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Abstract. This study explores the influence of implementing a multi-layer snow scheme on the climatological bias within a
seasonal forecast system. A zero-layer snow scheme in land surface models often inadequately represents the insulating effect
of snowpack, resulting in warm and cold biases during winter and snow melting seasons, respectively. By contrast, multi-layer
snow schemes enhance energy transport between the land and the atmosphere. To investigate this impact, two versions of the
Global Seasonal Forecast System (GloSea) — GloSea5 with a zero-layer snow scheme and GloSea6 with a multi-layer snow
scheme — are compared over 24 years (1993-2016). Results shed light on the significance of accurately representing the
insulating effect of snow in improving retrospective seasonal forecasts. ln GloSea6, the snow melting season shifts two weeks
later, delaying the onset of evaporation in the spring season. This slows soil moisture drying, resulting in an improvement in
its climatology and memory. The abundant soil moisture enhances the partitioning of incoming energy into latent heat flux,
allowing for more evaporative cooling at the surface, and constrains water-limited coupling. Such improvements in the land
surface processes, especially over the mid-latitudes, mitigate the near-surface warming bias over the entire diurnal period and
the oversensitivity of atmospheric conditions to the land surface variability. The model performance in simulating precipitation
is also improved with the increase in precipitation occurrence over snow-covered regions, significantly reducing model error
in the Great Plains, Europe, and South and East Asia. Above all, this study demonstrates the value of implementing a multi-
layer snowpack scheme in seasonal forecast models, not only during the snowmelt season but also for the subsequent summer

season, for model fidelity in simulating temperature and precipitation along with the reality of land-atmosphere interactions.

1 Introduction

Subseasonal-to-seasonal (S2S) forecasts have become increasingly pivotal in numerous fields, encompassing agriculture,
water resource management, energy, transportation, and disaster preparedness. The significance of S2S forecasting stems from
their ability to provide actionable insights into forthcoming weather and climate conditions over the span of weeks to months.
The predictability of S2S forecasts is strongly tied to the quality of the initial conditions and data assimilation technique, which
mathematically finds optimal values with minimized analysis errors to merge observations into a dynamical model, has been

employed to create improved global analyses (Seo et al., 2021; Kumar et al., 2022). Forecasts across various time scales
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underscore the necessity for precise initial states of distinct components within the forecast model, as each component retains
information over inherently disparate time scales (Richter et al., 2024). As the memory of initial land conditions can extend
out to approximately 2 months, the importance of realistic land surface initialization in determining skill of the subseasonal
forecast is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al., 2019).

In particular, soil moisture (SM) plays a pivotal role in hydrological and meteorological dynamics, acknowledged as an
essential climate variable by the World Meteorological Organization (WMO) (Seneviratne et al., 2010; Santanello et al., 2018).
Its persistence or memory can significantly enhance forecast accuracy, particularly at time scales extending to 1-2 months
(Dirmeyer et al., 2016; Dirmeyer et al., 2018; Seo and Dirmeyer, 2022a). The fidelity of modelled SM contributes to a more
accurate portrayal of land-atmosphere interactions, facilitating the exchange of water and energy fluxes at the land surface
(Seo et al., 2024). This enhanced representation holds potential for predicting extreme climate events, particularly those
intensified by land-atmosphere feedbacks within extended range forecast systems (Seo et al., 2020; Dirmeyer et al., 2021; Tak
etal., 2024). SM is directly constrained by the components of the typical water balance equation: precipitation, latent heat flux,
and runoff, but the modelled snow affects the representation of snow characteristics.

The pivotal role of snow in land-atmosphere interactions highlights the significance of accurately representing cold processes
related to snow in hydrometeorology and dynamical predictions. Compared to other land surface variables, snow exhibits
distinctive characteristics such as high albedo, high thermal emissivity, and low thermal conductivity, which profoundly
influence radiation budget and surface moisture and energy fluxes to the atmosphere. The presence or absence of snow can
result in a disparity of approximately 10 K in the climatology of surface air temperature (Betts et al., 2014). This discrepancy
primarily stems from the reduction in net shortwave radiation attributable to the high albedo of snow. Snow-atmosphere
feedback is evolved in three distinct stages: before, during, and after snowmelt. Meanwhile, the coupling strength is strongest
during snowmelt and the coupling strength after snowmelt (delayed soil moisture impact) is stronger than that before snowmelt
(radiative impact from surface albedo) (Xu and Dirmeyer, 2011). Therefore, during the warm season, SM dynamics are
intricately linked to the physical characteristics of snow, affecting the initiation of evaporation due to snowmelt. It plays a
crucial role in determining the model's ability to accurately simulate atmospheric variables through land-atmosphere coupling
processes.

Land surface models (LSMs) have not often utilized a multi-layer snowpack scheme, which has proven insufficient in
accurately capturing the seasonal evolution of snow cover. Consequently, this approach tends to result in warm and cold biases
during winter and snow melting seasons, respectively. Addressing these limitations, recent advancements in LSMs aim to
integrate a multi-layer snow scheme to enhance the representation of snow dynamics and mitigate associated biases. For
instance, Noah-MP represents the latest iteration of Noah LSM which is a land component in many regional and global
operational forecast models, featuring numerous enhancements to improve the realism of biophysical and hydrological
processes (Niu et al., 2011). Notably, for a more accurate representation of snow physics, Noah-MP integrates a layered
snowpack scheme. This scheme dynamically adjusts the number of snow layers based on the depth of snow, ensuring a more

realistic conceptualization of snow accumulation and melt processes. The Joint UK Land Environment Simulator (JULES)
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Land Surface Model (LSM) features the utilization of a multi-layer snow scheme in its current operational system. This
implementation also demonstrates enhancements in the representation of land surface processes (Walters et al., 2017). JULES
is incorporated within the GloSea forecast system (Maclachlan et al., 2015).

Numerous studies have aimed to improve the sophistication of snow physics and highlighted its advancement in numerical
models (Xue etal., 2003; Arduini etal., 2019; Cristea et al., 2022). The impact of multi-layer schemes on S2S forecasts remains
inadequately explored and understood, even though all but three of 13 S2S models (BoM: POAMA P24, CNR-ISAC: GLOBO,
and NCEP: CFSv2) now use multi-layer snow schemes. Hence, this study conducts a comparative analysis between GloSea5
(zero-layer snowpack) and GloSea6 (multi-layer snowpack), past and present operational forecast systems at the UK Met
Office and the Korea Meteorological Administration (KMA), in retrospective forecasting in order to investigate the impact of
an advanced snow scheme. The primary objective of this study is to assess the seasonal cycle of snow and land surface variables
throughout the snow-covered period. Furthermore, this study assesses the model's capability to replicate the mean climatology
of key land surface and near-surface variables, e.g., surface SM, surface air temperature, and precipitation, during boreal warm
season. Daily mean, maximum, and minimum temperatures are validated at subdaily time scales to elucidate the time of
significant improvements in model performance. The model fidelity in the simulation of land-atmosphere interactions,
corresponding to water- and energy-limited processes, is also diagnosed to identify the realism of land coupling regime.

The paper is organized as follows. Section 2 describes the GloSea5 and GloSea6 models, and the validation datasets used in
this study. Section 3 provides the methodology to evaluate the model performance. Section 4 presents and discusses the results

of this study. Finally, Section 5 summarizes the results and their implications for future applications.

2 Data
2.1 Forecast Model

This study explores the performance of the Global Seasonal forecast system (GloSea) version 5 and 6, which are abbreviated
as GloSea5 and GloSea6, respectively. These are the fully coupled ensemble forecast models with atmosphere-land-ocean-sea
ice components, being developed by the UK Met Office. GloSea5 (Maclachlan et al., 2015) Global Coupled model 2.0 (GC2;
Williams et al., 2015) configuration consist of UM (Unified Model) version 8.6 atmospheric component (GA6.0; Walters et
al., 2017) having N216 horizontal resolution of 0.56° latitude x 0.83° longitude with vertically 85 hybrid-sigma coordinates
topped at 85 km, JULES (Joint UK Land Environment Simulator) version 4.7 land surface model (GL6.0; Best et al., 2011)
with four soil layers (0-10-, 10-35-, 35-100-, and 100-300-cm depth), as well as NEMO (Nucleus for European Modelling
of the Ocean) version 3.4 oceanic component (GO5.0; Megann et al., 2014) and CICE (Los Alamos Sea-ice Model) version
4.1 sea-ice component (GSI16.0; Rae et al., 2015) on an ORCA tripolar 0.25° global grid with 75 vertical levels. Those
components exchange interactive variables with the OASIS3 coupler (Valcke, 2013). GloSea6 Global Coupled model 3.2
(GC3.2) updates the atmospheric, land, ocean, and sea-ice components to the version of UM vn11.5 (GA7.2), JULES vn5.6
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(GL8.0; Wiltshire et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018), and CICE vn5.1.2 (GSI18.1; Ridley et al., 2018)
without any modification in the resolution. The model components of GloSea6 are coupled with the OASIS3-MCT (Model
Coupling Toolkit; Craig et al., 2017). We refer GloSea5 GC2 and GloSea6 GC3.2 to GloSea5 and GloSea6, respectively,
throughout this paper.

Substantive changes in the GloSea6 compared with GloSea5, mostly in model physics, have been implemented throughout all
model components (Kim et al., 2021). For instance, the atmospheric physics are modified in radiation (improving gaseous
absorption through upgrades in McICA (Monte Carlo Independent Column Approximation) and parameterization in ice optical
properties), microphysics (updates in warm rain parameterization and newly implementing ice particle size-dependent
parameterization), cloud physics (including radiative effects from convective cores), gravity wave drag (implement heating
from gravity-wave dissipation), boundary layer (correcting cloud top entrainment during decoupling to the land), cumulus
parameterization (improving updraught numeric in convective process and updating CAPE closure as a function of large-scale
vertical velocity), and new modal aerosol scheme (UKCA GLOMAP (Global Model of Aerosol Processes) scheme; Mann et
al., 2010). Aforementioned atmospheric physics updates in the GloSea6 are likely to improve the performance of model
systemic errors, particularly in the overestimated vertical profile of cloud fraction at upper troposphere, tropospheric cold and
dry biases, the underestimated jet stream, the overestimated precipitation, and the negative bias of troposphere geopotential
height during boreal summer (Williams et al., 2018). In addition, there are two major updates in land physics: the
implementation of a multi-layer snow scheme and the realization of shortwave surface albedo with wavelength dependence.
In GloSea5, a zero-layer snow scheme permitted direct heat exchange between the surface layer of the atmosphere and the soil,
utilizing a single thermal store for both the snow and the uppermost soil layer, with an insulating factor to account for the
reduced thermal conductivity of snow. This scheme lacked a dynamic representation of snowpack evolution with the
inadequate depiction of the snowpack's insulating properties. The improvement from the implementation of the multi-layer
snow scheme is shown not only in the realization of the snow melt season, but also in the soil temperature and permafrost
extent (Walters et al., 2017). For instance, the multi-layer snow scheme leads to surface warming of the soil temperature during
the winter season, as the heat flux from the soil to the atmosphere is reduced, but shows a surface cooling in the spring season,
as the increase in insulating radiation inhibits snowmelt. In the snow frontal regions, the increase in land surface albedo is due
to the delay in the onset of snowmelt by the multi-layer snowpack, while the decrease in surface albedo over the Sahara, the
Arabian Peninsula, and India is related to the modification in land surface albedo physics as a function of shortwave wavelength.
Other land surface physics are consistent in GloSea5 and GloSea6. For land surface types, five vegetation (broadleaf trees,
needleleaf trees, C3 grasses, C4 grasses and shrubs) and four non-vegetated surfaces (urban, open water, bare soil and
permanent land ice) are classified and the monthly climatology of leaf area index, derived from MODIS satellite product (Yang
et al., 2006), is prescribed corresponding to the plant functional types. Snow is present on every land tile, including inland
water when its temperature is below freezing. Therefore, the climate sensitivity over mid-latitude snow frontal regions is

attributable to the implementation of the multi-layer snow scheme in the GloSea6.
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In terms of initial conditions for each model component, GloSea5 and GloSea6 commonly utilize ERA-interim and a
variational data assimilation system for the NEMO ocean model (NEMOVAR; Mogensen et al., 2012) analysis for the
atmospheric and ocean and sea-ice initializations, respectively. Land surface reanalysis, where the land offline simulation is
forced by atmospheric boundary conditions from Japanese 55 years Reanalysis (JRA-55; Kobayashi et al., 2015) and European
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5; Hersbach et al., 2020) reanalysis, is
used to initialize land surface variables for GloSea5 and GloSea6, respectively. GloSea5 and GloSea6 have been used to carry
out 60-day (depending on ensemble or variable, 6-month forecast is conducted for the seasonal prediction) retrospective
forecasts starting on the 1, 9™, 17" and 25" of every month for 26 years (1991-2016) and 24 years (1993-2016), respectively,
but evaluations are conducted with 24-year forecasts for the fair comparison between both systems. To operate ensemble
forecasts, the Stochastic Kinetic Energy Backscatter (SKEB2; Tennant et al., 2011) and the Stochastic Perturbation of
Tendencies (SPT; Sanchez et al., 2016) scheme is used to perturb initial states in GloSea5 and GloSea6, respectively.
Compared to the SKEB2, the SPT scheme imposes additional constraints on energy and water conservation, leading to an
increase in the ensemble spread without degrading ensemble mean fields, which is especially beneficial over the tropics. Based
on these methods, GloSea5 and GloSea6 operate 3 and 7 ensemble forecasts and have been implemented by the KMA in
international S2S prediction project for 2020-2022 and 2023-present, respectively. The description of their model

configuration is summarized in Table 1.

GloSeab GloSeab
Hindcast period 26 years (1991-2016) 24 years (1993-2016)
Method Stochastic Kinetic Energy Backscatter Stochastic Perturbation of
Ensemble (SKEB2) Tendencies (SPT)
numbers 3 7
. Horizontal: N216 (0.83°%0.56°)
Resolution Atmosphere Vertical: L85 (~85 km)
Atmosphere ECMWF ERA-interim
Initial Land JULES offline run JULES offline run
conditions (JRAS5 atmospheric forcing) (ERAS5 atmospheric forcing)
Ocean/Sea-ice NEMOVAR (UKMO)
Atmosphere GA6.0 GA7.2
) Land GL6.0 GL8.0
Model physics Ocean GO5.0 G06.0
Sea-ice GSI6.0 GSI8.1
Coupler OASIS3 OASIS3-MCT

Table 1: Description of the GloSea5 and GloSea6 model configurations.
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2.2 Validation Data

The daily maximum and minimum temperature over land at a height of 2 meters are sourced from NCEP CPC analysis

produced by NOAA Physical Sciences Laboratory (PSL; https://psl.noaa.gov). The temperature data have a 0.5° horizontal

resolution and are available for 1979—present. The daily mean temperature is acquired by arithmetically averaging maximum
and minimum temperature. Hereafter, daily mean, maximum, and minimum temperature will be referred to as Tmean, Tmax,
Tmin, respectively.

The ERA5-Land is an offline land reanalysis (Mufioz-Sabater et al., 2021) of the Tiled ECMWF Scheme for Surface Exchanges
over Land incorporating land surface hydrology (H-TESSEL) land surface model with four soil layers (0-7-, 7-28-, 28-100-,
and 100-289-cm depth), forced by the ERA5 atmospheric reanalysis. ERA5-Land has a horizontal resolution of ~0.18 and an
hourly temporal resolution. To enhance the spatial resolution of the ERA5-Land, ERA5 near surface atmospheric variables
(e.g., temperature, humidity, and pressure) used for boundary conditions are corrected to account for the altitude difference
that came from the lower resolution of ERAS. This study uses ERA5-land as a reference for snow cover extent to diagnose the
modelled snow. Compared to the satellite-based datasets, the snow cover is accurately described in ERA5-Land whereas ERAS
is notably overestimated (Kouki et al., 2023). ERA5 assimilates snow depth and cover information from several SYNOP
(surface synoptic observation) stations and IMS (Interactive Multisensor Snow and Ice Mapping System) data over the
Northern Hemisphere.

In situ observations of surface SM are employed to evaluate the model climatological bias and SM memory (SMM) across the
globe. International Soil Moisture Network (ISMN; Dorigo et al., 2021) is used to obtain daily mean SM sensed from 5-cm to
10-cm. While flagged measurements classified as “good” quality are used, additional quality control procedures are applied to
avoid data redundancy and spurious SM characteristics. First, we exclude the Snowpack Telemetry network (SNOTEL) which
has large uncertainty in SM estimates because it is designed to measure snow variables. Second, if observations at one site are
made at several depths within that range, it will be represented as a value close to 5-cm. Despite the previous steps, if SM is
measured at the same location and depth by different sensors, only one of them is selected to avoid the loss of SM
characteristics from simple averaging of many sensors. Lastly, the z-score of SM measured from each sensor is calculated and
the sensor with the lowest value is selected. The SM z-score is defined as:

X, —X
P

- @
1+ tau

where X,, X, and oy, are the daily time series, timely averaged value, and temporal standard deviation of SM in daily time scale

Z

(t), respectively. N and tau represent the sample number of daily time series and corrected SMM (described in subsection
3.1), respectively.

A time-filtered satellite product of daily surface SM, originated from the COMBINED European Space Agency (ESA) Climate
Change Initiative (CCI) Soil Moisture v06.1 dataset (Dorigo et al., 2017), is used to assess the global SMM simulated by
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forecast models. Remotely sensed SM datasets inherently contain random and periodic errors, particularly in high-frequency
variability, due to the radiometric instrument performance, viewing angle variations, spatial resampling, imperfect
parameterizations used in retrieval algorithms, and so on. These errors hamper the representation of realistic SM dynamics and
land-atmosphere interactions due to a decrease in the SM autocorrelation value. To avoid the underestimation of SMM
attributed by the inherent error in satellite, this study uses the time-filtered surface SM product covering 21 years (2000-2020)
with 0.25° spatial resolution, using a Fourier transform with LSM datasets (Seo and Dirmeyer, 2022a). Hereafter, we refer to
the adjusted ESA CCIl SM based on the LSM simulations as ESACClyg;.

The Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017) provides a dataset of terrestrial heat fluxes
and soil wetness derived from algorithms integrating satellite-observed geophysical variables. Based on the Priestley and
Taylor equation, GLEAM estimates potential evaporation from net radiation and near-surface air temperature observations.
They are converted into actual evaporation through a multiplicative evaporative stress factor based on observed Vegetation
Optical Depth (VOD) and estimated root-zone SM. This study uses the daily surface SM, net radiation, latent heat flux, and

sensible heat flux from version 3.5a (https://www.gleam.eu/) covering 21 years (2000-2020) with a 0.25° spatial resolution.

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2.8 is the gauge-, satellite-, and reanalysis-based
precipitation dataset with are available for 1979—present. The precipitation data have a 0.1° horizontal resolution and 3-hourly
temporal resolution (Beck et al., 2019a). Its superior performance is primarily attributable to the inclusion of daily gauge

observations compared with 26 gridded precipitation datasets (Beck et al., 2019b).

3 Methodology

This study aims to investigate the impact of an improved snow scheme in the seasonal forecast system on the fidelity of snow
behavior on contemporaneously and during the next warm season after snow melt. To compare model performance between
GloSea6 and GloSea5 in the physics of snow freezing and melting, 100-day long retrospective forecasts initiated on the 1% day
of October—April spanning 24 years (1993-2016) are used. Although ensemble simulations are carried out in both models, a
single member run is used in this study because 24 yearly samples are sufficient to represent the climatology of the seasonal
cycle. The shift of the snow melting season alters the availability and variability of SM for spring and summer season. 60-day
long retrospective forecasts starting on 1%, 91, 17, 25" of May—August of 24 years are used to demonstrate the snow effect
on the model climatological bias of surface SM, surface air temperature, and precipitation during northern hemisphere warm
season when land-atmosphere feedback is most active. Most of the evaluations are accounted for by the fidelity of the modeled
land-atmosphere interactions calculated by the daily mean time series of all simulations during boreal summer, thereby
representing the climatology of coupling metrics. The ensemble mean values are used in the climatological bias analysis, while
the coupling metrics are calculated with each ensemble, and each ensemble result is averaged to avoid the physical correlation
between variables fading out in the ensemble-averaged time series. To identify the model improvement with testing statistical

significance, 384 initiated forecast runs are validated in each forecast system and tested for statistical significance using a
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Student’s t test. Model prediction skill as a function of forecast lead time is not evaluated in this study, because the result is

sensitive to the number of ensembles rather than the version upgrade of the forecast model (not shown here).

3.1 Soil moisture memory

To evaluate the SM persistence simulated in the model, the autocorrelation-based SMM is employed. First, assuming that the
evolution of the daily SM time series follows a first-order Markov process (Vinnikov and Yeserkepova, 1991), the decay
frequency (f) of SM can be defined by a function of SM autocorrelation (AR) at lag day (t) (Dirmeyer et al., 2016; Seo and
Dirmeyer, 2022a). Its formulation is followed as:
AR(7) = exp(—f1) )

The SMM is defined with an e-folding decay time, at which the autocorrelation of SM drops to 1/e. By a linear fitting of
In[AR(7)], the memory is calculated as the value of z, when the linear extrapolation between In[AR(t = 1)] and In[AR(t =
2)] is intersected to In[AR(t)] = —1. Since the SM behavior is not perfectly fitted on the first-order Markov process, the
displacement of the extrapolated linear fit at T = 0 is defined with the measurement error mostly attributed to random errors
(Robock et al., 1995). To measure the SMM under the assumption that there is no measurement error, the extrapolated linear
fit is shifted to intersect origin point and the intersected t value between the shifted linear fit and In[AR(7)] = —1 is the
corrected SMM. Time-filtered ESA CCIl and modeled SM products exhibit the marginal measurement error (Seo and Dirmeyer,
2022a), so that this study focuses on the improvement in the representation of the corrected SMM in the model simulations.
Due to the data availability of the time-filtered satellite dataset, the SMM analysis is conducted during the 17-year period
1993-2016. The autocorrelation is calculated by concatenated time series of daily SM over JJA (June—August) of 17 years,

and the SMM is calculated in each ensemble forecast and represented by the median of the ensemble values.

3.2 Time-lagged terrestrial coupling index

To characterize the causality of land-atmosphere interactions, this study adopts time-lagged terrestrial coupling index (LTCI).
The original terrestrial coupling index quantitively measures the sensitivity of target variable (TV: responding to a feedback)
to source variable (SV: triggering to a feedback) to demonstrate their physical process connection across a range of time scales
(e.g., hourly, daily, monthly, or yearly time series) (Dirmeyer, 2011; Seo and Dirmeyer, 2022b). Based on this matric, the
causality of the land-atmosphere feedback is applied by setting a 1-day time lag in the time series of TV compared with SV.
This is formulated as:
LTCI4(SVe, TVesr) = R(SVe, TViia) X Oy, @)

the subscript d refers to using daily time series and t 4+ 1 denotes 1-day time lag against the raw time series (t). R and o
represent the temporal correlation coefficient, and the temporal standard deviation, respectively. To explore the quantitative
response of precipitation variability to the land surface flux partitioning, this study sets the source and target variables as
precipitation (PR) and evaporative fraction (EF = LE/(H + LE)), respectively, referred to as LTCI;(EF;, PRy,1).
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3.3 Methodology to define land coupling regime

This study evaluates model performance in the simulation of land coupling regimes in GloSea5 and GloSea6. Land-atmosphere
interaction is controlled by land surface energy and water exchanges. Depending on their relative dominance, water- and
energy-limited regimes are categorized, where the flux partitioning between sensible and latent heat flux are controlled by the
availability and variability of SM or by net radiation mainly dictated by the atmosphere, respectively. They are separated by a
critical value of SM at each location; the dry and wet side of the critical value exhibits water- and energy-limited coupling
processes, respectively. Corresponding to the dominant response of the partitioning of land heat fluxes attributed to either the
land state or the atmosphere, the direction of land-atmosphere coupling is land-to-atmosphere or atmosphere-to-land,
respectively (see Fig. 2 in Seo et al., 2024).

To quantify the strength of land-atmosphere coupling based on either the water- or energy-budget predominance, this study
compares the temporal correlation of latent heat flux (the key variable linking water and energy budgets) with the surface SM
[R(SSM,LH)] and net radiation [R(R,, LH)], respectively. Thus, both independent proxies, measuring two distinct land
coupling processes, serve as the x- and y-axes in a colour square, and the comparison between them indicates the relative
dominance in the definition of land coupling regime (Seo et al., 2024).

4 Results
4.1 Seasonality of land surface variables

To assess the model performance in simulating snow freezing and melting processes, this study compares the representation
of the seasonal cycle of land surface variables between GloSea6 and GloSea5. Although the land initial conditions are
generated by different atmospheric forcing in both forecast models, the difference in initiated snow amount appears to be
insignificant throughout the entire snow season (Fig. 1a). GloSea5 and GloSea6 simulate the seasonal cycle of snow freezing
process over the Eurasian continent similarly regardless of which the snow scheme is used, while snow melts 2 weeks earlier
in the early summer when a zero-layer snowpack is adopted. For instance, both models consistently simulate a snow peak in
March and are initiated with similar snow conditions in that month, but the snow in GloSea5 disappears before June while it
persists until early June in GloSea6. The result resembles the snow melting season represented by ERA5-Land. [The multi
layer snowpack also extends the area of snow cover, which leads to the increased surface albedo, where increasing snow
amount leads to an increase of surface albedo at the land surface about 10 days later (SFs. 1a,b).

Although similar SM states are initialized in both forecast models for the entire analysis period, GloSea5 shows a model
forecast drift in the wet direction from October to March, indicating the systemic inconsistency between the initial SM state

from the LSM offline simulation and the coupled model climatology (Fig. 1b). Because the snowpack serves as a barrier to
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energy and water exchange between the land and the atmosphere, later snowmelt delays the onset of evaporation, which slows
the physical process of drying out SM. Thus, the implementation of the multi-layer snowpack results in the climatologically

wetter SM following the onset of snowmelt (May and June). The SM difference between GloSea6 and GloSea5 deepens toward

the middle of the summer season.

The effect of the multi-layer snow scheme on soil and air temperatures depends on the snow accumulation, snow peak, and

snow melting seasons. The snowpack plays a role of insulating the near-surface atmosphere from direct access to the heat in

the ground. Therefore,

(Figi"2d)y The snow insulating effect also contributes to the higher air temperature during the peak snow season, limiting
transfer of heat from air to soil due to the enhanced insulation by the multi-layer snowpack] During the early summer season,
the surface cooling in GloSea6 is accounted for by the abundance of SM. Increased partitioning of land heat fluxes to latent

heat leads to stronger evaporative cooling.
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Figure 1: Climatological seasonal cycle of 24-year (1993-2016) averaged (a) snow amount, (b) surface soil moisture, (c) surface soil
temperature and (d) surface air temperature simulated by GloSea5 (red) and GloSea6 (blue) over the Eurasian continent (0—130E,
45-55N), where 100-day forecast lines fade at increasing lead forecasts and coloured marks indicate initial states on the first day of
each month (surface soil temperature shows 60-day forecast due to data availability). To validate the snow melting processes in the
model simulations, the gray dashed line in (a) denotes ERA5-Land snow cover. Additionally, to denote the response of surface soil
and air temperature to the snow physics scheme, gray dashed lines display the difference between GloSea6 and GloSea5 throughout
the snow accumulation and melting seasons. (e) Climatology of 25-day running averaged time series, initiated at each year on 1
March, of the standardized difference (GloSea6-GloSea5) for surface albedo, surface soil moisture, and precipitation. (f) Lead-lag
correlation coefficient for the daily time series of the difference between GloSea5 and GloSea6 for surface soil moisture and
precipitation with 70-day forecast initiated at each year on 1 March to demonstrate soil moisture-precipitation coupling, where
black filled marks denote the correlation value is statistically significant at a 99% confidence level. A positive lagged day indicates
that soil moisture leads precipitation, and negative is vice versa.
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4.2 Evaluation of model climatological error and bias over the globe

Although soil moisture has historically not been a verifiable quantity in weather forecast models (Koster et al., 2009), the
adoption of soil moisture data assimilation makes soil moisture a variable for validation (Seo et al., 2021). To identify the
representation of surface SM, this study compares the climatological mean between both forecast models and evaluates their
model error against in-situ measurements. The difference in SM simulation between GloSea6 and GloSea5 is large above 40°N
regions across all forecast lead times (Fig. 2a). In particular, the difference is dominant over the snow frontal region, indicating
that the difference is related to the additional snow insulating effect in the GloSea6 LSM. Differences at lower latitudes are
likely due to other model changes. To assess model fidelity, SM simulated by GloSea5 (Fig. 2b) and GloSea6 (Fig. 2c) are
validated against in-situ measurements (mostly distributed over the North America and Europe). Although both models
simulate a reliable SM climatology over relatively dry regions (~0.1 m® m3), modeled SM is systematically underestimated
when model values are between 0.1 and 0.2 m® m3, Most of the underestimated sites are located above 40 N (SF. 2). Although
model errors still remain in GloSea6, the drying errors are significantly improved as the SM becomes wetter and the spatial

agreement, as measured by the correlation coefficient, is also increased.
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Figure 2: (a) Spatial distribution of climatological surface soil moisture difference between GloSea6 and GloSea5 of 60-day forecasts
initiated in May-August of 1993-2016. The dotted area indicates the difference is statistically significant at a 95% confidence level
and global averaged value is indicated in the lower-left corner. 2-dimenssional density of modelled surface soil moisture in (b)
GloSea5 and (c) GloSea6 against in situ ISMN observations (1720 measurement sites), where RMSE, bias, and Pearson correlation

coefficient are denoted in the upper-left corner.
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Since SMM is a key factor in the subseasonal forecasting because its persistence over a few weeks, model fidelity of SMM is
crucial for forecast skill. Because memory is shortened by occurrences of precipitation, it is prolonged where the climate is
relatively dry. For instance, SM persistence is relatively short over East Asia where the monsoon flow throughout the summer
season leads to an increasing likelihood of rainfall, accompanying wet soil. The spatial patterns of SMM from ESACCl .4,
ERA5-Land, and GLEAM are similar (Figs. 3a,b,c), but ESACCl,g; is noisy at high-latitudes because SM dynamics are not
perceived by the satellite when the surface is frozen. The globally averaged values of SMM from ESACCl.q;, ERA5-Land, and
GLEAM are 10.4, 8.3, 11.5 days, but the Amazon, tropical Africa and Southeast Asia, which have dense vegetation but short
SMM, are not sensed by satellite. This likely biases the global SMM estimate from ESACCl.qj toward shorter timescales.

The spatial distribution of SMM determined from the observational products is reliably simulated over the globe in GloSea5
and GloSea6. Improvements in SMM bias and spatial agreement are shown in GloSea6 (Figs. 3d,e). The underestimated SMM
in GloSea5 is increased by 0.8 days and the spatial correlation of the SMM with the observed fields is also improved. When
the assessment is performed with in-situ measurements (SF. 3), the model-based SMM is the better match to the observations
(SFs. 3b,c) and there is a significant improvement to simulate the SMM in GloSea6 compared to the GloSea5 (SFs. 3d,e).
When the soil becomes wet due to the late onset of snow melt, the SM decay in response to rainfall is slow, thereby increasing
the SMM in mid-latitude regions (Fig. 3e). In contrast, there are some regions (e.g., the southern region of the Amazon, central

West Africa, and India) where SMM decreases, the main reason being an increase in rainfall.

E te) GloSeab -
17 19  [days] -3.6-2.4-12 00 12 2.4 36 Ldays]

Figure 3: Surface soil moisture memory from (a) ESACCladgj, (b) ERA5-Land, (c) GLEAM, (d) GloSea5, (e) GloSea6, and (f) the
difference between GloSea6 and GloSea5. Global mean values are denoted in the middle-left in each panel. The bracketed values
indicate the spatial correlation of the modelled soil moisture memory compared to ESACClagj (left), ERA5-Land (middle), and
GLEAM (right).

Features of the simulation of surface air temperature in GloSea6 include reduced bias for daily mean and subdaily time scales
across all forecast lead times, explainable by the changes in land physics. GloSea6 represents a decrease in Tmean bias despite
the existence of significant positive bias over North America (Fig. 4b). GloSea6 simulates warmer and colder temperatures

over the tropics and mid-latitudes, respectively, compared to GloSea5 (Fig. 4c). To identify the impact of two major
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modifications in the LSM on temperature simulation, when the assessment of Tmean is decomposed into the Tmax and Tmin,
the results are not consistent with the daily mean. Although the Tmean bias is small in both forecast systems, it results from
the cancellation of biases for Tmin and Tmax. Tmax shows a large negative bias north of 50°N and a positive bias over warm
arid regions (e.g., Southwest Asia) (Figs. 4d,e). Tmin appears to have a large positive bias over the globe, except for the Sahara
and Southwest Asia, which have a negative bias (Figs. 4g,h). The effect of the multi-layer snow scheme on forecasting
temperature is primarily surface cooling over snow frontal areas throughout the entire day (Fig. 4c), even though the
temperature response is more sensitive during the daytime (Figs. 4f,i). This is because there is a larger latent heat flux during

the daytime, resulting in a larger evaporative cooling. On the other hand, GloSea6 simulates warmer Tmean over the tropics,

particularly in Tmax, which likely results from updating the land surface albedo as a function of shortwave wavelength.

GloSeab-GloSea5
> - -

Tmean

Tmax

Tmin

-24-16-0.8 0.0 0.8 1.6 2.4 [K]

Figure 4: Spatial distribution of daily mean (upper row; a—c), maximum (middle row; d—f), and minimum (lower row; g-i) surface
air temperature bias of 60 days forecast in GloSea5 (first column), GloSea6 (second column), and the difference between both models
(last column). Area averaged bias is denoted in the lower-right corner in each panel. Dotted areas indicate the bias is statistically
significant at a 95% confidence level.

The systemic error of surface air temperatures, measured by root-mean-square error (RMSE), is further investigated using 60-
day lead forecasts. In general, the error in Tmean, Tmax, and Tmin from GloSea6 is largely reduced compared to that from
GloSeab. In particular, GloSea5 shows a large Tmean RMSE over the eastern US, Siberia, and Australia (Fig. 5a), but the error
is significantly mitigated in GloSea6 (Fig. 5¢). Tmean errors in the eastern US and Siberia are influenced by both Tmax and

Tmin. Based on the temperature bias analysis, this result is attributed by the improvement in the snow scheme that has effects
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throughout the day. Over Australia, the decrease of Tmean error is mostly influenced by Tmax, which is accounted for by the

improvement of land-atmosphere interactions during the daytime (cf., Fig. 10d).

GloSeab GloSeab-GloSea5

T A e W , Z i o
"- < .' Yo

Tmean

Tmax

Tmin

[K] -2.4-16-0.8 0.0 08 1.6 24 [K]

Improved Deteriorated

Figure 5: Same as Fig. 4, but for RMSE of surface air temperature variables. Blue and red shading in difference maps (c, f, and i)
indicate the improved and deteriorated forecast performance of GloSea6, compared with the GloSea5.

Model performance in simulating precipitation is also evaluated in GloSea5 and GloSea6. Both models show an overestimation
of precipitation across the globe because of the wet bias over South America, central Africa, southern China, and northeastern
Eurasia (Figs. 6a,b). Although the globally averaged bias increases in GloSea6, this is largely due to a reduction in the negative
bias over the continental United States (CONUS) and western and central Eurasia, as the positive bias is amplified or
maintained in areas that have wet biases in GloSea5 (Fig. 6¢). The increased precipitation over the mid-latitude regions is
explained by the abundant SM from snow melting process under positive evapotranspiration-precipitation feedbacks (cf., Fig.
7). The precipitation errors of GloSea5 and GloSea6 appear to be spatially large over the areas where the mean precipitation
climatology is high (e.g., East America, Central America, South and East Asia, and Central Africa) (Figs. 6d,e). The difference
of precipitation RMSE maps between GloSea6 and GloSea5 reveals a significant improvement in the simulation of

precipitation over central CONUS, western and central Eurasia, Central Africa, and South Asia (Fig. 6f). Although entire
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regions where the error is reduced cannot be explained solely by advances in land processes, the improvement in the mid- and

high-latitude regions of the Northern Hemisphere is likely due to the improved snow physics.
GIoSeaS GIoSea6 GIoSea6 GloSea5

Bias

RMSE

T T T
0.05 045 085 125 1.65 205 245 285 [mm/day] -0.6-0.4—-0.2 0.0 0.2 0.4 0.6[mm/day]
Improved Deteriorated

Figure 6: Spatial distribution of daily mean precipitation bias (upper row; a—c) and RMSE (lower row; d—f) of 60 days forecast in
GloSea5 (first column), GloSea6 (second column), and the difference between both models (last column). Dotted areas indicate that
bias (a, b, and c¢) and RMSE () are statistically significant at a 95% confidence level.

To demonstrate the impact of land-atmosphere interactions on the model ability to simulate precipitation, this study assesses
the time-lagged terrestrial coupling index (LTCI). The observed LTCI,;(EF;, PR;,) generally represents a positive coupling
to precipitation over the globe due to the positive correlation R(EF;, PR, ), with particularly strong feedbacks over the areas
where precipitation variability apg,, , is high (e.g., Central America, Eastern CONUS, South Asia, and East Asia) (Fig. 7a).
The spatial pattern of LTCI;(EF;, PR,,) simulated by GloSea5 and GloSea6 is similar to the observed distribution, whereas
there is an overall overestimation of coupling strength (Figs. 7b,c). Both models commonly overestimate the
LTCIl;(EF;, PR;,,) over the Americas (except for the Amazon), northern Eurasia, and South Asia, but the positive bias is
mitigated in GloSea6 (Figs. 7e,f). For GloSea6, the large positive bias over the tropics, also simulated by GloSea5, is
significantly reduced, attributable to the decrease in R(EF;, PR.,,), while the positive bias over high-latitude regions is

slightly amplified by increased opp,,, (Fig. 7d). The increased variability of daily precipitation in GloSea6 is associated with

an increase in mean precipitation (cf., Fig. 6c).
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Figure 7: Spatial distribution of LTCI;(EF,, PR,,4) of 60-day forecasts in (a) GLEAM, (b) GloSea5, and (c) GloSea6. (d) The
difference between GloSea6 and GloSea5 and the bias of the 1-day lagged TCI simulated by (e) GloSea5 and (f) GloSea6 are displayed,
where the dotted areas indicate statistical significance at a 95% confidence level. In each panel, gray horizontal lines isolate three
areas (bottom: 60S-15N, middle: 15-50N, and top: 50-90N) and area averaged values is denoted within gray shaded box.

4.3 Representation of land coupling processes

The exchanges at the land surface are constrained by the water and energy balance equations, and the strength of water- versus
energy-limited processes is quantified by the temporal correlation coefficient of latent heat flux to surface SM or net radiation,
respectively, as described in subsection 3.3. In Figure 8, the colour square consists of R(SSM, LH) and R(R,,, LH) on the x-
and y-axis, respectively, indicating the relative dominance of water- and energy-limited coupling. The spatial pattern of the
GLEAM land coupling regimes is similar to the distribution of the SM climatology, such that water-limited processes are
pronounced over climatologically dry areas and vice versa. The classification of the land coupling regime results from the
synthetization of the spatial pattern of R(SSM, LH) (Fig. 9a) and R(R,,, LH) (Fig. 10a). The kernel density plot of R(SSM, LH)
is bimodal, with clearly separated peaks on either side of zero, while there is a double peak in R(R,,, LH) with a broad peak
centered near zero and a pronounced positive peak. For instance, the spatial distribution of R(SSM, LH) and R(R,,, LH) is a

zonal dipole structure over CONUS but is meridionally banded over Eurasia.
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Figure 8: Spatial distribution of land coupling regime in (a) GLEAM, (b) GloSea5, and (c) GloSea6. Shadings indicate correlations
indicated in the coloured square: latent heat flux to surface soil moisture (x-axis) and net radiation (y-axis). The global frequency
distributions from GLEAM (black), GloSea5 (cyan), and GloSea6 (green) are shown in the lower-left 2-dimensional coloured square.
Their kernel density estimations are along the edges of the coloured square, where each curve has been normalized for the same
maximum value.

GloSea5 and GloSea6 show a single peak on the positive side of the kernel density estimation of R(SSM, LH), which is
explained by an overall overestimation of R(SSM, LH) resulting in the expansion of water-limited areas and the degradation
of the spatial characteristics in the observation (Figs. 9b,c). The strength of the water-limited coupling is overestimated over
the globe, but the positive bias is particularly evident over high-latitude regions (Figs. 9e,f). Nevertheless, the difference
between the two forecast system kernel density estimates of R(SSM, LH) is not significant. This does not indicate that the
spatial distributions are the same, but rather a cancellation of the changed areas of increase and decrease of R(SSM, LH) in
GloSeab over the tropics and high-latitude areas (Fig. 9d), respectively.

On the other hand, both forecast models show a single peak on the positive side of the kernel density estimation of R(R,,, LH),
even though the underestimated energy-limited coupling strength in GloSea5 is greater in GloSea6. The spatial distributions
of R(R,, LH) simulated by the two models similarly underestimate the spatial dependency (Figs. 10b,c), compared to the
GLEAM. For instance, in GLEAM, dry and high-Ilatitude regions show negative and large positive values of R(R,,, LH),
respectively, but the models reveal positive and negative biases for each region (Figs. 10e,f). Nevertheless, GloSea6
significantly increases the energy-limited coupling strength, which mitigates the negative bias of R(R,,, LH), especially over
the high-latitude areas, whereas the underestimation still exists (Fig. 10d). Because the late onset of snowmelt leads to wetter
SM over the mid- to high-latitudes during the warm season, the wetter SM climatology limits the sensitivity of land heat fluxes

to SM variability, leading to a regime shift of land coupling from water-limited to energy-limited processes.
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As a result, GloSea5 and GloSea6 have a limited ability to simulate the observed land coupling regime distributions; the
445  comparison of the 2-dimentional density function for GloSea5 (cyan line) and GloSea6 (green line) in the coloured square.
While the water-limited coupling is generally overestimated in both forecast models, the improvement of the energy-limited
process in GloSeab leads to a better classification of the land coupling regime over the globe (Fig. 8b,c). For instance, GloSea5
has an excessive area of red-coloured grid points, indicating the relative dominance of water-limited coupling, while GloSea6
better simulates the spatial pattern of land coupling regimes. In particular, the zonally and meridionally classified dipole pattern

450 over the CONUS and the snow frontal area of Eurasia, respectively, become clear.
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Figure 9: Same as Fig. 7, but for the correlation coefficient between daily latent heat flux and surface soil moisture, to illustrate
water-limited processes.
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455  Figure 10: Same as Fig. 9, but for the correlation coefficient between daily latent heat flux and net radiation, to illustrate energy-
limited processes.
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5 Summary and Conclusions

Most land surface models have employed a zero-layer snow scheme that insulates the near-surface atmosphere from direct
access to the heat in the ground. While effective for very thin snow cover, such a scheme fails to simulate the true insulating
effect of the snowpack by prohibiting energy transport between land and atmosphere in deeper snow. This study primarily
explores the impact of implementing a multi-layer snow scheme on the climatological bias of the seasonal forecast system.
Two sets of the GloSea global retrospective seasonal forecasts over 24 years (1993-2016), from the latest version (GloSea6)
and its predecessor (GloSea5), which implement the multi-layer and zero-layer snow schemes, respectively, are examined to
elucidate the role of the insulating effect of snow.

The improved snow physics with a multi-layer snowpack better captures the observed snow dissipation season (Fig. 1a) and
affects land and near-surface variables throughout the snow accumulation and melting seasons. The land surface warming and
cooling due to the insulating effect of the snowpack during the snow peak and melting seasons (Fig. 1c) results in a late onset
of snow melt and wetter SM during the following summer season, especially in mid- to high-latitude regions (Fig. 1b and 2a),
leading to reduced error in surface SM (Figs. 2b,c). The changes in land surface processes also affects land surface
characteristics, e.g. SMM is generally increased, which reduces model error in the memory and improves spatial agreement
compared to the observational analysis (Fig. 3). Moreover, the greater SM from the advanced snow physics leads to a decrease
in temperature with evaporative cooling throughout the entire day (Fig. 4) and an increase in the likelihood of precipitation
explained by evapotranspiration-precipitation feedbacks (Fig. 6). The climatological mean shift in temperature and
precipitation through implementing the multi-layer snow scheme in GloSea6 significantly reduces the error in the mid- and
high-latitude regions, as the reduced temperature and increased precipitation offset GloSea5’s climatological warm and dry
bias. On the other hand, the other physics update in the LSM is the land surface albedo, which now varies with shortwave
wavelength. Its effect is significant only during the daytime over the tropics, because the effect of surface albedo on the surface
energy budget is dominant during daytime.

The spatial distribution of the land coupling regime is similar to that of the SM climatology, with the majority of water- and
energy-limited coupling occurring over relatively dry and wet soils (Fig. 8). Assessment of model performance is critical to
understanding the issues associated with land-atmosphere coupling processes. Comparing the land coupling regime simulated
by GloSea5 and GloSea6, the increased SM in GloSea6 alters land-atmosphere interactions, limiting the strength of water-
limited coupling (Fig. 9) along with enhance energy-limited processes (Fig. 10). Although the relative dominance of water-
limited coupling is still overestimated in both GloSea5 and GloSea6, this problem is corrected over mid- and high-latitude
regions when the multi-layer snow scheme is implemented. The increased SM due to the late onset of snowmelt restricts water-
limited coupling. This results in an increase in R(R,,, LH) complemented by a decrease in R(SSM, LH).

Because the simulation of realistic snow states affects the water and energy budgets not only in winter also in spring and

summer, the realization of snow characteristics should be a priority in the process of developing a model. For instance, if the
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land surface model is modified to improve land processes for the warm season, when land-atmosphere feedbacks are evident,
without any assessment and improvement of snow behaviour, the model is likely to have a larger error, even if the snow is
simulated realistically. Note that the climatological improvements do not imply an increase in the predictability of forecast
systems, as the increase in forecast skill of temperature and precipitation in GloSea6 is primarily due to the larger ensemble
size (SFs. 4 and 5). Therefore, this study suggests that the implementation of a multi-layer snow scheme is necessary to simulate
the realistic land surface processes in dynamical forecast systems on the subseasonal to seasonal time scale. From a climate
perspective, as global warming increases the variability and uncertainty of modelled snow, reliable future projections for
climate change can be presented with the results of selective use of models that are able to simulate realistic snow
characteristics.
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