variability by affecting the distribution of warm and cold water.

5.3 Potential global drivers of SST variations in the Gulf of Oman

The SL167 SST record exhibits periodic fluctuations consistent with millennial-scale oscillations, yet diverges from glacial and interglacial changes. Notably, it demonstrates remarkable similarities extending beyond the Arabian Sea, as evidenced by ice core data from Greenland (Figure 5a, Svensson et al., 2008), and δ¹³C time series of cave carbonates from the Mediterranean region (Figure 5b, Held et al., 2024). Most periods of lower SSTs (e.g., during YD and Heinrich events) in the NW Arabian Sea correlated with enhanced δ¹⁸O values from NGRIP, indicating cold air temperatures in Greenland and the northern North Atlantic. Conversely, higher SSTs (e.g., during D-O interstadials) correlated with several lower δ¹⁸O values, characterized by moderate interstadial events in the North Atlantic Ocean. Based on these findings it can be inferred that the area of our core location is not exclusively shaped by local factors, but rather responsive to global temperature fluctuations that affect the SST signal.

Several studies have already suggested a close linkage between the North Atlantic Ocean, the AMOC and the Indian monsoon climate in the Arabian Sea based on the climate variability of the D-O cycles and Heinrich events (Leuschner and Sirocko, 2000; Reichart et al., 1998; Sirocko et al., 1996; Schulte et al., 1999; Schulz et al., 1998). A weakening (strengthening) of the AMOC e.g., during 8.2 ka cold event or D-O interstadials caused a southward (northward) shift of the ITCZ, which also implies a decrease (increase) of the ISM (Cheng et al., 2009; Deplazes et al., 2014; Krebs and Timmermann, 2007; Zhang and Delworth, 2005). Although the monsoon strength is obviously linked to the North Atlantic and occasionally responds vigorously to abrupt climatic events (e.g., H4), the SST record of SL167 does not reflect all warm or cold periods (e.g., no prominent cooling during the LGM). These findings demonstrate that NH cooling may influence the strength of the SW/NE
monsoon and SSTs, but other oceanic and atmospheric factors (mesoscale eddies, strong SST gradient and NW winds) can also have a crucial impact.

To identify any cyclical patterns in Gulf of Oman SST record and gain insights into the influencing factors, we conducted spectral (Figure 6a) and wavelet analyses of SST data (Figure 6b). The spectral analysis revealed significant periodicities of 7200 years ($\chi^2 > 95\%$) in the SST data. This period could potentially be attributed to Heinrich events, which are characterized by large-scale melting of the Laurentide ice sheet and abrupt climate changes occurring over approximately 6.1 ka (Mayewski et al., 1997) and 7.0 ka (Calov et al., 2002). The alignment of our SST data with these periods obtained through spectral analysis supports this hypothesis. However, the wavelet analysis indicates that the prevalence of this period is not entirely evident, particularly during the interval from approx. 11-19 ka. Instead, this periodicity could potentially be attributed to oscillations in atmospheric ^{14}C, as suggested by Southon (2002). Their findings provide a rationale for the occurrence of archaeomagnetic coincidences within a 7 ka cycle, which is influenced by fluctuations in geomagnetic shielding as modulated by ^{14}C data.

Additionally, the spectral analysis revealed the presence of cycles of 7550, 4950-, 4930-, 4860, 4710, 4370, 4090, and 4010 years ($\chi^2 > 95\%$) as well as 4270, 4200 ($\chi^2> 90\%$) in our dataset. These relatively short periodicities are predominantly present in the Holocene and have been observed and documented in global records. Thus, several studies, such as the analysis of ^{14}C tree rings (Struiver and Batinivas, 1993), demonstrate that the 500-year periodicity is attributed to changes in ocean circulation, especially of Atlantic deep-water formation (Bhushan et al., 2001; Kessarkar et al., 2013). Considering the close relationship between Asian monsoons and the position of the ITCZ, the 500-year periodicity could be closely linked (Kessarkar et al., 2013). The other periodicities also appear to be associated with solar cycles (Menzel et al., 2014). Loutre et al. (1992) suggests that cycles of 432 years (88% probability) correspond to eccentricity periodicities, thus at least the 437-year cycle in our dataset can be attributed to them. Although there are some differences in the other cycles (+/- 30 years), the possibility of a correlation should not be disregarded.
6 Conclusion

In this study, we present a high-resolution alkenone-based SST record from the Gulf of Oman spanning the past 43 kyr. The SST reveals significant temperature fluctuations of about 7°C, reflecting diverse climatic influences, and demonstrating increased sensitivity to climate variations compared to other Arabian Sea core locations. The most prominent cold phase occurred during the H4 event with SSTs down to about 21°C. Further cooler SST phases are reconstructed during the H3 event, the period between 19 and 20 ka, YD as well as the 8.2 ka and 4.2 ka event. We attribute these SST declines to reduced solar radiation and a southward ITCZ shift from a weakened AMOC, leading to strengthened mid-latitude westerlies and NE monsoon conditions while weakening the SW monsoon. Conversely, SSTs remain warm during D-O 11, D-O 4 - 9 and B-A, marked by increased solar radiation and a northward ITCZ shift, intensifying the SW monsoon and weakening NE monsoon conditions.

The modest drop in SST is noted during around 19 to 20 ka during the LGM is markedly distinct from other Arabian Sea regions. This temperature decline is linked to a weakened SW monsoon and a reinforced NE monsoon. Yet, enhanced NW winds, warmer eddy currents, and an SST gradient shift in the Gulf of Oman, significantly influence SST during this cold period. Compared to other Arabian Sea SST records, our record reveals strong rapid SST fluctuations throughout the Holocene by about 4°C. The 8.2 ka and 4.2 ka events are marked as cold SST events at the core location. Further, a strong rapid increase of SSTs of about 3.5°C within about 1200 years during the mid-Holocene SST may be attributed to an abrupt eastern shift in the SST gradient.

Spectral and wavelet analyses of Gulf of Oman SST records unveil significant periodicities (7200 years) aligning with Heinrich events, atmospheric 14C oscillations, and solar influences. Shorter periodicities during the Holocene period (~525-to-401-year cycles) are associated with changes in ocean circulation, while others appear linked to solar cycles. Since we suspect that the pronounced fluctuations, particularly compared to other records in the Arabian Sea, are driven by its geographical and topographic location, thereby amplifying oceanic and atmospheric changes, weather events, and alterations in ocean circulation patterns, it is of particular significance to conduct further research in the Gulf of Oman.

Appendix

Data availability

The alkenone based SST dataset will be uploaded to PANGAEA and will be available upon publication.

Author contributions

JM: conceptualization, formal analysis, investigation, methodology, visualization, writing – original draft preparation. NB: conceptualization, formal analysis, investigation, methodology, visualization, writing – original draft preparation. GS:
conceptualization, resources, supervision, writing – original draft preparation. BG: conceptualization, supervision, writing – original draft preparation.

Competing interests

The contact author has declared that none of the authors has any competing interests.

Acknowledgements

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Germany's Excellence Strategy – EXC 2037 'CLICCS - Climate, Climatic Change, and Society' – Project Number: 390683824, as part of the contribution to the Center for Earth System Research and Sustainability (CEN) at Universität Hamburg. The monthly SST visualizations used in this paper were produced with the Giovanni online data system, developed and maintained by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). We acknowledge and appreciate their contribution to the availability and accessibility of valuable data for our research. We convey our thanks to Ocean Data Lab for supplying the mesoscale eddies data utilized in this paper. We thank Hartmut Schulz for his support during core recovery and sampling. We express our gratitude to Frauke Langenberg, Marc Metzke, Miriam Warning and Sabine Beckmann for providing technical and analytical support.
Figure 1: Map of the Arabian Sea with the location of the study site SL 167 (red star) from northwestern Arabian Sea offshore Oman, core P178-15 (red dot) from the western Arabian Sea (Tierney et al., 2016), core MD00-2354 (blue dot) from the Oman upwelling (Böll et al., 2015), core 93 KL (orange dot) from the northern Arabian Sea (Böll et al., 2015), 136KL (yellow dot) from the northern Arabian Sea (Schulte and Müller, 2001) and stacked record from Sofular Cave (white dot in the inset map) from northern Turkey (Held et al., 2024). Red arrows are used to represent the dominant wind pattern during southwest (SW) monsoon and northeast (NE) monsoon. Northwest (NW) winds are represented by the red dashed arrow. The map was created using QGIS v 3.28.3 from © Google Earth (https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}) and geoBoundaries (https://www.geoboundaries.org/data/geoBoundariesCGAZ-3_0_0/ADM0/simplifyRatio_10/geoBoundariesCGAZ_ADM0.geojson).
Figure 2: Map showing averaged monthly SST data from 2002-2022 during (a) the Indian summer monsoon season (ISM; July-September) and (b) the Indian winter monsoon season (IWM; January-March) using [MODIS-Aqua MODISA_L3m_SST_Monthly_4km vR2019.0] satellite data from Giovanni v 4.38. Black arrows indicate the prevailing surface ocean currents.

Figure 3: Snapshot of mesoscale eddies during different seasons: (a) July 2012 during the SW monsoon and (b) January 2012 during the NE monsoon season. Figures were generated with Ocean Data Lab (https://ovl.oceandatalab.com/, accessed on 23.09.21) using the "total 15 m current streamline (Globecurrent, CMEMS)" product. The white circles with arrows denote the current streaming direction.
Figure 4: Contrasting SST and monsoon records in the Arabian Sea over the last 45 kyr. a) SST of SL167 (this study) from northwestern Arabian Sea offshore Oman, b) core P178-15P (Tierney et al., 2016) from the western Arabian Sea, c) core MD00-2354 (Böll et al., 2015) from the Oman upwelling, d) core 93KL (Böll et al., 2015) from the northern Arabian Sea and e) 136KL (Schulte and Müller, 2001) from the northern Arabian Sea. f) Nitrogen isotopes (δ^{15}N; SL 167) serving as an indicator for denitrification and strength of the Oxygen Minimum Zone (OMZ) and g) the ratio of (lycopane + n-C35)/n-C31 (SL167) indicating bottom water oxygen levels (both published in Burdanowitc et al. (2024). Blue bars indicate the 4.2k and 8.2k event, the Younger Dryas (YD), the Last Glacial Maximum (LGM) and the Heinrich 1 (H1), Heinrich 2 (H2), Heinrich 3 (H3) and Heinrich 4 (H4) event, Timing and duration of Heinrich stadials after Allard et al. (2021); Grey bars indicate the Bolling-Allerød (B-A) interstadial and Dansgaard-Oeschger (D-O 1 – D-O 11) interstadials after Fleitmann et al. (2009).

Figure 5: (a) NGRIP δ^{18}O time series, derived from the northern Greenland ice core (Svensson et al., 2008). (b) δ^{13}C and time series of a stacked record from Sofular Cave in northwestern Turkey (Held et al., 2024) and (c) alkenone-derived SST of SL167 (this study) from northwestern Arabian Sea. Blue bars indicate the Younger Dryas (YD), Last Glacial Maximum (LGM) and the Heinrich 1 (H1), Heinrich 2 (H2), Heinrich 3 (H3) and Heinrich 4 (H4) event; Grey bars indicate the Bolling-Allerød (B-A) interstadial and Dansgaard-Oeschger (D-O 1 – D-O 11) interstadials after Fleitmann et al. (2009).
Figure 6: Spectral analyses (a) of SST amplitude of SL167 (Spectral amplitudes given in years and frequencies in 1/ka). The grey shaded area is showing the cone of influence and red (blue) colors represents high (low) power of the wavelet power spectrum. The black line denote the 95% significance level. The Wavelet Analysis Visualization (b) depicts the time-frequency profile of a signal through wavelet transformation, featuring various signal characteristics distinguished by colors, offering insights into both the temporal and frequency-related aspects of the analyzed signals. The blue line represents the cone of influence, while the black lines denote the 95% significance level.
References

Bronough, D.: ncdf4.helpers: Helper Functions for Use with the “ncdf4” Package, R package version 0.3-6, CRAN [code], https://cran.r-project.org/package=ncdf4.helpers (last access: 8 August 2023), 2021.

