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Abstract. This study explores the influence of implementing a multi-layer snow scheme on the climatological bias within a 

seasonal forecast system. A single layer snow scheme in land surface models often inadequately represents the insulating effect 

of snowpack, resulting in warm and cold biases during winter and snow melting seasons, respectively. By contrast, multi-layer 

snow schemes enhance energy transport between the land and the atmosphere. To investigate this impact, two versions of the 10 

Global Seasonal Forecast System (GloSea) – GloSea5 with a single layer snow scheme and GloSea6 with a multi-layer snow 

scheme – are compared over 24 years (1993–2016). Results shed light on the significance of accurately representing the 

insulating effect of snow in improving retrospective seasonal forecasts. In GloSea6, the snow melting season shifts two weeks 

later, delaying the onset of evaporation in the spring season. This slows soil moisture drying, resulting in an improvement in 

its climatology and memory. The abundant soil moisture enhances the partitioning of incoming energy into latent heat flux, 15 

allowing for more evaporative cooling at the surface, and constrains water-limited coupling. Such improvements in the land 

surface processes, especially over the mid-latitudes, mitigate the near-surface warming bias over the entire diurnal period and 

the oversensitivity of atmospheric conditions to the land surface variability. The model performance in simulating precipitation 

is also improved with the increase in precipitation occurrence over snow-covered regions, significantly reducing model error 

in the Great Plains, Europe, and South and East Asia. Above all, this study demonstrates the value of implementing a multi-20 

layer snowpack scheme in seasonal forecast models, not only during the snowmelt season but also for the subsequent summer 

season, for model fidelity in simulating temperature and precipitation along with the reality of land-atmosphere interactions. 

1 Introduction 

Subseasonal-to-seasonal (S2S) forecasts have become increasingly pivotal in numerous fields, encompassing agriculture, 

water resource management, energy, transportation, and disaster preparedness. The significance of S2S forecasting stems from 25 

their ability to provide actionable insights into forthcoming weather and climate conditions over the span of weeks to months. 

The predictability of S2S forecasts is strongly tied to the quality of the initial conditions and data assimilation technique, which 

mathematically finds optimal values with minimized analysis errors to merge observations into a dynamical model, has been 

employed to create improved global analyses (Seo et al., 2021; Kumar et al., 2022). Forecasts across various time scales 
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underscore the necessity for precise initial states of distinct components within the forecast model, as each component retains 30 

information over inherently disparate time scales (Richter et al., 2024). As the memory of initial land conditions can extend 

out to approximately 2 months, the importance of realistic land surface initialization in determining skill of the subseasonal 

forecast is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al., 2019). 

In particular, soil moisture (SM) plays a pivotal role in hydrological and meteorological dynamics, acknowledged as an 

essential climate variable by the World Meteorological Organization (WMO) (Seneviratne et al., 2010; Santanello et al., 2018). 35 

Its persistence or memory can significantly enhance forecast accuracy, particularly at time scales extending to 1–2 months 

(Dirmeyer et al., 2016; Dirmeyer et al., 2018; Seo and Dirmeyer, 2022b). The fidelity of modelled SM contributes to a more 

accurate portrayal of land-atmosphere interactions, facilitating the exchange of water and energy fluxes at the land surface 

(Seo et al., 2024). This enhanced representation holds potential for predicting extreme climate events, particularly those 

intensified by land-atmosphere feedbacks within extended range forecast systems (Seo et al., 2020; Dirmeyer et al., 2021; Tak 40 

et al., 2024). SM is directly constrained by the components of the typical water balance equation: precipitation, latent heat flux, 

and runoff, but the modelled snow affects the representation of snow characteristics.  

The pivotal role of snow in land-atmosphere interactions highlights the significance of accurately representing cold processes 

related to snow in hydrometeorology and dynamical predictions. Compared to other land surface variables, snow exhibits 

distinctive characteristics such as high albedo, high thermal emissivity, and low thermal conductivity, which profoundly 45 

influence radiation budget and surface moisture and energy fluxes to the atmosphere. The presence or absence of snow can 

result in a disparity of approximately 10 K in the climatology of surface air temperature (Betts et al., 2014). This discrepancy 

primarily stems from the reduction in net shortwave radiation attributable to the high albedo of snow. Snow-atmosphere 

feedback is evolved in three distinct stages: before, during, and after snowmelt. Meanwhile, the coupling strength is strongest 

during snowmelt and the coupling strength after snowmelt (delayed soil moisture impact) is stronger than that before snowmelt 50 

(radiative impact from surface albedo) (Xu and Dirmeyer, 2011). Therefore, during the warm season, SM dynamics are 

intricately linked to the physical characteristics of snow, affecting the initiation of evaporation due to snowmelt. It plays a 

crucial role in determining the model's ability to accurately simulate atmospheric variables through land-atmosphere coupling 

processes. 

Land surface models (LSMs) have not often utilized a multi-layer snowpack scheme, which has proven insufficient in 55 

accurately capturing the seasonal evolution of snow cover. Consequently, this approach tends to result in warm and cold biases 

during winter and snow melting seasons, respectively. Addressing these limitations, recent advancements in LSMs aim to 

integrate a multi-layer snow scheme to enhance the representation of snow dynamics and mitigate associated biases. For 

instance, Noah-MP represents the latest iteration of Noah LSM which is a land component in many regional and global 

operational forecast models, featuring numerous enhancements to improve the realism of biophysical and hydrological 60 

processes (Niu et al., 2011). Notably, for a more accurate representation of snow physics, Noah-MP integrates a layered 

snowpack scheme. This scheme dynamically adjusts the number of snow layers based on the depth of snow, ensuring a more 

realistic conceptualization of snow accumulation and melt processes. The Joint UK Land Environment Simulator (JULES) 
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Land Surface Model (LSM) features the utilization of a multi-layer snow scheme in its current operational system. This 

implementation also demonstrates enhancements in the representation of land surface processes (Walters et al., 2017). JULES 65 

is incorporated within the GloSea forecast system (Maclachlan et al., 2015). 

Numerous studies have aimed to improve the sophistication of snow physics and highlighted its advancement in numerical 

models (Xue et al., 2003; Arduini et al., 2019; Cristea et al., 2022). The impact of multi-layer schemes on S2S forecasts remains 

inadequately explored and understood, even though all but three of 13 S2S models (BoM: POAMA P24, CNR-ISAC: GLOBO, 

and NCEP: CFSv2) now use multi-layer snow schemes. Hence, this study conducts a comparative analysis between GloSea5 70 

(single layer snowpack) and GloSea6 (multi-layer snowpack), past and present operational forecast systems at the UK Met 

Office and the Korea Meteorological Administration (KMA), in retrospective forecasting in order to investigate the impact of 

an advanced snow scheme. The primary objective of this study is to assess the seasonal cycle of snow and land surface variables 

throughout the snow-covered period. Furthermore, this study assesses the model's capability to replicate the mean climatology 

of key land surface and near-surface variables, e.g., surface SM, surface air temperature, and precipitation, during boreal warm 75 

season. Daily mean, maximum, and minimum temperatures are validated at subdaily time scales to elucidate the time of 

significant improvements in model performance. The model fidelity in the simulation of land-atmosphere interactions, 

corresponding to water- and energy-limited processes, is also diagnosed to identify the realism of land coupling regime.  

The paper is organized as follows. Section 2 describes the GloSea5 and GloSea6 models, and the validation datasets used in 

this study. Section 3 provides the methodology to evaluate the model performance. Section 4 presents and discusses the results 80 

of this study. Finally, Section 5 summarizes the results and their implications for future applications. 

 

2 Data 

2.1 Forecast Model  

This study explores the performance of the Global Seasonal forecast system (GloSea) version 5 and 6, which are abbreviated 85 

as GloSea5 and GloSea6, respectively. These are the fully coupled ensemble forecast models with atmosphere-land-ocean-sea 

ice components, being developed by the UK Met Office. GloSea5 (Maclachlan et al., 2015) Global Coupled model 2.0 (GC2; 

Williams et al., 2015) configuration consist of UM (Unified Model) version 8.6 atmospheric component (GA6.0; Walters et 

al., 2017) having N216 horizontal resolution of 0.56° latitude × 0.83° longitude with vertically 85 hybrid-sigma coordinates 

topped at 85 km, JULES (Joint UK Land Environment Simulator) version 4.7 land surface model (GL6.0; Best et al., 2011) 90 

with four soil layers (0–10-, 10–35-, 35–100-, and 100–300-cm depth), as well as NEMO (Nucleus for European Modelling 

of the Ocean) version 3.4 oceanic component (GO5.0; Megann et al., 2014) and CICE (Los Alamos Sea-ice Model) version 

4.1 sea-ice component (GSI6.0; Rae et al., 2015) on an ORCA tripolar 0.25° global grid with 75 vertical levels. Those 

components exchange interactive variables with the OASIS3 coupler (Valcke, 2013). GloSea6 Global Coupled model 3.2 

(GC3.2) updates the atmospheric, land, ocean, and sea-ice components to the version of UM vn11.5 (GA7.2), JULES vn5.6 95 
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(GL8.0; Wiltshire et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018), and CICE vn5.1.2 (GSI8.1; Ridley et al., 2018) 

without any modification in the resolution. The model components of GloSea6 are coupled with the OASIS3-MCT (Model 

Coupling Toolkit; Craig et al., 2017). We refer GloSea5 GC2 and GloSea6 GC3.2 to GloSea5 and GloSea6, respectively, 

throughout this paper.  

Substantive changes in the GloSea6 compared with GloSea5, mostly in model physics, have been implemented throughout all 100 

model components (Kim et al., 2021). For instance, the atmospheric physics are modified in radiation (improving gaseous 

absorption through upgrades in McICA (Monte Carlo Independent Column Approximation) and parameterization in ice optical 

properties), microphysics (updates in warm rain parameterization and newly implementing ice particle size-dependent 

parameterization), cloud physics (including radiative effects from convective cores), gravity wave drag (implement heating 

from gravity-wave dissipation), boundary layer (correcting cloud top entrainment during decoupling to the land), cumulus 105 

parameterization (improving updraught numeric in convective process and updating CAPE closure as a function of large-scale 

vertical velocity), and new modal aerosol scheme (UKCA GLOMAP (Global Model of Aerosol Processes) scheme; Mann et 

al., 2010). Aforementioned atmospheric physics updates in the GloSea6 are likely to improve the performance of model 

systemic errors, particularly in the overestimated vertical profile of cloud fraction at upper troposphere, tropospheric cold and 

dry biases, the underestimated jet stream, the overestimated precipitation, and the negative bias of troposphere geopotential 110 

height during boreal summer (Williams et al., 2018).  

In addition, there are two major updates in land physics: the implementation of a multi-layer snow scheme and the realization 

of shortwave surface albedo with wavelength dependence. GloSea5 has a single layer snow scheme, in which snow is assigned 

a constant thermal conductivity and density, allowing direct heat exchange between the surface atmosphere and the soil. It 

combines the snow and the uppermost soil layer into a single thermal store, with the increased layer thickness accounting for 115 

the reduced thermal conductivity of snow. However, this scheme lacks proper closure of the surface energy budget (SF. 1) and 

a dynamic representation of snowpack evolution with the inadequate depiction of the snowpack's insulating properties. The 

improvement from the implementation of the multi-layer snow scheme is shown not only in the realization of the snow melt 

season, but also in the soil temperature and permafrost extent (Walters et al., 2017). For instance, the multi-layer snow scheme 

leads to surface warming of the soil temperature during the winter season, as the heat flux from the soil to the atmosphere is 120 

reduced, but shows a surface cooling in the spring season, as the increase in insulating radiation inhibits snowmelt. In the snow 

frontal regions, the increase in land surface albedo is due to the delay in the onset of snowmelt by the multi-layer snowpack, 

while the decrease in surface albedo over the Sahara, the Arabian Peninsula, and India is related to the modification in land 

surface albedo physics as a function of shortwave wavelength. Other land surface physics are consistent in GloSea5 and 

GloSea6. For land surface types, five vegetation (broadleaf trees, needleleaf trees, C3 grasses, C4 grasses and shrubs) and four 125 

non-vegetated surfaces (urban, open water, bare soil and permanent land ice) are classified and the monthly climatology of 

leaf area index, derived from MODIS satellite product (Yang et al., 2006), is prescribed corresponding to the plant functional 

types. Snow is present on every land tile, including inland water when its temperature is below freezing. Therefore, the climate 
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sensitivity over mid-latitude snow frontal regions is attributable to the implementation of the multi-layer snow scheme in the 

GloSea6.  130 

In terms of initial conditions for each model component, GloSea5 and GloSea6 commonly utilize ERA-interim and a 

variational data assimilation system for the NEMO ocean model (NEMOVAR; Mogensen et al., 2012) analysis for the 

atmospheric and ocean and sea-ice initializations, respectively. Land surface reanalysis, where the land offline simulation is 

forced by atmospheric boundary conditions from Japanese 55 years Reanalysis (JRA-55; Kobayashi et al., 2015) and European 

Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5; Hersbach et al., 2020) reanalysis, is 135 

used to initialize land surface variables for GloSea5 and GloSea6, respectively. GloSea5 and GloSea6 have been used to carry 

out 60-day (depending on ensemble or variable, 6-month forecast is conducted for the seasonal prediction) retrospective 

forecasts starting on the 1st, 9th, 17th, and 25th of every month for 26 years (1991–2016) and 24 years (1993–2016), respectively, 

but evaluations are conducted with 24-year forecasts for the fair comparison between both systems. To operate ensemble 

forecasts, the Stochastic Kinetic Energy Backscatter (SKEB2; Tennant et al., 2011) and the Stochastic Perturbation of 140 

Tendencies (SPT; Sanchez et al., 2016) scheme is used to perturb initial states in GloSea5 and GloSea6, respectively. 

Compared to the SKEB2, the SPT scheme imposes additional constraints on energy and water conservation, leading to an 

increase in the ensemble spread without degrading ensemble mean fields, which is especially beneficial over the tropics. Based 

on these methods, GloSea5 and GloSea6 operate 3 and 7 ensemble forecasts and have been implemented by the KMA in 

international S2S prediction project for 2020–2022 and 2023–present, respectively. The description of their model 145 

configuration is summarized in Table 1. 

 

  GloSea5 GloSea6 

Hindcast period 26 years (1991–2016) 24 years (1993–2016) 

Ensemble 
Method 

Stochastic Kinetic Energy Backscatter 

(SKEB2) 

Stochastic Perturbation of 

Tendencies (SPT) 

numbers 3 7 

Resolution Atmosphere 
Horizontal: N216 (0.83°×0.56°) 

Vertical: L85 (~85 km) 

Initial 

conditions 

Atmosphere ECMWF ERA-interim 

Land 
JULES offline run  

(JRA55 atmospheric forcing) 

JULES offline run  

(ERA5 atmospheric forcing) 

Ocean/Sea-ice NEMOVAR (UKMO) 

Model physics 

Atmosphere GA6.0 GA7.2 

Land GL6.0 GL8.0 

Ocean GO5.0 GO6.0 

Sea-ice GSI6.0 GSI8.1 

Coupler OASIS3 OASIS3-MCT 

Table 1: Description of the GloSea5 and GloSea6 model configurations. 
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2.2 Validation Data 150 

The daily maximum and minimum temperature over land at a height of 2 meters are sourced from NCEP CPC analysis 

produced by NOAA Physical Sciences Laboratory (PSL; https://psl.noaa.gov). The temperature data have a 0.5° horizontal 

resolution and are available for 1979–present. The daily mean temperature is acquired by arithmetically averaging maximum 

and minimum temperature. Hereafter, daily mean, maximum, and minimum temperature will be referred to as Tmean, Tmax, 

Tmin, respectively. 155 

The ERA5-Land is an offline land reanalysis (Muñoz-Sabater et al., 2021) of the Tiled ECMWF Scheme for Surface Exchanges 

over Land incorporating land surface hydrology (H-TESSEL) land surface model with four soil layers (0–7-, 7–28-, 28–100-, 

and 100–289-cm depth), forced by the ERA5 atmospheric reanalysis. ERA5-Land has a horizontal resolution of ~0.18 and an 

hourly temporal resolution. To enhance the spatial resolution of the ERA5-Land, ERA5 near surface atmospheric variables 

(e.g., temperature, humidity, and pressure) used for boundary conditions are corrected to account for the altitude difference 160 

that came from the lower resolution of ERA5. This study uses ERA5-land as a reference for snow cover extent to diagnose the 

modelled snow. Compared to the satellite-based datasets, the snow cover is accurately described in ERA5-Land whereas ERA5 

is notably overestimated (Kouki et al., 2023). ERA5 assimilates snow depth and cover information from several SYNOP 

(surface synoptic observation) stations and IMS (Interactive Multisensor Snow and Ice Mapping System) data over the 

Northern Hemisphere. 165 

In situ observations of surface SM are employed to evaluate the model climatological bias and SM memory (SMM) across the 

globe. International Soil Moisture Network (ISMN; Dorigo et al., 2021) is used to obtain daily mean SM sensed from 5-cm to 

10-cm. While flagged measurements classified as “good” quality are used, additional quality control procedures are applied to 

avoid data redundancy and spurious SM characteristics. First, we exclude the Snowpack Telemetry network (SNOTEL) which 

has large uncertainty in SM estimates because it is designed to measure snow variables. Second, if observations at one site are 170 

made at several depths within that range, it will be represented as a value close to 5-cm. Despite the previous steps, if SM is 

measured at the same location and depth by different sensors, only one of them is selected to avoid the loss of SM 

characteristics from simple averaging of many sensors. Lastly, the z-score of SM measured from each sensor is calculated and 

the sensor with the lowest value is selected. The SM z-score is defined as: 

𝑍 =
∑

𝑋𝑡 − 𝑋̅
𝜎𝑋

𝑁
𝑡=1

√ 𝑁
1 + 𝑡𝑎𝑢

 (1) 

where 𝑋𝑡, 𝑋̅, and 𝜎𝑋 are the daily time series, timely averaged value, and temporal standard deviation of SM in daily time scale 175 

(𝑡), respectively. 𝑁 and 𝑡𝑎𝑢 represent the sample number of daily time series and corrected SMM (described in subsection 

3.1), respectively.  

https://psl.noaa.gov/
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A time-filtered satellite product of daily surface SM, originated from the COMBINED European Space Agency (ESA) Climate 

Change Initiative (CCI) Soil Moisture v06.1 dataset (Dorigo et al., 2017), is used to assess the global SMM simulated by 

forecast models. Remotely sensed SM datasets inherently contain random and periodic errors, particularly in high-frequency 180 

variability, due to the radiometric instrument performance, viewing angle variations, spatial resampling, imperfect 

parameterizations used in retrieval algorithms, and so on. Due to these errors, the daily time series of satellite-based SM 

retrieval often shows intervals with an increase in SM without rainfall or any other water supply (see Fig. 6 in Seo and Dirmeyer, 

2022a), which is unexplainable by the surface water budget. This erroneous soil moisture behavior hampers the representation 

of realistic SM dynamics and land-atmosphere interactions due to a decrease in the SM autocorrelation value. Since the SMM 185 

is calculated with the time-lagged SM autocorrelation, assuming that the daily SM time series is exponentially decaying, the 

inherent error in the satellite data lead to an underestimation of SMM. To avoid the problem, this study uses the time-filtered 

surface SM product covering 21 years (2000–2020) with 0.25° spatial resolution, using a Fourier transform with LSM datasets 

(Seo and Dirmeyer, 2022b). The time filtered SM product provides a better representation of the surface SM time series, which 

also contributes to the improvement of the SM characteristics (i.e., SM memory and error) compared to the result from in situ 190 

observations. Hereafter, we refer to the adjusted ESA CCI SM based on the LSM simulations as ESACCIadj. 

The Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017) provides a dataset of terrestrial heat fluxes 

and soil wetness derived from algorithms integrating satellite-observed geophysical variables. Based on the Priestley and 

Taylor equation, GLEAM estimates potential evaporation from net radiation and near-surface air temperature observations. 

They are converted into actual evaporation through a multiplicative evaporative stress factor based on observed Vegetation 195 

Optical Depth (VOD) and estimated root-zone SM. This study uses the daily surface SM, net radiation, latent heat flux, and 

sensible heat flux from version 3.5a (https://www.gleam.eu/) covering 21 years (2000–2020) with a 0.25° spatial resolution.  

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.8 is the gauge-, satellite-, and reanalysis-based 

precipitation dataset used for validation, available from 1979 to the present. The precipitation data have a 0.1° horizontal 

resolution and 3-hourly temporal resolution (Beck et al., 2019a). Its superior performance is primarily attributable to the 200 

inclusion of daily gauge observations compared with 26 gridded precipitation datasets (Beck et al., 2019b). 

 

3 Methodology 

This study aims to investigate the impact of an improved snow scheme in the seasonal forecast system on the fidelity of snow 

behavior on contemporaneously and during the next warm season after snow melt. Given the many changes between GloSea6 205 

and GloSea5, we cannot attribute all differences in performance to any single change, but we assume changes in the simulation 

of snow are principally due to the major changes in the snow scheme. To compare model performance between GloSea6 and 

GloSea5 in the physics of snow freezing and melting, 100-day long retrospective forecasts initiated on the 1st day of October–

April spanning 24 years (1993–2016) are used. Although ensemble simulations are carried out in both models, a single member 

run is used in this study because 24 yearly samples are sufficient to represent the climatology of the seasonal cycle. The shift 210 

https://www.gleam.eu/
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of the snow melting season alters the availability and variability of SM for spring and summer season. 60-day long retrospective 

forecasts starting on 1st, 9th, 17th, 25th of May–August of 24 years are used to demonstrate the snow effect on the model 

climatological bias of surface SM, surface air temperature, and precipitation during northern hemisphere warm season when 

land-atmosphere feedback is most active. Most of the evaluations are accounted for by the fidelity of the modeled land-

atmosphere interactions calculated by the daily mean time series of all simulations during boreal summer, thereby representing 215 

the climatology of coupling metrics. The ensemble mean values are used in the climatological bias analysis, while the coupling 

metrics are calculated with each ensemble, and each ensemble result is averaged to avoid the physical correlation between 

variables fading out in the ensemble-averaged time series. To identify the model improvement with testing statistical 

significance, 384 initiated forecast runs are validated in each forecast system and tested for statistical significance using a 

Student’s t test. Model prediction skill as a function of forecast lead time is not evaluated in this study, because the result is 220 

sensitive to the number of ensembles rather than the version upgrade of the forecast model (not shown here). 

3.1 Soil moisture memory  

To evaluate the SM persistence simulated in the model, the autocorrelation-based SMM is employed. First, assuming that the 

evolution of the daily SM time series follows a first-order Markov process (Vinnikov and Yeserkepova, 1991), the decay 

frequency (𝑓) of SM can be defined by a function of SM autocorrelation (𝐴𝑅) at lag day (𝜏) (Dirmeyer et al., 2016; Seo and 225 

Dirmeyer, 2022b). Its formulation is followed as:  

𝐴𝑅(𝜏) = 𝑒𝑥𝑝(−𝑓𝜏) (2) 

The SMM is defined with an e-folding decay time, at which the autocorrelation of SM drops to 1/𝑒. By a linear fitting of 

𝑙𝑛[𝐴𝑅(𝜏)], the memory is calculated as the value of 𝜏, when the linear extrapolation between 𝑙𝑛[𝐴𝑅(𝜏 = 1)] and 𝑙𝑛[𝐴𝑅(𝜏 =

2)] is intersected to 𝑙𝑛[𝐴𝑅(𝜏)] = −1. Since the SM behavior is not perfectly fitted on the first-order Markov process, the 

displacement of the extrapolated linear fit at 𝜏 = 0 is defined with the measurement error mostly attributed to random errors 230 

(Robock et al., 1995). To measure the SMM under the assumption that there is no measurement error, the extrapolated linear 

fit is shifted to intersect origin point and the intersected 𝜏 value between the shifted linear fit and 𝑙𝑛[𝐴𝑅(𝜏)] = −1 is the 

corrected SMM. Time-filtered ESA CCI and modeled SM products exhibit the marginal measurement error (Seo and Dirmeyer, 

2022b), so that this study focuses on the improvement in the representation of the corrected SMM in the model simulations. 

The autocorrelation is calculated by concatenated time series of daily SM over JJA (June–August) of 24 years (1993–2016) 235 

with modelled SM time series, but the SMM analysis with the time-filtered satellite dataset is conducted over the 17-year 

period (2000–2016) due to the data availability. In the calculation of the SMM in both seasonal forecast systems, the SM time 

series over JJA are concatenated with 30-day forecast time series starting on the 1st of each month, and the time series for each 

year are further concatenated to produce the 24-year JJA SM time series. The SMM is calculated in each ensemble forecast 

and represented by the median of the ensemble values. 240 
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3.2 Time-lagged terrestrial coupling index  

To characterize the causality of land-atmosphere interactions, this study adopts time-lagged terrestrial coupling index (LTCI). 

The original terrestrial coupling index quantitively measures the sensitivity of target variable (𝑇𝑉: responding to a feedback) 

to source variable (𝑆𝑉: triggering to a feedback) to demonstrate their physical process connection across a range of time scales 

(e.g., hourly, daily, monthly, or yearly time series) (Dirmeyer, 2011; Seo and Dirmeyer, 2022a). Based on this matric, the 245 

causality of the land-atmosphere feedback is applied by setting a 1-day time lag in the time series of 𝑇𝑉 compared with 𝑆𝑉. 

This is formulated as: 

𝐿𝑇𝐶𝐼𝑑(𝑆𝑉𝑡 , 𝑇𝑉𝑡+1) = 𝑅(𝑆𝑉𝑡 , 𝑇𝑉𝑡+1) × 𝜎𝑇𝑉𝑡+1 (3) 

the subscript 𝑑 refers to using daily time series and 𝑡 + 1 denotes 1-day time lag against the raw time series (𝑡). 𝑅 and 𝜎 

represent the temporal correlation coefficient, and the temporal standard deviation, respectively. To explore the quantitative 

response of precipitation variability to the land surface flux partitioning, this study sets the source and target variables as 250 

precipitation (𝑃𝑅) and evaporative fraction (𝐸𝐹 = 𝐿𝐸/(𝐻 + 𝐿𝐸)), respectively, referred to as 𝐿𝑇𝐶𝐼𝑑(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1). 

 

3.3 Methodology to define land coupling regime  

This study evaluates model performance in the simulation of land coupling regimes in GloSea5 and GloSea6. Land-atmosphere 

interaction is controlled by land surface energy and water exchanges. Depending on their relative dominance, water- and 255 

energy-limited regimes are categorized, where the flux partitioning between sensible and latent heat flux are controlled by the 

availability and variability of SM or by net radiation mainly dictated by the atmosphere, respectively. They are separated by a 

critical value of SM at each location; the dry and wet side of the critical value exhibits water- and energy-limited coupling 

processes, respectively. Corresponding to the dominant response of the partitioning of land heat fluxes attributed to either the 

land state or the atmosphere, the direction of land-atmosphere coupling is land-to-atmosphere or atmosphere-to-land, 260 

respectively (see Fig. 2 in Seo et al., 2024). 

To quantify the strength of land-atmosphere coupling based on either the water- or energy-budget predominance, this study 

compares the temporal correlation of latent heat flux (the key variable linking water and energy budgets) with the surface SM 

[𝑅(𝑆𝑆𝑀, 𝐿𝐻)] and net radiation [𝑅(𝑅𝑛, 𝐿𝐻)], respectively. Thus, both independent proxies, measuring two distinct land 

coupling processes, serve as the x- and y-axes in a colour square, and the comparison between them indicates the relative 265 

dominance in the definition of land coupling regime (Seo et al., 2024).  
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4 Results 

4.1 Seasonality of land surface variables  

To assess the model performance in simulating snow freezing and melting processes, this study compares the representation 270 

of the seasonal cycle of land surface variables between GloSea6 and GloSea5. Although the land initial conditions are 

generated by different atmospheric forcing in both forecast models, the difference in initiated snow amount appears to be 

insignificant throughout the entire snow season (Fig. 1a). GloSea5 and GloSea6 simulate the seasonal cycle of snow freezing 

process over the Eurasian continent similarly regardless of which the snow scheme is used, while snow melts 2 weeks earlier 

in the early summer when a single layer snowpack is adopted. For instance, both models consistently simulate a snow peak in 275 

March and are initiated with similar snow conditions in that month, but the snow in GloSea5 disappears before June while it 

persists until early June in GloSea6. The result resembles the snow melting season represented by ERA5-Land. The multi-

layer snowpack leads to the lower surface albedo (SF. 3b), which in mid- to high-latitude regions is principally in needleleaf 

and C3 grass land types defined in the JULES LSM (SF. 2a). In GloSea6, the mapping from the IGBP classification to JULES 

land surface types has been refined to improve surface albedo representation. The proportion of bare soil within the grassland, 280 

cropland, and crop-natural mosaic the International Geosphere Biosphere Programme (IGBP; Loveland et al., 2000) classes 

was reduced, as the original mappings likely incorporated elevated bare soil values to represent seasonally barren vegetation 

(Walters et al., 2019). This adjustment extends the coverage of vegetated land types, notably for C3 grass cover (Wiltshire et 

al., 2020). Consequently, the shift from bare soil to vegetated surfaces decreases surface albedo, as the expanded vegetation 

area penetrates snow cover during the winter season.  285 

Although similar SM states are initialized in both forecast models for the entire analysis period, GloSea5 shows a model 

forecast drift in the wet direction from October to March, indicating the systemic inconsistency between the initial SM state 

from the LSM offline simulation and the coupled model climatology (Fig. 1b). Because the snowpack serves as a barrier to 

energy and water exchange between the land and the atmosphere, later snowmelt delays the onset of evaporation, which slows 

the physical process of drying out SM. Thus, the implementation of the multi-layer snowpack results in the climatologically 290 

wetter SM following the onset of snowmelt (May and June). The SM difference between GloSea6 and GloSea5 deepens toward 

the middle of the summer season. In contrast, GloSea6 simulates less soil moisture throughout the snow-covered season, 

although the initial soil moisture condition is similar in both simulations. The warmer soil temperature in GloSea6, induced by 

the snow insulation effect, increases the fraction of unfrozen soil moisture. Unlike soil ice, liquid water in the soil remains 

mobile, contributing to subsurface runoff and potentially evaporation, resulting in drier soil. 295 

The effect of the multi-layer snow scheme on soil and air temperatures depends on the snow accumulation, snow peak, and 

snow melting seasons. The snowpack plays the role of limiting transfer of heat between air and soil due to the enhanced 

insulation (SF. 3e). Therefore, the multi-layer snow scheme provides a stronger insulating effect, simulating significantly 

warmer soil temperature from snow cover onset through March, when air is colder than the land surface (Fig. 2c). For the 

surface air temperature, GloSea6 is colder during the snow freezing season due to the energy loss from the air to the ground 300 
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(Fig. 2d). In February and March, when the snow begins to melt, GloSea6 simulates higher air temperature because the 

snowmelt over warmer ground results in reduced cooling from below (Walters et al., 2019). During the early summer season, 

the surface cooling in GloSea6 is accounted for by the abundance of SM. Increased partitioning of land heat fluxes to latent 

heat leads to stronger evaporative cooling. 

To illustrate the physical sequence between land surface variables by the realization of snow physics, the time series of major 305 

water budget variables is compared between both simulations (Fig. 1e). The surface albedo of GloSea6 becomes larger than 

that of GloSea5 at the end of March, which results in increased soil moisture about 3 days after. The increase in soil moisture 

resulting from the reduction in latent heat flux, with a subsequent rise in precipitation begins after the soil moisture increase. 

The lead-lag correlation between soil moisture and precipitation shows statistically significant values at 0 and +1 lead-lag day 

and the 1-day lagged value is the highest (Fig. 1f). In other words, the increased soil moisture in mid-latitude regions likely 310 

increases precipitation based on the positive evapotranspiration-precipitation feedback. 
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Figure 1: Climatological seasonal cycle of 24-year (1993–2016) averaged (a) snow water equivalent, (b) surface soil moisture, (c) 

surface soil temperature, and (d) surface air temperature simulated by GloSea5 (red) and GloSea6 (blue) over the Eurasian continent 315 
(0–130E, 45–55N), where 100-day forecast lines fade at increasing lead forecasts and coloured marks indicate initial states on the 

first day of each month (surface soil temperature shows 60-day forecast due to data availability). To validate the snow melting 

processes in the model simulations, the grey dashed line in (a) denotes ERA5-Land snow cover. Additionally, to denote the response 

of surface soil and air temperature to the snow physics scheme, grey dashed lines display the difference between GloSea6 and 

GloSea5 throughout the snow accumulation and melting seasons. (e) Climatology of 25-day running averaged time series, initiated 320 
at each year on 1 March, of the standardized difference (GloSea6-GloSea5) for surface albedo, surface soil moisture, and 

precipitation. (f) Lead-lag correlation coefficient for the daily time series of the difference between GloSea5 and GloSea6 for surface 

soil moisture and precipitation with 70-day forecast initiated at each year on 1 March to demonstrate soil moisture-precipitation 

coupling, where black filled marks denote the correlation value is statistically significant at a 99% confidence level. A positive lagged 

day indicates that soil moisture leads precipitation, and negative is vice versa.  325 

4.2 Evaluation of model climatological error and bias over the globe  

Although soil moisture has historically not been a verifiable quantity in weather forecast models (Koster et al., 2009), the 

adoption of soil moisture data assimilation makes soil moisture a variable for validation (Seo et al., 2021). To identify the 

representation of surface SM, this study compares the climatological mean between both forecast models and evaluates their 

model error against in-situ measurements. The difference in SM simulation between GloSea6 and GloSea5 is large above 40˚N 330 

regions across all forecast lead times (Fig. 2a). In particular, the difference is dominant over the snow frontal region, indicating 

that the difference is related to the additional snow insulating effect in the GloSea6 LSM. Differences at lower latitudes are 

likely due to other model changes. To assess model fidelity, SM simulated by GloSea5 (Fig. 2b) and GloSea6 (Fig. 2c) are 

validated against in-situ measurements (mostly distributed over the North America and Europe). Although both models 

simulate a reliable SM climatology over relatively dry regions (~0.1 m3 m-3), modeled SM is systematically underestimated 335 

when model values are between 0.1 and 0.2 m3 m-3. Most of the underestimated sites are located above 40 N (SF. 4). Although 

model errors still remain in GloSea6, the drying errors are significantly improved as the SM becomes wetter and the spatial 

agreement, as measured by the correlation coefficient, is also increased.  
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Figure 2: (a) Spatial distribution of climatological surface soil moisture difference between GloSea6 and GloSea5 of the average of 340 
1–60 lead forecast days from the runs initiated in May–August of 1993–2016. The dotted area indicates the difference is statistically 

significant at a 95% confidence level and global averaged value is indicated in the lower-left corner. 2-dimenssional density of 

modelled surface soil moisture in (b) GloSea5 and (c) GloSea6 against in situ ISMN observations (1720 measurement sites that are 

mostly are over North America and Europe as shown in SF. 4), where RMSE, bias, and Pearson correlation coefficient are denoted 

in the upper-left corner. 345 
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Since SMM is a key factor in the subseasonal forecasting because its persistence over a few weeks, model fidelity of SMM is 

crucial for forecast skill. Because memory is shortened by occurrences of precipitation, it is prolonged where the climate is 

relatively dry. For instance, SM persistence is relatively short over East Asia where the monsoon flow throughout the summer 

season leads to an increasing likelihood of rainfall, accompanying wet soil. The spatial patterns of SMM from ESACCIadj, 350 

ERA5-Land, and GLEAM are similar (Figs. 3a,b,c), but ESACCIadj is noisy at high-latitudes because SM dynamics are not 

perceived by the satellite when the surface is frozen. The globally averaged values of SMM from ESACCIadj, ERA5-Land, and 

GLEAM are 10.4, 8.3, 11.5 days, but the Amazon, tropical Africa and Southeast Asia, which have dense vegetation but short 

SMM, are not sensed by satellite. This likely biases the global SMM estimate from ESACCIadj toward shorter timescales.  

The spatial distribution of SMM determined from the observational products is reliably simulated over the globe in GloSea5 355 

and GloSea6. Improvements in SMM bias and spatial agreement are shown in GloSea6 (Figs. 3d,e). The underestimated SMM 

in GloSea5 is increased by 0.8 days and the spatial correlation of the SMM with the observed fields is also improved. When 

the assessment is performed with in-situ measurements (SF. 5), the model-based SMM is the better match to the observations 

(SFs. 5b,c) and there is a significant improvement to simulate the SMM in GloSea6 compared to the GloSea5 (SFs. 5d,e). 

When the soil becomes wet due to the late onset of snow melt, the SM decay in response to rainfall is slow, thereby increasing 360 

the SMM in mid-latitude regions (Fig. 3e). In contrast, there are some regions (e.g., the southern region of the Amazon, central 

West Africa, and India) where SMM decreases, the main reason being an increase in rainfall.  

 

Figure 3: Surface soil moisture memory from (a) ESACCIadj, (b) ERA5-Land, (c) GLEAM, (d) GloSea5, (e) GloSea6, and (f) the 

difference between GloSea6 and GloSea5. Global mean values are denoted in the middle-left in each panel. The bracketed values 365 
indicate the spatial correlation of the modelled soil moisture memory compared to ESACCIadj (left), ERA5-Land (middle), and 

GLEAM (right).  

Features of the simulation of surface air temperature in GloSea6 include reduced bias for daily mean and subdaily time scales 

across all forecast lead times, explainable by the changes in land physics. GloSea6 represents a decrease in Tmean bias despite 

the existence of significant positive bias over North America (Fig. 4b). GloSea6 simulates warmer and colder temperatures 370 

over the tropics and mid-latitudes, respectively, compared to GloSea5 (Fig. 4c). To identify the impact of two major 
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modifications in the LSM on temperature simulation, when the assessment of Tmean is decomposed into the Tmax and Tmin, 

the results are not consistent with the daily mean. Although the Tmean bias is small in both forecast systems, it results from 

the cancellation of biases for Tmin and Tmax. Tmax shows a large negative bias north of 50˚N and a positive bias over warm 

arid regions (e.g., Southwest Asia) (Figs. 4d,e). Tmin appears to have a large positive bias over the globe, except for the Sahara 375 

and Southwest Asia, which have a negative bias (Figs. 4g,h). The effect of the multi-layer snow scheme on forecasting 

temperature is primarily surface cooling over snow frontal areas throughout the entire day (Fig. 4c), even though the 

temperature response is more sensitive during the daytime (Figs. 4f,i). This is because there is a larger latent heat flux during 

the daytime, resulting in a larger evaporative cooling. On the other hand, GloSea6 simulates warmer Tmean over the tropics, 

particularly in Tmax, which likely results from updating the land surface albedo as a function of shortwave wavelength.  380 

 

Figure 4: Spatial distribution of daily mean (upper row; a–c), maximum (middle row; d–f), and minimum (lower row; g–i) surface 

air temperature bias of the average of 1–60 lead forecast days in GloSea5 (first column), GloSea6 (second column), and the difference 

between both models (last column). Area averaged bias is denoted in the lower-right corner in each panel. Dotted areas indicate the 

bias is statistically significant at a 95% confidence level. 385 

The systemic error of surface air temperatures, measured by root-mean-square error (RMSE), is further investigated using 60-

day lead forecasts. In general, the error in Tmean, Tmax, and Tmin from GloSea6 is largely reduced compared to that from 

GloSea5. In particular, GloSea5 shows a large Tmean RMSE over the eastern US, Siberia, and Australia (Fig. 5a), but the error 

is significantly mitigated in GloSea6 (Fig. 5c). Tmean errors in the eastern US and Siberia are influenced by both Tmax and 

Tmin. Based on the temperature bias analysis, this result is attributed by the improvement in the snow scheme that has effects 390 
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throughout the day. Over Australia, the decrease of Tmean error is mostly influenced by Tmax, which is accounted for by the 

improvement of land-atmosphere interactions during the daytime (cf., Fig. 10d). However, some errors are aggravated in 

GloSea6. For instance, in northeastern Eurasia, Tmax RMSE is significantly increased by an exacerbated cold bias, which is 

related to a cold bias in initial conditions (not shown). The multi-layer snowpack reinforces this bias in GloSea6.  

 395 

Figure 5: Same as Fig. 4, but for RMSE of surface air temperature variables. Blue and red shading in difference maps (c, f, and i) 

indicate the improved and deteriorated forecast performance of GloSea6, compared with the GloSea5. 

Model performance in simulating precipitation is also evaluated in GloSea5 and GloSea6. Both models show an overestimation 

of precipitation across the globe because of the wet bias over South America, central Africa, southern China, and northeastern 

Eurasia (Figs. 6a,b). Although the globally averaged bias increases in GloSea6, this is largely due to a reduction in the negative 400 

bias over the continental United States (CONUS) and western and central Eurasia, as the positive bias is amplified or 

maintained in areas that have wet biases in GloSea5 (Fig. 6c). The increased precipitation over the mid-latitude regions is 

explained by the abundant SM from snow melting process under positive evapotranspiration-precipitation feedbacks (cf., Fig. 

7). The precipitation errors of GloSea5 and GloSea6 appear to be spatially large over the areas where the mean precipitation 

climatology is high (e.g., East America, Central America, South and East Asia, and Central Africa) (Figs. 6d,e). The difference 405 

of precipitation RMSE maps between GloSea6 and GloSea5 reveals a significant improvement in the simulation of 

precipitation over central CONUS, western and central Eurasia, Central Africa, and South Asia (Fig. 6f). Although entire 



17 

 

regions where the error is reduced cannot be explained solely by advances in land processes, the improvement in the mid- and 

high-latitude regions of the Northern Hemisphere is likely due to the improved snow physics.  

 410 

Figure 6: Spatial distribution of daily mean precipitation bias (upper row; a–c) and RMSE (lower row; d–f) of 60 days forecast in 

GloSea5 (first column), GloSea6 (second column), and the difference between both models (last column). Dotted areas indicate that 

bias (a, b, and c) and RMSE (f) are statistically significant at a 95% confidence level. 

To demonstrate the impact of land-atmosphere interactions on the model ability to simulate precipitation, this study assesses 

the time-lagged terrestrial coupling index (𝐿𝑇𝐶𝐼). The observed 𝐿𝑇𝐶𝐼𝑑(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1) generally represents a positive coupling 415 

to precipitation over the globe due to the positive correlation 𝑅(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1), with particularly strong feedbacks over the areas 

where precipitation variability 𝜎𝑃𝑅𝑡+1  is high (e.g., Central America, Eastern CONUS, South Asia, and East Asia) (Fig. 7a). 

The spatial pattern of 𝐿𝑇𝐶𝐼𝑑(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1) simulated by GloSea5 and GloSea6 is similar to the observed distribution, whereas 

there is an overall overestimation of coupling strength (Figs. 7b,c). Both models commonly overestimate the 

𝐿𝑇𝐶𝐼𝑑(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1) over the Americas (except for the Amazon), northern Eurasia, and South Asia, but the positive bias is 420 

mitigated in GloSea6 (Figs. 7e,f). For GloSea6, the large positive bias over the tropics, also simulated by GloSea5, is 

significantly reduced, attributable to the decrease in  𝑅(𝐸𝐹𝑡 , 𝑃𝑅𝑡+1), while the positive bias over high-latitude regions is 

slightly amplified by increased 𝜎𝑃𝑅𝑡+1  (Fig. 7d). The increased variability of daily precipitation in GloSea6 is associated with 

an increase in mean precipitation (cf., Fig. 6c).  
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 425 

Figure 7: Spatial distribution of 𝑳𝑻𝑪𝑰𝒅(𝑬𝑭𝒕, 𝑷𝑹𝒕+𝟏) of 60-day forecasts in (a) GLEAM, (b) GloSea5, and (c) GloSea6. (d) The 

difference between GloSea6 and GloSea5 and the bias of the 1-day lagged TCI simulated by (e) GloSea5 and (f) GloSea6 are displayed, 

where the dotted areas indicate statistical significance at a 95% confidence level. In each panel, grey horizontal lines isolate three 

areas (bottom: 60S–15N, middle: 15–50N, and top: 50–90N) and area averaged values is denoted within grey shaded box. 

4.3 Representation of land coupling processes  430 

The exchanges at the land surface are constrained by the water and energy balance equations, and the strength of water- versus 

energy-limited processes is quantified by the temporal correlation coefficient of latent heat flux to surface SM or net radiation, 

respectively, as described in subsection 3.3. In Figure 8, the colour square consists of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) on the x- 

and y-axis, respectively, indicating the relative dominance of water- and energy-limited coupling. The spatial pattern of the 

GLEAM land coupling regimes is similar to the distribution of the SM climatology, such that water-limited processes are 435 

pronounced over climatologically dry areas and vice versa. The classification of the land coupling regime results from the 

synthetization of the spatial pattern of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) (Fig. 9a) and 𝑅(𝑅𝑛, 𝐿𝐻) (Fig. 10a). The kernel density plot of 𝑅(𝑆𝑆𝑀, 𝐿𝐻)  

is bimodal, with clearly separated peaks on either side of zero, while there is a double peak in 𝑅(𝑅𝑛, 𝐿𝐻) with a broad peak 

centered near zero and a pronounced positive peak. For instance, the spatial distribution of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) is a 

zonal dipole structure over CONUS but is meridionally banded over Eurasia.  440 
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Figure 8: Spatial distribution of land coupling regime in (a) GLEAM, (b) GloSea5, and (c) GloSea6. Shadings indicate correlations 

indicated in the coloured square: latent heat flux to surface soil moisture (x-axis) and net radiation (y-axis). The global frequency 

distributions from GLEAM (black), GloSea5 (cyan), and GloSea6 (green) are shown in the lower-left 2-dimensional coloured square. 

Their kernel density estimations are along the edges of the coloured square, where each curve has been normalized for the same 445 
maximum value. 

GloSea5 and GloSea6 show a single peak on the positive side of the kernel density estimation of 𝑅(𝑆𝑆𝑀, 𝐿𝐻), which is 

explained by an overall overestimation of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) resulting in the expansion of water-limited areas and the degradation 

of the spatial characteristics in the observation (Figs. 9b,c). The strength of the water-limited coupling is overestimated over 

the globe, but the positive bias is particularly evident over high-latitude regions (Figs. 9e,f). Nevertheless, the difference 450 

between the two forecast system kernel density estimates of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) is not significant. This does not indicate that the 

spatial distributions are the same, but rather a cancellation of the changed areas of increase and decrease of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) in 

GloSea6 over the tropics and high-latitude areas (Fig. 9d), respectively.  

On the other hand, both forecast models show a single peak on the positive side of the kernel density estimation of 𝑅(𝑅𝑛, 𝐿𝐻), 

even though the underestimated energy-limited coupling strength in GloSea5 is greater in GloSea6. The spatial distributions 455 

of 𝑅(𝑅𝑛, 𝐿𝐻) simulated by the two models similarly underestimate the spatial dependency (Figs. 10b,c), compared to the 

GLEAM. For instance, in GLEAM, dry and high-latitude regions show negative and large positive values of 𝑅(𝑅𝑛, 𝐿𝐻), 

respectively, but the models reveal positive and negative biases for each region (Figs. 10e,f). Nevertheless, GloSea6 

significantly increases the energy-limited coupling strength, which mitigates the negative bias of 𝑅(𝑅𝑛, 𝐿𝐻), especially over 

the high-latitude areas, whereas the underestimation still exists (Fig. 10d). Because the late onset of snowmelt leads to wetter 460 

SM over the mid- to high-latitudes during the warm season, the wetter SM climatology limits the sensitivity of land heat fluxes 

to SM variability, leading to a regime shift of land coupling from water-limited to energy-limited processes. 
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As a result, GloSea5 and GloSea6 have a limited ability to simulate the observed land coupling regime distributions; the 

comparison of the 2-dimentional density function for GloSea5 (cyan line) and GloSea6 (green line) in the coloured square. 

While the water-limited coupling is generally overestimated in both forecast models, the improvement of the energy-limited 465 

process in GloSea6 leads to a better classification of the land coupling regime over the globe (Fig. 8b,c). For instance, GloSea5 

has an excessive area of red-coloured grid points, indicating the relative dominance of water-limited coupling, while GloSea6 

better simulates the spatial pattern of land coupling regimes. In particular, the zonally and meridionally classified dipole pattern 

over the CONUS and the snow frontal area of Eurasia, respectively, become clear.  

 470 

Figure 9: Same as Fig. 7, but for the correlation coefficient between daily latent heat flux and surface soil moisture, to illustrate 

water-limited processes.  

 

Figure 10: Same as Fig. 9, but for the correlation coefficient between daily latent heat flux and net radiation, to illustrate energy-

limited processes. 475 
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5 Summary and Conclusions 

Some land surface models have employed a single layer snow scheme that insulates the near-surface atmosphere from direct 

access to the heat in the ground. While effective for very thin snow cover, such a scheme fails to simulate the true insulating 

effect of the snowpack by prohibiting energy transport between land and atmosphere in deeper snow. This study primarily 480 

explores the impact of implementing a multi-layer snow scheme on the climatological bias of the seasonal forecast system. 

Two sets of the GloSea global retrospective seasonal forecasts over 24 years (1993–2016), from the latest version (GloSea6) 

and its predecessor (GloSea5), which implement the multi-layer and single layer snow schemes, respectively, are examined to 

elucidate the role of the insulating effect of snow. The improvement in the model simulations appearing in areas with high 

snow variability can be understood as the effect of the multi-layer snow scheme. However, the differences between GloSea5 485 

and GloSea6 in areas unrelated to snow (e.g., South and East Asia, Central Africa, South America, and Australia) are likely 

the result of various other factors arising from other modifications as part of the model version update. For instance, over India, 

the bias of too much precipitation over the ocean and too little precipitation over the subcontinent has been improved by 

updates including the stochastic physics, convection scheme, and warm rain microphysics in the GloSea6 (Walters et al., 2019). 

Furthermore, the inclusion of the stochastic physics contributes to a reduction of the precipitation bias over Africa.  490 

The improved snow physics with a multi-layer snowpack better captures the observed snow dissipation season (Fig. 1a) and 

affects land and near-surface variables throughout the snow accumulation and melting seasons. The land surface warming and 

cooling due to the insulating effect of the snowpack during the snow peak and melting seasons (Fig. 1c) results in a late onset 

of snow melt and wetter SM during the following summer season, especially in mid- to high-latitude regions (Fig. 1b and 2a), 

leading to reduced error in surface SM (Figs. 2b,c). The changes in land surface processes also affects land surface 495 

characteristics, e.g. SM memory is generally increased, which reduces model error in the memory and improves spatial 

agreement compared to the observational analysis (Fig. 3). Moreover, the greater SM from the advanced snow physics leads 

to a decrease in temperature with evaporative cooling throughout the entire day (Fig. 4) and an increase in the likelihood of 

precipitation explained by evapotranspiration-precipitation feedbacks (Fig. 6). The climatological mean shift in temperature 

and precipitation through implementing the multi-layer snow scheme in GloSea6 significantly reduces the error in the mid- 500 

and high-latitude regions, as the reduced temperature and increased precipitation offset GloSea5’s climatological warm and 

dry bias. On the other hand, the other physics update in the LSM is the land surface albedo, which now varies with shortwave 

wavelength. Its effect is significant only during the daytime over the tropics, because the effect of surface albedo on the surface 

energy budget is dominant during daytime. 

The spatial distribution of the land coupling regime is similar to that of the SM climatology, with the majority of water- and 505 

energy-limited coupling occurring over relatively dry and wet soils (Fig. 8). Assessment of model performance is critical to 

understanding the issues associated with land-atmosphere coupling processes. Comparing the land coupling regime simulated 

by GloSea5 and GloSea6, the increased SM in GloSea6 alters land-atmosphere interactions, limiting the strength of water-
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limited coupling (Fig. 9) along with enhance energy-limited processes (Fig. 10). Although the relative dominance of water-

limited coupling is still overestimated in both GloSea5 and GloSea6, this problem is corrected over mid- and high-latitude 510 

regions when the multi-layer snow scheme is implemented. The increased SM due to the late onset of snowmelt restricts water-

limited coupling. This results in an increase in 𝑅(𝑅𝑛, 𝐿𝐻) complemented by a decrease in 𝑅(𝑆𝑆𝑀, 𝐿𝐻).  

 

Figure 11: Schematic of the impact of multi-layer snow scheme on seasonal forecast system from winter through the following 

summer. 515 

Because the simulation of realistic snow states affects the water and energy budgets not only in winter also in spring and 

summer (Fig. 11), the realization of snow characteristics should be a priority in the process of developing a model. For instance, 

if the land surface model is modified to improve land processes for the warm season, when land-atmosphere feedbacks are 

evident, without any assessment and improvement of snow behaviour, the model is likely to have a larger error, even if the 

snow is simulated realistically. Note that the climatological improvements do not imply an increase in the predictability of 520 

forecast systems, as the increase in forecast skill of temperature and precipitation in GloSea6 is primarily due to the larger 

ensemble size (SFs. 6 and 7). Therefore, this study suggests that the implementation of a multi-layer snow scheme is necessary 

to simulate the realistic land surface processes in dynamical forecast systems on the subseasonal to seasonal time scale. From 

a climate perspective, as global warming increases the variability and uncertainty of modelled snow, reliable future projections 

for climate change can be presented with the results of selective use of models that are able to simulate realistic snow 525 

characteristics.  
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filtered ESA CCI SM product used in this study are available upon request from the authors. 
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