

Improving land-atmosphere coupling in a seasonal forecast system by implementing a multi-layer snow scheme

Eunkyo Seo^{1,2}, Paul A. Dirmeyer²

¹ Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, 48513, Republic of Korea

² Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia, 22030, United States

Correspondence to: Eunkyo Seo (eseo@pknu.ac.kr)

Abstract. This study explores the influence of implementing a multi-layer snow scheme on the climatological bias within a seasonal forecast system. Traditional single layer snow scheme in land surface models often inadequately represents the insulating effect of snowpack, resulting in warm and cold biases during winter and snow melting seasons, respectively. By contrast, multi-layer snow schemes improve the simulation of energy exchange between the land surface and atmosphere by realistically capturing snowpack thermal processes. To examine this impact, two sets of LSM offline experiments are conducted, using either a single-layer or a multi-layer snow scheme. Results show that the multi-layer configuration better reproduces the observed snow seasonality. To further assess the role of snow insulation in coupled systems, two versions of the Global Seasonal Forecast System (GloSea) are compared over 24 years (1993–2016): GloSea5, which uses a single-layer snow scheme, and GloSea6, which incorporates the multi-layer scheme. In GloSea6, the onset of snowmelt is delayed by approximately two weeks, postponing springtime evaporation, slowing soil moisture depletion, and improving both the climatology and memory of soil moisture. Increased soil moisture enhances the partitioning of available energy into latent heat flux, thereby promoting evaporative cooling and suppressing excessive water-limited land–atmosphere coupling. These land surface improvements, particularly over mid-latitude regions, mitigate near-surface warming biases across the entire diurnal period and reduce the sensitivity of atmospheric conditions to land surface variability. The model performance in simulating precipitation is also improved with the increase in precipitation occurrence over snow-covered regions, significantly reducing model error in the Great Plains and Europe. Above all, this study demonstrates the value of implementing a multi-layer snowpack scheme in seasonal forecast models, not only during the snowmelt season but also for the subsequent summer season, for model fidelity in simulating temperature and precipitation along with the reality of land-atmosphere interactions.

25 1 Introduction

Subseasonal-to-seasonal (S2S) forecasts have become increasingly pivotal in numerous fields, encompassing agriculture, water resource management, energy, transportation, and disaster preparedness. The significance of S2S forecasting stems from their ability to provide actionable insights into forthcoming weather and climate conditions over the span of weeks to months. The predictability of S2S forecasts is strongly tied to the quality of the initial conditions and data assimilation technique, which

30 mathematically finds optimal values with minimized analysis errors to merge observations into a dynamical model, has been employed to create improved global analyses (Seo et al., 2021; Kumar et al., 2022). Forecasts across various time scales underscore the necessity for precise initial states of distinct components within the forecast model, as each component retains information over inherently disparate time scales (Richter et al., 2024). As the memory of initial land conditions can extend out to approximately 2 months, the importance of realistic land surface initialization in determining skill of the subseasonal
35 forecast is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al., 2019).

In particular, soil moisture (SM) plays a pivotal role in hydrological and meteorological dynamics, acknowledged as an essential climate variable by the World Meteorological Organization (WMO) (Seneviratne et al., 2010; Santanello et al., 2018). Its persistence or memory can significantly enhance forecast accuracy, particularly at time scales extending to 1–2 months (Dirmeyer et al., 2016; Dirmeyer et al., 2018; Seo and Dirmeyer, 2022). The fidelity of modelled SM contributes to a more
40 accurate portrayal of land-atmosphere interactions, facilitating the exchange of water and energy fluxes at the land surface (Seo et al., 2024). This enhanced representation holds potential for predicting extreme climate events, particularly those intensified by land-atmosphere feedback within extended range forecast systems (Seo et al., 2020; Dirmeyer et al., 2021; Tak et al., 2024). SM is directly constrained by the components of the typical water balance equation: precipitation, latent heat flux, and runoff, but the modelled snow affects the representation of snow characteristics.

45 The pivotal role of snow in land-atmosphere interactions highlights the significance of accurately representing cold processes related to snow in hydrometeorology and dynamical predictions. Compared to other land surface variables, snow exhibits distinctive characteristics such as high albedo, high thermal emissivity, and low thermal conductivity, which profoundly influence radiation budget and surface moisture and energy fluxes to the atmosphere. The presence or absence of snow can result in a disparity of approximately 10 K in the climatology of surface air temperature (Betts et al., 2014). This discrepancy
50 primarily stems from the reduction in net shortwave radiation attributable to the high albedo of snow. Snow-atmosphere feedback evolves through three distinct stages: before, during, and after snowmelt. Meanwhile, the coupling strength of snow cover to near-surface atmospheric variables, as measured by the phase similarity of members of an ensemble forecast induced by specifying identical land surface conditions (Koster et al., 2006), is strongest during snowmelt and the coupling strength after snowmelt (delayed soil moisture impact) is stronger than that before snowmelt (radiative impact from surface albedo)
55 (Xu and Dirmeyer, 2011). Therefore, during the warm season, SM dynamics become intricately linked to the physical characteristics of snow, affecting the initiation of evaporation and runoff due to snowmelt. It plays a crucial role in determining the model's ability to accurately simulate atmospheric variables through land-atmosphere coupling processes.

Some Land surface models (LSMs) still use a single-layer snowpack scheme, which has proven insufficient in accurately capturing the seasonal evolution of snow cover. The snowpack insulates the land surface, inhibiting energy exchange between
60 the land surface and the atmosphere. Consequently, a single layer snowpack scheme typically leads to cold and warm biases during winter and snow melting seasons, respectively. Because a single-layer scheme cannot simulate a vertical temperature gradient within the snowpack, it transmits surface temperature changes directly to the soil below, enhancing the efficiency of energy exchange. Addressing these limitations, recent advancements in LSMs aim to integrate the multi-layer snow scheme

to enhance the representation of snow dynamics and mitigate associated biases. For instance, Noah-Multiparameterization (Noah-MP) LSM represents the latest iteration of Noah LSM, a land component widely implemented with a single layer snowpack in various regional and global operational forecast models. It incorporates multiple enhancements aimed at improving the realism of biophysical and hydrological processes (Niu et al., 2011). Notably, for a more accurate representation of snow physics, Noah-MP adopts the multi-layer snowpack scheme. This scheme dynamically adjusts the number of snow layers based on the depth of snow, ensuring a more realistic conceptualization of snow accumulation and melt processes. The Joint UK Land Environment Simulator (JULES) LSM features the utilization of a multi-layer snow scheme in its current operational system. It also dynamically adjusts the number of snow layers, with each layer having prognostic variables for temperature, density, grain size, and both liquid and solid water content (Best et al., 2011). Unlike the simpler single layer snow model, which treats snow as an adaptation of the top-soil layer, the multi-layer scheme accounts for independent snow layer evolution and the impact of snow aging on albedo through simulated grain size changes. By explicitly simulating snow insulation effects and meltwater percolation, this scheme better captures seasonal snow variability and its influence on soil thermal regimes, including surface cooling during winter, delayed ground thaw in spring, and subsurface heat retention in summer. This implementation significantly improves soil temperature simulations, leading to better representation of land surface processes (Burke et al., 2013; Walters et al., 2017). JULES is incorporated within the GloSea forecast system (MacLachlan et al., 2015).

Numerous studies have aimed to improve the sophistication of snow physics and highlighted its advancement in numerical models (Xue et al., 2003; Arduini et al., 2019; Cristea et al., 2022). For instance, among 13 operational models participating in sub-seasonal to seasonal (S2S) prediction project (Vitart et al., 2017; Vitart et al., 2025), only three—BoM (POAMA P24), CNR-ISAC (GLOBO), and NCEP (CFSv2)—employ a single-layer snowpack scheme, whereas the remaining ten models, including those developed by CMA (BCC-CPS-S2Sv2), CNRM (CNRM-CM 6.1), CPTEC (BAM-1.2), ECCC (GEPS8), ECMWF (CY49R1), HMCR (RUMS), IAP-CAS (CAS-FGOALS-f2-V1.4), JMA (CPS3), KMA (GloSea6-GC3.2), and UKMO (GloSea6), now used multi-layer snowpack schemes. Despite this broad adoption, the impact of multi-layer snow schemes on S2S forecasts remains insufficiently explored and understood. Hence, this study conducts a comparative analysis between single layer and multi-layer snowpack in the JULES LSM, as well as the fully coupled forecast systems GloSea5 and GloSea6—past and present operational forecast systems at the UK Met Office and the Korea Meteorological Administration (KMA), in retrospective forecasting in order to investigate the impact of an advanced snow scheme. The primary objective of this study is to assess the seasonal cycle of snow and land surface variables throughout the snow-covered period and evaluate the model's capability to replicate the mean climatology of key land surface and near-surface atmospheric variables, e.g., surface SM, surface air temperature, and precipitation, during boreal warm season. Daily mean, maximum, and minimum temperatures are validated at sub-daily time scales to elucidate the time of significant improvements in model performance. Furthermore, the model fidelity in the simulation of land-atmosphere interactions, corresponding to water- and energy-limited processes, is diagnosed to identify the realism of land coupling regimes by implementing the advanced snowpack scheme.

The paper is organized as follows. Section 2 describes the GloSea5 and GloSea6 models, and the validation datasets used in this study. Section 3 provides the methodology to evaluate the model performance. Section 4 presents and discusses the results of this study. Finally, Section 5 summarizes the results and their implications for future applications.

100

2 Model Description and Data

2.1 Forecast Model

This study explores the performance of the Global Seasonal forecast system (GloSea) version 5 and 6, which are abbreviated as GloSea5 and GloSea6, respectively. These are the fully coupled ensemble forecast models with atmosphere-land-ocean-sea

105 ice components, being developed by the UK Met Office. GloSea5 (Maclachlan et al., 2015) Global Coupled model 2.0 (GC2; Williams et al., 2015) configuration consist of UM (Unified Model) version 8.6 atmospheric component (GA6.0; Walters et al., 2017) having N216 horizontal resolution of 0.56° latitude $\times 0.83^\circ$ longitude with vertically 85 hybrid-sigma coordinates topped at 85 km, JULES (Joint UK Land Environment Simulator) version 4.7 land surface model (GL6.0; Best et al., 2011)

110 with four soil layers (0–10-, 10–35-, 35–100-, and 100–300-cm depth), as well as NEMO (Nucleus for European Modelling of the Ocean) version 3.4 oceanic component (GO5.0; Megann et al., 2014) and CICE (Los Alamos Sea-ice Model) version

4.1 sea-ice component (GSI6.0; Rae et al., 2015) on an ORCA tripolar 0.25° global grid with 75 vertical levels. Those

components exchange interactive variables with the OASIS3 coupler (Valcke, 2013). GloSea6 Global Coupled model 3.2 (GC3.2) updates the atmospheric, land, ocean, and sea-ice components to the version of UM vn11.5 (GA7.2), JULES vn5.6

(GL8.0; Wiltshire et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018), and CICE vn5.1.2 (GSI8.1; Ridley et al., 2018)

115 without any modification in the resolution. The model components of GloSea6 are coupled with the OASIS3-MCT (Model Coupling Toolkit; Craig et al., 2017). We refer GloSea5 GC2 and GloSea6 GC3.2 to GloSea5 and GloSea6, respectively,

throughout this paper.

Substantive changes in the GloSea6 compared with GloSea5, mostly in model physics, have been implemented throughout all

120 model components (Williams et al., 2015; Williams et al., 2018). For instance, the atmospheric physics are modified in

radiation (improving gaseous absorption through upgrades in McICA (Monte Carlo Independent Column Approximation) and parameterization in ice optical properties), microphysics (updates in warm rain parameterization and newly implementing ice

particle size-dependent parameterization), cloud physics (including radiative effects from convective cores), gravity wave drag

(implement heating from gravity-wave dissipation), boundary layer (correcting cloud top entrainment during decoupling to the land), cumulus parameterization (improving updraught numeric in convective process and updating CAPE closure as a function

125 of large-scale vertical velocity), and new modal aerosol scheme (UKCA GLOMAP (Global Model of Aerosol Processes) scheme; Mann et al., 2010). Aforementioned atmospheric physics updates in the GloSea6 are likely to improve the performance

of model systemic errors, particularly in the overestimated vertical profile of cloud fraction at upper troposphere, tropospheric

cold and dry biases, the underestimated jet stream, the overestimated precipitation, and the negative bias of troposphere geopotential height during boreal summer (Williams et al., 2018).

130 Land surface types in the both forecast systems are classified with five vegetation (broadleaf trees, needleleaf trees, C3 grasses, C4 grasses and shrubs) and four non-vegetated surfaces (urban, open water, bare soil and permanent land ice) and the monthly climatology of leaf area index, derived from MODIS satellite product (Yang et al., 2006), is prescribed corresponding to the plant functional types. However, in GloSea6, there are two major updates in land physics: the implementation of a multi-layer snow scheme and the realization of shortwave surface albedo. GloSea5 has a single layer snow scheme, in which snow is
135 assigned a constant thermal conductivity and density, allowing direct heat exchange between the surface atmosphere and the soil (Best et al., 2011). It combines the snow and the uppermost soil layer into a single thermal store, with the increased snow depth leading to a reduction in the effective thermal conductivity. This reduction is not a dynamic representation of the intrinsic properties of snow but rather an adjustment to account for the insulating effect of the snow. This scheme lacks proper closure of the surface energy budget (SF. 1) and a dynamic representation of snowpack evolution with the inadequate depiction of the
140 snowpack's insulating properties. The improvement from the implementation of the multi-layer snow scheme is shown not only in the realization of the snow melt season, but also in the soil temperature and permafrost extent (Walters et al., 2019). For instance, the multi-layer snow scheme leads to surface warming of the soil temperature during the winter season, as the heat flux from the soil to the atmosphere is reduced, but shows a surface cooling in the spring season, as the increase in insulating radiation inhibits snowmelt. In the snow frontal regions, the increase in land surface albedo is due to the delay in
145 the onset of snowmelt by the multi-layer snowpack.

In both forecast models, the snow-free surface albedo for each grid box is calculated as a weighted average of the albedos of different surface types, with MODIS bare soil albedo (Houldcroft et al., 2009) and GlobAlbedo surface albedo in other non-vegetated surface types (Muller et al., 2012). The albedo of vegetated surface types is defined as a combination of the bare soil albedo and the full leaf albedo, with the weighting determined by the leaf area index (LAI) of the respective vegetation type.

150 In GloSea6, to improve surface albedo representation, these albedos are modified as a function of shortwave wavelength. Since surface albedos, which are independent of wavelength, limit spectral variability, photosynthetically active radiation (PAR) and near-infrared radiation (NIR) are calculated separately using the canopy radiation model (Sellers, 1985). In addition, the generation of the surface albedos of land surface types are amended. The mapping from the International Geosphere Biosphere Programme (IGBP; Loveland et al., 2000) classification to JULES land surface types has been refined in GloSea6. The
155 proportion of bare soil within the grassland, cropland, and crop-natural mosaic the IGBP classes was reduced and the coverage of vegetated land types, especially for C3 grass cover is extended (Walters et al., 2019; Wiltshire et al., 2020). The shift from bare soil to vegetated surfaces decreases surface albedo (Fig. 2e), as the vegetation can penetrate snow cover during the winter season (SF. 2a). Therefore, the surface albedo differences observed during the snow-covered season can be attributed to amendments in land surface type classification, whereas the albedo differences during the snow-free period are understood to
160 result from the incorporation of wavelength-dependent calculations in the surface albedo scheme. Other land surface physics are consistent in GloSea5 and GloSea6.

In terms of initial conditions for each model component, GloSea5 and GloSea6 commonly utilize ERA-interim and a variational data assimilation system for the NEMO ocean model (NEMOVAR; Mogensen et al., 2012) analysis for the atmospheric and ocean and sea-ice initializations, respectively. Land surface reanalysis, where the land offline simulation is forced by atmospheric boundary conditions from Japanese 55 years Reanalysis (JRA-55; Kobayashi et al., 2015) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5; Hersbach et al., 2020) reanalysis, is used to initialize land surface variables for GloSea5 and GloSea6, respectively. GloSea5 and GloSea6 have been used to carry out 60-day (depending on ensemble or variable, 6-month forecast is conducted for the seasonal prediction) retrospective forecasts starting on the 1st, 9th, 17th, and 25th of every month for 26 years (1991–2016) and 24 years (1993–2016), respectively, 165 but evaluations are conducted with 24-year forecasts for the fair comparison between both systems. To operate ensemble forecasts, the Stochastic Kinetic Energy Backscatter (SKEB2; Tennant et al., 2011) and the Stochastic Perturbation of 170 Tendencies (SPT; Sanchez et al., 2016) scheme is used to perturb initial states in GloSea5 and GloSea6, respectively. Compared to the SKEB2, the SPT scheme imposes additional constraints on energy and water conservation, leading to an increase in the ensemble spread without degrading ensemble mean fields, which is especially beneficial over the tropics. Based 175 on these methods, GloSea5 and GloSea6 operate 3 and 7 ensemble forecasts and have been implemented by the KMA in international S2S prediction project for 2020–2022 and 2023–present, respectively. The description of their model configuration is summarized in Table 1.

		GloSea5	GloSea6
Hindcast period		26 years (1991–2016)	24 years (1993–2016)
Ensemble	Method	Stochastic Kinetic Energy Backscatter (SKEB2)	Stochastic Perturbation of Tendencies (SPT)
	numbers	3	7
Resolution		Horizontal: N216 (0.83°×0.56°) Vertical: L85 (~85 km)	
Atmosphere		ECMWF ERA-interim	
Initial conditions	Land	JULES offline run (JRA55 atmospheric forcing)	JULES offline run (ERA5 atmospheric forcing)
	Ocean/Sea-ice	NEMOVAR (UKMO)	
Atmosphere		GA6.0	GA7.2
Model physics	Land	GL6.0	GL8.0
	Ocean	GO5.0	GO6.0
	Sea-ice	GSI6.0	GSI8.1
	Coupler	OASIS3	OASIS3-MCT

Table 1: Description of the GloSea5 and GloSea6 model configurations.

2.2 JULES offline experiments

In the case of the coupled model described above, updates in both the land and atmospheric model components, in addition to the advancement in snow physics, can influence land processes. To isolate the impact of the multi-layer snowpack scheme on land processes, we conduct two sets of LSM offline experiments using GL8.0 (representing a specific configuration of JULES

185 version 5.6 within the coupled system): implementing single layer (JULES_{single}) and multi-layer (JULES_{multi}) snowpack scheme, respectively. The offline LSM simulations are driven by observed atmospheric near-surface variables, including 2-m air temperature and humidity, 10 m wind speed, downward radiative fluxes, and pressure at the surface. These historical observations are employed by the hourly ERA5 reanalysis (Hersbach et al., 2020). Precipitation is forced by the hourly averaged Integrated Multi-satellitE Retrievals for GPM (IMERG) version 7 (Huffman et al., 2023). Both offline experiments

190 are conducted over global land areas from January 2001 to December 2022 at a spatial resolution of 0.56° latitude $\times 0.83^\circ$ longitude, consistent with the resolution of the fully coupled forecast systems.

The single layer scheme represents snow as a modification of the uppermost soil layer, applying a fixed thermal conductivity without explicitly resolving vertical snow structure. This simplification results in direct heat exchange between the surface and soil, leading to excessive soil cooling in winter and rapid warming during spring melt. In contrast, the multi-layer scheme

195 explicitly represents up to three snow layers with predefined layer thicknesses of 0.04, 0.12, and 0.34 meters, dynamically adjusting the number of active layers based on snow depth (Best et al., 2011). It incorporates a density-dependent thermal conductivity parameterization, improving the simulation of snow insulation effects and reducing soil temperature biases.

200 Additionally, the multi-layer scheme includes a prognostic snow densification process driven by overburden stress and temperature, while also explicitly handling meltwater retention, percolation, and refreezing. Snow albedo is also treated with a prognostic approach that accounts for snow aging and grain size evolution, enhancing radiative feedback representation.

Lastly, the multi-layer snowpack ensures surface energy budget closure by explicitly solving for the energy balance of each snow layer, addressing limitations in the single layer scheme that can lead to inconsistencies in snowmelt partitioning.

2.3 Validation Data

205 The daily maximum and minimum temperature over land at a height of 2 meters are sourced from NCEP CPC analysis produced by NOAA Physical Sciences Laboratory (PSL; <https://psl.noaa.gov>). The temperature data have a 0.5° horizontal resolution and are available for 1979–present. The daily mean temperature is acquired by arithmetically averaging maximum and minimum temperature. Hereafter, daily mean, maximum, and minimum temperature will be referred to as Tmean, Tmax, Tmin, respectively.

210 The ERA5-Land is an offline land reanalysis (Muñoz-Sabater et al., 2021) of the Tiled ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology (H-TESSEL) land surface model with four soil layers (0–7-, 7–28-, 28–100-, and 100–289-cm depth), forced by the ERA5 atmospheric reanalysis. ERA5-Land has a horizontal resolution of ~ 0.18 and an

hourly temporal resolution. To enhance the spatial resolution of the ERA5-Land, ERA5 near surface atmospheric variables (e.g., temperature, humidity, and pressure) used for boundary conditions are corrected to account for the altitude difference 215 that came from the lower resolution of ERA5.

This study uses Japanese Reanalysis for Three Quarters of a Century (JRA-3Q; Kosaka et al., 2024) as a reference for snow 216 water equivalent (SWE) to diagnose the modelled snow. It employs an offline version of the Simple Biosphere (SIB) model 217 (Sellers et al., 1986). Compared to the satellite-based and in situ datasets, the snow cover and depth are accurately described 218 in its predecessor, the Japanese 55-year Reanalysis (JRA-55) (Orsolini et al., 2019). JRA-3Q incorporates daily snow depth 219 data from the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager Sounder (SSMIS), and *in* 220 *situ* measurements using a univariate two-dimensional optimal interpolation (OI) approach. Although this procedure is 221 comparable to that used in JRA-55 (Kobayashi et al., 2015), two issues—unrealistic analysis near coastal areas and unintended 222 increments caused by satellite data biases—have been resolved in JRA-3Q. Additionally, JRA-3Q employs the multi-layer 223 snowpack scheme whereas JRA-55 used a single layer snowpack scheme. JRA-3Q has a horizontal resolution of 0.375° and 224 3-hourly temporal resolution.

In situ observations of surface SM are employed to evaluate the model climatological bias and SM memory (SMM) across the 225 globe. International Soil Moisture Network (ISMN; Dorigo et al., 2021) is used to obtain daily mean SM sensed from 5-cm to 226 10-cm. While flagged measurements classified as “good” quality are used, additional quality control procedures are applied to 227 avoid data redundancy and spurious SM characteristics. First, we exclude the Snowpack Telemetry network (SNOTEL) which 228 has large uncertainty in SM estimates because it is designed to measure snow variables. Second, if observations at one site are 229 made at several depths within that range, it will be represented as a value close to 5-cm. Despite the previous steps, if SM is 230 measured at the same location and depth by different sensors, only one of them is selected to avoid the loss of SM 231 characteristics from simple averaging of many sensors. Lastly, the z-score of SM measured from each sensor is calculated and 232 the sensor with the lowest value is selected. The SM z-score is defined as:

$$Z = \frac{\sum_{t=1}^N \frac{X_t - \bar{X}}{\sigma_X}}{\sqrt{\frac{N}{1 + tau}}} \quad (1)$$

233 where X_t , \bar{X} , and σ_X are the daily time series, timely averaged value, and temporal standard deviation of SM in daily time scale 234 (t), respectively. N and tau represent the sample number of daily time series and corrected SMM (described in subsection 235 3.1), respectively.

236 A time-filtered satellite product of daily surface SM, originated from the COMBINED European Space Agency (ESA) Climate 237 Change Initiative (CCI) Soil Moisture v06.1 dataset (Dorigo et al., 2017), is used to assess the global SMM simulated by 238 forecast models. Remotely sensed SM datasets inherently contain random and periodic errors, particularly in high-frequency 239 variability, due to the radiometric instrument performance, viewing angle variations, spatial resampling, imperfect 240 parameterizations used in retrieval algorithms, and so on. Due to these errors, the daily time series of satellite-based SM 241 retrieval often shows intervals with an increase in SM without rainfall or any other water supply (see Fig. 6 in Seo and 242

Dirmeyer, 2022a), which is unexplainable by the surface water budget. This erroneous SM behavior hampers the representation of realistic SM dynamics and land-atmosphere interactions due to a decrease in the SM autocorrelation value. Since the SMM is calculated with the time-lagged SM autocorrelation, assuming that the daily SM time series is exponentially decaying, the inherent error in the satellite data leads to an underestimation of SMM. To avoid the problem, this study uses the time-filtered surface SM product covering 21 years (2000–2020) with 0.25° spatial resolution, using a Fourier transform with LSM datasets (Seo and Dirmeyer, 2022). The time-filtered SM product provides a better representation of the surface SM time series, which also contributes to the improvement of the SM characteristics (i.e., SM memory and error) compared to the result from *in situ* observations. Hereafter, we refer to the adjusted ESA CCI SM based on the LSM simulations as ESACCI_{adj}.

The Global Land Evaporation Amsterdam Model version 4 (GLEAM; Miralles et al., 2025) provides a dataset of global terrestrial heat fluxes and soil wetness. It combines satellite observations, reanalysis products, and *in situ* data using a hybrid modelling framework that includes physical principles and machine learning-based estimations of evaporative stress. Based on the Penman's equation, GLEAM estimates potential evaporation using additional atmospheric control factors (e.g., wind speed, vapor pressure deficit, and vegetation height) not only for net radiation and near-surface air temperature observations. Actual evaporation is then derived by applying a multiplicative evaporative stress factor, calculated from observed Vegetation Optical Depth (VOD) and estimated root-zone soil moisture. The GLEAM dataset demonstrates reliable performance in capturing observed seasonal cycles, particularly in evaporation anomalies across diverse climates, when evaluated against global eddy-covariance flux tower observations. Compared to other datasets (e.g., ERA5-Land and FLUXCOM), the GLEAM shows improved agreement with observations. Although the GLEAM performs better than other available reanalysis datasets, it should not be considered an observational dataset. GLEAM estimates evaporation using training data from flux tower observations; however, these towers are mainly ecological monitoring networks that are skewed toward wetter vegetated sites. As a result, while GLEAM is generally reliable in wetter areas, its accuracy in drier regions may be limited due to sparse observational constraints. Nevertheless, since this study focuses on mid- and high-latitude regions where flux towers are plentiful, snow processes dominate and GLEAM's performance is more robust, it is used as the primary reference dataset.

Accordingly, to evaluate model performance, this study utilizes the daily surface SM, evaporation, sensible heat flux, and net radiation (defined as the sum of latent and sensible heat fluxes) from version 4.1a (<https://www.gleam.eu/>), covering 44 years (1980–2023) with a 0.1° spatial resolution.

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.8 is the gauge-, satellite-, and reanalysis-based precipitation dataset used for validation, available from 1979 to the present. The precipitation data have a 0.1° horizontal resolution and 3-hourly temporal resolution (Beck et al., 2019a). Its superior performance is primarily attributable to the inclusion of daily gauge observations compared with 26 gridded precipitation datasets (Beck et al., 2019b).

275 **3 Methodology**

This study aims to investigate the impact of an improved snow scheme in the seasonal forecast system on the fidelity of snow behavior on contemporaneously and during the next warm season after snow melt. Given the many changes between GloSea6 and GloSea5, we cannot attribute all differences in performance to any single change, but we assume changes in the simulation of snow are principally due to the major changes in the snow scheme. To compare model performance between GloSea6 and 280 GloSea5 in the physics of snow freezing and melting, 100-day long retrospective forecasts initiated on the 1st day of October–April spanning 24 years (1993–2016) are used. Although ensemble simulations are carried out in both models, this study uses a single member run only for analyzing the climatology of the seasonal cycle (Fig. 2), since 24 yearly samples are sufficient. The shift of the snow melting season alters the availability and variability of SM for spring and summer season. In contrast, 285 60-day long retrospective ensemble forecasts starting on 1st, 9th, 17th, 25th of May–August of 24 years are used to demonstrate the snow effect on the model climatological bias of surface SM, surface air temperature, and precipitation during northern hemisphere warm season when land-atmosphere feedback is most active. Most of the evaluations are based on the accuracy of 290 simulated land–atmosphere interactions, assessed using the daily mean time series from all forecast runs during the boreal summer, thereby representing the model climatology of coupling metrics. The ensemble mean values are used for the analysis of climatological bias, while coupling metrics are calculated individually for each ensemble member and then averaged across all members to avoid the physical correlation between variables being diminished in the ensemble-averaged time series. To 295 identify model improvement and assess statistical significance, a total of 384 forecast runs (initialized on four dates per month over 24 years) are analyzed for each forecast system, and statistical testing is conducted using Student's *t*-test. Model prediction skill as a function of forecast lead time is not assessed in this study, as it is more strongly influenced by ensemble size than by the differences in model version (not shown here).

295 **3.1 Soil moisture memory**

To evaluate the SM persistence simulated in the model, the autocorrelation-based SMM is employed. First, assuming that the evolution of the daily SM time series follows a first-order Markov process (Vinnikov and Yeserkepova, 1991), the decay frequency (*f*) of SM can be defined by a function of SM autocorrelation (*AR*) at lag day (τ) (Dirmeyer et al., 2016; Seo and Dirmeyer, 2022). Its formulation is followed as:

$$AR(\tau) = \exp(-f\tau) \quad (2)$$

300 The SMM is defined with an e-folding decay time, at which the autocorrelation of SM drops to $1/e$. By a linear fitting of $\ln[AR(\tau)]$, the memory is calculated as the value of τ , when the linear extrapolation between $\ln[AR(\tau = 1)]$ and $\ln[AR(\tau = 2)]$ is intersected to $\ln[AR(\tau)] = -1$. Since the SM behavior is not perfectly fitted on the first-order Markov process, the displacement of the extrapolated linear fit at $\tau = 0$ is defined with the measurement error mostly attributed to random errors (Robock et al., 1995). To measure the SMM under the assumption that there is no measurement error, the extrapolated linear 305 fit is shifted to intersect origin point and the intersected τ value between the shifted linear fit and $\ln[AR(\tau)] = -1$ is the

corrected SMM. Time-filtered ESA CCI and modeled SM products exhibit the marginal measurement error (Seo and Dirmeyer, 2022), so that this study focuses on the improvement in the representation of the corrected SMM in the model simulations. The autocorrelation is calculated by concatenated time series of daily SM over JJA (June–August) of 17 years (2000–2016) with modelled and time-filtered satellite SM time series. In the calculation of the SMM in both seasonal forecast systems, the 310 SM time series over JJA are concatenated with 30-day forecast time series starting on the 1st of each month, and the time series for each year are further concatenated to produce the 17-year JJA SM time series. The SMM is calculated in each ensemble forecast and represented by the median of the ensemble values. Additionally, the statistical significance of SMM biases in both 315 simulations and their difference between GloSea5 and GloSea6 is tested using a Monte Carlo approach. The probability of a significant SMM is estimated by random sampling, where randomly selected yearly JJA SM time series (92 samples) are used to create all-year JJA time series, repeatedly, to generate 100 samples in observational and modelled datasets. For testing the 320 statistical significance of the modeled SMM biases, randomly calculated SMMs from time-filtered CCI, ERA5-Land, and GLEAM products are used to generate 300 observational samples (3 products \times 100 random SMMs), which are compared to 300 and 700 random samples from GloSea5 (3 ensembles \times 100 random SMMs) and GloSea6 (7 ensembles \times 100 random SMMs), respectively, using a Student's *t*-test. The statistical significance of the SMM difference between the two model simulations is also tested with the randomly calculated 300 and 700 SMM samples.

3.2 Granger causality in evaporation-precipitation feedback

To characterize the causality of land-atmosphere interactions, this study adopts the Granger causality test, that originates from the field of econometrics (Granger, 1969; Salvucci et al., 2002). This is a statistical principle to identify the potential dependence of a target variable on source variable beyond any persistence (memory) inherent in the target variable. To explore 325 the quantitative understanding of evaporation-precipitation feedback, this study investigates the causality between a source variable (*SV*: hypothesized to trigger a feedback) and target variable (*TV*: responding to the feedback), where the statistical time-lagged response of the land-atmosphere feedback is applied by setting a 1-day time lag in the time series of *TV* compared with *SV*. This is formulated as:

$$F(TV_t|\Omega_{t-1}) \neq F(TV_t|\Omega_{t-1} - SV_{t-1}) \quad (3)$$

where *F* is the conditional distribution of *TV* on a given day, Ω_{t-1} denotes the set of all knowledge available at $t - 1$ time, 330 and $\Omega_{t-1} - SV_{t-1}$ represents all knowledge except *SV*. We employ evaporative fraction ($EF = LE/(H + LE)$) and precipitation (*PR*) in each role to identify the response of precipitation variability to the land surface flux partitioning ($GC(PR_t|EF_{t-1})$) and vice versa ($GC(EF_t|PR_{t-1})$). As the null hypothesis equates that *SV* does not affect *TV*, the rejected probability of the null hypothesis ($1-p$) is calculated to intuitively understand the causality. Nevertheless, as Granger causality only tests for predictive precedence, the results may reflect statistical associations due to shared external drivers and should 335 not be interpreted as definitive physical causation between both variables. The analysis is conducted using 384 forecast runs initiated on four dates during May–August over 24 years, and to compare to the causality in observations, *EF* and *PR* are taken from the GLEAM and MSWEP datasets, respectively.

3.3 Methodology to define land coupling regime

340 This study evaluates model performance in the simulation of land coupling regimes in GloSea5 and GloSea6. Land-atmosphere interaction is controlled by land surface energy and water exchanges. Depending on their relative dominance, water- and energy-limited regimes are categorized, where the flux partitioning between sensible and latent heat flux are controlled by the availability and variability of SM or by net radiation mainly dictated by the atmosphere, respectively. They are separated by a critical value of SM at each location; the dry and wet side of the critical value exhibits water- and energy-limited coupling
345 processes, respectively. Corresponding to the dominant response of the partitioning of land heat fluxes attributed to either the land state or the atmosphere, the direction of land-atmosphere coupling is land-to-atmosphere or atmosphere-to-land, respectively (see Fig. 2 in Seo et al., 2024).

To quantify the strength of land-atmosphere coupling based on either the water- or energy-budget predominance, this study compares the temporal correlation of latent heat flux (the key variable linking water and energy budgets) with the surface SM
350 [$R(SSM, LH)$] and net radiation [$R(R_n, LH)$], respectively. While both latent heat flux and net radiation are physically linked (as latent heat is energetically constrained by net radiation), the correlation between them helps infer the extent to which surface fluxes follow the available energy signal. However, it is important to note that $R(R_n, LH)$ is not independent of the water budget, and high correlation values may still occur in water-limited regimes if increased net radiation results in greater latent heat flux under sufficient SM. Therefore, these metrics are interpreted as complementary diagnostics, with $R(SSM, LH)$
355 highlighting land-state sensitivity and $R(R_n, LH)$ indicating energy control, rather than mutually exclusive regime indicators.

Both proxies, measuring two distinct land coupling processes, serve as the x- and y-axes in a colour square, and the comparison between them indicates the relative dominance in the definition of land coupling regime (Seo et al., 2024).

4 Results

360 4.1 Seasonality of land surface variables

To assess the impact of multi-layer snowpack scheme on the simulation of snow freezing and melting processes, this study compares the representation of the seasonal cycle of land surface variables between JULES_{single} and JULES_{multi}. In both JULES offline experiments, the seasonal cycle of snow cover peaks in late December over the mid-latitudes of Eurasia (Fig. 1c), while SWE reaches its peak approximately two months later (Fig. 1d). When the multi-layer snow scheme is applied in JULES_{multi},
365 the insulating effect of the land surface delays the onset of snowmelt, resulting in higher values of both snow cover and SWE during early spring season (March–April), which more closely resemble the observed seasonal cycle of SWE. The multi-layer snow scheme leads to an expansion of snow-covered areas, shifting the springtime snow frontal zone northward to around 40°N and significantly increasing the amount of snow within the snow-covered regions (Figs. 1a,b). The effect of the multi-

layer snow scheme on soil and air temperatures depends on the snow accumulation, snow peak, and snow melting seasons.

370 The air temperature response will be specifically addressed in Figure 2, which is based on the coupled model simulation, since the offline model is forced by near-surface atmospheric variables, including surface air temperature.

The snowpack plays the role of limiting transfer of heat between air and soil due to the enhanced insulation (SF. 3a). Therefore, the multi-layer snow scheme provides a stronger insulating effect, simulating significantly warmer soil temperature from snow cover onset through March, when air is colder than the land surface (Fig. 1g). The warmer soil temperature in JULES_{multi} (Fig.

375 1g), induced by the snow insulation effect, increases the fraction of unfrozen SM. Unlike soil ice, liquid water in the soil remains mobile, contributing to subsurface runoff and potentially evaporation, resulting in drier soil (Fig. 1e). JULES_{multi} simulates abundant snow variables in March, accompanied by an increase in latent heat flux (Fig. 1f). Following the largest difference in snow between the two JULES runs in March, the SM difference begins to decrease, subsequently resulting in wetter soil conditions in the JULES experiment during April. This, in turn, leads to enhanced latent heat flux in April.

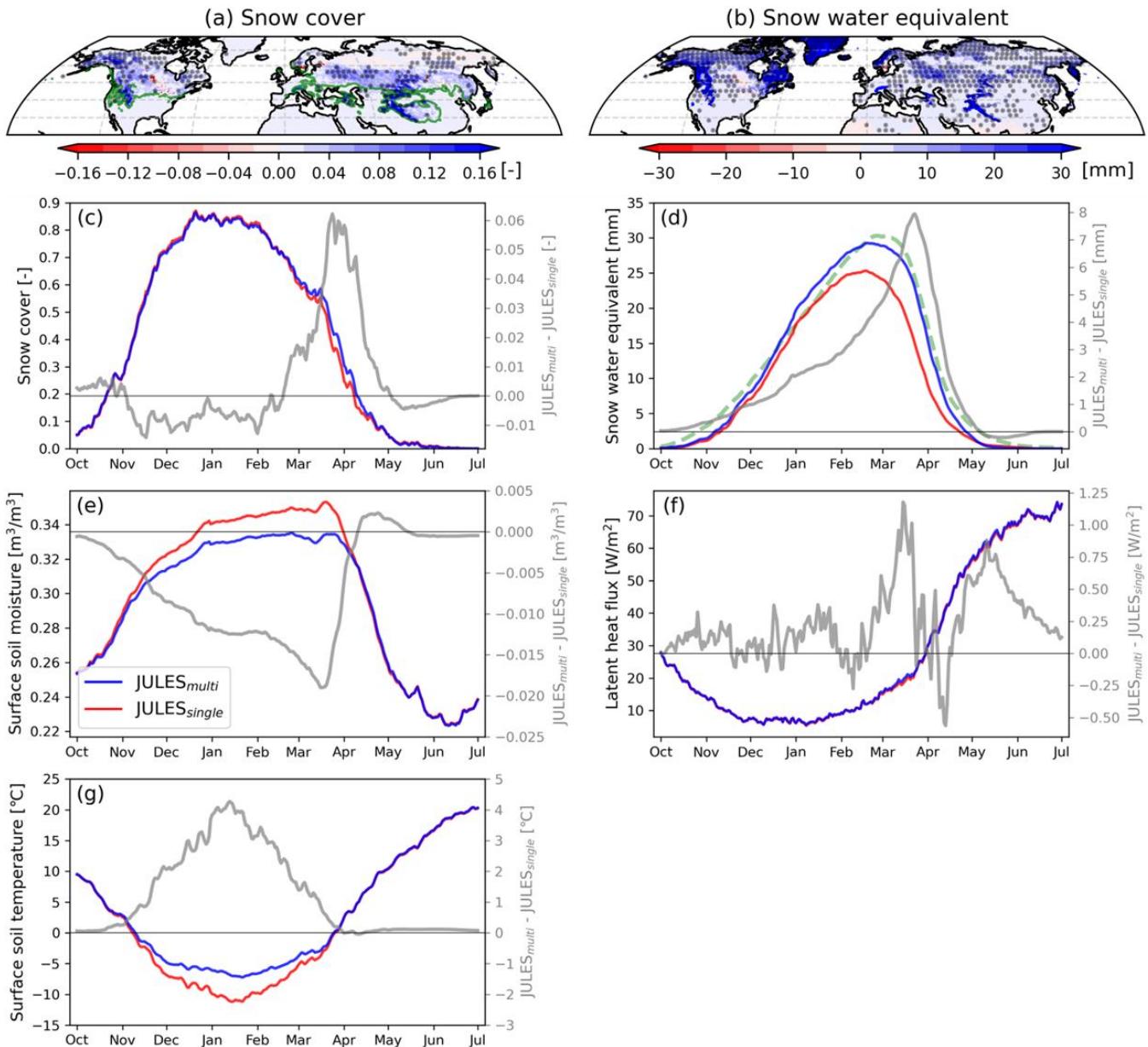


Figure 1: Spatial patterns of climatological difference ($\text{JULES}_{\text{multi}} - \text{JULES}_{\text{single}}$) of (a) snow cover and (b) snow water equivalent, averaged over March-April for the 22-year (2001–2022), where the dotted area indicates the difference is statistically significant at a 95% confidence level. The green contour line in (a) indicates a snow cover of 0.15 from $\text{JULES}_{\text{multi}}$ experiment. Climatological seasonal cycle of 24-year averaged (a) snow cover, (b) snow water equivalent, (c) surface soil moisture, (d) latent heat flux, and (e) surface soil temperature simulated by $\text{JULES}_{\text{single}}$ (red) and $\text{JULES}_{\text{multi}}$ (blue) over the Eurasian continent (0–130E, 45–55N). To denote the response of land variables to the snow physics scheme, the green dashed line in (d) denotes JRA-3Q snow water equivalent grey solid lines in (c)–(g) display the difference between $\text{JULES}_{\text{multi}}$ and $\text{JULES}_{\text{single}}$ throughout the snow accumulation and melting seasons.

385

Furthermore, to explore the model performance in simulating snow freezing and melting processes in fully coupled forecast systems, we also compare the seasonal cycle of the land variables between GloSea6 and GloSea5. Although the land initial conditions are generated by different atmospheric forcing in both forecast models, the difference in initiated snow amount appears to be insignificant throughout the entire snow season (SF. 4), and the differences lack field significance. Differences

395 in winter precipitation between both models may lead to variations in snow accumulation; however, although GloSea6 generally simulates slightly higher precipitation, the magnitude of this difference is negligible compared to the difference in snow water equivalent (not shown). Therefore, the impact of precipitation on snow accumulation is not considered in this study. GloSea5 and GloSea6 simulate the seasonal cycle of snow freezing process over the Eurasian continent similarly regardless of which the snow scheme is used (Fig. 2a). Given that the primary source of energy for snowmelt is the atmosphere, 400 snow melting process is tied to the variation of surface air temperature (cf. Fig. 2d). Snow dissipates 2 weeks earlier in the early summer when a single layer snowpack is adopted. For instance, both models consistently simulate a snow peak in March and are initiated with similar snow conditions in that month, but the snow in GloSea5 disappears before June while it persists until early June in GloSea6. The result resembles the snow dissipation represented by JRA-3Q, particularly in the run initiated 405 on 1st April.

405 Although similar SM states are initialized in both forecast models for the entire analysis period, GloSea5 shows a model forecast drift in the wet direction from October to March (Fig. 2b). The differences in SM initial conditions in October and November are attributed to differences in the atmospheric forcing used to drive the LSM during the generation of land surface

410 initial states. Because the snowpack serves as a barrier to energy and water exchange between the land and the atmosphere, in the single layer snowpack, colder soil temperatures lead to a model drift toward wetter conditions during the snow-covered season, consistent with the results from the JULES LSM simulations (cf. Fig. 1e,g), and the early onset of evaporation 415 manifests the physical process of drying out SM during snow melting season. Wetter soil moisture is simulated in GloSea5 during October, when snow cover is minimal, which is attributed to a positive precipitation bias (not shown). Thus, the implementation of the multi-layer snowpack results in the climatologically dryer and wetter SM, respectively, preceding (November–March) and following (April–June) the onset of snowmelt. However, in the JULES offline simulations, the

420 415 implementation of the multi-layer snowpack results in wetter SM only during April, with no significant differences persisting into the summer. This suggests that the influence of advanced snow physics becomes more pronounced when the land is coupled with the atmosphere, allowing its effects to extend into the summer season.

In the coupled model simulations, the effect of the multi-layer snow scheme on soil temperature during the snow-covered season is consistent with the results from the JULES offline simulations, whereas surface cooling is observed after snowmelt

420 (Fig. 2c) due to increased SM. For the surface air temperature, GloSea6 is colder during the snow freezing season due to limited energy transfer from the cold air to the snow surface (Fig. 2d). During the two-month snow peak period from mid-January, GloSea6 simulates higher air temperature due to warmer ground, resulting in less cooling from the soil. The air temperature cooling observed from mid-March is associated with evaporative cooling driven by increased latent heat flux. During early spring, the increase in latent heat flux is primarily linked to enhanced net radiation (Fig. 2g). However, after

425 April, the continued rise in latent heat flux despite a decline in net radiation can be attributed to increased SM availability. The seasonal cycle of net radiation is also evident in both forecast models (Fig. 2f). During the snow freezing season, net radiation can decrease due to enhanced upward longwave radiation driven by surface warming, despite a concurrent increase associated with reduced surface albedo. These two opposing effects tend to offset each other, resulting in minimal differences in net radiation during this period. However, during the snow peak season (February–March), the surface albedo effect becomes
430 more dominant, leading to an increase in net radiation that is mostly balanced by latent heat flux. In late spring (April–May), when differences in snow variables become more pronounced, surface albedo increases and surface cooling occurs, which plays a role opposite to that observed in winter. During this period, the stronger influence of increased surface albedo leads to a decrease in net radiation that is mostly balanced by sensible heat flux (Fig. 2g). In summer, net radiation increases again, primarily due to a reduction in upward longwave radiation associated with surface cooling, rather than being caused by changes
435 in surface albedo. In other words, the impact of the implementation of the multi-layer snowpack scheme is predominant rather than other modifications in land processes during the summer season. Consequently, the radiation is primarily balanced by latent heat flux due to abundant SM, but sensible heat flux decreases in GloSea6 due to air temperature cooling.
To illustrate the physical sequence between land surface variables by the realization of snow physics, the time series of major water budget variables is compared between both simulations (Fig. 2i). The surface albedo in GloSea6 becomes larger than
440 that of GloSea5 at the end of March, which results in an increased SM about 3 weeks later. The increase in SM appears to precede a reduction in latent heat flux, followed by a subsequent rise in precipitation. The lead-lag correlation between SM and precipitation differences (GloSea6-GloSea5) shows statistically significant values at 0 and +1 lead-lag day and the 1-day lagged value is the highest (Fig. 2j). It is important to note that this analysis is based on inter-model differences and reflects a statistical association rather than a direct causal relationship. The positive lag may suggest enhanced land-atmosphere coupling
445 in GloSea6—such as increased soil moisture availability and surface energy partitioning—contributing to a precipitation response. The positive feedback is typically observed in numerical forecast systems, including HadGEM2-AO (atmosphere-land only coupled forecast model of GloSea5), in contrast to observation-based analyses, which indicate a negative coupling between SM and precipitation (Taylor et al., 2012).

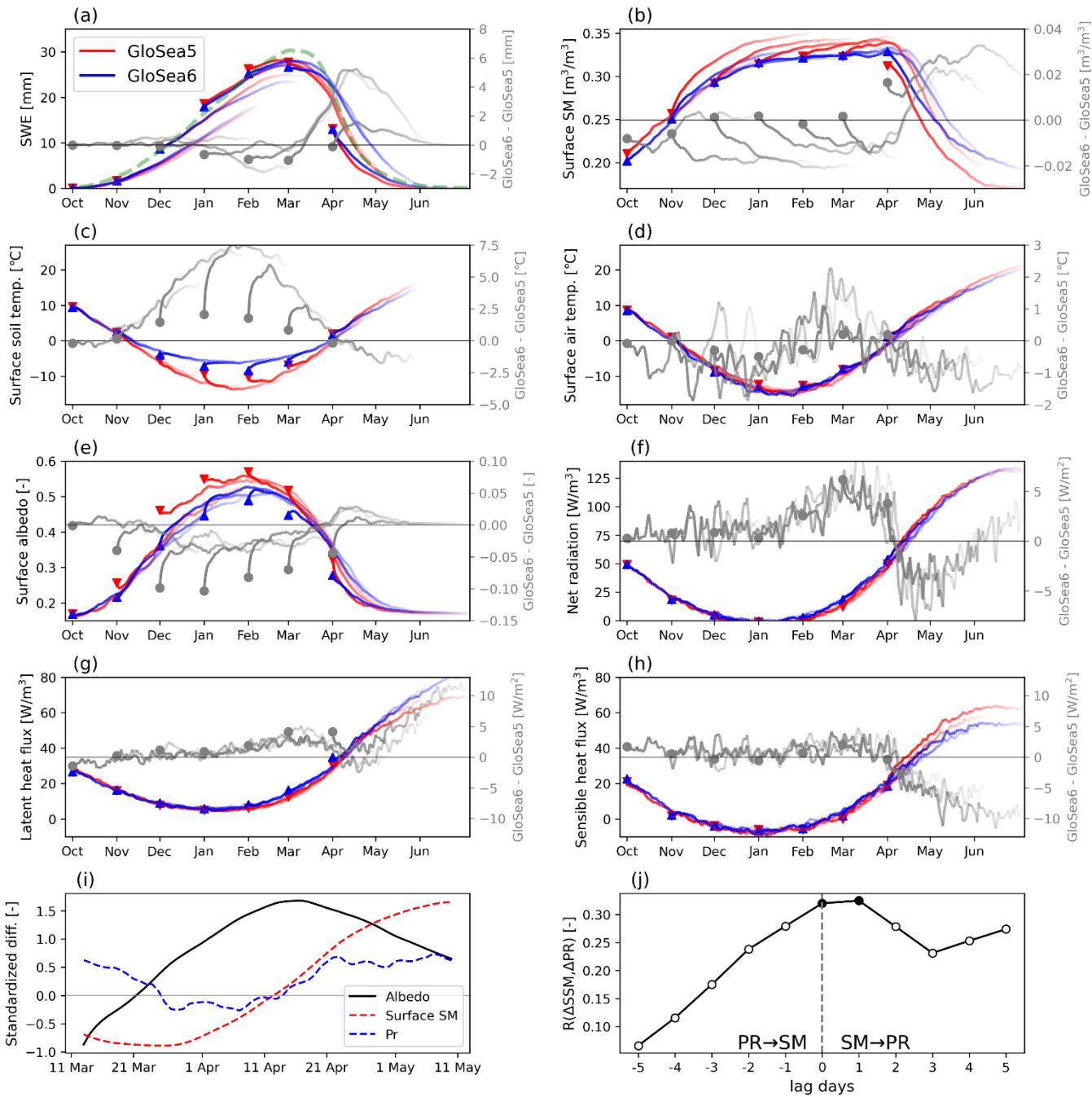


Figure 2: Climatological seasonal cycle of 24-year (1993–2016) averaged (a) snow water equivalent, (b) surface soil moisture, (c) surface soil temperature, (d) surface air temperature, (e) surface albedo, (f) net radiation, (g) latent heat flux and (h) sensible heat flux simulated by GloSea5 (red) and GloSea6 (blue) over the Eurasian continent (0–130E, 45–55N), where 100-day forecast lines fade at increasing lead forecasts and coloured marks indicate initial states on the first day of each month (surface soil temperature shows 60-day forecast due to data availability). (i) Climatology of 25-day running averaged time series, initiated at each year on 1 March, of the standardized difference (GloSea6–GloSea5) for surface albedo, surface soil moisture, and precipitation. For

standardization, each variable's daily time series is divided by the standard deviation of its time series. (j) Lead-lag correlation coefficient for the daily time series of the difference between GloSea5 and GloSea6 for surface soil moisture and precipitation with 460 70-day forecast initiated at each year on 1 March to demonstrate soil moisture-precipitation coupling, where black filled marks denote the correlation value is statistically significant at a 99% confidence level. A positive lagged day indicates that soil moisture leads to precipitation, and negative is vice versa.

4.2 Evaluation of model climatological error and bias over the Northern Hemisphere

Although soil moisture has historically not been a verifiable quantity in weather forecast models (Koster et al., 2009), the 465 adoption of soil moisture data assimilation makes soil moisture a variable for validation (Seo et al., 2021). To identify the representation of surface SM, this study compares the climatological mean between both forecast models and evaluates their model error against in-situ measurements over the Northern Hemisphere (NH). The difference in SM simulation between GloSea6 and GloSea5 is large above 40°N regions across all forecast lead times (Fig. 3a). In particular, the difference is dominant over the snow frontal region, suggesting that the difference is related to the additional snow insulating effect in the 470 GloSea6 LSM. To assess model fidelity, SM simulated by GloSea5 (Fig. 3b) and GloSea6 (Fig. 3c) are validated against in-situ measurements (mostly distributed over North America and Europe). Although both models simulate a reliable SM climatology over relatively dry regions ($\sim 0.1 \text{ m}^3 \text{ m}^{-3}$), modeled SM is systematically underestimated when model values are between 0.1 and $0.2 \text{ m}^3 \text{ m}^{-3}$. Most of the underestimated sites are located above 40 N (SF. 5). Although model errors still remain in GloSea6, the drying errors are significantly improved as the SM becomes wetter and the spatial agreement, as 475 measured by the correlation coefficient, is also increased.

(a) GloSea6-GloSea5

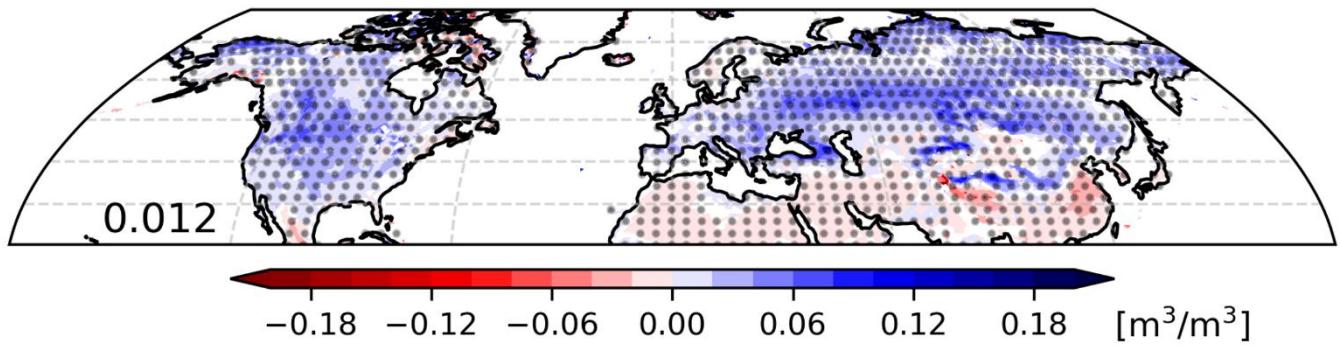
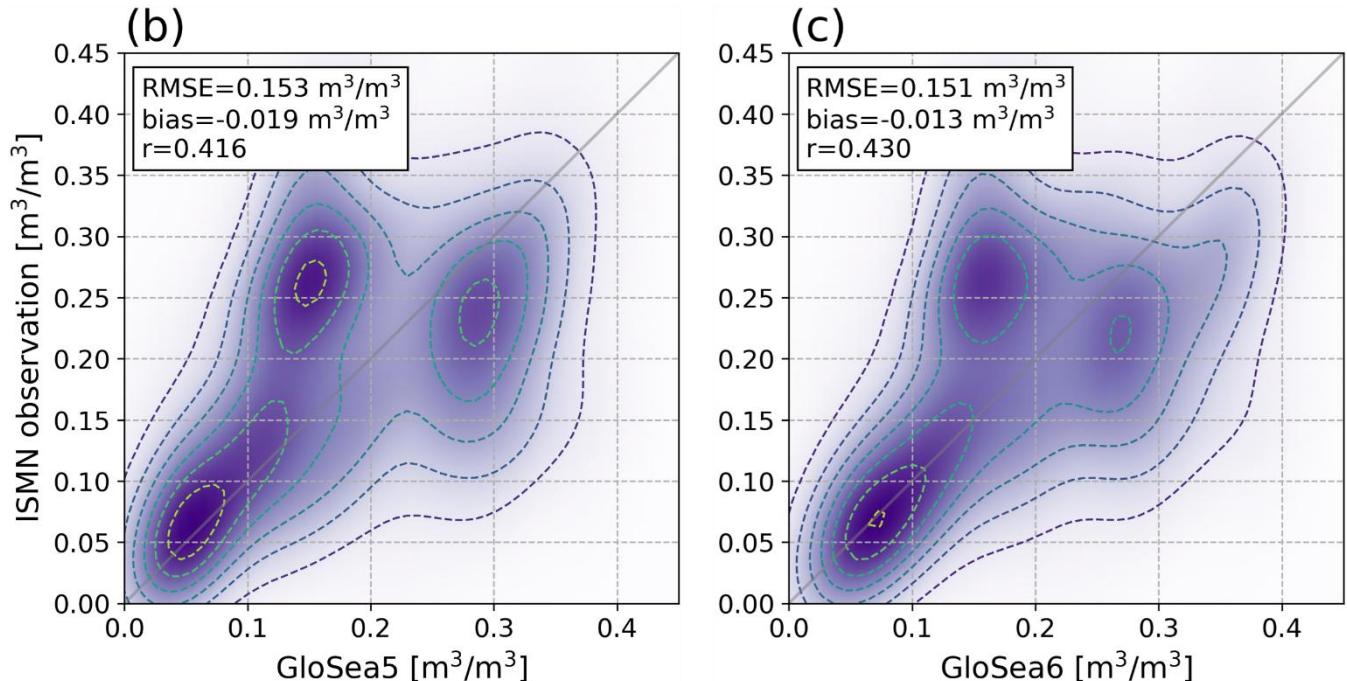


Figure 3: (a) Spatial distribution of climatological surface soil moisture difference between GloSea6 and GloSea5 of the average of 1–60 lead forecast days from the runs initiated in May–August of 1993–2016. The dotted area indicates the difference is statistically significant at a 95% confidence level and NH (20–80N) averaged value is indicated in the lower-left corner. 2-dimensional density of modelled surface soil moisture in (b) GloSea5 and (c) GloSea6 against in situ ISMN observations (1720 measurement sites that are mostly over North America and Europe as shown in SF. 5), where RMSE, bias, and Pearson correlation coefficient are denoted in the upper-left corner.

480

Since SMM is a key factor in the subseasonal forecasting because of its persistence over a few weeks, model fidelity of SMM
485 is crucial for forecast skill. Because memory is shortened by occurrences of precipitation, it is prolonged where the climate is relatively dry. For instance, SM persistence is relatively short over East Asia where the monsoon flow throughout the summer season leads to an increasing likelihood of rainfall, accompanying wet soil. The spatial patterns of SMM from ESACCI_{adj},

ERA5-Land, and GLEAM are similar (Figs. 4a,b,c), but ESACCI_{adj} is noisy at high-latitudes because SM dynamics are not perceived by the satellite when the surface is frozen. The NH averaged values of SMM from ESACCI_{adj}, ERA5-Land, and GLEAM are 9.5, 8.1, 9.9 days. The spatial distribution of SMM determined from the observational products is reliably simulated over the NH in GloSea5 and GloSea6. Improvements in SMM bias and spatial agreement are shown in GloSea6 (Figs. 4d,e). The underestimation of SMM in GloSea5 is increased by 0.6 days and the spatial correlation of the SMM with the observed fields is also improved. When the assessment is performed with in-situ measurements (SF. 6), an extended SMM in GloSea6, compared to GloSea5, is a better match to the observations (SFs. 6d,e). When the soil becomes wet due to the late onset of snow melting, the SM decay in response to rainfall is slow, thereby significantly increasing the SMM in mid-latitude regions (Fig. 4f). In contrast, there are some regions (e.g., East Asia and India) where SMM decreases, the main reason being an increase in rainfall.

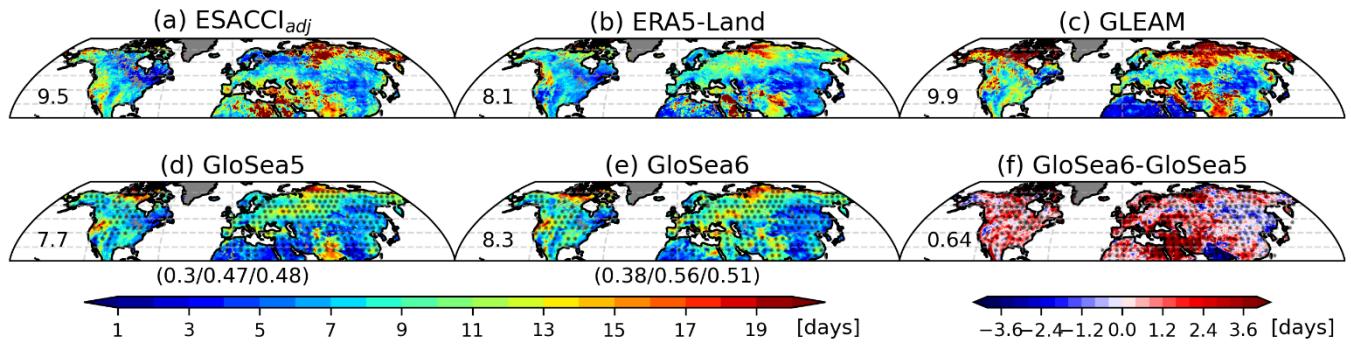


Figure 4: Surface SMM from (a) ESACCI_{adj}, (b) ERA5-Land, (c) GLEAM, (d) GloSea5, (e) GloSea6, and (f) the difference between GloSea6 and GloSea5. NH mean values are denoted in the middle-left in each panel. The bracketed values indicate the spatial correlation of the modelled soil moisture memory compared to ESACCI_{adj} (left), ERA5-Land (middle), and GLEAM (right). Dotted areas represent statistical significance of SMM difference between models (d–e) and between models (f) at the 99% confidence level from a Monte Carlo method.

Features of the surface air temperature simulation in GloSea6 during the NH warm season include reduced biases in both daily mean and sub-daily timescales across all forecast lead times (Fig. 5), which can be explained by the updated land surface physics, including changes in snow and soil processes. GloSea6 represents a decrease in Tmean bias despite the existence of significant positive bias over North America (Fig. 5b). GloSea6 simulates colder temperatures over the mid-latitudes, compared to GloSea5 (Fig. 5c). To identify the impact of two major modifications in the LSM on temperature simulation, when the assessment of Tmean is decomposed into the Tmax and Tmin. Both daytime and nighttime temperatures are analysed in addition to daily mean temperature to assess whether temperature changes associated with land surface processes occur preferentially during the day or night. Since many coupled land-atmosphere processes are typically more active during the daytime due to greater available energy (net radiation), sub-daily analysis is essential for realistically capturing their effects (Yin et al., 2023). Furthermore, relying solely on Tmean can be misleading, as it conflates errors in maximum and minimum temperatures, and thus does not necessarily reflect an overall improvement in model performance (Seo et al., 2024). Tmax shows a large negative bias north of 50°N (Figs. 5d,e). Tmin appears to have a large positive bias over the NH, which have a negative bias (Figs. 5g,h). The effect of the multi-layer snow scheme on forecasting temperature is primarily surface cooling

over snow frontal areas throughout the entire day (Fig. 5c), even though the temperature response is more sensitive during the daytime when land-atmosphere interactions are most active (Figs. 5f,i). This is because there is a larger latent heat flux during the daytime, resulting in a larger evaporative cooling.

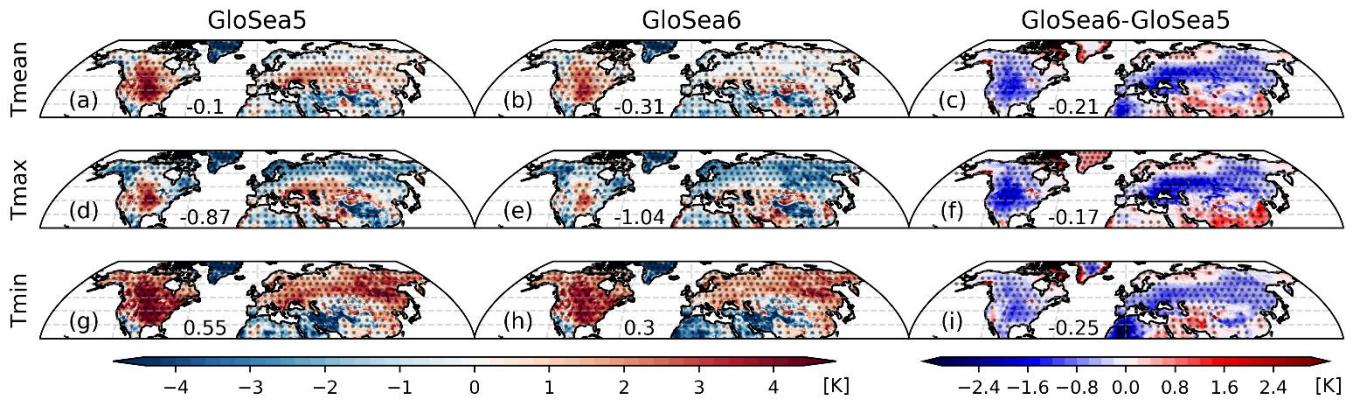


Figure 5: Spatial distribution of daily mean (upper row; a–c), maximum (middle row; d–f), and minimum (lower row; g–i) surface air temperature bias of the average of 1–60 lead forecast days in GloSea5 (first column), GloSea6 (second column), and the difference between both models (last column). Area averaged bias is denoted in the lower-right corner in each panel. Dotted areas indicate the bias is statistically significant at a 95% confidence level.

520 The systemic error of surface air temperatures, measured by root-mean-square error (RMSE), is further investigated using 60-day lead forecasts. In general, the error in Tmean, Tmax, and Tmin from GloSea6 is largely reduced compared to that from GloSea5. In particular, GloSea5 shows a large Tmean RMSE over the eastern US and Siberia (Fig. 6a), but the error is significantly mitigated in GloSea6 (Fig. 6c). Tmean errors in the eastern US and Siberia are influenced by both Tmax and Tmin. Based on the temperature bias analysis, this result is attributed by the improvement in the snow scheme that has effects 530 throughout the day. However, some errors are aggravated in GloSea6. For instance, in northeastern Eurasia, Tmax RMSE is significantly increased by an exacerbated cold bias, which is related to a cold bias in initial conditions (not shown). The multi-layer snowpack reinforces this bias in GloSea6.

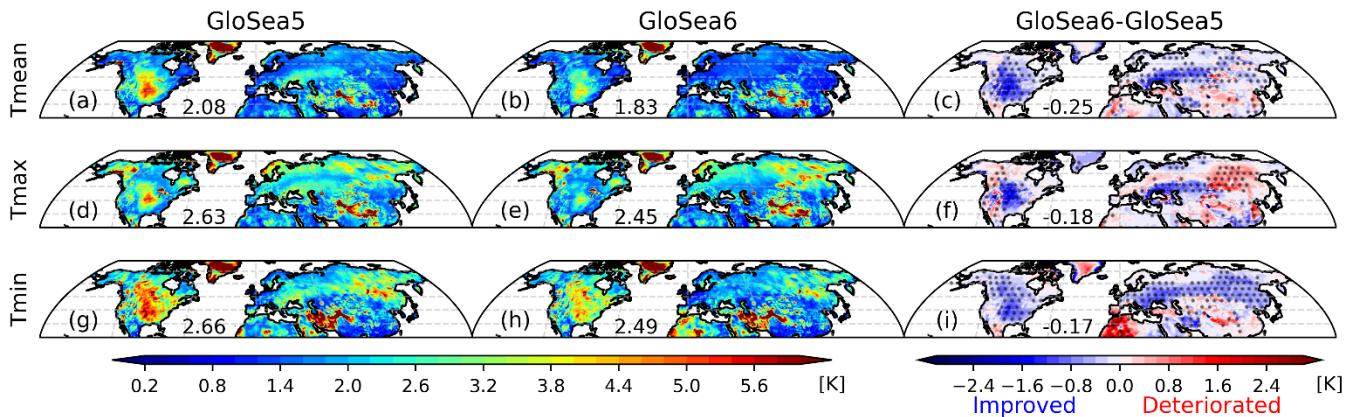


Figure 6: Same as Fig. 5, but for RMSE of surface air temperature variables. Blue and red shading in difference maps (c, f, and i) indicate the improved and deteriorated forecast performance of GloSea6, compared with the GloSea5.

Model performance in simulating precipitation is also evaluated in GloSea5 and GloSea6. Both models show an overestimation of precipitation across the NH because of the wet bias over southern China, and northeastern Eurasia (Figs. 7a,b). Although the NH averaged bias increases in GloSea6, this is largely due to a reduction in the negative bias over the continental United States (CONUS) and western and central Eurasia, as the positive bias is amplified or maintained in areas that have wet biases in GloSea5 (Fig. 7c). The increased precipitation over the mid-latitude regions is explained by the abundant SM from snow melting process under positive evapotranspiration-precipitation feedback (cf., Fig. 8). The difference of precipitation RMSE maps between GloSea6 and GloSea5 reveals a significant improvement in the simulation of precipitation over central CONUS, western and central Eurasia, and South Asia (Fig. 7f). Although entire regions where the error is reduced cannot be explained solely by advances in land processes, the improvement in the mid- and high-latitude regions of the NH is likely due to the improved snow physics.

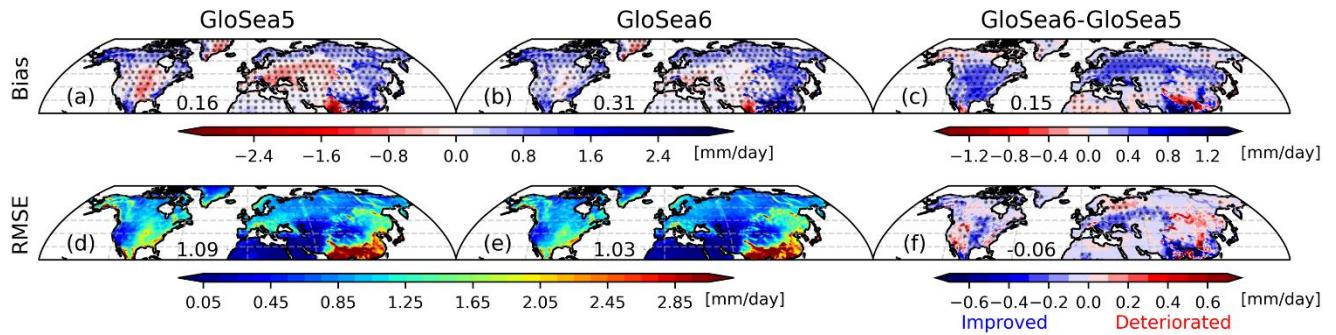


Figure 7: Spatial distribution of daily mean precipitation bias (upper row; a–c) and RMSE (lower row; d–f) of 60 days forecast in GloSea5 (first column), GloSea6 (second column), and the difference between both models (last column). Dotted areas indicate that (a–c) bias and (f) RMSE are statistically significant at a 95% confidence level.

To demonstrate the impact of land-atmosphere interactions on the model ability to simulate precipitation, this study assesses the time-lagged Granger causality between EF and PR . The observed causality generally represents that the null hypothesis is rejected ($1-p$ value > 0.5) regardless of feedback direction, indicating evaporation-precipitation feedback over mid-latitude regions (Figs. 8a,b). The causal probability in the direction from PR to EF , $GC(EF_t|PR_{t-1})$, is generally pronounced over the globe, with particularly strong feedback over the areas where precipitation variability is primarily attributed by large-scale atmospheric circulations (e.g., South and East Asia), while the dominance of $GC(PR_t|EF_{t-1})$ is strongest over western North America (Fig. 8c). However, GloSea5 shows the overall overestimation in both causal directions between EF and PR (Figs. 8d,e), whereas a negative and positive bias in $GC(EF_t|PR_{t-1})$ and $GC(PR_t|EF_{t-1})$ are respectively shown over the high-latitudes of Eurasia. The difference map of $GC(EF_t|PR_{t-1})$ and $GC(PR_t|EF_{t-1})$ simulated in GloSea5 shows a positive bias over South and East Asia due to the overestimated $GC(EF_t|PR_{t-1})$ and a negative bias over eastern US and northern Eurasia due to overestimated $GC(PR_t|EF_{t-1})$ and underestimated $GC(EF_t|PR_{t-1})$ (Fig. 8f), respectively. The biases of the evaporation-precipitation feedback in both causal directions are reduced in GloSea6, with approximately a 10% decrease compared to GloSea5 (Figs. 8g,h). For instance, the meridional bias pattern over Eurasia is diminished in both causal directions,

particularly due to the decreased causal probability in $GC(PR_t|EF_{t-1})$ over northern Eurasia, because the abundant SM in GloSea6, resulting from the multi-layer snowpack, suppresses water-limited processes.

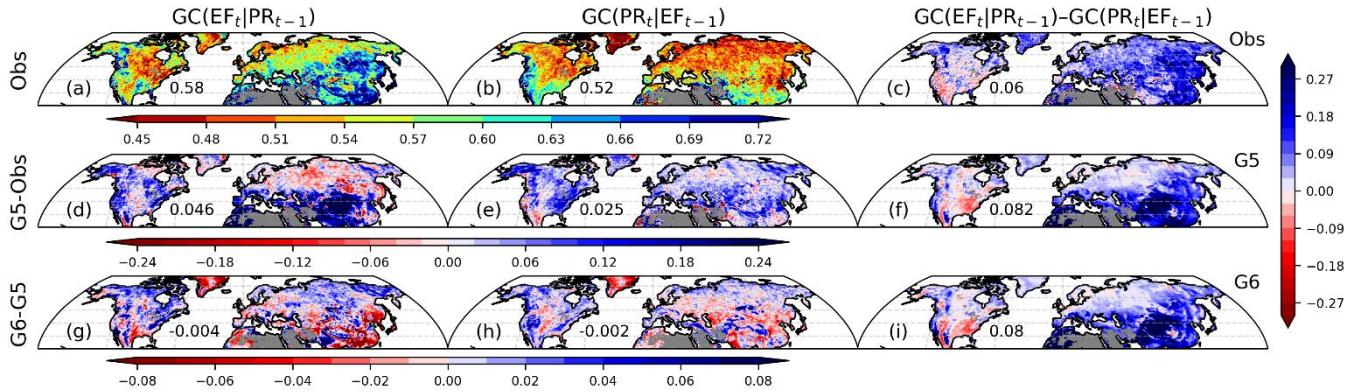
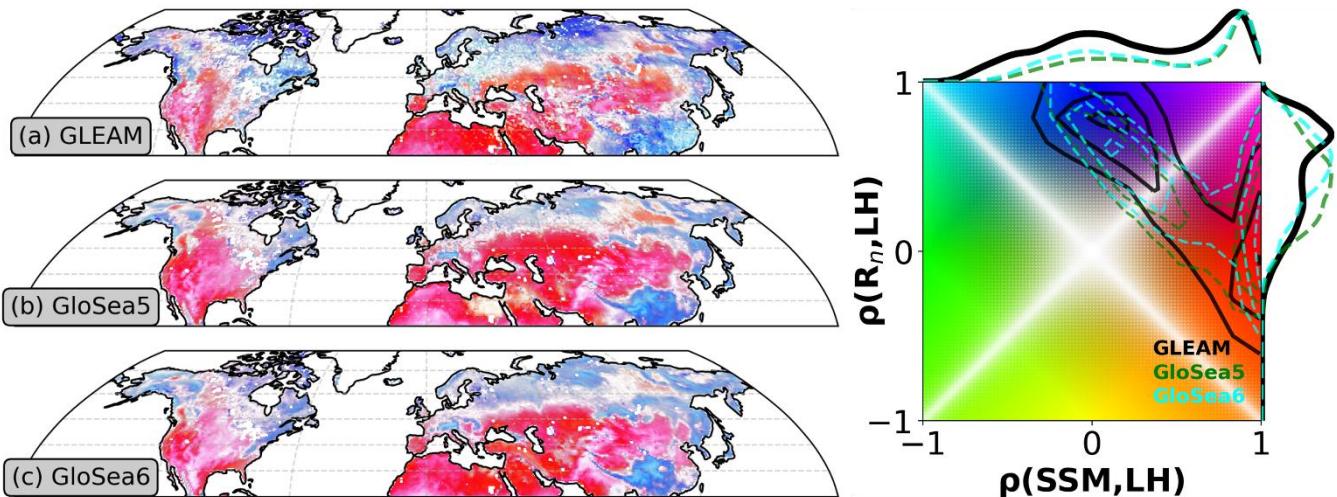


Figure 8: Spatial distribution of 1-day lagged Granger causality (1-p value) with evaporative fraction and precipitation. The observed causalities (a) $GC(EF_t|PR_{t-1})$, (b) $GC(PR_t|EF_{t-1})$, and (c) their difference in which blue and red color indicates the dominance of feedback direction in $GC(EF_t|PR_{t-1})$ and $GC(PR_t|EF_{t-1})$, respectively. The model biases of GloSea5 compared to observations for the causality in (d) $GC(EF_t|PR_{t-1})$, (e) $GC(PR_t|EF_{t-1})$, and (f) the difference between $GC(EF_t|PR_{t-1})$ and $GC(PR_t|EF_{t-1})$ in GloSea5. The difference maps of (g) $GC(EF_t|PR_{t-1})$ and (h) $GC(PR_t|EF_{t-1})$ between GloSea5 and GloSea6 and (i) the difference between $GC(EF_t|PR_{t-1})$ and $GC(PR_t|EF_{t-1})$ in GloSea6.

4.3 Representation of land coupling processes

The exchanges at the land surface are constrained by the water and energy balance equations, and the strength of water- versus energy-limited processes is quantified by the temporal correlation coefficient of latent heat flux to surface SM or net radiation, respectively, as described in subsection 3.3. In Figure 9, the colour square consists of $R(SSM, LH)$ and $R(R_n, LH)$ on the x- and y-axis, respectively, indicating the relative dominance of water- and energy-limited coupling. The spatial pattern of the GLEAM land coupling regimes is similar to the distribution of SM climatology, such that water-limited processes are pronounced over climatologically dry areas and vice versa. The classification of the land coupling regime results from the synthetization of the spatial pattern of $R(SSM, LH)$ (Fig. 10a) and $R(R_n, LH)$ (Fig. 11a), recognizing that both variables are interconnected through the surface energy and water budgets. Since latent heat flux is influenced by both SM availability and incoming radiation, positive correlations in both $R(SSM, LH)$ and $R(R_n, LH)$ can occur simultaneously, especially in transitional regimes (cf., Denissen et al., 2020). This overlap does not contradict the diagnostic framework but reflects the continuum of land-atmosphere coupling conditions. The kernel density plot of $R(SSM, LH)$ is bimodal, with clearly separated peaks on either side of zero, while there is a double peak in $R(R_n, LH)$ with a broad peak centered near zero and a pronounced positive peak. For instance, the spatial distribution of $R(SSM, LH)$ and $R(R_n, LH)$ is a zonal dipole structure over CONUS but is meridionally banded over Eurasia. Note that $R(SSM, LH)$ and $R(R_n, LH)$ are not mutually exclusive and may both be positive in transitional regimes. Their combined interpretation provides a diagnostic view of dominant surface flux controls but does not imply strict causality.

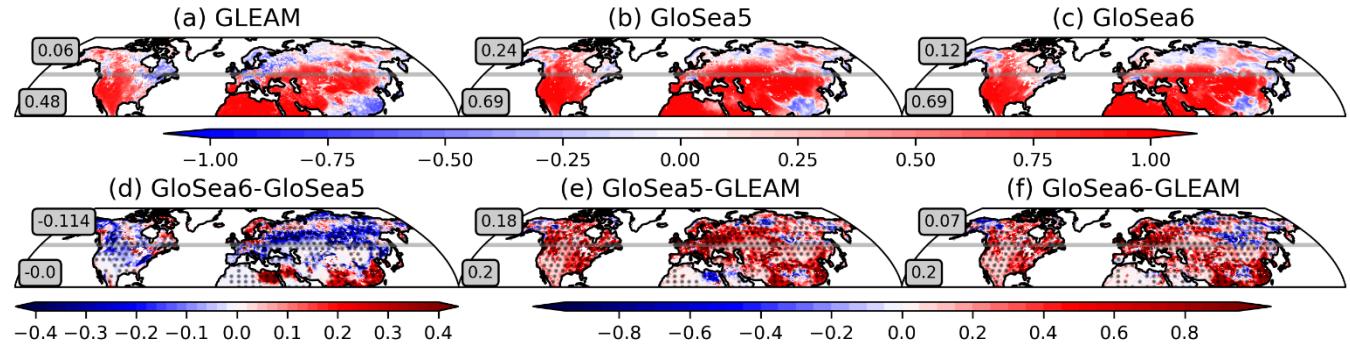


590 **Figure 9: Spatial distribution of land coupling regime in (a) GLEAM, (b) GloSea5, and (c) GloSea6.** Shadings indicate correlations indicated in the coloured square: latent heat flux to surface soil moisture (x-axis) and net radiation (y-axis). The NH frequency distributions from GLEAM (black), GloSea5 (green), and GloSea6 (aqua) are shown in the lower-left 2-dimensional coloured square. Their kernel density estimations are along the edges of the coloured square, where each curve has been normalized for the same maximum value.

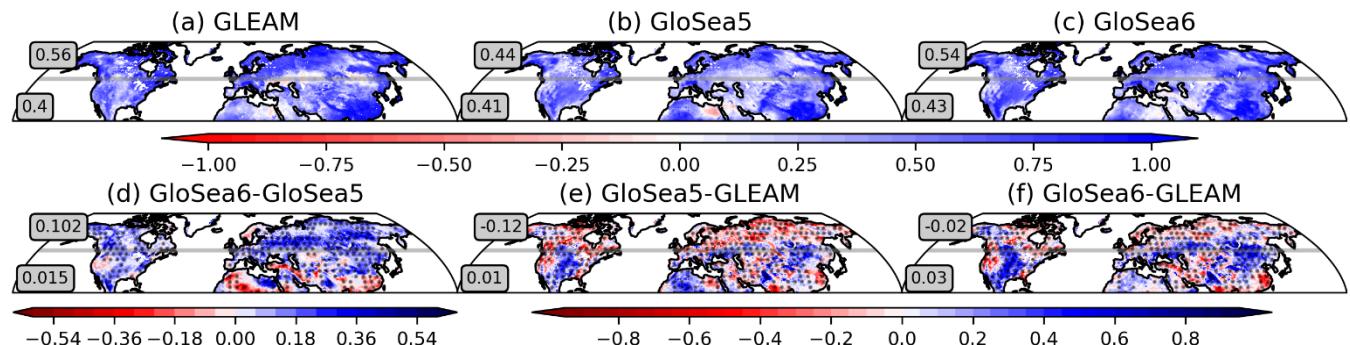
595 GloSea5 and GloSea6 exhibit an unclear bimodal peak near zero and on the positive side in the kernel density estimation of $R(SSM, LH)$, which is explained by an overall overestimation of $R(SSM, LH)$ resulting in the expansion of water-limited areas and the degradation of the spatial characteristics in the observation (Figs. 10b,c). The strength of the water-limited coupling is overestimated over the NH, but the positive bias is particularly evident over high-latitude regions (Figs. 10e,f). The difference between kernel density estimates of $R(SSM, LH)$ from both forecast systems is observed near zero, where the kernel density of GloSea6 is closer to that of GLEAM. This does not indicate that the spatial distributions are the same, but rather reflects a cancellation effect due to changes in areas where $R(SSM, LH)$ decreases in GloSea6 over high-latitude regions (Fig. 10d).
 600 On the other hand, both forecast models show a single peak on the positive side of the kernel density estimation of $R(R_n, LH)$, even though the underestimated energy-limited coupling strength in GloSea5 is greater in GloSea6. The spatial distributions of $R(R_n, LH)$ simulated by the two models similarly underestimate the spatial dependency (Figs. 11b,c), compared to the GLEAM. For instance, in GLEAM, high-latitude regions show large positive values of $R(R_n, LH)$, but the models reveal negative biases (Figs. 11e,f). Nevertheless, GloSea6 significantly increases the energy-limited coupling strength, which mitigates the negative bias of $R(R_n, LH)$, especially over the high-latitude areas (Fig. 11d). The delayed snowmelt simulated in GloSea6 leads to increased SM during the warm season, which likely contributes to enhanced evaporative partitioning.
 605 While this may weaken the sensitivity of latent heat flux to SM (i.e., reducing $R(SSM, LH)$) and strengthen the relationship with R_n (i.e., increasing $R(R_n, LH)$), we acknowledge that this interpretation is subject to multiple confounding factors. Therefore, the observed regime shift should be interpreted as a potential signal of snow-related land surface processes rather than direct evidence of causal feedback.

As a result, GloSea5 and GloSea6 have a limited ability to simulate the observed land coupling regime distributions; the comparison of the 2-dimentional density function for GloSea5 (green line) and GloSea6 (aqua line) in the coloured square.

615 While the water-limited coupling is generally overestimated in both forecast models, the improvement of the energy-limited process in GloSea6 leads to a better classification of the land coupling regime over the NH (Fig. 9c). For instance, GloSea5 has an excessive area of red-coloured grid points, indicating the relative dominance of water-limited coupling, while GloSea6 better simulates the spatial pattern of land coupling regimes. In particular, the zonally and meridionally classified dipole pattern over the CONUS and the snow frontal area of Eurasia, respectively, become clear.



620 **Figure 10:** Same as Fig. 8, but for the correlation coefficient between daily latent heat flux and surface soil moisture, to illustrate water-limited processes.



625 **Figure 11:** Same as Fig. 10, but for the correlation coefficient between daily latent heat flux and net radiation, to illustrate energy-limited processes.

5 Summary and Conclusions

Some land surface models have employed a single layer snow scheme that insulates the near-surface atmosphere from direct access to the heat in the ground. While effective for very thin snow cover, such a scheme fails to simulate the true insulating effect of the snowpack by prohibiting energy transport between land and atmosphere in deeper snow.

630 This study primarily investigates the impact of implementing a multi-layer snow scheme on the climatological bias in both LSM offline simulations and fully coupled forecast systems. Two sets of LSM experiments are conducted using JULES version

5.6, the land surface component of GloSea6—one employing the single layer snow scheme and the other incorporating the multi-layer snowpack scheme. The multi-layer configuration yields a more realistic simulation of snow seasonality compared
635 to reanalysis data. Notably, it captures the onset of snowmelt more accurately by better representing the insulating effect of snow.

To further elucidate the role of snow insulating effect in coupled forecast system, we analyse GloSea global retrospective seasonal forecasts over 24 years (1993–2016) from two model versions: GloSea6, which implements the multi-layer scheme, and GloSea5, which retains the single-layer scheme. Improvements in the model simulations appearing in areas with high
640 snow variability can be understood as the effect of the multi-layer snow scheme. However, differences between GloSea5 and GloSea6 in areas unrelated to snow (e.g., India, South Asia, and East Asia) likely result from various other factors arising from other modifications as part of the model version update. Although atmospheric updates may alter the meridional circulation by modifying atmospheric variability in the tropics, their impacts are predominantly confined to tropical regions, with limited influence over the mid- or high-latitude regions (see Fig. 14 in Walter et al., 2019). As it is not possible to fully isolate the
645 contributions of other model components, this study focuses on the mid- and high-latitude regions of the NH to better attribute local land surface processes to improvements in snow physics.

The improved snow physics with a multi-layer snowpack better captures the observed snow dissipation season (Fig. 2a) and affects land and near-surface variables throughout the snow accumulation and melting seasons. The land surface warming and cooling due to the insulating effect of the snowpack during the snow peak and melting seasons (Fig. 2c) results in a late onset
650 of snow melt and wetter SM during the following summer season, especially in mid- to high-latitude regions (Fig. 2b and 3a), leading to reduced error in surface SM (Figs. 3b,c). The changes in land surface processes also affects land surface characteristics, e.g. SM memory is generally increased, which reduces model error in the memory and improves spatial agreement compared to the observational analysis (Fig. 4). Moreover, the greater SM from the advanced snow physics leads to a decrease in surface air temperature with evaporative cooling throughout the entire day (Fig. 5) and an increase in the
655 likelihood of precipitation explained by evapotranspiration-precipitation feedback (Fig. 7). These climatological mean shifts in temperature and precipitation through implementing the multi-layer snow scheme in GloSea6 significantly reduce the error in the mid- and high-latitude regions, as the reduced temperature and increased precipitation offset GloSea5's climatological warm and dry bias.

The spatial distribution of the land coupling regime reflects the underlying SM climatology, with the majority of water- and
660 energy-limited coupling corresponding to relatively dry and wet soils, respectively (Fig. 9). Evaluating these regimes is essential for understanding model behaviours associated with land-atmosphere coupling processes. Comparing the land coupling regime simulated by GloSea5 and GloSea6, the increased SM in GloSea6 alters the coupling characteristics, weakening water-limited coupling (Fig. 10) while enhancing energy-limited processes (Fig. 11). Although both models still overestimate water-limited coupling, the multi-layer snow scheme reduces this bias in mid- and high-latitude regions. The
665 increased SM due to the late onset of snowmelt restricts water-limited coupling, evidenced by increased $R(R_n, LH)$ and decreased $R(SSM, LH)$.

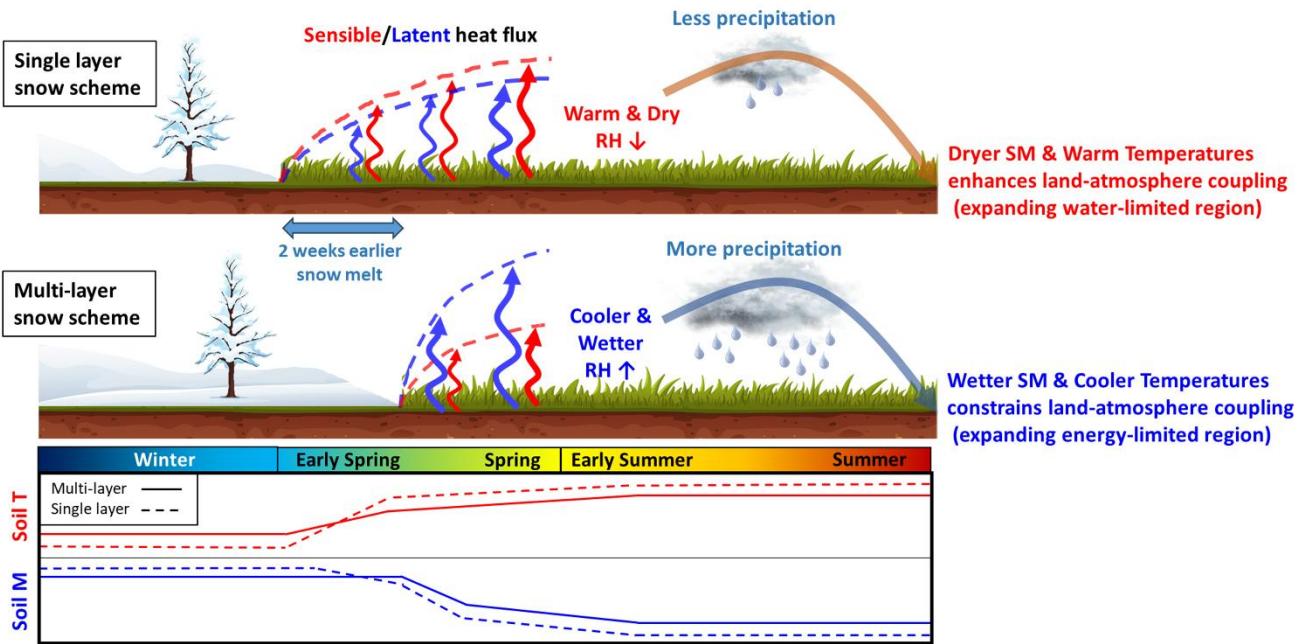


Figure 12: Schematic of the impact of multi-layer snow scheme on seasonal forecast system from winter through the following summer.

670 Since realistic snow states influence the water and energy budgets not only in winter but also in spring and summer (Fig. 12), the realization of snow characteristics should be a priority in the process of developing a model. Importantly, modifying land surface schemes to improve warm-season processes without addressing snow dynamics may lead to increased errors—even if snow is realistically simulated. It is also worth noting that improvements in climatology do not directly translate to enhanced forecast skill; in this study, improvements in temperature and precipitation skill in GloSea6 are primarily attributed to the 675 larger ensemble size (SFs. 7 and 8). In conclusion, the implementation of a multi-layer snow scheme is essential for realistically simulating land surface processes in S2S dynamical forecast systems. From a climate perspective, as global warming increases both the variability and uncertainty in modelled snow conditions, reliable future climate projections will depend on the selective use of models that are able to simulate realistic snow characteristics.

680 Acknowledgements

This study was supported by Korea Meteorological Administration Research and Development program under grant RS-2023-00241809. Eunkyo Seo was supported by Learning & Academic research institution for Master's·PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2023-000301702). We also wish to thank Sunlae Tak for sharing retrospective forecast datasets which helped us perform the model 685 evaluation.

Code availability

The MetUM is available for use under licence. The source code for the Met Office Unified Model (MetUM) cannot be provided due to intellectual property right restrictions. For further information on how to apply for a licence, see <https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership>. The source code for the JULES

690 version 5.6 is available at <https://jules.jchmr.org/>. The source code used in the model evaluation of this study is shared on the GitHub (https://github.com/ekseo/Multi-layer_snowpack_GloSea.git, last access: 31 May 2024, <https://doi.org/10.5281/zenodo.11243938>, Seo, 2024).

Data availability

The Copernicus Climate Change Service (C3S) provides access to ERA5-Land data freely through its online portal at

695 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview>. The JRA-3Q dataset can be downloaded from the Data Integration and Analysis System (DIAS, <https://search.diasjp.net/en/dataset/JRA3Q>). ISMN soil moisture observation is publicly available through its online website at <https://ismn.earth/en/>. CPC Global Unified Temperature data is provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, can be downloaded from their website at <https://psl.noaa.gov/data/gridded/>. MSWEP precipitation dataset can be accessed at <https://www.gloh2o.org/mswep/>. GLEAM data is publicly available at the website: <https://www.gleam.eu/>. The ECMWF provides access to GloSea6-GC3.2 hindcast 700 data freely through its online portal at <https://apps.ecmwf.int/datasets/data/s2s/>. Other GloSea retrospective datasets and time-filtered ESA CCI SM product used in this study are available upon request from the authors.

Author contributions

705 ES led manuscript writing and performed most of the data analysis. PD contributed to the interpretation of results and manuscript writing.

Competing interests

The authors have no competing interests to declare.

References

710 Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a multi-layer snow scheme on near-surface weather forecasts, *Journal of Advances in Modeling Earth Systems*, 11, 4687-4710, 2019.

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, *Bulletin of the American Meteorological Society*, 100, 473-500, 2019a.

715 Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., Van Dijk, A. I., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, *Hydrology and Earth System Sciences*, 23, 207-224, 2019b.

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry, M., Porson, A., and Gedney, N.: The Joint UK Land Environment Simulator (JULES), model description—Part 1: energy and water fluxes, *Geoscientific Model Development*, 4, 677-699, 2011.

720 Betts, A. K., Desjardins, R., Worth, D., Wang, S., and Li, J.: Coupling of winter climate transitions to snow and clouds over the Prairies, *Journal of Geophysical Research: Atmospheres*, 119, 1118-1139, 2014.

Burke, E. J., Dankers, R., Jones, C. D., and Wiltshire, A. J.: A retrospective analysis of pan Arctic permafrost using the JULES land surface model, *Climate Dynamics*, 41, 1025-1038, 2013.

725 Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, *OASIS3-MCT_3.0*, *Geoscientific Model Development*, 10, 3297-3308, 2017.

Cristea, N. C., Bennett, A., Nijssen, B., and Lundquist, J. D.: When and where are multiple snow layers important for simulations of snow accumulation and melt?, *Water Resources Research*, 58, e2020WR028993, 2022.

Denissen, J. M., Teuling, A. J., Reichstein, M., and Orth, R.: Critical soil moisture derived from satellite observations over Europe, *Journal of Geophysical Research: Atmospheres*, 125, e2019JD031672, 2020.

730 Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the harvest of predictability from land states in a global forecast model, *Journal of Geophysical Research: Atmospheres*, 123, 13,111-113,127, 2018.

Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R., and Cooper, H. M.: Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018, *AGU Advances*, 2, e2020AV000283, 2021.

735 Dirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford, T. W., Santanello Jr, J. A., Bosilovich, M. G., Ek, M. B., and Koster, R. D.: Confronting weather and climate models with observational data from soil moisture networks over the United States, *Journal of Hydrometeorology*, 17, 1049-1067, 2016.

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., and Ardö, J.: The International Soil Moisture Network: serving Earth system science for over a decade, *Hydrology and Earth System Sciences Discussions*, 2021, 1-83, 2021.

740 Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., and Gruber, A.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, *Remote Sensing of Environment*, 203, 185-215, 2017.

Granger, C. W.: Investigating causal relations by econometric models and cross-spectral methods, *Econometrica: journal of the Econometric Society*, 424-438, 1969.

745 Guo, Z., Dirmeyer, P. A., and DelSole, T.: Land surface impacts on subseasonal and seasonal predictability, *Geophysical Research Letters*, 38, 2011.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.: The ERA5 global reanalysis, *Quarterly Journal of the Royal Meteorological Society*, 146, 1999-2049, 2020.

750 Houldcroft, C. J., Grey, W. M., Barnsley, M., Taylor, C. M., Los, S. O., and North, P. R.: New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model, *Journal of Hydrometeorology*, 10, 183-198, 2009.

Huffman, G. J., Bolvin, D. T., Joyce, R., Kelley, O. A., Nelkin, E. J., Portier, A., Stocker, E. F., Tan, J., Watters, D. C., and West, B. J.: IMERG V07 release notes, Goddard Space Flight Center: Greenbelt, MD, USA, 2023.

Kobayashi, S., Ota, Y., Harada, Y., Ebida, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., and Endo, H.: The JRA-55 reanalysis: General specifications and basic characteristics, *Journal of the Meteorological Society of Japan. Ser. II*, 93, 5-48, 2015.

755 Kosaka, Y., Kobayashi, S., Harada, Y., Kobayashi, C., Naoe, H., Yoshimoto, K., Harada, M., Goto, N., Chiba, J., and Miyaoka, K.: The JRA-3Q reanalysis, *Journal of the Meteorological Society of Japan. Ser. II*, 102, 49-109, 2024.

Koster, R., Mahanama, S., Yamada, T., Balsamo, G., Berg, A., Boissarie, M., Dirmeyer, P., Doblas-Reyes, F., Drewitt, G., and Gordon, C.: The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill, *Journal of Hydrometeorology*, 12, 805-822, 2011.

760 Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the nature of soil moisture in land surface models, *Journal of Climate*, 22, 4322-4335, 2009.

Koster, R. D., Sud, Y., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W., Chan, E., Verseghy, D., Cox, P., and Davies, H.: GLACE: the global land-atmosphere coupling experiment. Part I: overview, *Journal of Hydrometeorology*, 7, 590-610, 2006.

765 Kumar, S., Kolassa, J., Reichle, R., Crow, W., de Lannoy, G., de Rosnay, P., MacBean, N., Girotto, M., Fox, A., and Quaife, T.: An agenda for land data assimilation priorities: Realizing the promise of terrestrial water, energy, and vegetation observations from space, *Journal of Advances in Modeling Earth Systems*, 14, e2022MS003259, 2022.

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, *International journal of remote sensing*, 21, 1303-1330, 2000.

770 MacLachlan, C., Arribas, A., Peterson, K., Maidens, A., Fereday, D., Scaife, A., Gordon, M., Vellinga, M., Williams, A., and Comer, R.: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, *Quarterly Journal of the Royal Meteorological Society*, 141, 1072-1084, 2015.

Mann, G., Carslaw, K., Spracklen, D., Ridley, D., Manktelow, P., Chipperfield, M., Pickering, S., and Johnson, C.: Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model, *Geoscientific Model Development*, 3, 519-551, 2010.

775 Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5. 0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications, *Geoscientific Model Development*, 7, 1069-1092, 2014.

Miralles, D. G., Bonte, O., Koppa, A., Baez-Villanueva, O. M., Tronquo, E., Zhong, F., Beck, H. E., Hulsman, P., Dorigo, W., and Verhoest, N. E.: GLEAM4: global land evaporation and soil moisture dataset at 0.1 resolution from 1980 to near present, *Scientific Data*, 12, 416, 2025.

780 Mogensen, K., Balmaseda, M. A., and Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4, 2012.

Muller, J.-P., López, G., Watson, G., Shane, N., Kennedy, T., Yuen, P., Lewis, P., Fischer, J., Guanter, L., and Domench, C.: The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 years from European sensors, *Geophysical Research Abstracts*, 10969,

785 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., and Hersbach, H.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, *Earth system science data*, 13, 4349-4383, 2021.

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., and Rosero, E.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, *Journal of Geophysical Research: Atmospheres*, 116, 2011.

790 Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., de Rosnay, P., Zhu, C., Wang, W., and Senan, R.: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, *The Cryosphere*, 13, 2221-2239, 2019.

Rae, J., Hewitt, H., Keen, A., Ridley, J., West, A., Harris, C., Hunke, E., and Walters, D.: Development of the global sea ice 6.0 CICE configuration for the met office global coupled model, *Geoscientific Model Development*, 8, 2221-2230, 2015.

795 Richter, J. H., Glanville, A. A., King, T., Kumar, S., Yeager, S. G., Davis, N. A., Duan, Y., Fowler, M. D., Jaye, A., and Edwards, J.: Quantifying sources of subseasonal prediction skill in CESM2, *npj Climate and Atmospheric Science*, 7, 59, 2024.

Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3. 1, *Geoscientific Model Development*, 11, 713-723, 2018.

800 Robock, A., Vinnikov, K. Y., Schlosser, C. A., Speranskaya, N. A., and Xue, Y.: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models, *Journal of Climate*, 8, 15-35, 1995.

Salvucci, G. D., Saleem, J. A., and Kaufmann, R.: Investigating soil moisture feedbacks on precipitation with tests of Granger causality, *Advances in water Resources*, 25, 1305-1312, 2002.

Sanchez, C., Williams, K. D., and Collins, M.: Improved stochastic physics schemes for global weather and climate models, *Quarterly Journal of the Royal Meteorological Society*, 142, 147-159, 2016.

805 Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B., Berg, A., Ek, M., Gentine, P., Guillod, B. P., and Van Heerwaarden, C.: Land-atmosphere interactions: The LoCo perspective, *Bulletin of the American Meteorological Society*, 99, 1253-1272, 2018.

Sellers, P., Mintz, Y., Sud, Y. e. a., and Dalcher, A.: A simple biosphere model (SiB) for use within general circulation models, *Journal of Atmospheric Sciences*, 43, 505-531, 1986.

810 Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration, *International journal of remote sensing*, 6, 1335-1372, 1985.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A review, *Earth-Science Reviews*, 99, 125-161, 2010.

Seo, E. and Dirmeyer, P. A.: Improving the ESA CCI Daily Soil Moisture Time Series with Physically Based Land Surface Model Datasets Using a Fourier Time-Filtering Method, *Journal of Hydrometeorology*, 23, 473-489, 2022.

815 Seo, E., Lee, M.-I., and Reichle, R. H.: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter, *Remote Sensing of Environment*, 253, 112222, 2021.

Seo, E., Dirmeyer, P. A., Barlage, M., Wei, H., and Ek, M.: Evaluation of Land–Atmosphere Coupling Processes and Climatological Bias in the UFS Global Coupled Model, *Journal of Hydrometeorology*, 25, 161–175, 2024.

820 Seo, E., Lee, M.-I., Schubert, S. D., Koster, R. D., and Kang, H.-S.: Investigation of the 2016 Eurasia heat wave as an event of the recent warming, *Environmental Research Letters*, 15, 114018, 2020.

Seo, E., Lee, M.-I., Jeong, J.-H., Koster, R. D., Schubert, S. D., Kim, H.-M., Kim, D., Kang, H.-S., Kim, H.-K., and MacLachlan, C.: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events, *Climate Dynamics*, 52, 1695–1709, 2019.

825 Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., and Hyder, P.: UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions, *Geoscientific Model Development*, 11, 3187–3213, 2018.

Tak, S., Seo, E., Dirmeyer, P. A., and Lee, M.-I.: The role of soil moisture-temperature coupling for the 2018 Northern European heatwave in a subseasonal forecast, *Weather and Climate Extremes*, 100670, 2024.

Taylor, C. M., de Jeu, R. A., Guichard, F., Harris, P. P., and Dorigo, W. A.: Afternoon rain more likely over drier soils, *Nature*, 489, 423–426, 2012.

830 Tennant, W. J., Shutts, G. J., Arribas, A., and Thompson, S. A.: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill, *Monthly Weather Review*, 139, 1190–1206, 2011.

Valcke, S.: The OASIS3 coupler: A European climate modelling community software, *Geoscientific Model Development*, 6, 373–388, 2013.

Vinnikov, K. Y. and Yeserkepova, I.: Soil moisture: Empirical data and model results, *Journal of Climate*, 66–79, 1991.

835 Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., and Fuentes, M.: The subseasonal to seasonal (S2S) prediction project database, *Bulletin of the American Meteorological Society*, 98, 163–173, 2017.

Vitart, F., Robertson, A., Brookshaw, A., Caltabiano, N., Coelho, C., de Coning, E., Dirmeyer, P., Domeisen, D., Hirsens, L., and Kim, H.: The WWRP/WCRP S2S project and its achievements, *Bulletin of the American Meteorological Society*, 2025.

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., and Manners, J.: The Met Office Unified Model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations, *Geoscientific Model Development*, 12, 1909–1963, 2019.

840 Walters, D., Boutle, I., Brooks, M., Thomas, M., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., and Allen, T.: The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations, *Geoscientific Model Development*, 10, 1487, 2017.

Williams, K., Copsey, D., Blockley, E., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H., and Hill, R.: The Met Office global coupled model 3.0 and 3.1 (GC3. 0 and GC3. 1) configurations, *Journal of Advances in Modeling Earth Systems*, 10, 357–380, 2018.

845 Williams, K., Harris, C., Bodas-Salcedo, A., Camp, J., Comer, R., Copsey, D., Fereday, D., Graham, T., Hill, R., and Hinton, T.: The met office global coupled model 2.0 (GC2) configuration, *Geoscientific Model Development*, 8, 1509–1524, 2015.

Wiltshire, A. J., Duran Rojas, M. C., Edwards, J. M., Gedney, N., Harper, A. B., Hartley, A. J., Hendry, M. A., Robertson, E., and Smout-Day, K.: JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2, *Geoscientific Model Development*, 13, 483–505, 2020.

Xu, L. and Dirmeyer, P.: Snow-atmosphere coupling strength in a global atmospheric model, *Geophysical Research Letters*, 38, 2011.

Xue, Y., Sun, S., Kahan, D. S., and Jiao, Y.: Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites, *Journal of Geophysical Research: Atmospheres*, 108, 2003.

850 Yang, W., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., Privette, J. L., Huemmrich, K. F., Fensholt, R., and Sandholt, I.: MODIS leaf area index products: From validation to algorithm improvement, *IEEE Transactions on Geoscience and Remote Sensing*, 44, 1885–1898, 2006.

Yin, Z., Findell, K. L., Dirmeyer, P., Shevliakova, E., Malyshev, S., Ghannam, K., Raoult, N., and Tan, Z.: Daytime-only mean data enhance understanding of land–atmosphere coupling, *Hydrology and Earth System Sciences*, 27, 861–872, 2023.