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Abstract. This study explores the influence of implementing a multi-layer snow scheme on the climatological bias within a 

seasonal forecast system. Traditional single layer snow scheme in land surface models often inadequately represents the 

insulating effect of snowpack, resulting in warm and cold biases during winter and snow melting seasons, respectively. By 

contrast, multi-layer snow schemes improve the simulation of energy exchange between the land surface and atmosphere by 10 

realistically capturing snowpack thermal processes. To examine this impact, two sets of LSM offline experiments are 

conducted, using either a single-layer or a multi-layer snow scheme. Results show that the multi-layer configuration better 

reproduces the observed snow seasonality. To further assess the role of snow insulation in coupled systems, two versions of 

the Global Seasonal Forecast System (GloSea) are compared over 24 years (1993–2016): GloSea5, which uses a single-layer 

snow scheme, and GloSea6, which incorporates the multi-layer scheme. In GloSea6, the onset of snowmelt is delayed by 15 

approximately two weeks, postponing springtime evaporation, slowing soil moisture depletion, and improving both the 

climatology and memory of soil moisture. Increased soil moisture enhances the partitioning of available energy into latent heat 

flux, thereby promoting evaporative cooling and suppressing excessive water-limited land–atmosphere coupling. These land 

surface improvements, particularly over mid-latitude regions, mitigate near-surface warming biases across the entire diurnal 

period and reduce the sensitivity of atmospheric conditions to land surface variability. The model performance in simulating 20 

precipitation is also improved with the increase in precipitation occurrence over snow-covered regions, significantly reducing 

model error in the Great Plains and Europe. Above all, this study demonstrates the value of implementing a multi-layer 

snowpack scheme in seasonal forecast models, not only during the snowmelt season but also for the subsequent summer season, 

for model fidelity in simulating temperature and precipitation along with the reality of land-atmosphere interactions. 

1 Introduction 25 

Subseasonal-to-seasonal (S2S) forecasts have become increasingly pivotal in numerous fields, encompassing agriculture, 

water resource management, energy, transportation, and disaster preparedness. The significance of S2S forecasting stems from 

their ability to provide actionable insights into forthcoming weather and climate conditions over the span of weeks to months. 

The predictability of S2S forecasts is strongly tied to the quality of the initial conditions and data assimilation technique, which 
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mathematically finds optimal values with minimized analysis errors to merge observations into a dynamical model, has been 30 

employed to create improved global analyses (Seo et al., 2021; Kumar et al., 2022). Forecasts across various time scales 

underscore the necessity for precise initial states of distinct components within the forecast model, as each component retains 

information over inherently disparate time scales (Richter et al., 2024). As the memory of initial land conditions can extend 

out to approximately 2 months, the importance of realistic land surface initialization in determining skill of the subseasonal 

forecast is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al., 2019). 35 

In particular, soil moisture (SM) plays a pivotal role in hydrological and meteorological dynamics, acknowledged as an 

essential climate variable by the World Meteorological Organization (WMO) (Seneviratne et al., 2010; Santanello et al., 2018). 

Its persistence or memory can significantly enhance forecast accuracy, particularly at time scales extending to 1–2 months 

(Dirmeyer et al., 2016; Dirmeyer et al., 2018; Seo and Dirmeyer, 2022). The fidelity of modelled SM contributes to a more 

accurate portrayal of land-atmosphere interactions, facilitating the exchange of water and energy fluxes at the land surface 40 

(Seo et al., 2024). This enhanced representation holds potential for predicting extreme climate events, particularly those 

intensified by land-atmosphere feedback within extended range forecast systems (Seo et al., 2020; Dirmeyer et al., 2021; Tak 

et al., 2024). SM is directly constrained by the components of the typical water balance equation: precipitation, latent heat 

flux, and runoff, but the modelled snow affects the representation of snow characteristics.  

The pivotal role of snow in land-atmosphere interactions highlights the significance of accurately representing cold processes 45 

related to snow in hydrometeorology and dynamical predictions. Compared to other land surface variables, snow exhibits 

distinctive characteristics such as high albedo, high thermal emissivity, and low thermal conductivity, which profoundly 

influence radiation budget and surface moisture and energy fluxes to the atmosphere. The presence or absence of snow can 

result in a disparity of approximately 10 K in the climatology of surface air temperature (Betts et al., 2014). This discrepancy 

primarily stems from the reduction in net shortwave radiation attributable to the high albedo of snow. Snow-atmosphere 50 

feedback evolves through three distinct stages: before, during, and after snowmelt. Meanwhile, the coupling strength of snow 

cover to near-surface atmospheric variables, as measured by the phase similarity of members of an ensemble forecast induced 

by specifying identical land surface conditions (Koster et al., 2006), is strongest during snowmelt and the coupling strength 

after snowmelt (delayed soil moisture impact) is stronger than that before snowmelt (radiative impact from surface albedo) 

(Xu and Dirmeyer, 2011). Therefore, during the warm season, SM dynamics become intricately linked to the physical 55 

characteristics of snow, affecting the initiation of evaporation and runoff due to snowmelt. It plays a crucial role in determining 

the model's ability to accurately simulate atmospheric variables through land-atmosphere coupling processes. 

Some Land surface models (LSMs) still use a single-layer snowpack scheme, which has proven insufficient in accurately 

capturing the seasonal evolution of snow cover. The snowpack insulates the land surface, inhibiting energy exchange between 

the land surface and the atmosphere. Consequently, a single layer snowpack scheme typically leads to cold and warm biases 60 

during winter and snow melting seasons, respectively. Because a single-layer scheme cannot simulate a vertical temperature 

gradient within the snowpack, it transmits surface temperature changes directly to the soil below, enhancing the efficiency of 

energy exchange. Addressing these limitations, recent advancements in LSMs aim to integrate the multi-layer snow scheme 
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to enhance the representation of snow dynamics and mitigate associated biases. For instance, Noah-Multiparameterization 

(Noah-MP) LSM represents the latest iteration of Noah LSM, a land component widely implemented with a single layer 65 

snowpack in various regional and global operational forecast models. It incorporates multiple enhancements aimed at 

improving the realism of biophysical and hydrological processes (Niu et al., 2011). Notably, for a more accurate representation 

of snow physics, Noah-MP adopts the multi-layer snowpack scheme. This scheme dynamically adjusts the number of snow 

layers based on the depth of snow, ensuring a more realistic conceptualization of snow accumulation and melt processes. The 

Joint UK Land Environment Simulator (JULES) LSM features the utilization of a multi-layer snow scheme in its current 70 

operational system. It also dynamically adjusts the number of snow layers, with each layer having prognostic variables for 

temperature, density, grain size, and both liquid and solid water content (Best et al., 2011). Unlike the simpler single layer 

snow model, which treats snow as an adaptation of the top-soil layer, the multi-layer scheme accounts for independent snow 

layer evolution and the impact of snow aging on albedo through simulated grain size changes. By explicitly simulating snow 

insulation effects and meltwater percolation, this scheme better captures seasonal snow variability and its influence on soil 75 

thermal regimes, including surface cooling during winter, delayed ground thaw in spring, and subsurface heat retention in 

summer. This implementation significantly improves soil temperature simulations, leading to better representation of land 

surface processes (Burke et al., 2013; Walters et al., 2017). JULES is incorporated within the GloSea forecast system 

(Maclachlan et al., 2015). 

Numerous studies have aimed to improve the sophistication of snow physics and highlighted its advancement in numerical 80 

models (Xue et al., 2003; Arduini et al., 2019; Cristea et al., 2022). For instance, among 13 operational models participating 

in sub-seasonal to seasonal (S2S) prediction project (Vitart et al., 2017; Vitart et al., 2025), only three—BoM (POAMA P24), 

CNR-ISAC (GLOBO), and NCEP (CFSv2)—employ a single-layer snowpack scheme, whereas the remaining ten models, 

including those developed by CMA (BCC-CPS-S2Sv2), CNRM (CNRM-CM 6.1), CPTEC (BAM-1.2), ECCC (GEPS8), 

ECMWF (CY49R1), HMCR (RUMS), IAP-CAS (CAS-FGOALS-f2-V1.4), JMA (CPS3), KMA (GloSea6-GC3.2), and 85 

UKMO (GloSea6), now used multi-layer snowpack schemes. Despite this broad adoption, the impact of multi-layer snow 

schemes on S2S forecasts remains insufficiently explored and understood. Hence, this study conducts a comparative analysis 

between single layer and multi-layer snowpack in the JULES LSM, as well as the fully coupled forecast systems GloSea5 and 

GloSea6—past and present operational forecast systems at the UK Met Office and the Korea Meteorological Administration 

(KMA), in retrospective forecasting in order to investigate the impact of an advanced snow scheme. The primary objective of 90 

this study is to assess the seasonal cycle of snow and land surface variables throughout the snow-covered period and evaluate 

the model's capability to replicate the mean climatology of key land surface and near-surface atmospheric variables, e.g., 

surface SM, surface air temperature, and precipitation, during boreal warm season. Daily mean, maximum, and minimum 

temperatures are validated at sub-daily time scales to elucidate the time of significant improvements in model performance. 

Furthermore, the model fidelity in the simulation of land-atmosphere interactions, corresponding to water- and energy-limited 95 

processes, is diagnosed to identify the realism of land coupling regimes by implementing the advanced snowpack scheme.  
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The paper is organized as follows. Section 2 describes the GloSea5 and GloSea6 models, and the validation datasets used in 

this study. Section 3 provides the methodology to evaluate the model performance. Section 4 presents and discusses the results 

of this study. Finally, Section 5 summarizes the results and their implications for future applications. 

 100 

2 Model Description and Data 

2.1 Forecast Model  

This study explores the performance of the Global Seasonal forecast system (GloSea) version 5 and 6, which are abbreviated 

as GloSea5 and GloSea6, respectively. These are the fully coupled ensemble forecast models with atmosphere-land-ocean-sea 

ice components, being developed by the UK Met Office. GloSea5 (Maclachlan et al., 2015) Global Coupled model 2.0 (GC2; 105 

Williams et al., 2015) configuration consist of UM (Unified Model) version 8.6 atmospheric component (GA6.0; Walters et 

al., 2017) having N216 horizontal resolution of 0.56° latitude × 0.83° longitude with vertically 85 hybrid-sigma coordinates 

topped at 85 km, JULES (Joint UK Land Environment Simulator) version 4.7 land surface model (GL6.0; Best et al., 2011) 

with four soil layers (0–10-, 10–35-, 35–100-, and 100–300-cm depth), as well as NEMO (Nucleus for European Modelling 

of the Ocean) version 3.4 oceanic component (GO5.0; Megann et al., 2014) and CICE (Los Alamos Sea-ice Model) version 110 

4.1 sea-ice component (GSI6.0; Rae et al., 2015) on an ORCA tripolar 0.25° global grid with 75 vertical levels. Those 

components exchange interactive variables with the OASIS3 coupler (Valcke, 2013). GloSea6 Global Coupled model 3.2 

(GC3.2) updates the atmospheric, land, ocean, and sea-ice components to the version of UM vn11.5 (GA7.2), JULES vn5.6 

(GL8.0; Wiltshire et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018), and CICE vn5.1.2 (GSI8.1; Ridley et al., 2018) 

without any modification in the resolution. The model components of GloSea6 are coupled with the OASIS3-MCT (Model 115 

Coupling Toolkit; Craig et al., 2017). We refer GloSea5 GC2 and GloSea6 GC3.2 to GloSea5 and GloSea6, respectively, 

throughout this paper.  

Substantive changes in the GloSea6 compared with GloSea5, mostly in model physics, have been implemented throughout all 

model components (Williams et al., 2015; Williams et al., 2018). For instance, the atmospheric physics are modified in 

radiation (improving gaseous absorption through upgrades in McICA (Monte Carlo Independent Column Approximation) and 120 

parameterization in ice optical properties), microphysics (updates in warm rain parameterization and newly implementing ice 

particle size-dependent parameterization), cloud physics (including radiative effects from convective cores), gravity wave drag 

(implement heating from gravity-wave dissipation), boundary layer (correcting cloud top entrainment during decoupling to the 

land), cumulus parameterization (improving updraught numeric in convective process and updating CAPE closure as a function 

of large-scale vertical velocity), and new modal aerosol scheme (UKCA GLOMAP (Global Model of Aerosol Processes) 125 

scheme; Mann et al., 2010). Aforementioned atmospheric physics updates in the GloSea6 are likely to improve the performance 

of model systemic errors, particularly in the overestimated vertical profile of cloud fraction at upper troposphere, tropospheric 
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cold and dry biases, the underestimated jet stream, the overestimated precipitation, and the negative bias of troposphere 

geopotential height during boreal summer (Williams et al., 2018).  

Land surface types in the both forecast systems are classified with five vegetation (broadleaf trees, needleleaf trees, C3 grasses, 130 

C4 grasses and shrubs) and four non-vegetated surfaces (urban, open water, bare soil and permanent land ice) and the monthly 

climatology of leaf area index, derived from MODIS satellite product (Yang et al., 2006), is prescribed corresponding to the 

plant functional types. However, in GloSea6, there are two major updates in land physics: the implementation of a multi-layer 

snow scheme and the realization of shortwave surface albedo. GloSea5 has a single layer snow scheme, in which snow is 

assigned a constant thermal conductivity and density, allowing direct heat exchange between the surface atmosphere and the 135 

soil (Best et al., 2011). It combines the snow and the uppermost soil layer into a single thermal store, with the increased snow 

depth leading to a reduction in the effective thermal conductivity. This reduction is not a dynamic representation of the intrinsic 

properties of snow but rather an adjustment to account for the insulating effect of the snow. This scheme lacks proper closure 

of the surface energy budget (SF. 1) and a dynamic representation of snowpack evolution with the inadequate depiction of the 

snowpack's insulating properties. The improvement from the implementation of the multi-layer snow scheme is shown not 140 

only in the realization of the snow melt season, but also in the soil temperature and permafrost extent (Walters et al., 2019). 

For instance, the multi-layer snow scheme leads to surface warming of the soil temperature during the winter season, as the 

heat flux from the soil to the atmosphere is reduced, but shows a surface cooling in the spring season, as the increase in 

insulating radiation inhibits snowmelt. In the snow frontal regions, the increase in land surface albedo is due to the delay in 

the onset of snowmelt by the multi-layer snowpack.  145 

In both forecast models, the snow-free surface albedo for each grid box is calculated as a weighted average of the albedos of 

different surface types, with MODIS bare soil albedo (Houldcroft et al., 2009) and GlobAlbedo surface albedo in other non-

vegetated surface types (Muller et al., 2012). The albedo of vegetated surface types is defined as a combination of the bare soil 

albedo and the full leaf albedo, with the weighting determined by the leaf area index (LAI) of the respective vegetation type. 

In GloSea6, to improve surface albedo representation, these albedos are modified as a function of shortwave wavelength. Since 150 

surface albedos, which are independent of wavelength, limit spectral variability, photosynthetically active radiation (PAR) and 

near-infrared radiation (NIR) are calculated separately using the canopy radiation model (Sellers, 1985). In addition, the 

generation of the surface albedos of land surface types are amended. The mapping from the International Geosphere Biosphere 

Programme (IGBP; Loveland et al., 2000) classification to JULES land surface types has been refined in GloSea6. The 

proportion of bare soil within the grassland, cropland, and crop-natural mosaic the IGBP classes was reduced and the coverage 155 

of vegetated land types, especially for C3 grass cover is extended (Walters et al., 2019; Wiltshire et al., 2020). The shift from 

bare soil to vegetated surfaces decreases surface albedo (Fig. 2e), as the vegetation can penetrate snow cover during the winter 

season (SF. 2a). Therefore, the surface albedo differences observed during the snow-covered season can be attributed to 

amendments in land surface type classification, whereas the albedo differences during the snow-free period are understood to 

result from the incorporation of wavelength-dependent calculations in the surface albedo scheme. Other land surface physics 160 

are consistent in GloSea5 and GloSea6.  
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In terms of initial conditions for each model component, GloSea5 and GloSea6 commonly utilize ERA-interim and a 

variational data assimilation system for the NEMO ocean model (NEMOVAR; Mogensen et al., 2012) analysis for the 

atmospheric and ocean and sea-ice initializations, respectively. Land surface reanalysis, where the land offline simulation is 

forced by atmospheric boundary conditions from Japanese 55 years Reanalysis (JRA-55; Kobayashi et al., 2015) and European 165 

Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5; Hersbach et al., 2020) reanalysis, is 

used to initialize land surface variables for GloSea5 and GloSea6, respectively. GloSea5 and GloSea6 have been used to carry 

out 60-day (depending on ensemble or variable, 6-month forecast is conducted for the seasonal prediction) retrospective 

forecasts starting on the 1st, 9th, 17th, and 25th of every month for 26 years (1991–2016) and 24 years (1993–2016), respectively, 

but evaluations are conducted with 24-year forecasts for the fair comparison between both systems. To operate ensemble 170 

forecasts, the Stochastic Kinetic Energy Backscatter (SKEB2; Tennant et al., 2011) and the Stochastic Perturbation of 

Tendencies (SPT; Sanchez et al., 2016) scheme is used to perturb initial states in GloSea5 and GloSea6, respectively. 

Compared to the SKEB2, the SPT scheme imposes additional constraints on energy and water conservation, leading to an 

increase in the ensemble spread without degrading ensemble mean fields, which is especially beneficial over the tropics. Based 

on these methods, GloSea5 and GloSea6 operate 3 and 7 ensemble forecasts and have been implemented by the KMA in 175 

international S2S prediction project for 2020–2022 and 2023–present, respectively. The description of their model 

configuration is summarized in Table 1. 

 

  GloSea5 GloSea6 

Hindcast period 26 years (1991–2016) 24 years (1993–2016) 

Ensemble 
Method 

Stochastic Kinetic Energy Backscatter 

(SKEB2) 

Stochastic Perturbation of 

Tendencies (SPT) 

numbers 3 7 

Resolution Atmosphere 
Horizontal: N216 (0.83°×0.56°) 

Vertical: L85 (~85 km) 

Initial 

conditions 

Atmosphere ECMWF ERA-interim 

Land 
JULES offline run  

(JRA55 atmospheric forcing) 

JULES offline run  

(ERA5 atmospheric forcing) 

Ocean/Sea-ice NEMOVAR (UKMO) 

Model physics 

Atmosphere GA6.0 GA7.2 

Land GL6.0 GL8.0 

Ocean GO5.0 GO6.0 

Sea-ice GSI6.0 GSI8.1 

Coupler OASIS3 OASIS3-MCT 

Table 1: Description of the GloSea5 and GloSea6 model configurations. 

 180 
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2.2 JULES offline experiments 

In the case of the coupled model described above, updates in both the land and atmospheric model components, in addition to 

the advancement in snow physics, can influence land processes. To isolate the impact of the multi-layer snowpack scheme on 

land processes, we conduct two sets of LSM offline experiments using GL8.0 (representing a specific configuration of JULES 

version 5.6 within the coupled system): implementing single layer (JULESsingle) and multi-layer (JULESmulti) snowpack scheme, 185 

respectively. The offline LSM simulations are driven by observed atmospheric near-surface variables, including 2-m air 

temperature and humidity, 10 m wind speed, downward radiative fluxes, and pressure at the surface. These historical 

observations are employed by the hourly ERA5 reanalysis (Hersbach et al., 2020). Precipitation is forced by the hourly 

averaged Integrated Multi-satellitE Retrievals for GPM (IMERG) version 7 (Huffman et al., 2023). Both offline experiments 

are conducted over global land areas from January 2001 to December 2022 at a spatial resolution of 0.56° latitude × 0.83° 190 

longitude, consistent with the resolution of the fully coupled forecast systems. 

The single layer scheme represents snow as a modification of the uppermost soil layer, applying a fixed thermal conductivity 

without explicitly resolving vertical snow structure. This simplification results in direct heat exchange between the surface and 

soil, leading to excessive soil cooling in winter and rapid warming during spring melt. In contrast, the multi-layer scheme 

explicitly represents up to three snow layers with predefined layer thicknesses of 0.04, 0.12, and 0.34 meters, dynamically 195 

adjusting the number of active layers based on snow depth (Best et al., 2011). It incorporates a density-dependent thermal 

conductivity parameterization, improving the simulation of snow insulation effects and reducing soil temperature biases. 

Additionally, the multi-layer scheme includes a prognostic snow densification process driven by overburden stress and 

temperature, while also explicitly handling meltwater retention, percolation, and refreezing. Snow albedo is also treated with 

a prognostic approach that accounts for snow aging and grain size evolution, enhancing radiative feedback representation. 200 

Lastly, the multi-layer snowpack ensures surface energy budget closure by explicitly solving for the energy balance of each 

snow layer, addressing limitations in the single layer scheme that can lead to inconsistencies in snowmelt partitioning. 

 

2.3 Validation Data 

The daily maximum and minimum temperature over land at a height of 2 meters are sourced from NCEP CPC analysis 205 

produced by NOAA Physical Sciences Laboratory (PSL; https://psl.noaa.gov). The temperature data have a 0.5° horizontal 

resolution and are available for 1979–present. The daily mean temperature is acquired by arithmetically averaging maximum 

and minimum temperature. Hereafter, daily mean, maximum, and minimum temperature will be referred to as Tmean, Tmax, 

Tmin, respectively. 

The ERA5-Land is an offline land reanalysis (Muñoz-Sabater et al., 2021) of the Tiled ECMWF Scheme for Surface Exchanges 210 

over Land incorporating land surface hydrology (H-TESSEL) land surface model with four soil layers (0–7-, 7–28-, 28–100-, 

and 100–289-cm depth), forced by the ERA5 atmospheric reanalysis. ERA5-Land has a horizontal resolution of ~0.18 and an 

https://psl.noaa.gov/
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hourly temporal resolution. To enhance the spatial resolution of the ERA5-Land, ERA5 near surface atmospheric variables 

(e.g., temperature, humidity, and pressure) used for boundary conditions are corrected to account for the altitude difference 

that came from the lower resolution of ERA5.  215 

This study uses Japanese Reanalysis for Three Quarters of a Century (JRA-3Q; Kosaka et al., 2024) as a reference for snow 

water equivalent (SWE) to diagnose the modelled snow. It employs an offline version of the Simple Biosphere (SIB) model 

(Sellers et al., 1986). Compared to the satellite-based and in situ datasets, the snow cover and depth are accurately described 

in its predecessor, the Japanese 55-year Reanalysis (JRA-55) (Orsolini et al., 2019). JRA-3Q incorporates daily snow depth 

data from the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager Sounder (SSMIS), and in 220 

situ measurements using a univariate two-dimensional optimal interpolation (OI) approach. Although this procedure is 

comparable to that used in JRA-55 (Kobayashi et al., 2015), two issues—unrealistic analysis near coastal areas and unintended 

increments caused by satellite data biases—have been resolved in JRA-3Q. Additionally, JRA-3Q employs the multi-layer 

snowpack scheme whereas JRA-55 used a single layer snowpack scheme. JRA-3Q has a horizontal resolution of 0.375˚ and 

3-hourly temporal resolution. 225 

In situ observations of surface SM are employed to evaluate the model climatological bias and SM memory (SMM) across the 

globe. International Soil Moisture Network (ISMN; Dorigo et al., 2021) is used to obtain daily mean SM sensed from 5-cm to 

10-cm. While flagged measurements classified as “good” quality are used, additional quality control procedures are applied to 

avoid data redundancy and spurious SM characteristics. First, we exclude the Snowpack Telemetry network (SNOTEL) which 

has large uncertainty in SM estimates because it is designed to measure snow variables. Second, if observations at one site are 230 

made at several depths within that range, it will be represented as a value close to 5-cm. Despite the previous steps, if SM is 

measured at the same location and depth by different sensors, only one of them is selected to avoid the loss of SM 

characteristics from simple averaging of many sensors. Lastly, the z-score of SM measured from each sensor is calculated and 

the sensor with the lowest value is selected. The SM z-score is defined as: 

𝑍 =
∑

𝑋𝑡 − 𝑋̅
𝜎𝑋

𝑁
𝑡=1

√ 𝑁
1 + 𝑡𝑎𝑢

 (1) 

where 𝑋𝑡, 𝑋̅, and 𝜎𝑋 are the daily time series, timely averaged value, and temporal standard deviation of SM in daily time scale 235 

(𝑡), respectively. 𝑁 and 𝑡𝑎𝑢 represent the sample number of daily time series and corrected SMM (described in subsection 

3.1), respectively.  

A time-filtered satellite product of daily surface SM, originated from the COMBINED European Space Agency (ESA) Climate 

Change Initiative (CCI) Soil Moisture v06.1 dataset (Dorigo et al., 2017), is used to assess the global SMM simulated by 

forecast models. Remotely sensed SM datasets inherently contain random and periodic errors, particularly in high-frequency 240 

variability, due to the radiometric instrument performance, viewing angle variations, spatial resampling, imperfect 

parameterizations used in retrieval algorithms, and so on. Due to these errors, the daily time series of satellite-based SM 

retrieval often shows intervals with an increase in SM without rainfall or any other water supply (see Fig. 6 in Seo and 
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Dirmeyer, 2022a), which is unexplainable by the surface water budget. This erroneous SM behavior hampers the representation 

of realistic SM dynamics and land-atmosphere interactions due to a decrease in the SM autocorrelation value. Since the SMM 245 

is calculated with the time-lagged SM autocorrelation, assuming that the daily SM time series is exponentially decaying, the 

inherent error in the satellite data leads to an underestimation of SMM. To avoid the problem, this study uses the time-filtered 

surface SM product covering 21 years (2000–2020) with 0.25° spatial resolution, using a Fourier transform with LSM datasets 

(Seo and Dirmeyer, 2022). The time-filtered SM product provides a better representation of the surface SM time series, which 

also contributes to the improvement of the SM characteristics (i.e., SM memory and error) compared to the result from in situ 250 

observations. Hereafter, we refer to the adjusted ESA CCI SM based on the LSM simulations as ESACCIadj. 

The Global Land Evaporation Amsterdam Model version 4 (GLEAM; Miralles et al., 2025) provides a dataset of global 

terrestrial heat fluxes and soil wetness. It combines satellite observations, reanalysis products, and in situ data using a hybrid 

modelling framework that includes physical principles and machine learning-based estimations of evaporative stress. Based 

on the Penman’s equation, GLEAM estimates potential evaporation using additional atmospheric control factors (e.g., wind 255 

speed, vapor pressure deficit, and vegetation height) not only for net radiation and near-surface air temperature observations. 

Actual evaporation is then derived by applying a multiplicative evaporative stress factor, calculated from observed Vegetation 

Optical Depth (VOD) and estimated root-zone soil moisture. The GLEAM dataset demonstrates reliable performance in 

capturing observed seasonal cycles, particularly in evaporation anomalies across diverse climates, when evaluated against 

global eddy-covariance flux tower observations. Compared to other datasets (e.g., ERA5-Land and FLUXCOM), the GLEAM 260 

shows improved agreement with observations. Although the GLEAM performs better than other available reanalysis datasets, 

it should not be considered an observational dataset. GLEAM estimates evaporation using training data from flux tower 

observations; however, these towers are mainly ecological monitoring networks that are skewed toward wetter vegetated sites. 

As a result, while GLEAM is generally reliable in wetter areas, its accuracy in drier regions may be limited due to sparse 

observational constraints. Nevertheless, since this study focuses on mid- and high-latitude regions where flux towers are 265 

plentiful, snow processes dominate and GLEAM's performance is more robust, it is used as the primary reference dataset. 

Accordingly, to evaluate model performance, this study utilizes the daily surface SM, evaporation, sensible heat flux, and net 

radiation (defined as the sum of latent and sensible heat fluxes) from version 4.1a (https://www.gleam.eu/), covering 44 years 

(1980–2023) with a 0.1° spatial resolution. 

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.8 is the gauge-, satellite-, and reanalysis-based 270 

precipitation dataset used for validation, available from 1979 to the present. The precipitation data have a 0.1° horizontal 

resolution and 3-hourly temporal resolution (Beck et al., 2019a). Its superior performance is primarily attributable to the 

inclusion of daily gauge observations compared with 26 gridded precipitation datasets (Beck et al., 2019b). 

 

https://www.gleam.eu/
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3 Methodology 275 

This study aims to investigate the impact of an improved snow scheme in the seasonal forecast system on the fidelity of snow 

behavior on contemporaneously and during the next warm season after snow melt. Given the many changes between GloSea6 

and GloSea5, we cannot attribute all differences in performance to any single change, but we assume changes in the simulation 

of snow are principally due to the major changes in the snow scheme. To compare model performance between GloSea6 and 

GloSea5 in the physics of snow freezing and melting, 100-day long retrospective forecasts initiated on the 1st day of October–280 

April spanning 24 years (1993–2016) are used. Although ensemble simulations are carried out in both models, this study uses 

a single member run only for analyzing the climatology of the seasonal cycle (Fig. 2), since 24 yearly samples are sufficient. 

The shift of the snow melting season alters the availability and variability of SM for spring and summer season. In contrast, 

60-day long retrospective ensemble forecasts starting on 1st, 9th, 17th, 25th of May–August of 24 years are used to demonstrate 

the snow effect on the model climatological bias of surface SM, surface air temperature, and precipitation during northern 285 

hemisphere warm season when land-atmosphere feedback is most active. Most of the evaluations are based on the accuracy of 

simulated land–atmosphere interactions, assessed using the daily mean time series from all forecast runs during the boreal 

summer, thereby representing the model climatology of coupling metrics. The ensemble mean values are used for the analysis 

of climatological bias, while coupling metrics are calculated individually for each ensemble member and then averaged across 

all members to avoid the physical correlation between variables being diminished in the ensemble-averaged time series. To 290 

identify model improvement and assess statistical significance, a total of 384 forecast runs (initialized on four dates per month 

over 24 years) are analyzed for each forecast system, and statistical testing is conducted using Student's t-test. Model prediction 

skill as a function of forecast lead time is not assessed in this study, as it is more strongly influenced by ensemble size than by 

the differences in model version (not shown here). 

3.1 Soil moisture memory  295 

To evaluate the SM persistence simulated in the model, the autocorrelation-based SMM is employed. First, assuming that the 

evolution of the daily SM time series follows a first-order Markov process (Vinnikov and Yeserkepova, 1991), the decay 

frequency (𝑓) of SM can be defined by a function of SM autocorrelation (𝐴𝑅) at lag day (𝜏) (Dirmeyer et al., 2016; Seo and 

Dirmeyer, 2022). Its formulation is followed as:  

𝐴𝑅(𝜏) = 𝑒𝑥𝑝(−𝑓𝜏) (2) 

The SMM is defined with an e-folding decay time, at which the autocorrelation of SM drops to 1/𝑒. By a linear fitting of 300 

𝑙𝑛[𝐴𝑅(𝜏)], the memory is calculated as the value of 𝜏, when the linear extrapolation between 𝑙𝑛[𝐴𝑅(𝜏 = 1)] and 𝑙𝑛[𝐴𝑅(𝜏 =

2)] is intersected to 𝑙𝑛[𝐴𝑅(𝜏)] = −1. Since the SM behavior is not perfectly fitted on the first-order Markov process, the 

displacement of the extrapolated linear fit at 𝜏 = 0 is defined with the measurement error mostly attributed to random errors 

(Robock et al., 1995). To measure the SMM under the assumption that there is no measurement error, the extrapolated linear 

fit is shifted to intersect origin point and the intersected 𝜏 value between the shifted linear fit and 𝑙𝑛[𝐴𝑅(𝜏)] = −1 is the 305 
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corrected SMM. Time-filtered ESA CCI and modeled SM products exhibit the marginal measurement error (Seo and Dirmeyer, 

2022), so that this study focuses on the improvement in the representation of the corrected SMM in the model simulations. 

The autocorrelation is calculated by concatenated time series of daily SM over JJA (June–August) of 17 years (2000–2016) 

with modelled and time-filtered satellite SM time series. In the calculation of the SMM in both seasonal forecast systems, the 

SM time series over JJA are concatenated with 30-day forecast time series starting on the 1st of each month, and the time series 310 

for each year are further concatenated to produce the 17-year JJA SM time series. The SMM is calculated in each ensemble 

forecast and represented by the median of the ensemble values. Additionally, the statistical significance of SMM biases in both 

simulations and their difference between GloSea5 and GloSea6 is tested using a Monte Carlo approach. The probability of a 

significant SMM is estimated by random sampling, where randomly selected yearly JJA SM time series (92 samples) are used 

to create all-year JJA time series, repeatedly, to generate 100 samples in observational and modelled datasets. For testing the 315 

statistical significance of the modeled SMM biases, randomly calculated SMMs from time-filtered CCI, ERA5-Land, and 

GLEAM products are used to generate 300 observational samples (3 products × 100 random SMMs), which are compared to 

300 and 700 random samples from GloSea5 (3 ensembles × 100 random SMMs) and GloSea6 (7 ensembles × 100 random 

SMMs), respectively, using a Student's t-test. The statistical significance of the SMM difference between the two model 

simulations is also tested with the randomly calculated 300 and 700 SMM samples. 320 

3.2 Granger causality in evaporation-precipitation feedback  

To characterize the causality of land-atmosphere interactions, this study adopts the Granger causality test, that originates from 

the field of econometrics (Granger, 1969; Salvucci et al., 2002). This is a statistical principle to identify the potential 

dependence of a target variable on source variable beyond any persistence (memory) inherent in the target variable. To explore 

the quantitative understanding of evaporation-precipitation feedback, this study investigates the causality between a source 325 

variable (𝑆𝑉: hypothesized to trigger a feedback) and target variable (𝑇𝑉: responding to the feedback), where the statistical 

time-lagged response of the land-atmosphere feedback is applied by setting a 1-day time lag in the time series of 𝑇𝑉 compared 

with 𝑆𝑉. This is formulated as: 

𝐹(𝑇𝑉𝑡|Ω𝑡−1) ≠ 𝐹(𝑇𝑉𝑡|Ω𝑡−1 − 𝑆𝑉𝑡−1) (3) 

where 𝐹 is the conditional distribution of 𝑇𝑉 on a given day, Ω𝑡−1 denotes the set of all knowledge available at 𝑡 − 1 time, 

and Ω𝑡−1 − 𝑆𝑉𝑡−1  represents all knowledge except 𝑆𝑉 . We employ evaporative fraction (𝐸𝐹 = 𝐿𝐸/(𝐻 + 𝐿𝐸) ) and 330 

precipitation (𝑃𝑅 ) in each role to identify the response of precipitation variability to the land surface flux partitioning 

(𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1)) and vice versa (𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1)). As the null hypothesis equates that 𝑆𝑉 does not affect 𝑇𝑉, the rejected 

probability of the null hypothesis (1-p) is calculated to intuitively understand the causality. Nevertheless, as Granger causality 

only tests for predictive precedence, the results may reflect statistical associations due to shared external drivers and should 

not be interpreted as definitive physical causation between both variables. The analysis is conducted using 384 forecast runs 335 

initiated on four dates during May–August over 24 years, and to compare to the causality in observations, 𝐸𝐹 and  𝑃𝑅 are 

taken from the GLEAM and MSWEP datasets, respectively.  
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3.3 Methodology to define land coupling regime  

This study evaluates model performance in the simulation of land coupling regimes in GloSea5 and GloSea6. Land-atmosphere 340 

interaction is controlled by land surface energy and water exchanges. Depending on their relative dominance, water- and 

energy-limited regimes are categorized, where the flux partitioning between sensible and latent heat flux are controlled by the 

availability and variability of SM or by net radiation mainly dictated by the atmosphere, respectively. They are separated by a 

critical value of SM at each location; the dry and wet side of the critical value exhibits water- and energy-limited coupling 

processes, respectively. Corresponding to the dominant response of the partitioning of land heat fluxes attributed to either the 345 

land state or the atmosphere, the direction of land-atmosphere coupling is land-to-atmosphere or atmosphere-to-land, 

respectively (see Fig. 2 in Seo et al., 2024). 

To quantify the strength of land-atmosphere coupling based on either the water- or energy-budget predominance, this study 

compares the temporal correlation of latent heat flux (the key variable linking water and energy budgets) with the surface SM 

[𝑅(𝑆𝑆𝑀, 𝐿𝐻)] and net radiation [𝑅(𝑅𝑛, 𝐿𝐻)], respectively. While both latent heat flux and net radiation are physically linked 350 

(as latent heat is energetically constrained by net radiation), the correlation between them helps infer the extent to which surface 

fluxes follow the available energy signal. However, it is important to note that 𝑅(𝑅𝑛, 𝐿𝐻) is not independent of the water 

budget, and high correlation values may still occur in water-limited regimes if increased net radiation results in greater latent 

heat flux under sufficient SM. Therefore, these metrics are interpreted as complementary diagnostics, with 𝑅(𝑆𝑆𝑀, 𝐿𝐻) 

highlighting land-state sensitivity and 𝑅(𝑅𝑛, 𝐿𝐻) indicating energy control, rather than mutually exclusive regime indicators. 355 

Both proxies, measuring two distinct land coupling processes, serve as the x- and y-axes in a colour square, and the comparison 

between them indicates the relative dominance in the definition of land coupling regime (Seo et al., 2024).  

 

4 Results 

4.1 Seasonality of land surface variables  360 

To assess the impact of multi-layer snowpack scheme on the simulation of snow freezing and melting processes, this study 

compares the representation of the seasonal cycle of land surface variables between JULESsingle and JULESmulti. In both JULES 

offline experiments, the seasonal cycle of snow cover peaks in late December over the mid-latitudes of Eurasia (Fig. 1c), while 

SWE reaches its peak approximately two months later (Fig. 1d). When the multi-layer snow scheme is applied in JULESmulti, 

the insulating effect of the land surface delays the onset of snowmelt, resulting in higher values of both snow cover and SWE 365 

during early spring season (March–April), which more closely resemble the observed seasonal cycle of SWE. The multi-layer 

snow scheme leads to an expansion of snow-covered areas, shifting the springtime snow frontal zone northward to around 

40°N and significantly increasing the amount of snow within the snow-covered regions (Figs. 1a,b). The effect of the multi-
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layer snow scheme on soil and air temperatures depends on the snow accumulation, snow peak, and snow melting seasons. 

The air temperature response will be specifically addressed in Figure 2, which is based on the coupled model simulation, since 370 

the offline model is forced by near-surface atmospheric variables, including surface air temperature.  

The snowpack plays the role of limiting transfer of heat between air and soil due to the enhanced insulation (SF. 3a). Therefore, 

the multi-layer snow scheme provides a stronger insulating effect, simulating significantly warmer soil temperature from snow 

cover onset through March, when air is colder than the land surface (Fig. 1g). The warmer soil temperature in JULESmulti (Fig. 

1g), induced by the snow insulation effect, increases the fraction of unfrozen SM. Unlike soil ice, liquid water in the soil 375 

remains mobile, contributing to subsurface runoff and potentially evaporation, resulting in drier soil (Fig. 1e). JULESmulti 

simulates abundant snow variables in March, accompanied by an increase in latent heat flux (Fig. 1f). Following the largest 

difference in snow between the two JULES runs in March, the SM difference begins to decrease, subsequently resulting in 

wetter soil conditions in the JULES experiment during April. This, in turn, leads to enhanced latent heat flux in April. 
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 380 

Figure 1: Spatial patterns of climatological difference (JULESmulti-JULESsingle) of (a) snow cover and (b) snow water equivalent, 

averaged over March-April for the 22-year (2001–2022), where the dotted area indicates the difference is statistically significant at 

a 95% confidence level. The green contour line in (a) indicates a snow cover of 0.15 from JULESmulti experiment. Climatological 

seasonal cycle of 24-year averaged (a) snow cover, (b) snow water equivalent, (c) surface soil moisture, (d) latent heat flux, and (e) 

surface soil temperature simulated by JULESsingle (red) and JULESmulti (blue) over the Eurasian continent (0–130E, 45–55N). To 385 
denote the response of land variables to the snow physics scheme, the green dashed line in (d) denotes JRA-3Q snow water equivalent 

grey solid lines in (c)–(g) display the difference between JULESmulti and JULESsingle throughout the snow accumulation and melting 

seasons. 

 

 390 
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Furthermore, to explore the model performance in simulating snow freezing and melting processes in fully coupled forecast 

systems, we also compare the seasonal cycle of the land variables between GloSea6 and GloSea5. Although the land initial 

conditions are generated by different atmospheric forcing in both forecast models, the difference in initiated snow amount 

appears to be insignificant throughout the entire snow season (SF. 4), and the differences lack field significance. Differences 

in winter precipitation between both models may lead to variations in snow accumulation; however, although GloSea6 395 

generally simulates slightly higher precipitation, the magnitude of this difference is negligible compared to the difference in 

snow water equivalent (not shown). Therefore, the impact of precipitation on snow accumulation is not considered in this 

study. GloSea5 and GloSea6 simulate the seasonal cycle of snow freezing process over the Eurasian continent similarly 

regardless of which the snow scheme is used (Fig. 2a). Given that the primary source of energy for snowmelt is the atmosphere, 

snow melting process is tied to the variation of surface air temperature (cf. Fig. 2d). Snow dissipates 2 weeks earlier in the 400 

early summer when a single layer snowpack is adopted. For instance, both models consistently simulate a snow peak in March 

and are initiated with similar snow conditions in that month, but the snow in GloSea5 disappears before June while it persists 

until early June in GloSea6. The result resembles the snow dissipation represented by JRA-3Q, particularly in the run initiated 

on 1st April.  

Although similar SM states are initialized in both forecast models for the entire analysis period, GloSea5 shows a model 405 

forecast drift in the wet direction from October to March (Fig. 2b). The differences in SM initial conditions in October and 

November are attributed to differences in the atmospheric forcing used to drive the LSM during the generation of land surface 

initial states. Because the snowpack serves as a barrier to energy and water exchange between the land and the atmosphere, in 

the single layer snowpack, colder soil temperatures lead to a model drift toward wetter conditions during the snow-covered 

season, consistent with the results from the JULES LSM simulations (cf. Fig. 1e,g), and the early onset of evaporation 410 

manifests the physical process of drying out SM during snow melting season. Wetter soil moisture is simulated in GloSea5 

during October, when snow cover is minimal, which is attributed to a positive precipitation bias (not shown). Thus, the 

implementation of the multi-layer snowpack results in the climatologically dryer and wetter SM, respectively, preceding 

(November–March) and following (April–June) the onset of snowmelt. However, in the JULES offline simulations, the 

implementation of the multi-layer snowpack results in wetter SM only during April, with no significant differences persisting 415 

into the summer. This suggests that the influence of advanced snow physics becomes more pronounced when the land is 

coupled with the atmosphere, allowing its effects to extend into the summer season. 

In the coupled model simulations, the effect of the multi-layer snow scheme on soil temperature during the snow-covered 

season is consistent with the results from the JULES offline simulations, whereas surface cooling is observed after snowmelt 

(Fig. 2c) due to increased SM. For the surface air temperature, GloSea6 is colder during the snow freezing season due to 420 

limited energy transfer from the cold air to the snow surface (Fig. 2d). During the two-month snow peak period from mid-

January, GloSea6 simulates higher air temperature due to warmer ground, resulting in less cooling from the soil. The air 

temperature cooling observed from mid-March is associated with evaporative cooling driven by increased latent heat flux. 

During early spring, the increase in latent heat flux is primarily linked to enhanced net radiation (Fig. 2g). However, after 
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April, the continued rise in latent heat flux despite a decline in net radiation can be attributed to increased SM availability. The 425 

seasonal cycle of net radiation is also evident in both forecast models (Fig. 2f). During the snow freezing season, net radiation 

can decrease due to enhanced upward longwave radiation driven by surface warming, despite a concurrent increase associated 

with reduced surface albedo. These two opposing effects tend to offset each other, resulting in minimal differences in net 

radiation during this period. However, during the snow peak season (February–March), the surface albedo effect becomes 

more dominant, leading to an increase in net radiation that is mostly balanced by latent heat flux. In late spring (April–May), 430 

when differences in snow variables become more pronounced, surface albedo increases and surface cooling occurs, which 

plays a role opposite to that observed in winter. During this period, the stronger influence of increased surface albedo leads to 

a decrease in net radiation that is mostly balanced by sensible heat flux (Fig. 2g). In summer, net radiation increases again, 

primarily due to a reduction in upward longwave radiation associated with surface cooling, rather than being caused by changes 

in surface albedo. In other words, the impact of the implementation of the multi-layer snowpack scheme is predominant rather 435 

than other modifications in land processes during the summer season. Consequently, the radiation is primarily balanced by 

latent heat flux due to abundant SM, but sensible heat flux decreases in GloSea6 due to air temperature cooling. 

To illustrate the physical sequence between land surface variables by the realization of snow physics, the time series of major 

water budget variables is compared between both simulations (Fig. 2i). The surface albedo in GloSea6 becomes larger than 

that of GloSea5 at the end of March, which results in an increased SM about 3 weeks later. The increase in SM appears to 440 

precede a reduction in latent heat flux, followed by a subsequent rise in precipitation. The lead-lag correlation between SM 

and precipitation differences (GloSea6-GloSea5) shows statistically significant values at 0 and +1 lead-lag day and the 1-day 

lagged value is the highest (Fig. 2j). It is important to note that this analysis is based on inter-model differences and reflects a 

statistical association rather than a direct causal relationship. The positive lag may suggest enhanced land-atmosphere coupling 

in GloSea6—such as increased soil moisture availability and surface energy partitioning—contributing to a precipitation 445 

response. The positive feedback is typically observed in numerical forecast systems, including HadGEM2-AO (atmosphere-

land only coupled forecast model of GloSea5), in contrast to observation-based analyses, which indicate a negative coupling 

between SM and precipitation (Taylor et al., 2012).  
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 450 

Figure 2: Climatological seasonal cycle of 24-year (1993–2016) averaged (a) snow water equivalent, (b) surface soil moisture, (c) 

surface soil temperature, (d) surface air temperature, (e) surface albedo, (f) net radiation, (g) latent heat flux and (h) sensible heat 

flux simulated by GloSea5 (red) and GloSea6 (blue) over the Eurasian continent (0–130E, 45–55N), where 100-day forecast lines 

fade at increasing lead forecasts and coloured marks indicate initial states on the first day of each month (surface soil temperature 

shows 60-day forecast due to data availability). c and grey solid lines in (a)–(h) display the difference between GloSea6 and GloSea5 455 
throughout the snow accumulation and melting seasons. (i) Climatology of 25-day running averaged time series, initiated at each 

year on 1 March, of the standardized difference (GloSea6-GloSea5) for surface albedo, surface soil moisture, and precipitation. For 
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standardization, each variable's daily time series is divided by the standard deviation of its time series. (j) Lead-lag correlation 

coefficient for the daily time series of the difference between GloSea5 and GloSea6 for surface soil moisture and precipitation with 

70-day forecast initiated at each year on 1 March to demonstrate soil moisture-precipitation coupling, where black filled marks 460 
denote the correlation value is statistically significant at a 99% confidence level. A positive lagged day indicates that soil moisture 

leads to precipitation, and negative is vice versa.  

4.2 Evaluation of model climatological error and bias over the Northern Hemisphere  

Although soil moisture has historically not been a verifiable quantity in weather forecast models (Koster et al., 2009), the 

adoption of soil moisture data assimilation makes soil moisture a variable for validation (Seo et al., 2021). To identify the 465 

representation of surface SM, this study compares the climatological mean between both forecast models and evaluates their 

model error against in-situ measurements over the Northern Hemisphere (NH). The difference in SM simulation between 

GloSea6 and GloSea5 is large above 40˚N regions across all forecast lead times (Fig. 3a). In particular, the difference is 

dominant over the snow frontal region, suggesting that the difference is related to the additional snow insulating effect in the 

GloSea6 LSM. To assess model fidelity, SM simulated by GloSea5 (Fig. 3b) and GloSea6 (Fig. 3c) are validated against in-470 

situ measurements (mostly distributed over North America and Europe). Although both models simulate a reliable SM 

climatology over relatively dry regions (~0.1 m3 m-3), modeled SM is systematically underestimated when model values are 

between 0.1 and 0.2 m3 m-3. Most of the underestimated sites are located above 40 N (SF. 5). Although model errors still 

remain in GloSea6, the drying errors are significantly improved as the SM becomes wetter and the spatial agreement, as 

measured by the correlation coefficient, is also increased.  475 
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Figure 3: (a) Spatial distribution of climatological surface soil moisture difference between GloSea6 and GloSea5 of the average of 

1–60 lead forecast days from the runs initiated in May–August of 1993–2016. The dotted area indicates the difference is statistically 

significant at a 95% confidence level and NH (20–80N) averaged value is indicated in the lower-left corner. 2-dimenssional density 

of modelled surface soil moisture in (b) GloSea5 and (c) GloSea6 against in situ ISMN observations (1720 measurement sites that 480 
are mostly are over North America and Europe as shown in SF. 5), where RMSE, bias, and Pearson correlation coefficient are 

denoted in the upper-left corner. 

 

Since SMM is a key factor in the subseasonal forecasting because of its persistence over a few weeks, model fidelity of SMM 

is crucial for forecast skill. Because memory is shortened by occurrences of precipitation, it is prolonged where the climate is 485 

relatively dry. For instance, SM persistence is relatively short over East Asia where the monsoon flow throughout the summer 

season leads to an increasing likelihood of rainfall, accompanying wet soil. The spatial patterns of SMM from ESACCIadj, 
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ERA5-Land, and GLEAM are similar (Figs. 4a,b,c), but ESACCIadj is noisy at high-latitudes because SM dynamics are not 

perceived by the satellite when the surface is frozen. The NH averaged values of SMM from ESACCIadj, ERA5-Land, and 

GLEAM are 9.5, 8.1, 9.9 days. The spatial distribution of SMM determined from the observational products is reliably 490 

simulated over the NH in GloSea5 and GloSea6. Improvements in SMM bias and spatial agreement are shown in GloSea6 

(Figs. 4d,e). The underestimation of SMM in GloSea5 is increased by 0.6 days and the spatial correlation of the SMM with 

the observed fields is also improved. When the assessment is performed with in-situ measurements (SF. 6), an extended SMM 

in GloSea6, compared to GloSea5, is a better match to the observations (SFs. 6d,e). When the soil becomes wet due to the late 

onset of snow melting, the SM decay in response to rainfall is slow, thereby significantly increasing the SMM in mid-latitude 495 

regions (Fig. 4f). In contrast, there are some regions (e.g., East Asia and India) where SMM decreases, the main reason being 

an increase in rainfall.  

 

Figure 4: Surface SMM from (a) ESACCIadj, (b) ERA5-Land, (c) GLEAM, (d) GloSea5, (e) GloSea6, and (f) the difference between 

GloSea6 and GloSea5. NH mean values are denoted in the middle-left in each panel. The bracketed values indicate the spatial 500 
correlation of the modelled soil moisture memory compared to ESACCIadj (left), ERA5-Land (middle), and GLEAM (right). Dotted 

areas represent statistical significance of SMM difference between models and observations (d–e) and between models (f) at the 99% 

confidence level from a Monte Carlo method. 

Features of the surface air temperature simulation in GloSea6 during the NH warm season include reduced biases in both daily 

mean and sub-daily timescales across all forecast lead times (Fig. 5), which can be explained by the updated land surface 505 

physics, including changes in snow and soil processes. GloSea6 represents a decrease in Tmean bias despite the existence of 

significant positive bias over North America (Fig. 5b). GloSea6 simulates colder temperatures over the mid-latitudes, 

compared to GloSea5 (Fig. 5c). To identify the impact of two major modifications in the LSM on temperature simulation, 

when the assessment of Tmean is decomposed into the Tmax and Tmin. Both daytime and nighttime temperatures are analysed 

in addition to daily mean temperature to assess whether temperature changes associated with land surface processes occur 510 

preferentially during the day or night. Since many coupled land-atmosphere processes are typically more active during the 

daytime due to greater available energy (net radiation), sub-daily analysis is essential for realistically capturing their effects 

(Yin et al., 2023). Furthermore, relying solely on Tmean can be misleading, as it conflates errors in maximum and minimum 

temperatures, and thus does not necessarily reflect an overall improvement in model performance (Seo et al., 2024). Tmax 

shows a large negative bias north of 50˚N (Figs. 5d,e). Tmin appears to have a large positive bias over the NH, which have a 515 

negative bias (Figs. 5g,h). The effect of the multi-layer snow scheme on forecasting temperature is primarily surface cooling 
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over snow frontal areas throughout the entire day (Fig. 5c), even though the temperature response is more sensitive during the 

daytime when land-atmosphere interactions are most active (Figs. 5f,i). This is because there is a larger latent heat flux during 

the daytime, resulting in a larger evaporative cooling. 

 520 

Figure 5: Spatial distribution of daily mean (upper row; a–c), maximum (middle row; d–f), and minimum (lower row; g–i) surface 

air temperature bias of the average of 1–60 lead forecast days in GloSea5 (first column), GloSea6 (second column), and the difference 

between both models (last column). Area averaged bias is denoted in the lower-right corner in each panel. Dotted areas indicate the 

bias is statistically significant at a 95% confidence level. 

The systemic error of surface air temperatures, measured by root-mean-square error (RMSE), is further investigated using 60-525 

day lead forecasts. In general, the error in Tmean, Tmax, and Tmin from GloSea6 is largely reduced compared to that from 

GloSea5. In particular, GloSea5 shows a large Tmean RMSE over the eastern US and Siberia (Fig. 6a), but the error is 

significantly mitigated in GloSea6 (Fig. 6c). Tmean errors in the eastern US and Siberia are influenced by both Tmax and 

Tmin. Based on the temperature bias analysis, this result is attributed by the improvement in the snow scheme that has effects 

throughout the day. However, some errors are aggravated in GloSea6. For instance, in northeastern Eurasia, Tmax RMSE is 530 

significantly increased by an exacerbated cold bias, which is related to a cold bias in initial conditions (not shown). The multi-

layer snowpack reinforces this bias in GloSea6.  

 

Figure 6: Same as Fig. 5, but for RMSE of surface air temperature variables. Blue and red shading in difference maps (c, f, and i) 

indicate the improved and deteriorated forecast performance of GloSea6, compared with the GloSea5. 535 
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Model performance in simulating precipitation is also evaluated in GloSea5 and GloSea6. Both models show an overestimation 

of precipitation across the NH because of the wet bias over southern China, and northeastern Eurasia (Figs. 7a,b). Although 

the NH averaged bias increases in GloSea6, this is largely due to a reduction in the negative bias over the continental United 

States (CONUS) and western and central Eurasia, as the positive bias is amplified or maintained in areas that have wet biases 

in GloSea5 (Fig. 7c). The increased precipitation over the mid-latitude regions is explained by the abundant SM from snow 540 

melting process under positive evapotranspiration-precipitation feedback (cf., Fig. 8). The difference of precipitation RMSE 

maps between GloSea6 and GloSea5 reveals a significant improvement in the simulation of precipitation over central CONUS, 

western and central Eurasia, and South Asia (Fig. 7f). Although entire regions where the error is reduced cannot be explained 

solely by advances in land processes, the improvement in the mid- and high-latitude regions of the NH is likely due to the 

improved snow physics.  545 

 

Figure 7: Spatial distribution of daily mean precipitation bias (upper row; a–c) and RMSE (lower row; d–f) of 60 days forecast in 

GloSea5 (first column), GloSea6 (second column), and the difference between both models (last column). Dotted areas indicate that 

(a–c) bias and (f) RMSE are statistically significant at a 95% confidence level. 

To demonstrate the impact of land-atmosphere interactions on the model ability to simulate precipitation, this study assesses 550 

the time-lagged Granger causality between 𝐸𝐹 and 𝑃𝑅. The observed causality generally represents that the null hypothesis is 

rejected (1-p value > 0.5) regardless of feedback direction, indicating evaporation-precipitation feedback over mid-latitude 

regions (Figs. 8a,b). The causal probability in the direction from 𝑃𝑅 to 𝐸𝐹, 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1), is generally pronounced over the 

globe, with particularly strong feedback over the areas where precipitation variability is primarily attributed by large-scale 

atmospheric circulations (e.g., South and East Asia), while the dominance of 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) is strongest over western North 555 

America (Fig. 8c). However, GloSea5 shows the overall overestimation in both casual directions between 𝐸𝐹 and 𝑃𝑅 (Figs. 

8d,e), whereas a negative and positive bias in 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1) and 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) are respectively shown over the high-

latitudes of Eurasia. The difference map of 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1) and 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) simulated in GloSea5 shows a positive bias 

over South and East Asia due to the overestimated  𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1) and a negative bias over eastern US and northern Eurasia 

due to overestimated 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1)  and underestimated 𝐺𝐶(𝐸𝐹𝑡|𝑃𝑅𝑡−1)  (Fig. 8f), respectively. The biases of the 560 

evaporation-precipitation feedback in both casual directions are reduced in GloSea6, with approximately a 10% decrease 

compared to GloSea5 (Figs. 8g,h). For instance, the meridional bias pattern over Eurasia is diminished in both casual directions, 
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particularly due to the decreased causal probability in 𝐺𝐶(𝑃𝑅𝑡|𝐸𝐹𝑡−1) over northern Eurasia, because the abundant SM in 

GloSea6, resulting from the multi-layer snowpack, suppresses water-limited processes.  

 565 

Figure 8: Spatial distribution of 1-day lagged Granger causality (1-p value) with evaporative fraction and precipitation. The 

observed causalities (a) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏), (b) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏), and (c) their difference in which blue and red color indicates the 

dominance of feedback direction in 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏), respectively. The model biases of GloSea5 compared to 

observations for the causality in (d) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) , (e) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) , and (f) the difference between 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏)  and 

𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) in GloSea5. The difference maps of (g) 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and (h) 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) between GloSea5 and GloSea6 and 570 
(i) the difference between 𝑮𝑪(𝑬𝑭𝒕|𝑷𝑹𝒕−𝟏) and 𝑮𝑪(𝑷𝑹𝒕|𝑬𝑭𝒕−𝟏) in GloSea6. 

4.3 Representation of land coupling processes  

The exchanges at the land surface are constrained by the water and energy balance equations, and the strength of water- versus 

energy-limited processes is quantified by the temporal correlation coefficient of latent heat flux to surface SM or net radiation, 

respectively, as described in subsection 3.3. In Figure 9, the colour square consists of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) on the x- 575 

and y-axis, respectively, indicating the relative dominance of water- and energy-limited coupling. The spatial pattern of the 

GLEAM land coupling regimes is similar to the distribution of SM climatology, such that water-limited processes are 

pronounced over climatologically dry areas and vice versa. The classification of the land coupling regime results from the 

synthetization of the spatial pattern of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) (Fig. 10a) and 𝑅(𝑅𝑛, 𝐿𝐻) (Fig. 11a), recognizing that both variables are 

interconnected through the surface energy and water budgets. Since latent heat flux is influenced by both SM availability and 580 

incoming radiation, positive correlations in both 𝑅(𝑆𝑆𝑀, 𝐿𝐻)  and 𝑅(𝑅𝑛, 𝐿𝐻)  can occur simultaneously, especially in 

transitional regimes (cf., Denissen et al., 2020). This overlap does not contradict the diagnostic framework but reflects the 

continuum of land-atmosphere coupling conditions. The kernel density plot of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) is bimodal, with clearly separated 

peaks on either side of zero, while there is a double peak in 𝑅(𝑅𝑛, 𝐿𝐻) with a broad peak centered near zero and a pronounced 

positive peak. For instance, the spatial distribution of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) is a zonal dipole structure over CONUS but 585 

is meridionally banded over Eurasia. Note that 𝑅(𝑆𝑆𝑀, 𝐿𝐻) and 𝑅(𝑅𝑛, 𝐿𝐻) are not mutually exclusive and may both be 

positive in transitional regimes. Their combined interpretation provides a diagnostic view of dominant surface flux controls 

but does not imply strict causality. 
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Figure 9: Spatial distribution of land coupling regime in (a) GLEAM, (b) GloSea5, and (c) GloSea6. Shadings indicate correlations 590 
indicated in the coloured square: latent heat flux to surface soil moisture (x-axis) and net radiation (y-axis). The NH frequency 

distributions from GLEAM (black), GloSea5 (green), and GloSea6 (aqua) are shown in the lower-left 2-dimensional coloured square. 

Their kernel density estimations are along the edges of the coloured square, where each curve has been normalized for the same 

maximum value. 

GloSea5 and GloSea6 exhibit an unclear bimodal peak near zero and on the positive side in the kernel density estimation of 595 

𝑅(𝑆𝑆𝑀, 𝐿𝐻), which is explained by an overall overestimation of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) resulting in the expansion of water-limited areas 

and the degradation of the spatial characteristics in the observation (Figs. 10b,c). The strength of the water-limited coupling is 

overestimated over the NH, but the positive bias is particularly evident over high-latitude regions (Figs. 10e,f). The difference 

between kernel density estimates of 𝑅(𝑆𝑆𝑀, 𝐿𝐻) from both forecast systems is observed near zero, where the kernel density 

of GloSea6 is closer to that of GLEAM. This does not indicate that the spatial distributions are the same, but rather reflects a 600 

cancellation effect due to changes in areas where 𝑅(𝑆𝑆𝑀, 𝐿𝐻) decreases in GloSea6 over high-latitude regions (Fig. 10d).  

On the other hand, both forecast models show a single peak on the positive side of the kernel density estimation of 𝑅(𝑅𝑛, 𝐿𝐻), 

even though the underestimated energy-limited coupling strength in GloSea5 is greater in GloSea6. The spatial distributions 

of 𝑅(𝑅𝑛, 𝐿𝐻) simulated by the two models similarly underestimate the spatial dependency (Figs. 11b,c), compared to the 

GLEAM. For instance, in GLEAM, high-latitude regions show large positive values of 𝑅(𝑅𝑛, 𝐿𝐻), but the models reveal 605 

negative biases (Figs. 11e,f). Nevertheless, GloSea6 significantly increases the energy-limited coupling strength, which 

mitigates the negative bias of 𝑅(𝑅𝑛, 𝐿𝐻), especially over the high-latitude areas (Fig. 11d). The delayed snowmelt simulated 

in GloSea6 leads to increased SM during the warm season, which likely contributes to enhanced evaporative partitioning. 

While this may weaken the sensitivity of latent heat flux to SM (i.e., reducing 𝑅(𝑆𝑆𝑀, 𝐿𝐻)) and strengthen the relationship 

with Rn (i.e., increasing 𝑅(𝑅𝑛, 𝐿𝐻)), we acknowledge that this interpretation is subject to multiple confounding factors. 610 

Therefore, the observed regime shift should be interpreted as a potential signal of snow-related land surface processes rather 

than direct evidence of causal feedback. 



25 

 

As a result, GloSea5 and GloSea6 have a limited ability to simulate the observed land coupling regime distributions; the 

comparison of the 2-dimentional density function for GloSea5 (green line) and GloSea6 (aqua line) in the coloured square. 

While the water-limited coupling is generally overestimated in both forecast models, the improvement of the energy-limited 615 

process in GloSea6 leads to a better classification of the land coupling regime over the NH (Fig. 9c). For instance, GloSea5 

has an excessive area of red-coloured grid points, indicating the relative dominance of water-limited coupling, while GloSea6 

better simulates the spatial pattern of land coupling regimes. In particular, the zonally and meridionally classified dipole pattern 

over the CONUS and the snow frontal area of Eurasia, respectively, become clear.  

 620 

Figure 10: Same as Fig. 8, but for the correlation coefficient between daily latent heat flux and surface soil moisture, to illustrate 

water-limited processes.  

 

Figure 11: Same as Fig. 10, but for the correlation coefficient between daily latent heat flux and net radiation, to illustrate energy-

limited processes. 625 

 

5 Summary and Conclusions 

Some land surface models have employed a single layer snow scheme that insulates the near-surface atmosphere from direct 

access to the heat in the ground. While effective for very thin snow cover, such a scheme fails to simulate the true insulating 

effect of the snowpack by prohibiting energy transport between land and atmosphere in deeper snow.  630 

This study primarily investigates the impact of implementing a multi-layer snow scheme on the climatological bias in both 

LSM offline simulations and fully coupled forecast systems. Two sets of LSM experiments are conducted using JULES version 
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5.6, the land surface component of GloSea6—one employing the single layer snow scheme and the other incorporating the 

multi-layer snowpack scheme. The multi-layer configuration yields a more realistic simulation of snow seasonality compared 

to reanalysis data. Notably, it captures the onset of snowmelt more accurately by better representing the insulating effect of 635 

snow.  

To further elucidate the role of snow insulating effect in coupled forecast system, we analyse GloSea global retrospective 

seasonal forecasts over 24 years (1993–2016) from two model versions: GloSea6, which implements the multi-layer scheme, 

and GloSea5, which retains the single-layer scheme. Improvements in the model simulations appearing in areas with high 

snow variability can be understood as the effect of the multi-layer snow scheme. However, differences between GloSea5 and 640 

GloSea6 in areas unrelated to snow (e.g., India, South Asia, and East Asia) likely result from various other factors arising from 

other modifications as part of the model version update. Although atmospheric updates may alter the meridional circulation 

by modifying atmospheric variability in the tropics, their impacts are predominantly confined to tropical regions, with limited 

influence over the mid- or high-latitude regions (see Fig. 14 in Walter et al., 2019). As it is not possible to fully isolate the 

contributions of other model components, this study focuses on the mid- and high-latitude regions of the NH to better attribute 645 

local land surface processes to improvements in snow physics. 

The improved snow physics with a multi-layer snowpack better captures the observed snow dissipation season (Fig. 2a) and 

affects land and near-surface variables throughout the snow accumulation and melting seasons. The land surface warming and 

cooling due to the insulating effect of the snowpack during the snow peak and melting seasons (Fig. 2c) results in a late onset 

of snow melt and wetter SM during the following summer season, especially in mid- to high-latitude regions (Fig. 2b and 3a), 650 

leading to reduced error in surface SM (Figs. 3b,c). The changes in land surface processes also affects land surface 

characteristics, e.g. SM memory is generally increased, which reduces model error in the memory and improves spatial 

agreement compared to the observational analysis (Fig. 4). Moreover, the greater SM from the advanced snow physics leads 

to a decrease in surface air temperature with evaporative cooling throughout the entire day (Fig. 5) and an increase in the 

likelihood of precipitation explained by evapotranspiration-precipitation feedback (Fig. 7). These climatological mean shifts 655 

in temperature and precipitation through implementing the multi-layer snow scheme in GloSea6 significantly reduce the error 

in the mid- and high-latitude regions, as the reduced temperature and increased precipitation offset GloSea5’s climatological 

warm and dry bias.  

The spatial distribution of the land coupling regime reflects the underlying SM climatology, with the majority of water- and 

energy-limited coupling corresponding to relatively dry and wet soils, respectively (Fig. 9). Evaluating these regimes is 660 

essential for understanding model behaviours associated with land-atmosphere coupling processes. Comparing the land 

coupling regime simulated by GloSea5 and GloSea6, the increased SM in GloSea6 alters the coupling characteristics, 

weakening water-limited coupling (Fig. 10) while enhancing energy-limited processes (Fig. 11). Although both models still 

overestimate water-limited coupling, the multi-layer snow scheme reduces this bias in mid- and high-latitude regions. The 

increased SM due to the late onset of snowmelt restricts water-limited coupling, evidenced by increased 𝑅(𝑅𝑛, 𝐿𝐻) and 665 

decreased 𝑅(𝑆𝑆𝑀, 𝐿𝐻).  
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Figure 12: Schematic of the impact of multi-layer snow scheme on seasonal forecast system from winter through the following 

summer. 

Since realistic snow states influence the water and energy budgets not only in winter but also in spring and summer (Fig. 12), 670 

the realization of snow characteristics should be a priority in the process of developing a model. Importantly, modifying land 

surface schemes to improve warm-season processes without addressing snow dynamics may lead to increased errors—even if 

snow is realistically simulated. It is also worth noting that improvements in climatology do not directly translate to enhanced 

forecast skill; in this study, improvements in temperature and precipitation skill in GloSea6 are primarily attributed to the 

larger ensemble size (SFs. 7 and 8). In conclusion, the implementation of a multi-layer snow scheme is essential for realistically 675 

simulating land surface processes in S2S dynamical forecast systems. From a climate perspective, as global warming increases 

both the variability and uncertainty in modelled snow conditions, reliable future climate projections will depend on the 

selective use of models that are able to simulate realistic snow characteristics.  
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