
1 

 

Implementation of a multi-layer snow scheme in a seasonal forecast 

system: Impacts on land–atmosphere interactions and climatological 

biases  

Eunkyo Seo1, Paul A. Dirmeyer2, Sunlae Tak3 

1 Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, 48513, Republic of Korea  5 
2 Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia, 22030, United States 
3 Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology, 

Ulsan, 44919, Republic of Korea 

Correspondence to: Eunkyo Seo (eseo@pknu.ac.kr) 

Abstract. This study explores the influence of implementing a multi-layer snow scheme on the climatological bias within a 10 

seasonal forecast system. Traditional single layer snow schemes in land surface models often inadequately represent the 

insulating effect of snowpack, resulting in cold and warm biases during winter and snowmelt seasons, respectively. By contrast, 

multi-layer snow schemes improve the simulation of energy exchange between the land surface and atmosphere by realistically 

capturing snowpack thermal processes. To examine this impact, two sets of LSM offline experiments are conducted, using 

either a single-layer or a multi-layer snow scheme. Results show that the multi-layer configuration better reproduces the 15 

observed Northern Hemisphere snow seasonality. To further assess the role of snow insulation in coupled forecast systems, 

two sets of experiments with the Global Seasonal Forecast System (GloSea) version 6 are compared over 24 years (1993–

2016) corresponding to the incorporation of single- (G6single) and multi-layer (G6multi) snowpack schemes. In G6multi, the onset 

of snowmelt is delayed by approximately 1–2 weeks, postponing springtime evaporation, slowing soil moisture depletion, and 

improving both the climatology and memory of soil moisture. Increased soil moisture enhances the partitioning of available 20 

energy into latent heat flux, thereby promoting evaporative cooling and suppressing excessive water-limited land–atmosphere 

coupling. The improved model fidelity of land-atmosphere interactions, particularly over mid-latitude regions, mitigate near-

surface warming biases across the entire diurnal period and reduce the sensitivity of atmospheric conditions to land surface 

variability. The model performance in simulating precipitation is also improved with the increase in precipitation occurrence 

over snow-covered regions. Above all, this study demonstrates the value of implementing a multi-layer snowpack scheme in 25 

seasonal forecast models, not only during the snowmelt season but also for the subsequent summer season, for model fidelity 

in simulating temperature and precipitation along with the reality of land-atmosphere interactions. 

1 Introduction 

Subseasonal-to-seasonal (S2S) forecasts have become increasingly pivotal in numerous fields, encompassing agriculture, 

water resource management, energy, transportation, and disaster preparedness. The significance of S2S forecasting stems from 30 



2 

 

their ability to provide actionable insights into forthcoming weather and climate conditions over the span of weeks to months. 

The predictability of S2S forecasts is strongly tied to the quality of the initial conditions and data assimilation technique, which 

mathematically finds optimal values with minimized analysis errors to merge observations into a dynamical model, has been 

employed to create improved global analyses (Seo et al., 2021; Kumar et al., 2022). Forecasts across various time scales 

underscore the necessity for precise initial states of distinct components within the forecast model, as each component retains 35 

information over inherently disparate time scales (Richter et al., 2024). As the memory of initial land conditions can extend 

out to approximately 2 months, the importance of realistic land surface initialization in determining skill of the subseasonal 

forecast is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al., 2019). 

In particular, soil moisture (SM) plays a pivotal role in hydrological and meteorological dynamics, acknowledged as an 

essential climate variable by the World Meteorological Organization (WMO) (Seneviratne et al., 2010; Santanello et al., 2018). 40 

Its persistence or memory can significantly enhance forecast accuracy, particularly at time scales extending to 1–2 months 

(Dirmeyer et al., 2016; Dirmeyer et al., 2018; Seo and Dirmeyer, 2022a). The fidelity of modelled SM contributes to a more 

accurate portrayal of land-atmosphere interactions, facilitating the exchange of water and energy fluxes at the land surface 

(Seo et al., 2024). This enhanced representation holds potential for predicting extreme climate events, particularly those 

intensified by land-atmosphere feedback within extended range forecast systems (Seo et al., 2020; Dirmeyer et al., 2021; Tak 45 

et al., 2024). SM is directly constrained by the components of the typical water balance equation: precipitation, latent heat 

flux, and runoff, but the modelled snow affects the representation of snow characteristics.  

The pivotal role of snow in land-atmosphere interactions highlights the significance of accurately representing cold processes 

related to snow in hydrometeorology and dynamical predictions. Compared to other land surface variables, snow exhibits 

distinctive characteristics such as high albedo, high thermal emissivity, and low thermal conductivity, which profoundly 50 

influence radiation budget and surface moisture and energy fluxes to the atmosphere. The presence or absence of snow can 

result in a disparity of approximately 10 K in the climatology of surface air temperature (Betts et al., 2014). This discrepancy 

primarily stems from the reduction in net shortwave radiation attributable to the high albedo of snow. Snow-atmosphere 

feedback evolves through three distinct stages: before, during, and after snowmelt. Meanwhile, the coupling strength of snow 

cover to near-surface atmospheric variables, as measured by the phase similarity of members of an ensemble forecast induced 55 

by specifying identical land surface conditions (Koster et al., 2006), is strongest during snowmelt and the coupling strength 

after snowmelt (delayed soil moisture impact) is stronger than that before snowmelt (radiative impact from surface albedo) 

(Xu and Dirmeyer, 2011). Therefore, during the warm season, SM dynamics become intricately linked to the physical 

characteristics of snow, affecting the initiation of evaporation and runoff due to snowmelt. It plays a crucial role in determining 

the model's ability to accurately simulate atmospheric variables through land-atmosphere coupling processes. 60 

Some Land surface models (LSMs) still use a single-layer snowpack scheme, which has proven insufficient in accurately 

capturing the seasonal evolution of snow cover. The snowpack insulates the land surface, inhibiting energy exchange between 

the land surface and the atmosphere. Consequently, a single layer snowpack scheme typically leads to cold and warm biases 

during winter and snow melting seasons, respectively. Because a single-layer scheme cannot simulate a vertical temperature 
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gradient within the snowpack, it transmits surface temperature changes directly to the soil below, enhancing the efficiency of 65 

energy exchange. Addressing these limitations, recent advancements in LSMs aim to integrate the multi-layer snow scheme 

to enhance the representation of snow dynamics and mitigate associated biases. For instance, Noah-Multiparameterization 

(Noah-MP) LSM represents the latest iteration of Noah LSM, a land component widely implemented with a single layer 

snowpack in various regional and global operational forecast models. It incorporates multiple enhancements aimed at 

improving the realism of biophysical and hydrological processes (Niu et al., 2011). Notably, for a more accurate representation 70 

of snow physics, Noah-MP adopts the multi-layer snowpack scheme. This scheme dynamically adjusts the number of snow 

layers based on the depth of snow, ensuring a more realistic conceptualization of snow accumulation and melt processes. The 

Joint UK Land Environment Simulator (JULES) LSM features the utilization of a multi-layer snow scheme in its current 

operational system. It also dynamically adjusts the number of snow layers, with each layer having prognostic variables for 

temperature, density, grain size, and both liquid and solid water content (Best et al., 2011). Unlike the simpler single layer 75 

snow model, which treats snow as an adaptation of the top-soil layer, the multi-layer scheme accounts for independent snow 

layer evolution and the impact of snow aging on albedo through simulated grain size changes. By explicitly simulating snow 

insulation effects and meltwater percolation, this scheme better captures seasonal snow variability and its influence on soil 

thermal regimes, including surface cooling during winter, delayed ground thaw in spring, and subsurface heat retention in 

summer. This implementation significantly improves soil temperature simulations, leading to better representation of land 80 

surface processes (Burke et al., 2013; Walters et al., 2017). JULES is incorporated within the GloSea forecast system 

(Maclachlan et al., 2015). 

Numerous studies have aimed to improve the sophistication of snow physics and highlighted its advancement in numerical 

models (Xue et al., 2003; Arduini et al., 2019; Cristea et al., 2022). For instance, among 13 operational models participating 

in sub-seasonal to seasonal (S2S) prediction project (Vitart et al., 2017; Vitart et al., 2025), only three—BoM (POAMA P24), 85 

CNR-ISAC (GLOBO), and NCEP (CFSv2)—employ a single-layer snowpack scheme, whereas the remaining ten models, 

including those developed by CMA (BCC-CPS-S2Sv2), CNRM (CNRM-CM 6.1), CPTEC (BAM-1.2), ECCC (GEPS8), 

ECMWF (CY49R1), HMCR (RUMS), IAP-CAS (CAS-FGOALS-f2-V1.4), JMA (CPS3), KMA (GloSea6-GC3.2), and 

UKMO (GloSea6), now used multi-layer snowpack schemes. Despite this broad adoption, the impact of multi-layer snow 

schemes on S2S forecasts remains insufficiently explored and understood. Hence, this study conducts a comparative analysis 90 

between single layer and multi-layer snowpack in the JULES LSM, as well as the fully coupled forecast systems GloSea5 and 

GloSea6—past and present operational forecast systems at the UK Met Office and the Korea Meteorological Administration 

(KMA), in retrospective forecasting in order to investigate the impact of an advanced snow scheme. The primary objective of 

this study is to assess the seasonal cycle of snow and land surface variables throughout the snow-covered period and evaluate 

the model's capability to replicate the mean climatology of key land surface and near-surface atmospheric variables, e.g., 95 

surface SM, surface air temperature, and precipitation, during the boreal warm season. The evaluation is restricted to the 

Northern Hemisphere (NH) and mainly to snow-affected mid-latitude regions. Daily mean, maximum, and minimum 

temperatures are validated at sub-daily time scales to elucidate the time of significant improvements in model performance. 
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Furthermore, the model fidelity in the simulation of land-atmosphere interactions, corresponding to water- and energy-limited 

processes, is diagnosed to identify the realism of land coupling regimes by implementing the advanced snowpack scheme.  100 

The paper is organized as follows. Section 2 describes the GloSea5 and GloSea6 models, and the validation datasets used in 

this study. Section 3 provides the methodology to evaluate the model performance. Section 4 presents and discusses the results 

of this study. Finally, Section 5 summarizes the results and their implications for future applications. 

 

2 Model Description and Data 105 

2.1 Forecast Model  

This study explores the performance of the Global Seasonal forecast system (GloSea) version 5 and 6, which are abbreviated 

as GloSea5 and GloSea6, respectively. These are the fully coupled ensemble forecast models with atmosphere-land-ocean-sea 

ice components, developed by the UK Met Office. GloSea5 (Maclachlan et al., 2015) Global Coupled model 2.0 (GC2; 

Williams et al., 2015) configuration consist of UM (Unified Model) version 8.6 atmospheric component (GA6.0; Walters et 110 

al., 2017) having N216 horizontal resolution of 0.56° latitude × 0.83° longitude with vertically 85 hybrid-sigma coordinates 

topped at 85 km, JULES (Joint UK Land Environment Simulator) version 4.7 land surface model (GL6.0; Best et al., 2011) 

with four soil layers (0–10-, 10–35-, 35–100-, and 100–300-cm depth), as well as NEMO (Nucleus for European Modelling 

of the Ocean) version 3.4 oceanic component (GO5.0; Megann et al., 2014) and CICE (Los Alamos Sea-ice Model) version 

4.1 sea-ice component (GSI6.0; Rae et al., 2015) on an ORCA tripolar 0.25° global grid with 75 vertical levels. Those 115 

components exchange interactive variables with the OASIS3 coupler (Valcke, 2013). GloSea6 Global Coupled model 3.2 

(GC3.2) updates the atmospheric, land, ocean, and sea-ice components to the version of UM vn11.5 (GA7.2), JULES vn5.6 

(GL8.0; Wiltshire et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018), and CICE vn5.1.2 (GSI8.1; Ridley et al., 2018) 

without any modification in the resolution. The model components of GloSea6 are coupled with the OASIS3-MCT (Model 

Coupling Toolkit; Craig et al., 2017).  120 

Substantive changes in the GloSea6 compared with GloSea5, mostly in model physics, have been implemented throughout all 

model components (Williams et al., 2015; Williams et al., 2018). For instance, the atmospheric physics are modified in 

radiation (improving gaseous absorption through upgrades in McICA (Monte Carlo Independent Column Approximation) and 

parameterization in ice optical properties), microphysics (updates in warm rain parameterization and newly implementing ice 

particle size-dependent parameterization), cloud physics (including radiative effects from convective cores), gravity wave drag 125 

(implement heating from gravity-wave dissipation), boundary layer (correcting cloud top entrainment during decoupling to the 

land), cumulus parameterization (improving updraught numeric in convective process and updating CAPE closure as a function 

of large-scale vertical velocity), and new modal aerosol scheme (UKCA GLOMAP (Global Model of Aerosol Processes) 

scheme; Mann et al., 2010). Aforementioned atmospheric physics updates in the GloSea6 are likely to improve the performance 

of model systemic errors, particularly in the overestimated vertical profile of cloud fraction at upper troposphere, tropospheric 130 
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cold and dry biases, the underestimated jet stream, the overestimated precipitation, and the negative bias of troposphere 

geopotential height during boreal summer (Williams et al., 2018).  

Land surface types in the both forecast systems are classified with five vegetation (broadleaf trees, needleleaf trees, C3 grasses, 

C4 grasses and shrubs) and four non-vegetated surfaces (urban, open water, bare soil and permanent land ice) and the monthly 

climatology of leaf area index, derived from MODIS satellite product (Yang et al., 2006), is prescribed corresponding to the 135 

plant functional types. However, in GloSea6, there are two major updates in land physics: the implementation of a multi-layer 

snow scheme and the realization of shortwave surface albedo. GloSea5 has a single layer snow scheme, in which snow is 

assigned a constant thermal conductivity and density, allowing direct heat exchange between the surface atmosphere and the 

soil (Best et al., 2011). It combines the snow and the uppermost soil layer into a single thermal store, with the increased snow 

depth leading to a reduction in the effective thermal conductivity. This reduction is not a dynamic representation of the intrinsic 140 

properties of snow but rather an adjustment to account for the insulating effect of the snow. This scheme lacks proper closure 

of the surface energy budget (Fig. S1) and a dynamic representation of snowpack evolution with the inadequate depiction of 

the snowpack's insulating properties. The improvement from the implementation of the multi-layer snow scheme is shown not 

only in the realization of the snow melt season, but also in the soil temperature and permafrost extent (Walters et al., 2019). 

For instance, the multi-layer snow scheme leads to surface warming of the soil temperature during the winter season, as the 145 

heat flux from the soil to the atmosphere is reduced, but shows a surface cooling in the spring season, as the increase in 

insulating radiation inhibits snowmelt. In the snow frontal regions, the increase in land surface albedo is due to the delay in 

the onset of snowmelt by the multi-layer snowpack.  

In both forecast models, the snow-free surface albedo for each grid box is calculated as a weighted average of the albedos of 

different surface types, with MODIS bare soil albedo (Houldcroft et al., 2009) and GlobAlbedo surface albedo in other non-150 

vegetated surface types (Muller et al., 2012). The albedo of vegetated surface types is defined as a combination of the bare soil 

albedo and the full leaf albedo, with the weighting determined by the leaf area index (LAI) of the respective vegetation type. 

In GloSea6, to improve surface albedo representation, these albedos are modified as a function of shortwave wavelength. Since 

surface albedos, which are independent of wavelength, limit spectral variability, photosynthetically active radiation (PAR) and 

near-infrared radiation (NIR) are calculated separately using the canopy radiation model (Sellers, 1985). In addition, the 155 

generation of the surface albedos of land surface types is amended. The mapping from the International Geosphere Biosphere 

Programme (IGBP; Loveland et al., 2000) classification to JULES land surface types has been refined in GloSea6. The 

proportion of bare soil within the grassland, cropland, and crop-natural mosaic the IGBP classes was reduced and the coverage 

of vegetated land types, especially for C3 grass cover is extended (Walters et al., 2019; Wiltshire et al., 2020). The shift from 

bare soil to vegetated surfaces decreases surface albedo (Fig. 2e), as the vegetation can penetrate snow cover during the winter 160 

season. Therefore, the surface albedo differences observed during the snow-covered season can be attributed to amendments 

in land surface type classification, whereas the albedo differences during the snow-free period are understood to result from 

the incorporation of wavelength-dependent calculations in the surface albedo scheme. Other land surface physics are consistent 

in GloSea5 and GloSea6.  
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In terms of initial conditions for each model component, GloSea5 and GloSea6 commonly utilize ERA-interim and a 165 

variational data assimilation system for the NEMO ocean model (NEMOVAR; Mogensen et al., 2012) analysis for the 

atmospheric and ocean and sea-ice initializations, respectively. Land surface reanalysis, where the land offline simulation is 

forced by atmospheric boundary conditions from Japanese 55 years Reanalysis (JRA-55; Kobayashi et al., 2015) and European 

Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5; Hersbach et al., 2020), is used to 

initialize land surface variables for GloSea5 and GloSea6, respectively. GloSea5 and GloSea6 have been used to carry out 60-170 

day (depending on ensemble or variable, 6-month forecast is conducted for the seasonal prediction) retrospective forecasts 

starting on the 1st, 9th, 17th, and 25th of every month for 26 years (1991–2016) and 24 years (1993–2016), respectively, but 

evaluations are conducted with 24-year forecasts for the fair comparison between both systems. To operate ensemble forecasts, 

the Stochastic Kinetic Energy Backscatter (SKEB2; Tennant et al., 2011) and the Stochastic Perturbation of Tendencies (SPT; 

Sanchez et al., 2016) schemes are used to perturb initial states in GloSea5 and GloSea6, respectively. Compared to the SKEB2, 175 

the SPT scheme imposes additional constraints on energy and water conservation, leading to an increase in the spread of 

ensemble without degrading ensemble mean fields, which is especially beneficial over the tropics. Based on these methods, 

GloSea5 and GloSea6 operate 3 and 7 ensemble forecasts and have been implemented by the KMA in international S2S 

prediction project for 2020–2022 and 2023–present, respectively.  

To solely understand the impact of the multi-layer snowpack scheme in a fully coupled forecast system, we have carried out 180 

another experiment by implementing a single layer snowpack scheme in GloSea6. We have conducted 6-month long 

retrospective forecasts with a 4-member ensemble initiated on 1st March for 24 years (1993–2016). Throughout this paper, we 

refer GloSea5, GloSea6 and GloSea6 with a single-layer snow scheme to G5single, G6multi and G6single, respectively. The 

description of model configurations is summarized in Table 1. 

 185 

  G5single (GloSea5) G6multi (GloSea6) G6single  

Hindcast period 26 years (1991–2016) 24 years (1993–2016) 

Ensemble 
Method 

Stochastic Kinetic Energy 

Backscatter (SKEB2) 
Stochastic Perturbation of Tendencies (SPT) 

numbers 3 7 4 

Resolution Atmosphere 
Horizontal: N216 (0.83°×0.56°) 

Vertical: L85 (~85 km) 

Initial 

conditions 

Atmosphere ECMWF ERA-interim 

Land 
JULES offline run  

(JRA55 atmospheric forcing) 

JULES offline run  

(ERA5 atmospheric forcing) 

Ocean/Sea-ice NEMOVAR (UKMO) 

Model physics 

Atmosphere GA6.0 GA7.2 

Land GL6.0 GL8.0 (multi-layer snowpack) 
GL8.0 (single layer 

snowpack) 
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Ocean GO5.0 GO6.0 

Sea-ice GSI6.0 GSI8.1 

Coupler OASIS3 OASIS3-MCT 

Table 1: Description of the G5single, G6multi, and G6single model configurations. 

 

2.2 JULES offline experiments 

To explore the impact of the multi-layer snowpack scheme on land-atmosphere coupling processes in coupled and uncoupled 

(land only) model configurations, we further conduct two sets of LSM offline experiments using GL8.0 (representing a specific 190 

configuration of JULES version 5.6 within the coupled system): implementing single layer (JULESsingle) and multi-layer 

(JULESmulti) snowpack schemes, respectively. The offline LSM simulations are driven by observed atmospheric near-surface 

variables, including 2-m air temperature and humidity, 10 m wind speed, downward radiative fluxes, and pressure at the surface. 

These historical observations are employed by the hourly ERA5 reanalysis (Hersbach et al., 2020). Precipitation is forced by 

the hourly averaged Integrated Multi-satellitE Retrievals for GPM (IMERG) version 7 (Huffman et al., 2023). Both offline 195 

experiments are conducted over global land areas from January 2001 to December 2022 at a spatial resolution of 0.56° latitude 

× 0.83° longitude, consistent with the resolution of the fully coupled forecast systems. 

The single layer scheme represents snow as a modification of the uppermost soil layer, applying a fixed thermal conductivity 

without explicitly resolving vertical snow structure. This simplification results in direct heat exchange between the surface and 

soil, leading to excessive soil cooling in winter and rapid warming during spring melt. In contrast, the multi-layer scheme 200 

explicitly represents up to three snow layers with predefined layer thicknesses of 0.04, 0.12, and 0.34 meters, dynamically 

adjusting the number of active layers based on snow depth (Best et al., 2011). It incorporates a density-dependent thermal 

conductivity parameterization, improving the simulation of snow insulation effects and reducing soil temperature biases. 

Additionally, the multi-layer scheme includes a prognostic snow densification process driven by overburden stress and 

temperature, while also explicitly handling meltwater retention, percolation, and refreezing. Snow albedo is also treated with 205 

a prognostic approach that accounts for snow aging and grain size evolution, enhancing radiative feedback representation. 

Lastly, the multi-layer snowpack ensures surface energy budget closure by explicitly solving for the energy balance of each 

snow layer, addressing limitations in the single layer scheme that can lead to inconsistencies in snowmelt partitioning. 

 

2.3 Validation Data 210 

The daily maximum and minimum temperature over land at a height of 2 meters are sourced from NCEP CPC analysis 

produced by NOAA Physical Sciences Laboratory (PSL; https://psl.noaa.gov). The temperature data have a 0.5° horizontal 

resolution and are available for 1979–present. The daily mean temperature is acquired by arithmetically averaging maximum 

https://psl.noaa.gov/
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and minimum temperature. Hereafter, daily mean, maximum, and minimum temperature will be referred to as Tmean, Tmax, 

and Tmin, respectively. 215 

The ERA5-Land is an offline land reanalysis (Muñoz-Sabater et al., 2021) of the Tiled ECMWF Scheme for Surface Exchanges 

over Land incorporating land surface hydrology (H-TESSEL) land surface model with four soil layers (0–7-, 7–28-, 28–100-, 

and 100–289-cm depth), forced by the ERA5 atmospheric reanalysis. ERA5-Land has a horizontal resolution of ~0.08° and 

an hourly temporal resolution. To enhance the spatial resolution of the ERA5-Land, ERA5 near surface atmospheric variables 

(e.g., temperature, humidity, and pressure) used for boundary conditions are corrected to account for the altitude difference 220 

that came from the lower resolution of ERA5.  

This study uses Japanese Reanalysis for Three Quarters of a Century (JRA-3Q; Kosaka et al., 2024) as a reference for snow 

water equivalent (SWE) to diagnose the modelled snow. It employs an offline version of the Simple Biosphere (SIB) model 

(Sellers et al., 1986). Compared to the satellite-based and in situ datasets, the snow cover and depth are accurately described 

in its predecessor, the Japanese 55-year Reanalysis (JRA-55) (Orsolini et al., 2019). JRA-3Q incorporates daily snow depth 225 

data from the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager Sounder (SSMIS), and in 

situ measurements using a univariate two-dimensional optimal interpolation (OI) approach. Although this procedure is 

comparable to that used in JRA-55 (Kobayashi et al., 2015), two issues—unrealistic analysis near coastal areas and unintended 

increments caused by satellite data biases—have been resolved in JRA-3Q. Additionally, JRA-3Q employs the multi-layer 

snowpack scheme whereas JRA-55 uses a single layer snowpack scheme. JRA-3Q has a horizontal resolution of 0.375˚ and 3-230 

hourly temporal resolution. 

A time-filtered satellite product of daily surface SM, originated from the COMBINED European Space Agency (ESA) Climate 

Change Initiative (CCI) Soil Moisture v08.1 dataset (Dorigo et al., 2017), is used to assess the global SM memory (SMM) 

simulated by forecast models. Remotely sensed SM datasets inherently contain random and periodic errors, particularly in 

high-frequency variability, due to the radiometric instrument performance, viewing angle variations, spatial resampling, 235 

imperfect parameterizations used in retrieval algorithms, and so on. Due to these errors, the daily time series of satellite-based 

SM retrieval often shows intervals with an increase in SM without rainfall or any other water supply (see Fig. 6 in Seo and 

Dirmeyer, 2022a), which is unexplainable by the surface water budget. This erroneous SM behavior hampers the representation 

of realistic SM dynamics and land-atmosphere interactions due to a decrease in the SM autocorrelation value. Since the SMM 

is calculated with the time-lagged SM autocorrelation, assuming that the daily SM time series is exponentially decaying, the 240 

inherent error in the satellite data leads to an underestimation of SMM. To avoid the problem, this study uses the time-filtered 

surface SM product covering 21 years (2000–2020) with 0.25° spatial resolution, using a Fourier transform with LSM datasets 

(Seo and Dirmeyer, 2022a). The time-filtered SM product provides a better representation of the surface SM time series, which 

also contributes to the improvement of the SM characteristics (i.e., SM memory and error) compared to the result from in situ 

observations. Hereafter, we refer to the adjusted ESA CCI SM based on the LSM simulations as ESACCIadj. 245 

The Global Land Evaporation Amsterdam Model version 4 (GLEAM; Miralles et al., 2025) provides a dataset of global 

terrestrial heat fluxes and soil wetness. It combines satellite observations, reanalysis products, and in situ data using a hybrid 
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modelling framework that includes physical principles and machine learning-based estimations of evaporative stress. Based 

on the Penman’s equation, GLEAM estimates potential evaporation using additional atmospheric control factors (e.g., wind 

speed, vapor pressure deficit, and vegetation height) not only for net radiation and near-surface air temperature observations. 250 

Actual evaporation is then derived by applying a multiplicative evaporative stress factor, calculated from observed Vegetation 

Optical Depth (VOD) and estimated root-zone soil moisture. The GLEAM dataset demonstrates reliable performance in 

capturing observed seasonal cycles, particularly in evaporation anomalies across diverse climates, when evaluated against 

global eddy-covariance flux tower observations. Compared to other datasets (e.g., ERA5-Land and FLUXCOM), the GLEAM 

shows improved agreement with observations. Although the GLEAM performs better than other available reanalysis datasets, 255 

it should not be considered an observational dataset. GLEAM estimates evaporation using training data from flux tower 

observations; however, these towers are mainly ecological monitoring networks that are skewed toward wetter vegetated sites. 

As a result, while GLEAM is generally reliable in wetter areas, its accuracy in drier regions may be limited due to sparse 

observational constraints. Nevertheless, since this study focuses on mid- and high-latitude regions where flux towers are 

plentiful, snow processes dominate and GLEAM's performance is more robust, it is used as the primary reference dataset. 260 

Accordingly, to evaluate model performance, this study utilizes the daily surface SM, evaporation, sensible heat flux, and net 

radiation (defined as the sum of latent and sensible heat fluxes) from version 4.2a (https://www.gleam.eu/), covering 44 years 

(1980–2023) with a 0.1° spatial resolution. 

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.8 is the gauge-, satellite-, and reanalysis-based 

precipitation dataset used for validation, available from 1979 to the present. The precipitation data have a 0.1° horizontal 265 

resolution and 3-hourly temporal resolution (Beck et al., 2019a). Its superior performance is primarily attributable to the 

inclusion of daily gauge observations compared with 26 gridded precipitation datasets (Beck et al., 2019b). 

 

3 Methodology 

This study aims to investigate the impact of an improved snow scheme in the seasonal forecast system on the fidelity of snow 270 

behavior contemporaneously and during the next warm season after snow melt. To compare model performance between 

G6multi and G5single for analyzing the climatology of the seasonal cycle, 100-day long retrospective forecasts initiated on the 1st 

day of October–April spanning 24 years (1993–2016) are used. For the comparison between G6multi and G6single, 6-month 

retrospective forecasts starting on 1st March are only used (Fig. 2).  

The shift of the snow melting season, attributed to the implementation of multi-layer snowpack scheme in the coupled forecast 275 

system, alters the availability and variability of SM for spring and summer seasons. 6-month long retrospective ensemble 

forecasts starting on March 1st of 24 years in G6multi and G6single are used to demonstrate snow’s effect on the model 

climatological bias of surface SM, surface air temperature, and precipitation during the NH warm season when land-

atmosphere feedback is most active. Model prediction skill as a function of forecast lead time is not assessed in this study, 

because the ability of seasonal forecast systems to capture the temporal evolution of near-surface variables is insignificant after 280 

https://www.gleam.eu/
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a 3-month lead forecast in land areas. It is more strongly influenced by ensemble size than by the differences in model version 

(Fig. S4). 

Most of the evaluations are based on the accuracy of simulated land–atmosphere interactions, assessed using the daily mean 

time series from all forecast runs during the boreal summer, thereby representing the model climatology of coupling metrics. 

The ensemble mean values are used for the analysis of climatological bias, while coupling metrics are calculated individually 285 

for each ensemble member with 4-month forecast time series (May–August) and then averaged across all members to avoid 

the physical correlation between variables being diminished in the ensemble-averaged time series.  

To identify climatological differences between single- and multi-layer snowpack schemes in offline and coupled experiments, 

statistical significance is tested using all samples (i.e., all years and ensembles) with the Student's t-test. The statistical 

significance in the time series of the differences (Figs. 1 and 2) is assessed within a ±5-day window centered on each calendar 290 

date, and a False Discovery Rate (FDR) corrected t-test (Benjamini–Hochberg) is used at the 10% level across the spatial grid 

to prevent the inflation of false positives, thereby ensuring the statistical robustness in the spatial domain of the differences 

found (Figs. 1, 3, 5, and 7).  

 

3.1 Soil moisture memory  295 

To evaluate the SM persistence simulated in the model, the autocorrelation-based SMM is employed. First, assuming that the 

evolution of the daily SM time series follows a first-order Markov process (Vinnikov and Yeserkepova, 1991), the decay 

frequency (𝑓) of SM can be defined by a function of SM autocorrelation (𝐴𝑅) at lag day (𝜏) (Dirmeyer et al., 2016; Seo and 

Dirmeyer, 2022a). Its formulation is followed as:  

𝐴𝑅(𝜏) = 𝑒𝑥𝑝(−𝑓𝜏) (2) 

The SMM is defined with an e-folding decay time, at which the autocorrelation of SM drops to 1/𝑒. By a linear fitting of 300 

𝑙𝑛[𝐴𝑅(𝜏)], the memory is calculated as the value of 𝜏, when the linear extrapolation between 𝑙𝑛[𝐴𝑅(𝜏 = 1)] and 𝑙𝑛[𝐴𝑅(𝜏 =

2)] is intersected to 𝑙𝑛[𝐴𝑅(𝜏)] = −1. Since the SM behavior is not perfectly fitted on the first-order Markov process, the 

displacement of the extrapolated linear fit at 𝜏 = 0 is defined with the measurement error mostly attributed to random errors 

(Robock et al., 1995). To measure the SMM under the assumption that there is no measurement error, the extrapolated linear 

fit is shifted to intersect origin point and the intersected 𝜏 value between the shifted linear fit and 𝑙𝑛[𝐴𝑅(𝜏)] = −1 is the 305 

corrected SMM. Time-filtered ESA CCI and modeled SM products exhibit the marginal measurement error (Seo and Dirmeyer, 

2022a), so that this study focuses on the improvement in the representation of the corrected SMM in the model simulations. 

The autocorrelation is calculated by concatenated time series of daily SM over JJA (June–August) of 17 years (2000–2016) 

with modelled and time-filtered satellite SM time series. In the calculation of the SMM in both seasonal forecast systems, the 

SM time series over JJA are concatenated with 30-day forecast time series starting on the 1st of each month, and the time series 310 

for each year are further concatenated to produce the 17-year JJA SM time series. The SMM is calculated in each ensemble 

forecast and represented by the median of the ensemble values. Additionally, the statistical significance of SMM biases in both 
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simulations and their difference between GloSea5 and GloSea6 is tested using a Monte Carlo approach. The probability of a 

significant SMM is estimated by random sampling, where randomly selected yearly JJA SM time series (92 samples) are used 

to create all-year JJA time series, repeatedly, to generate 100 samples in observational and modelled datasets. For testing the 315 

statistical significance of the modeled SMM biases, randomly calculated SMMs from time-filtered CCI, ERA5-Land, and 

GLEAM products are used to generate 300 observational samples (3 products × 100 random SMMs), which are compared to 

300 and 700 random samples from GloSea5 (3 ensembles × 100 random SMMs) and GloSea6 (7 ensembles × 100 random 

SMMs), respectively, using a Student's t-test. The statistical significance of the SMM difference between the two model 

simulations is also tested with the randomly calculated 300 and 700 SMM samples. 320 

3.2 Granger causality in evaporation-precipitation feedback  

To characterize the causality of land-atmosphere interactions, this study adopts the Granger causality test, that originates from 

the field of econometrics (Granger, 1969; Salvucci et al., 2002). This is a statistical principle to identify the potential 

dependence of a target variable on source variable beyond any persistence (memory) inherent in the target variable. To explore 

the quantitative understanding of evaporation-precipitation feedback, this study investigates the causality between a source 325 

variable (𝑆𝑉: hypothesized to trigger a feedback) and target variable (𝑇𝑉: responding to the feedback), where the statistical 

time-lagged response of the land-atmosphere feedback is applied by setting a 1-day time lag in the time series of 𝑇𝑉 compared 

with 𝑆𝑉. This is formulated as: 

𝐹(𝑇𝑉𝑡|Ω𝑡−1) ≠ 𝐹(𝑇𝑉𝑡|Ω𝑡−1 − 𝑆𝑉𝑡−1) (3) 

where 𝐹 is the conditional distribution of 𝑇𝑉 on a given day, Ω𝑡−1 denotes the set of all knowledge available at 𝑡 − 1 time, 

and Ω𝑡−1 − 𝑆𝑉𝑡−1  represents all knowledge except 𝑆𝑉 . We employ evaporative fraction (𝐸𝐹 = 𝐿𝐸/(𝐻 + 𝐿𝐸) ) and 330 

precipitation (𝑃𝑅 ) in each role to identify the response of precipitation variability to the land surface flux partitioning 

(𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1)) and vice versa (𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1)). As the null hypothesis equates that 𝑆𝑉 does not affect 𝑇𝑉, the rejected 

probability of the null hypothesis (1-p) is calculated to intuitively understand the causality. Nevertheless, as Granger causality 

only tests for predictive precedence, the results may reflect statistical associations due to shared external drivers and should 

not be interpreted as definitive physical causation between both variables. The analysis is conducted using 24-year forecast 335 

runs initialized on 1st March for each forecast experiment, and to compare to the causality in observations, 𝐸𝐹 and  𝑃𝑅 are 

taken from the GLEAM and MSWEP datasets, respectively.  

 

3.3 Methodology to characterize land coupling  

This study evaluates model performance in the simulation of land coupling processes in fully coupled forecast models. Land-340 

atmosphere interaction is controlled by land surface energy and water exchanges. Depending on their relative dominance, 

water- and energy-limited regimes are categorized, where the flux partitioning between sensible and latent heat flux is 
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controlled by the availability and variability of SM or by net radiation mainly dictated by the atmosphere, respectively. They 

are separated by a critical value of SM at each location; the dry and wet side of the critical value exhibits water- and energy-

limited coupling processes, respectively. Corresponding to the dominant response of the partitioning of land heat fluxes 345 

attributed to either the land state or the atmosphere, the direction of land-atmosphere coupling is land-to-atmosphere or 

atmosphere-to-land, respectively (see Fig. 2 in Seo et al., 2024). 

To quantify the strength of land-atmosphere coupling based on either the water- or energy-budget predominance, this study 

compares the temporal correlation of latent heat flux (the key variable linking water and energy budgets) with the surface SM 

[𝑅(𝑆𝑆𝑀, 𝐿𝐻)] and net radiation [𝑅(𝑅𝑛, 𝐿𝐻)], respectively. While both latent heat flux and net radiation are physically linked 350 

(as latent heat is energetically constrained by net radiation), the correlation between them helps infer the extent to which surface 

fluxes follow the available energy signal. However, it is important to note that 𝑅(𝑅𝑛, 𝐿𝐻) is not independent of the water 

budget, and high correlation values may still occur in water-limited regimes if increased net radiation results in greater latent 

heat flux under sufficient SM. Therefore, these metrics are interpreted as complementary diagnostics, with 𝑅(𝑆𝑆𝑀, 𝐿𝐻) 

highlighting land-state sensitivity and 𝑅(𝑅𝑛, 𝐿𝐻) indicating energy control, rather than mutually exclusive regime indicators. 355 

While direct differences between G6multi and G6single isolate the mean state impact, these metrics provide process-based 

validation by assessing the model's fidelity in simulating the underlying processes. 

 

4 Results 

4.1 Seasonality of land surface variables  360 

To assess the impact of multi-layer snowpack scheme on the simulation of snow freezing and melting processes, this study 

compares the representation of the seasonal cycle of land surface variables between JULESsingle and JULESmulti. In both JULES 

offline experiments, the seasonal cycle of snow cover peaks in late December over the mid-latitudes of Eurasia (Fig. 1c), while 

SWE reaches its peak approximately two months later (Fig. 1d). When the multi-layer snow scheme is applied in JULESmulti, 

the insulating effect of the land surface delays the onset of snowmelt, resulting in higher values of both snow cover and SWE 365 

during early spring season (March–April), which more closely resemble the observed seasonal cycle of SWE. The multi-layer 

snow scheme leads to an expansion of snow-covered areas, shifting the springtime snow frontal zone northward to around 

40°N and significantly increasing the amount of snow within the snow-covered regions (Figs. 1a,b). The effect of the multi-

layer snow scheme on soil and air temperatures depends on the snow accumulation, snow peak, and snow melting seasons. 

The air temperature response will be specifically addressed in Figure 2, which is based on the coupled model simulation, since 370 

the offline model is forced by near-surface atmospheric variables, including surface air temperature.  

The snowpack plays the role of limiting the transfer of heat between air and soil due to the enhanced insulation. Therefore, the 

multi-layer snow scheme provides a stronger insulating effect, simulating significantly warmer soil temperature from snow 

cover onset through March, when air is colder than the land surface (Fig. 1g). The warmer soil temperature in JULESmulti (Fig. 
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1g), induced by the snow insulation effect, increases the fraction of unfrozen SM. Unlike soil ice, liquid water in the soil 375 

remains mobile, contributing to subsurface runoff and potentially evaporation, resulting in drier soil (Fig. 1e). JULESmulti 

simulates abundant snow variables in March, accompanied by an increase in latent heat flux (Fig. 1f). Following the largest 

difference in snow between the two JULES runs in March, the SM difference begins to decrease, subsequently resulting in 

wetter soil conditions in the JULES experiment during April. This, in turn, leads to enhanced latent heat flux in April, but the 

differences for land surface variables in the offline experiments is insignificant after April.  380 
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Figure 1: Spatial patterns of climatological difference (JULESmulti-JULESsingle) of (a) snow cover and (b) snow water equivalent, 

averaged over March-April for the 22-year (2001–2022), where the dotted area indicates the difference is statistically significant at 

a 95% confidence level after FDR control across the grid. The green contour line in (a) indicates a snow cover of 0.15 from JULESmulti 

experiment. Climatological seasonal cycle of 24-year averaged (a) snow cover, (b) snow water equivalent, (c) surface soil moisture, 385 
(d) latent heat flux, and (e) surface soil temperature simulated by JULESsingle (red) and JULESmulti (blue) over the Eurasian continent 

(0–130E, 45–55N). To denote the response of land variables to the snow physics scheme, the green dashed line in (d) denotes JRA-

3Q snow water equivalent grey solid lines in (c)–(g) display the difference between JULESmulti and JULESsingle throughout the snow 

accumulation and melting seasons. In (c)–(g), the black outlines on the green markers indicate when the climatological difference 

within the 11-day window on each calendar date is statistically significant at a 95% confidence level.  390 
 

Furthermore, to explore the model performance in simulating snow freezing and melting processes in fully coupled forecast 

systems, we also compare the seasonal cycle of the land variables for G5single, G6single, and G6multi. Specifically, the effect of a 

multi-layer snowpack scheme during October–February and March–August is primarily compared to G6multi-G5single and 

G6multi-G6single, respectively. Although the land initial conditions are generated by different atmospheric forcing in GloSea5 395 

(G5single) and GloSea6 (G6single and G6multi), an analysis of 1-day forecast fields, which serve as a robust proxy for the initial 

land state due to their slow evolution, confirms that the difference in initial snow amount is statistically insignificant (Fig. S2). 

Differences in winter precipitation between both models may lead to variations in snow accumulation; however, although 

GloSea6 generally simulates slightly higher precipitation, the magnitude of this difference is negligible compared to the 

difference in snow water equivalent (not shown). Therefore, the impact of precipitation on snow accumulation is not considered 400 

in this study. GloSea5 and GloSea6 simulate the seasonal cycle of snow freezing process over the Eurasian continent similarly 

regardless of which the snow scheme is used (Fig. 2a). Given that the primary source of energy for snowmelt is the atmosphere, 

snow melting process is tied to the variation of surface air temperature (cf. Fig. 2d). Snow dissipates 1–2 weeks earlier in the 

early summer when a single layer snowpack is adopted in G5single and G6single. For instance, G6single and G6multi consistently 

initiate a snow peak in March and are initiated with similar snow conditions in that month, but the snow in G6single disappears 405 

before June while it persists until early June in G6multi. The result resembles the snow dissipation represented by JRA-3Q, 

particularly in the G6multi initiated on 1st April.  

Although similar SM states are initialized in GloSea5 and GloSea6 for the entire analysis period, G5single shows a model 

forecast drift in the wet direction from October to March (Fig. 2b). The differences in SM initial conditions in October and 

November are attributed to differences in the atmospheric forcing used to drive the LSM during the generation of land surface 410 

initial states. Because the snowpack serves as a barrier to energy and water exchange between the land and the atmosphere, in 

the single layer snowpack, the early onset of evaporation manifests the physical process of drying out SM during snow melting 

season. Wetter soil moisture is simulated in G5single during October, when snow cover is minimal, which is attributed to a 

positive precipitation bias (not shown). Thus, the implementation of the multi-layer snowpack results in the climatologically 

drier and wetter SM, respectively, preceding (November–March) and following (April–June) the onset of snowmelt. However, 415 

in the JULES offline simulations, the implementation of the multi-layer snowpack results in wetter SM only during April, with 

no significant differences persisting into the summer. This suggests that the influence of advanced snow physics becomes more 

pronounced when the land is coupled with the atmosphere, allowing its effects to extend into the summer season. The drier 
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SM climatology of G5single compared to G6single indicates that the improvement of the model climatology is not only due to the 

advancement of snow physics, but also to other updates in GloSea6.  420 

For the radiation balance, net radiation during the snow freezing season can decrease due to enhanced upward longwave 

radiation driven by surface warming, despite a concurrent increase associated with reduced surface albedo. These two opposing 

effects tend to offset each other, resulting in minimal differences in net radiation during this period (Fig. 2f). However, during 

the snow peak season (February–March), the surface albedo effect becomes more dominant (Fig. 2e), leading to an increase 

in net radiation. In late spring (April–May), when differences in snow variables become more pronounced, surface albedo 425 

increases and surface cooling occurs (Fig. 2d), which plays a role opposite to that observed in winter. During this period, the 

stronger influence of increased surface albedo leads to a decrease in net radiation.  

In the coupled model simulations, the effect of the multi-layer snow scheme on soil temperature during the snow-covered is 

consistent with the results from the JULES offline simulations, but the soil temperature cooling is observed during the summer 

season (Fig. 2c), which is responsible for surface air temperature. For the surface air temperature, G6multi is colder during the 430 

snow freezing season due to limited energy transfer from the cold air to the snow surface (Fig. 2d). During the two-month 

snow peak period from mid-January, G6multi simulates higher air temperature due to warmer ground, resulting in less cooling 

from the soil. The air temperature cooling observed from mid-March is associated with decreased net radiation due to enhanced 

surface albedo. The continuous cooling after diminishing the snow effect can be explained by evaporative cooling driven by 

increased latent heat flux (Fig. 2g). In other words, the radiation is primarily balanced by latent heat flux in G6multi due to 435 

abundant SM, but sensible heat flux decreases due to air temperature reductions (Fig. 2h).  

Additionally, the increased latent heat flux supplies water to the boundary layer, triggering precipitation and thereby increasing 

the mean climatology of precipitation (Fig. 2i). While the additional 1 W/m2 of latent heat flux appears marginal, it is critical 

to consider the accumulated effect over the seasonal forecast period. A small anomaly can be significant when persistent, in 

the context of land-atmosphere coupling. For instance, a persistent difference of 1 W/m2 in latent heat flux over one month 440 

translates to a cumulative change of ~1 mm in the water budget. Such an alteration in the regional water and energy budget is 

physically meaningful and can serve as a non-negligible source of memory and predictability in precipitation. To illustrate the 

physical sequence between land surface variables by the realization of snow physics, the lead-lag correlation of major water 

budget variables is compared between G6single and G6multi (Fig. 2j). The results show the hydrological chain of SSM→LH→PR 

with a positive correlation among variables in each segment, characterized by a lead-lag time of approximately one week. In 445 

other words, the increased soil moisture in mid-latitude regions likely increases precipitation based on positive 

evapotranspiration-precipitation feedback. The positive feedback is typically observed in numerical forecast systems, 

including HadGEM2-AO (atmosphere-land only coupled forecast model of GloSea5), in contrast to observation-based 

analyses, which indicate a negative coupling between SM and precipitation (Taylor et al., 2012).  

The difference between G5single and G6multi consistently exceeds the isolated snowpack scheme difference across most variables. 450 

The substantial difference between G5single and G6single confirms that updates other than the snow scheme contribute 
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significantly to the climatological mean change in the simulation of land surface variables. However, the core finding of this 

study is the demonstration that the implementation of the multi-layer snow scheme yields a statistically significant and 

physically consistent impact that is independent of these other updates. 

 455 
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Figure 2: Climatological seasonal cycle of 24-year (1993–2016) averaged (a) snow water equivalent, (b) surface soil moisture, (c) 

surface soil temperature, (d) surface air temperature, (e) surface albedo, (f) net radiation, (g) latent heat flux, (h) sensible heat flux 

and (i) precipitation simulated by G5single (GloSea5, red), G6single (green), G6multi (GloSea6, blue) over the Eurasian continent (0–
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130E, 45–55N). 100-day forecast lines fade at increasing lead forecasts and coloured marks indicate initial states on the first day of 460 
each month, where 21-day running averaged time series are not displayed with coloured marks (surface soil temperature shows 60-

day forecast due to data availability), while 180-day forecast lines are denoted on 1st March initiated runs. Grey lines in (a)–(i) 

display the climatological difference (solid: G6multi–G5single, dashed: G6multi–G6single) throughout the snow accumulation and melting 

seasons. The green markers edged in black indicate that the difference of G6multi–G6single within the 11-day window on each calendar 

date is statistically significant at a 95% confidence level. (j) Lead-lag correlation coefficient for the daily time series of the difference 465 
between G6multi and G6single for the coupling of SSM-LH (red) and LH-PR (blue) with 120-day forecast initiated at each year on 1 

March. A positive lagged day indicates that SSM and LH leads LH and PR, respectively, and negative is vice versa.  

4.2 Evaluation of model climatological error and bias over the Northern Hemisphere  

Although soil moisture has historically not been a verifiable quantity in weather forecast models (Koster et al., 2009), the 

adoption of soil moisture data assimilation makes soil moisture a variable for validation (Seo et al., 2021). To examine the 470 

representation of surface SM when implementing multi-layer snowpack scheme, this study compares the climatological mean 

of land variables relevant to water budget between G6single and G6multi (Fig. 3). The difference in SM simulation for May–

August is large poleward of 40˚N (Fig. 3f), which is pronounced over the snow frontal region, suggesting that the difference 

is related to the additional snow insulating effect in the G6multi LSM. The difference in snow variables (i.e., SWE and surface 

albedo) for the spring season shows that the multi-layer snowpack significantly prolongs the snow properties over snow 475 

covered regions (Figs. 3d,e).   

 

Figure 3: Spatial distribution of climatological (a) snow water equivalent (March–May), (b) surface albedo (March–May), (c) surface 

soil moisture (May–August) from GloSea6 (G6multi) initiated on 1st March of 1993–2016. (d, e, f) Their difference maps compared to 

G6single, where the dotted area indicates the difference is statistically significant at a 95% confidence level after FDR control across 480 
the grid. 

Since SMM is a key factor in the subseasonal forecasting because of its persistence over a few weeks, model fidelity of SMM 

is crucial for forecast skill. Because memory is shortened by occurrences of precipitation, it is prolonged where the climate is 

relatively dry. For instance, SM persistence is relatively short over East Asia where the monsoon flow throughout the summer 

season leads to an increasing likelihood of rainfall, accompanying wet soil. The spatial patterns of SMM from ESACCIadj, 485 

ERA5-Land, and GLEAM are similar (Figs. 4a,b,c), but ESACCIadj is noisy at high-latitudes because SM dynamics are not 

perceived by the satellite when the surface is frozen. The NH averaged values of SMM from ESACCIadj, ERA5-Land, and 

GLEAM are 8.6, 8.5, and 11.1 days. The spatial distribution of SMM determined from the observational products is reliably 

simulated over the NH in G6single and G6multi. Improvements in SMM spatial agreement are shown in G6multi (Figs. 4d,e), where 

the spatial correlation of the SMM with GLEAM is increased. In contrast, the SMM in G6multi is increased when the soil 490 
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wetness becomes wetter even though its positive bias is observed in G6single compared to the SMM from GLEAM. When the 

soil becomes wet due to the late onset of snow melting, the SM decay in response to rainfall is slow, thereby significantly 

increasing the SMM in mid-latitude regions (Fig. 4f).  

 

Figure 4: Surface SMM from (a) ESACCIadj, (b) ERA5-Land, (c) GLEAM, (d) G6single, (e) G6multi, and (f) the difference between 495 
G6multi and G6single. NH mean values are denoted in the middle-left in each panel. The bracketed values indicate the spatial correlation 

of the modelled soil moisture memory compared to ESACCIadj (left), ERA5-Land (middle), and GLEAM (right). Dotted areas 

represent statistical significance of SMM difference between models and observations (d–e) and between models (f) at the 99% 

confidence level from a Monte Carlo method. 

Features of the surface air temperature simulation in G6multi during the NH summer season include reduced positive biases in 500 

both daily mean and sub-daily timescales over snow frontal regions (Fig. 5), which can be explained by the updated land 

surface physics, including changes in snow and soil processes. G6multi simulates colder temperatures over the mid-latitudes, 

compared to G6single (Fig. 5c). To identify the impact of a major modification in the LSM on temperature simulation, the 

assessment of Tmean is decomposed into the Tmax and Tmin. Both daytime and nighttime temperatures are analysed in 

addition to daily mean temperature to assess whether temperature changes associated with land surface processes occur 505 

preferentially during the day or night. Since many coupled land-atmosphere processes are typically more active during the 

daytime due to greater available energy (net radiation), sub-daily analysis is essential for realistically capturing their effects 

(Yin et al., 2023; Seo and Dirmeyer, 2022b). Furthermore, relying solely on Tmean can be misleading, as it conflates errors in 

maximum and minimum temperatures, and thus does not necessarily reflect an overall improvement in model performance 

(Seo et al., 2024). The effect of the multi-layer snow scheme on forecasting temperature is primarily surface cooling over snow 510 

frontal areas throughout the entire day (Fig. 5c), even though the temperature response is more sensitive during the daytime 

when land-atmosphere interactions are most active (Figs. 5f,i). This is because there is a larger latent heat flux during the 

daytime, resulting in a larger evaporative cooling.  

Model performance in simulating precipitation is also evaluated in G6single and G6multi. Both models show an overestimation 

over East Asia and high-latitude regions and an underestimation over the central US and western and central Eurasia (Figs. 515 

5j,k). While the positive bias is amplified or maintained in areas that have wet biases in G6single, the area noted by the negative 

bias is decreased (Figs. 5j,l). The increased precipitation in G6multi over the mid-latitude regions (Fig. 5l) is explained by the 

abundant SM from snow melting process under positive evapotranspiration-precipitation feedback (cf., Fig. 8). 
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Figure 5: Spatial distribution of daily mean (upper row; a–c), maximum (second row; d–f), minimum (third row; g–i) surface air 520 
temperature, and precipitation (lower row; j–l) bias during boreal summer season (June–August) in G6single (first column), G6multi 

(second column), and the difference between both models (last column), where the dotted areas indicate statistical significance at a 

95% confidence level after FDR control across the grid. In each panel, grey horizontal lines isolate a mid-latitude area (40–55N) and 

area averaged values is denoted within grey shaded box.  

To demonstrate the impact of land-atmosphere interactions on the model’s ability to simulate precipitation, this study assesses 525 

the time-lagged Granger causality between 𝐸𝐹 and 𝑃𝑅. The observed causality generally represents that the null hypothesis is 

rejected (1-p value > 0.05) regardless of feedback direction, indicating evaporation-precipitation feedback over mid-latitude 

regions (Figs. 6a,b). The causal probability in the direction from 𝑃𝑅 to 𝐸𝐹, 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1), is generally pronounced over the 

globe, with particularly strong feedback over the areas where precipitation variability is primarily attributed to large-scale 

atmospheric circulations (e.g., South and East Asia), while the dominance of 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) is strongest over western North 530 

America (Fig. 6c). However, G6single shows the overall overestimation in both casual directions between 𝐸𝐹 and 𝑃𝑅 (Figs. 

6d,e), whereas a negative bias in 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1)  is shown over the high-latitudes of Eurasia. The difference map of 

𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1) and 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) simulated in G6single shows a negative bias over western North America and northern 

Eurasia due to overestimated 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) and underestimated 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1) (Fig. 6f), respectively. The biases of the 

evaporation-precipitation feedback in both casual directions are reduced in G6multi (Figs. 6g,h).  535 
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Figure 6: Spatial distribution of 1-day lagged Granger causality (1-p value) with evaporative fraction and precipitation. The 

observed causalities (a) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏), (b) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏), and (c) their difference in which blue and red color indicates the 

dominance of feedback direction in 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏), respectively. The model biases of G6single compared to 

observations for the causality in (d) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) , (e) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) , and (f) the difference between 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏)  and 540 
𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) in G6single. The difference maps of (g) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and (h) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) between G6single and G6multi and (i) 

the difference between 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) in G6multi. 

4.3 Representation of land coupling processes  

The exchanges at the land surface are constrained by the water and energy balance equations, and the strength of water- versus 

energy-limited processes is quantified by the temporal correlation coefficient of latent heat flux to surface SM or net radiation, 545 

respectively, as described in subsection 3.3. The spatial pattern of the GLEAM land coupling is similar to the distribution of 

the SM climatology, such that water-limited processes are pronounced over climatologically dry areas and vice versa. The 

classification of the land coupling results from the synthetization of the spatial pattern of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) (Fig. 7a) and 𝑅(𝑅𝑛, 𝐿𝐻) 

(Fig. 7b), recognizing that both variables are interconnected through the surface energy and water budgets. Since latent heat 

flux is influenced by both SM availability and incoming radiation, positive correlations in both 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) 550 

can occur simultaneously, especially in transitional regimes (cf., Denissen et al., 2020). This overlap does not contradict the 

diagnostic framework but reflects the continuum of land-atmosphere coupling conditions. For instance, the spatial distribution 

of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) is a zonal dipole structure over CONUS but is meridionally banded over Eurasia. Note that 

𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) are not mutually exclusive and may both be positive in transitional regimes. 

G6single exhibits an overestimation of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) over the mid-latitude regions, which results in the expansion of water-555 

limited areas and the degradation of the spatial characteristics in the observation, while the negative bias is particularly evident 

over high-latitude regions (Fig. 7c). G6multi represents a similar bias pattern to the G6single, whereas the positive and negative 

biases in the high-latitude areas are directionally improved (Fig. 7e). G6single reveals a negative bias in the energy-limited 

coupling, especially over the high-latitude areas (Fig. 7d), but G6multi significantly promotes the energy-limited coupling 

strength, which mitigates the negative bias of 𝑅(𝑅𝑛, 𝐿𝐻) (Fig. 7f). The delayed snowmelt simulated in G6multi leads to increased 560 

SM during the warm season, which likely contributes to enhanced evaporative partitioning. While this may weaken the 

sensitivity of latent heat flux to SM (i.e., reducing 𝑅(𝑆𝑆𝑀, 𝐿𝐻)) and strengthen the relationship with net radiation (i.e., 
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increasing 𝑅(𝑅𝑛, 𝐿𝐻)), we acknowledge that this interpretation is subject to direct evidence of causal feedback by snow-related 

land surface processes. Furthermore, the pattern agreement between the land coupling features simulated by both forecast 

models and the observation is measured by the spatial correlation coefficient of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) (SCw) and 𝑅(𝑅𝑛, 𝐿𝐻) (SCe) (Fig. 565 

7g). While G6single and G6multi show superior performance in capturing the observed pattern in energy-limited processes, the 

multi-layer snowpack scheme assists in increasing spatial consistency in both land coupling processes along with the 

improvements in modelled mean bias. Therefore, constructing the squared spatial correlation with SCw×SCe, which synthesizes 

the model performance of the land coupling processes in terms of the water- and energy-limited coupling, shows higher values 

in G6multi.  570 

 

 

Figure 7: Spatial distribution of 𝑹(𝑺𝑺𝑴,𝑳𝑯) (left column; water-limited coupling) and 𝑹(𝑹𝒏, 𝑳𝑯) (middle column; energy-limited 

coupling) in (a, b) GLEAM, (c, d) model biases of G6single compared to observations, and (e, f) differences between G6single and G6multi, 

where grey horizontal lines in each panel separate to mid- (20–55N) and high-latitude (55–80N) areas and area averaged values is 575 
denoted within grey shaded box. The dotted areas in (c)–(f) indicate statistical significance at a 95% confidence level after FDR 

control across the grid. (g) Boxplot of the squared spatial pattern correlation coefficient as a measure of the spatial agreement of 

𝑹(𝑺𝑺𝑴, 𝑳𝑯) (SCw) and 𝑹(𝑹𝒏, 𝑳𝑯) (SCe) in G6single (red) and G6multi (orange) over the northern hemisphere against GLEAMv4.2a. 

Boxes show the median and interquartile range (IQR: 25th and 75th percentiles), and whiskers represent ±0.5IQR from the 25th 

and 75th percentiles, respectively, and dotted circles indicate the sampled average. In the rightmost column, SCw×SCe quantifies the 580 
coherency of water- and energy-limited processes in both models. 

 

5 Summary and Conclusions 

Some land surface models have employed a single layer snow scheme that insulates the near-surface atmosphere from direct 

access to the heat in the ground. While effective for very thin snow cover, such a scheme fails to simulate the true insulating 585 

effect of the snowpack by prohibiting energy transport between land and atmosphere in deeper snow.  

This study primarily investigates the impact of implementing a multi-layer snow scheme on the climatological bias in both 

LSM offline simulations and fully coupled forecast systems. Two sets of LSM experiments are conducted using JULES version 
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5.6, the land surface component of GloSea6—one employing the single layer snow scheme and the other incorporating the 

multi-layer snowpack scheme. The multi-layer configuration yields a more realistic simulation of snow seasonality compared 590 

to reanalysis data. Notably, it captures the onset of snowmelt more accurately by better representing the insulating effect of 

snow.  

To elucidate the role of snow insulating effect in coupled forecast system, we analyse GloSea global retrospective seasonal 

forecasts over 24 years (1993–2016) from two model versions: GloSea6 (G6multi), which implements the multi-layer scheme, 

and GloSea5 (G5single), which retains a single-layer scheme. Furthermore, we have conducted an additional experiment that 595 

implements a single layer snowpack scheme in GloSea6, referred to as G6single, to isolate solely the effects of the advancement 

of snow physics. Improvements in the model simulations appearing in areas with high snow variability can be understood as 

the effect of the multi-layer snow scheme. The improved snow physics with a multi-layer snowpack better captures the 

observed snow dissipation season (Fig. 2a) and influences land and near-surface variables throughout the snow accumulation 

and melting seasons. The near-surface warming and cooling caused by the insulating effect of the snowpack during the snow 600 

peak and melting seasons (Fig. 2d) results in a late onset of snow melt and wetter SM during the subsequent summer season, 

particularly in mid- to high-latitude regions (Figs. 2b and 3f). The changes in land surface processes also affects land surface 

characteristics, e.g. SM memory is generally increased, which improves spatial agreement compared to the observational 

analysis (Fig. 4). Moreover, the greater SM from the advanced snow physics leads to a decrease in surface air temperature 

with evaporative cooling throughout the entire day (Fig. 5) and increases the likelihood of precipitation explained by 605 

evapotranspiration-precipitation feedback (Fig. 6). However, the effect of improved snow physics in the fully coupled model 

is not consistent with the result from the LSM offline experiments, particularly after snowmelt, because the impacts of realized 

snow behaviour become more pronounced when the atmosphere interacts with the land.  

The spatial distribution of the land coupling reflects the underlying SM climatology, with the majority of water- and energy-

limited coupling corresponding to relatively dry and wet soils, respectively (Fig. 7). Evaluating these regimes is essential for 610 

understanding model behaviours associated with land-atmosphere coupling processes. Comparing the land coupling processes 

simulated by G6single and G6multi, the increased SM in G6multi alters the coupling characteristics, weakening water-limited 

coupling while enhancing energy-limited processes (Figs. 7e,f). Although both models still tend to overestimate and 

underestimate water- and energy-limited coupling over mid- and high-latitude regions, respectively, the multi-layer snow 

scheme reduces this bias. The increased SM due to the late onset of snowmelt restricts water-limited coupling, evidenced by 615 

increased 𝑅(𝑅𝑛, 𝐿𝐻) and decreased 𝑅(𝑆𝑆𝑀, 𝐿𝐻). This shift demonstrates a robust improvement in the underlying land-

atmosphere coupling processes, leading to a better simulation of near-surface atmospheric variables (namely temperature and 

precipitation). 
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Figure 8: Schematic of the impact of the multi-layer snow scheme on the seasonal forecast system on the evolution of the land surface 620 
from winter through the following summer. 

Since realistic snow states influence the water and energy budgets not only in winter but also in spring and summer (Fig. 8), 

the realization of snow characteristics should be a priority in the process of developing a model. Importantly, modifying land 

surface schemes to improve warm-season processes without addressing snow dynamics may lead to increased errors—even if 

snow is realistically simulated. It is also worth noting that improvements in climatology do not directly translate to enhanced 625 

forecast skill; in this study, improvements in temperature and precipitation skill in GloSea6 are primarily attributed to the 

larger ensemble size (Figs. S3 and S4). In conclusion, the implementation of a multi-layer snow scheme is essential for 

realistically simulating land surface processes in S2S dynamical forecast systems. From a climate perspective, as global 

warming increases both the variability and uncertainty in modelled snow conditions, reliable future climate projections will 

depend on the selective use of models that are able to simulate realistic snow characteristics.  630 

 

Acknowledgements 

This study was supported by Korea Meteorological Administration Research and Development program under grant RS-2023-

00241809. Eunkyo Seo was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea 

government(MSIT)(RS-2025-02363044).  635 



25 

 

Code availability 

The MetUM is available for use under licence. The source code for the Met Office Unified Model (MetUM) cannot be provided 

due to intellectual property right restrictions. For further information on how to apply for a licence, see 

https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership. The source code for the JULES 
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