
Combining observations and simulations to investigate the
small-scale variability of surface solar irradiance under continental
cumulus clouds
Zili He1, Quentin Libois1, Najda Villefranque1, Hartwig Deneke2, Jonas Witthuhn2, and Fleur Couvreux1

1CNRM, Université de Toulouse, Meteo-France, CNRS, Toulouse, France
2Department: Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Correspondence: Quentin Libois (quentin.libois@meteo.fr)

Abstract. The amount of solar radiation reaching the Earth surface (SSI) is critical for a variety of applications, ranging from

surface-atmosphere interactions to solar energy. SSI is characterized by a large spatiotemporal variability, in particular in the

presence of cumulus clouds. This results in complex spatial patterns of shadows and sunlight directly related to clouds’ geom-

etry and physical properties. Although key in many respects, the instantaneous spatial distribution of SSI remains largely unex-

plored. Here, we use unique observations from a dense network of pyranometers deployed during the HOPE field campaign to5

investigate the SSI spatial distribution. For cumulus scenes, bimodal distributions are found, with one mode corresponding to

cloud shadows and the other to sunlit areas with enhanced SSI exceeding clear-sky values. Combining large-eddy simulations

of cumulus clouds with Monte Carlo ray tracing, we demonstrate the capability of advanced numerical tools to reproduce the

observed distributions and quantify the impact of cloud geometrical and physical properties on both modes. In particular, cloud

cover strongly modulates their amplitudes, in addition to their position and width, which are also sensitive to cloud height,10

geometrical depth, and liquid water content. Combining observations and simulations, we also explore sampling strategies to

estimate the SSI spatial distribution with a limited number of sensors, suggesting that 10 pyranometers integrated over 10 min

can capture most details of the full distribution. Such a strategy could be used for future campaigns to further investigate SSI

distributions and their impact on land-atmosphere exchanges or photovoltaic farm management.

1 Introduction15

The amount of solar radiation reaching the Earth surface (hereafter referred to as SSI for surface solar irradiance) can be

very variable in space and time, especially under broken cloud conditions (Long et al., 2006; Berg et al., 2011). In such

conditions, SSI can even exceed clear-sky values when the sun remains visible in between clouds due to reflection by the cloud

sides, a process often reported as cloud enhancement (Emck and Richter, 2008; Yordanov et al., 2012; de Andrade and Tiba,

2016). Although ubiquitous and very well known in the solar energy community (Lappalainen and Kleissl, 2020), this cloud20

enhancement has not been much investigated in the atmospheric science community, primarily because it is thought to vanish

with spatial and temporal averaging on scales relevant to energetic transfers in the Earth system, even though recent work

has demonstrated that systematic biases could remain even on daily averages (Gristey et al., 2020b). This phenomenon, and
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more generally all radiative processes implying horizontal transfers in the presence of clouds, sometimes called 3D radiative

effects of clouds, also remain overlooked in the atmospheric radiative transfer modelling community because most radiative25

transfer models embedded in atmospheric models rely on the plane parallel hypothesis, which inherently precludes to simulate

such features (Várnai and Davies, 1999; Villefranque and Hogan, 2021). However, the spatial heterogeneity of SSI under

broken cloud conditions is critical for the surface energy budget and land-atmosphere interactions (Lohou and Patton, 2014),

the development of small-scale convection (Jakub and Mayer, 2017; Veerman et al., 2022), as well as for the stability of

electrical systems fed by solar energy (Alam et al., 2014; Lohmann et al., 2016; Lohmann, 2018) or for urban thermal studies30

(Pacifici et al., 2019; Sanchez et al., 2021). As an illustration, the production of photovoltaic (PV) panels is very local, and the

management of a PV plant is sensitive to small-scale irradiance variations because the time response of a PV system is nearly

instantaneous (Gueymard, 2017). Although the complexity of the SSI spatial distribution is currently uncaptured by standard

atmospheric models, the need from various sectors to better anticipate the detailed impact of clouds on SSI is now challenging

the atmospheric science community.35

While the instantaneous SSI spatial distribution is key for many applications, it remains difficult to assess. Standard SSI

measurements are generally punctual and can only capture local temporal variations so that fast temporal variations are much

more documented than small-scale spatial gradients (Inman et al., 2016). Satellite observations can provide a two-dimensional

view of the Earth surface, but the spatial resolution of SSI satellite products is generally coarse compared to that of individual

clouds, and estimating SSI from above requires many assumptions (Qu et al., 2017). Moreover, standard retrieval algorithms40

cannot capture cloud enhancement (Huang et al., 2019), making such products inadequate to investigate the details of the

SSI spatial distribution (Beyer, 2016). As a result, most we know about SSI spatial variability comes from modelling. For

decades, large-eddy simulations (LES) have been used to simulate cloud fields (Brown et al., 2002; Siebesma et al., 2003),

and they now allow the simulation of extremely realistic clouds (Villefranque et al., 2019). These clouds have been extensively

evaluated in terms of their geometrical and physical properties, often based on comparisons between spatial averages over the45

LES domain and vertical profiles observations (Neggers et al., 2003; Oue et al., 2016; Endo et al., 2019), but much less in

terms of their radiative impact. Yet, assessing SSI fields would be a stringent test for the LES simulations, as such fields are

sensitive to all geometrical and physical details of the simulated clouds. Only recently have a few studies carefully looked

at SSI fields by combining LES with online or offline 3D radiative transfer models (Jakub and Mayer, 2017; Gristey et al.,

2020b; Veerman et al., 2022). Gristey et al. (2020a) showed, for instance, that the features of the SSI spatial distribution under50

cumulus clouds are directly related to the macroscopic organization and physical properties of the clouds. This is promising

to better characterize these clouds, which are particularly difficult to observe from space due to their small size. To avoid the

computational burden of 3D radiative transfer simulations Tijhuis et al. (2023) proposed a method to reconstruct realistic SSI

spatial distributions from plane parallel simulations. To this end, they applied a Gaussian filter to the SSI fields obtained under

the plane-parallel hypothesis, allowing cloudy diffuse radiation to artificially spread over directly illuminated areas, somehow55

mimicking 3D effects. Yet, so far, the observational equivalent of such SSI spatial distributions is still largely missing, although

a few field campaigns have already investigated related questions.
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For instance, a network of 17 pyranometers was deployed around Kalaeloa airport on Oahu, Hawaii, from March 2010 to

October 2011 (Sengupta and Andreas, 2010). This network has been used to investigate the power spectra of irradiance time

series for individual sensors and for their average (Tabar et al., 2014) and to extract 2D fields of cloud motion vectors from60

ground-based observations of cloud shadows (Weigl et al., 2012). Luger et al. (2013) also used a grid of irradiance sensors to

estimate the SSI spatial distribution on a PV farm and extract cloud velocity vectors. The HOPE field campaign (Macke et al.,

2017), which took place in 2013 around Jülich, Germany, focused on the small-scale interactions between the surface and

the atmosphere, in particular for the evaluation of subgrid processes in atmospheric models. During the campaign, an original

instrumental system comprising 99 pyranometers was deployed for the first time (Madhavan et al., 2016). These observations65

have been carefully analyzed by Madhavan et al. (2017), with a main focus on the correlations between observations made

by different sensors. These authors primarily aimed at quantifying the representativity of a single sensor for a neighbouring

area. In particular, they showed that correlations arise at different spatial scales depending on the cloud regime. However, they

did not focus much on the instantaneous SSI spatial distributions. Using the same dataset, Lohmann et al. (2016) focused on

the correlations between time series to better predict local changes of SSI but did not look at the spatial distributions either.70

This dataset is, however, promising for investigating, from an observational point of view, the spatial variability of SSI. More

recently, Mol et al. (2024) used a dense network of 20 to 25 radiometers to investigate the impact of clouds on SSI spatial

patterns, focusing in particular on the spectral dimension of SSI. Other studies attempted to construct spatial fields of SSI,

for instance, using a network of sky-imagers to locate clouds in the sky and then project their shadows at the surface (Nouri

et al., 2022). However, in such cases, clouds are attributed an average transmissivity (Nouri et al., 2019) that does not capture75

the complexity of the radiation field in and around the cloud shadows. Kuhn et al. (2017) alternatively used a shadow camera

to estimate SSI fields with an accuracy of about 10 % but did not discuss how the measurement errors modified the overall

distribution.

With the existing literature on SSI spatial variability in mind, the main objective of the present study is to investigate instan-

taneous SSI spatial distributions under broken cloud conditions by combining the unique observations from the HOPE dataset80

with simulated SSI fields obtained by running 3D radiative transfer on LES simulated clouds. In line with previous studies

addressing this question we focus on cumulus clouds because they are responsible for the largest small-scale variability of

SSI. These clouds, ubiquitous across a large fraction of the globe, also remain a challenge for weather and climate modelling,

primarily because their small size means that they are generally parameterized, and their radiative impact as well. To identify

situations from the HOPE dataset corresponding to golden cases of cumulus clouds, i.e., very homogeneous fields close to85

those simulated by ideal LES, we propose an original selection strategy. The comparison of these golden cases to simulations

suggests that simulations are appropriate for studying SSI spatial distributions. Hence, building on this first general assessment

of instantaneous SSI spatial distributions, we then tackle two independent questions. We first explore measurement strategies

to capture the SSI spatial distribution with a limited network of radiation sensors, which is addressed by combining the ob-

servations and simulations. We then investigate how cloud properties control SSI spatial distributions, which is carried out by90

perturbing the cloud properties in the simulation system and quantifying the impact on SSI distributions.
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Section 2 introduces the HOPE dataset, the LES model and the simulations, as well as the 3D Monte Carlo radiative transfer

code. The methodology followed to answer the objectives of this study is then detailed in Sect. 3. The analysis of the SSI

spatial distributions from both the observations and reference simulations are presented in Sect. 4, while Sect. 5 further inves-

tigates how instantaneous SSI spatial distributions can be approached by appropriate spatiotemporal sampling of SSI. Finally,95

sensitivity tests are performed in Sect. 6 to investigate the impact of cloud properties on the SSI fields. Section 7 summarizes

the main results and gives some perspectives.

2 Data

2.1 Observations from the HOPE field campaign

The High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Exper-100

iment (HOPE) campaign (Macke et al., 2017) was designed to evaluate the German community atmospheric model (ICON)

and to learn about atmospheric physics at spatiotemporal scales at which processes are parameterized in the model. To this

end, observations of aerosols, clouds, and precipitation were collected with high spatial and temporal resolutions near Jülich,

Germany (50.909◦N, 6.4139◦E, 111 m asl) in April and May 2013.

During this campaign, and until July 2013, a high-density network of 99 pyranometers was deployed (although some of them105

have not been working all the time) on a 10 × 12 km2 area (Madhavan et al., 2017). The minimum and maximum distances

between any two pyranometers are 0.14 and 14.1 km, and the mean distance to the closest neighbour is 0.86 km. The SSI (i.e.

the downwelling solar flux density per unit of horizontal surface in W m−2) was measured at 10 Hz and then averaged at 1

Hz. The low-cost silicon sensors used are only sensitive across the spectral range of 300-1100 nm, hence SSI retrieval requires

a calibration step. As the spectral distribution of SSI varies depending on atmospheric conditions (Lindsay et al., 2020), this110

calibration can result in errors up to 5%.

In addition to these pyranometers, the Leipzig Aerosol and Cloud Remote Observations System (LACROS) station was

deployed at Krauthausen (50.880◦N, 6.415◦E, 99 m asl) in April and May, the two-month period on which we focus in this

study. The station includes a 35-GHz cloud radar and a lidar ceilometer, from which cloud boundaries (cloud base and top

heights) can be retrieved, a microwave radiometer measuring liquid water path (LWP, in kg m−2), as well as an all-sky imager115

(Bühl et al., 2013).

Figure 1 shows a sample of this dataset on a day with fair-weather cumulus clouds, as can be seen on the image captured

by the all-sky imager (Fig. 1(a)). Figure 1(b) shows the instantaneous SSI measured by the pyranometer network. Small SSI

values around 500 W m−2 (blue points) correspond to cloud shadows, while large values closer to 1000 W m−2 (red points)

correspond to clear sky. It can be noticed that clear-sky values are heterogeneous in space, a point that will be specifically120

addressed later.
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Figure 1. Illustrations of data used in this study. (a) All-sky image at 10:37:30 UTC on 5 May 2013. The picture was taken at LACROS

station, which is marked as “LA” in (b). (b) Mean SSI over one minute, measured by the 99 pyranometers from 10:37 to 10:38 UTC on 5

May 2013. (c) Simulated SSI under a synthetic cumulus cloud field simulated by a Meso-NH LES under the same solar zenith angle as in

(b).

2.2 Large-eddy simulations

To complement the HOPE observations, a high-resolution simulation of a golden case of developing cumuli over land, namely

the ARM cumulus case (Brown et al., 2002), is used. The simulation is run with the Meso-NH model (Lac et al., 2018) for

15 hours over a 6.4 km wide (domain size similar to the area covered by the pyranometer network) and 4 km high periodic125

domain with horizontal and vertical resolutions of 25 m. Three-dimensional fields of liquid water content (LWC), specific

humidity, temperature, pressure, and wind are output every minute during the cloudy hours of the simulation. The model uses

an anelastic system of equations and a 3D turbulent kinetic energy scheme (Cuxart et al., 2000) with a diagnostic mixing

length (Deardorff, 1980). For the advection of meteorological and scalar variables, discretization of the spatial derivative is

based on a piecewise parabolic method, enabling the scheme to handle sharp gradients and discontinuities very accurately.130

Time integration is forward-in-time. Advection of momentum is solved using a centred discretization of the fourth order in

space and a Runge-Kutta-centered fourth-order scheme in time. The water phase transformations are parameterized with the

ICE3 one-moment microphysical scheme (Pinty and Jabouille, 1998). Diurnally varying surface turbulent fluxes are prescribed

during the simulation, as well as cooling and drying tendencies summarizing large-scale advection and radiative tendencies, as

described in Brown et al. (2002).135

2.3 Radiative transfer simulations

A 3D radiative transfer model based on Monte Carlo methods (Villefranque et al., 2019) is used to simulate SSI fields every

minute of the fifth hour of the LES (10:30-11:30 LT) in offline mode. It uses the solar zenith angles (SZA) at Jülich on 5 May

2013, from 11:36 to 12:36 UTC, which decreases from 36.8 to 34.5◦. Each pixel of each field is a 5 × 5 m2 square. Note that

a finer resolution than the LES is used to accurately simulate what happens near cloud shadow edges, where variations occur140

at smaller scales than the cloud resolution. Such a fine resolution allows to correctly simulate the rapid transition from the

5



shadow to the clear-sky areas and to capture the value of the maximum cloud enhancement, which is essential to reproduce the

SSI distribution. Each pixel corresponds to an SSI estimate, calculated as the mean flux over 15000 photon-path realizations,

resulting in a statistical uncertainty of approximately 1%. Following the k-distribution model, a quadrature point within the

spectrum integral is sampled for each photon path, following the method proposed by Villefranque et al. (2019). This strategy145

is proven to be unbiased and has good convergence performance. An example of such a field is presented in Fig. 1(c). Three-

dimensional fields of LWC and water vapour are used to compute the single scattering properties in the LES domain, which is

periodically repeated on the horizontal. Importantly, the simulations are performed without aerosols, although they can signif-

icantly alter the SSI distribution (Gristey et al., 2022). The standard mid-latitude summer atmospheric profile, also used in the

I3RC cumulus case (Cahalan et al., 2005), is used as background atmosphere above the domain. Gaseous absorption properties150

are computed for this background atmosphere using the correlated-k model implemented in RRTMG (Iacono et al., 2008) and

for twenty profiles with perturbed absorption coefficients. These pre-tabulated absorption coefficients are then interpolated to

account for the actually simulated water vapour concentrations in the LES domain (see Appendix C.2.1 of Villefranque et al.,

2019). Cloud droplets have a constant effective radius of 10 µm and an effective variance of 0.010. Their optical properties

are computed from Mie calculations using the code developed by Mishchenko et al. (2002) and assuming a log-normal size155

distribution. The surface is assumed Lambertian with the spectral albedo of grass (Meso-Star, 2021). To simulate broadband

solar fluxes, spectral integration is then performed from 0.3 to 4 µm.

3 Methods

3.1 Objective selection of cumulus cloud periods

As this study focuses on cumulus clouds, cumulus scenes need to be identified from the observations. In order to select one-160

hour-long periods when cumulus are present, four metrics are defined:

c1(t) = ⟨⟨CSI(x,t)⟩x⟩t, (1)

c2(t) = ⟨σx [CSI(x,t)]⟩t, (2)

c3(t) = σt [⟨CSI(x,t)⟩x] , (3)

c4(t) = σx [⟨CSI(x,t)⟩t] , (4)165

where CSI(x,t) is the clear-sky index at location x and time t, defined as CSI = SSI/SSIcs (Lohmann and Monahan, 2018),

with SSIcs the theoretical clear-sky SSI estimated from a clear-sky model (Ineichen, 2008, 2016) embedded in the pvlib python

package (Holmgren et al., 2018). This model accounts for climatological concentrations of aerosols, ozone, and water vapour.

Yet, local conditions at the moment of the measurement might significantly differ from their climatologies, hence the CSI

might be biased. However, this should not affect the identification of the cumulus cloud periods. ⟨.⟩u and σu [.] denote average170

and standard deviation, respectively, taken over dimension u. Spatial dimension (u= x) implies that data are taken over all

pyranometers, and temporal dimension (u= t) implies that data are taken over one hour centered on t.
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c1 and c2 thus quantify the temporal average of the spatial mean and spatial variability of CSI, respectively. Hence large

values of c1 indicate situations where either no clouds are present, or they are present with a minor effect on radiation on

average. It means that either their fractional cover or their optical depth is small. Combined with large values of c2, which175

indicate high spatial variability of CSI, broken cloud situations can be detected and clear-sky or homogeneous optically thin

clouds eliminated. c3 quantifies the temporal variability of the averaged SSI over the domain, which allows the identification of

stationary situations. Eventually, c4 quantifies the spatial variability of the averaged SSI over the time period, which allows the

selection of statistically uniform cloudy situations over the domain. Figure 2(a)-(b) shows the time series of the four metrics

for selected periods in April and May.180

To identify periods with broken cloud conditions, we follow a two-step process:

– Pre-selection based on c1 and c2: from our data, we identify periods where c1 and c2 are among the highest. Specifically,

we look for the periods that fall within the top 30% for both c1 and c2 to focus on times when broken clouds are present.

The selected periods are highlighted by red dots in Fig. 2.

– Complementary selection using c3 and c4: among these pre-selected periods, we apply another filter based on two185

additional criteria, such that c3 and c4 values are both among the lowest 30% of the pre-selected cases. This step helps

refine the selection to periods where cumulus fields are temporally stable and spatially uniform.

After these two steps, five cases are identified and highlighted by red vertical lines in Fig. 2(a)-(b), on April 18th, April

20th, April 25th and May 5th (2 periods). Thanks to the all-sky images and to MODIS satellite images, it was verified that they

indeed correspond to cumulus cloud situations, thereby validating our automatic selection procedure.190

Figure 2(c) zooms on the selected periods and shows as well the metrics computed from the LES cumulus cloud field (where

clear-sky SSI is estimated from a clear-sky radiative transfer simulation using the same Monte Carlo code and setting LWC to

zero). The metrics c1, c2 and c3 are very similar between the observations and the simulation. On the contrary, c4 is significantly

smaller in the simulation than in the observations, which suggests that the real situations still feature more spatial heterogeneity

than the ideal case characterized by a uniform surface and periodic boundary conditions.195

Figure 2(d) shows the values of the four metrics for several days identified as “broken clouds" by (Madhavan et al., 2017).

The only intersection between their set of broken-cloud cases and ours is April 25th. Note, however, that Madhavan et al. (2017)

selected entire days, whereas we selected only hours. Cases we selected might occur during days otherwise clear or overcast,

hence not considered as broken-cloud days. It is puzzling, though, that we did not select more cases on days flagged as cumulus

days by Madhavan et al. (2017). Looking at our metrics during these days, one can see that they are indeed characterized by200

high c2 values, suggesting a spatially heterogeneous SSI, but considerably lower c1 values than in our selected cases, suggesting

larger cloud covers or optically thicker clouds. Furthermore, they are associated with larger c3 and c4 values, suggesting the

periods are less temporally and spatially stable compared to the periods we identified in this work. This might indicate that our

criteria are too restrictive. Note that actually, our method was designed to identify cumulus periods, but not necessarily all of

them. In particular, the condition on c1 could have been less strict. It is also possible that normalized standard deviation (divided205

by mean values) would have been more adapted than absolute standard deviations for c3 and c4. The selection procedure could
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Figure 2. Time series of the four metrics ci in (a) April and (b) May. Values of the four metrics for (c) the periods identified as cumulus

cloud hours following our method (highlighted by red vertical lines) and the simulation, and (d) for the periods identified as cumulus cloud

days by Madhavan et al. (2017).

thus certainly be refined for future studies. However, for the present study, we will use the 5 selected cases highlighted in

Fig. 2(c).

3.2 SSI distributions

To characterize the SSI spatial distribution, probability density functions (pdfs) of normalized SSI are used, in line with Gristey210

et al. (2020b). The normalization factor is simply the cosine of SZA at the time and location of measurement in the case

of observations or of prescribed SZA in radiative transfer simulations in the case of LES data (in which case SZA values

correspond to those of P5). Hereafter these pdfs are simply referred to as SSI distributions. Except when stated otherwise,
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the SSI distributions are constructed by cumulating data at one-minute resolution during one hour (which implies 1-minute

averages for the observations) and over the whole domain (99 pyranometers in the observational dataset, 1280 × 1280 grid215

points in the LES data). Bins are 30 W m−2 wide.

The distributions are bimodal, with one mode corresponding to cloud shadows and the other to clear sky (inter-shadows

gaps). It can be seen in Fig. 1(b)-(c) that the largest values correspond to clear-sky regions near cloud shadows being over-

illuminated. Indeed, these regions receive additional radiation reflected by cloud sides, a 3D effect sometimes called enhance-

ment, side leakage, or channelling, and well documented in the literature (e.g. Marshak and Davis, 2005).220

Gristey et al. (2020a) used a neural network trained on LES data to show that the parameters of analytical functions matching

each mode of the SSI distribution could be predicted from a few properties describing the cloud field. This implies that these

distributions contain valuable information on the overlying cloud field. In the following, the distributions are characterized by

the mean and standard deviation of subsamples corresponding to each mode without assuming particular distribution shapes.

This is a way to condense the information and facilitate its interpretation. The cloud-shadow mode corresponds to values225

smaller than 500 W m−2, whereas the clear-sky mode corresponds to values larger than 900 W m−2. Values in between

correspond to shadow edges. They are associated with low relative occurrence and are excluded from the systematic analysis.

Although these two thresholds are arbitrary, the main objective was to qualitatively isolate both modes, which proved to be

acceptable for the cases encountered. However, defining these modes in a more flexible way, which would depend on the

actual distribution and would work for a larger variety of cloud properties, would be useful and should be considered for future230

studies. To compare two distributions obtained from different cloud fields or different datasets, root mean square deviations

(RMSD) will be computed on the whole histogram and on each mode separately.

3.3 Modification of LES fields

Sensitivity tests are performed in Sect. 6 in order to gain physical insight on how various cloud characteristics drive SSI

distributions. For each category of test, the 60 LES cloud fields of the one-hour-long simulation are modified, varying a single235

property at a time, among cloud LWC, cloud base height, cloud depth, or cloud fraction. The various categories of tests are:

– LWCx, where LWC in the clouds is uniformly scaled by a given factor (e.g., 0.6 or 1.4);

– ∆H, where the full cloud layer is translated on the vertical (e.g., 400 m closer to the surface (∆ H =-400) or 400 m higher

(∆ H =400));

– ∆D, where cloud layer depth (D) is increased. First, each cloudy column is shifted upwards by n layers of thickness ∆z240

(in the following, n= 16 and ∆z = 25 m); that is, clouds are moved upwards by a distance n∆z. Then, n layers below

the new cloud base are filled with the same LWC as the original cloud-base layer. Finally, LWC is scaled column-wise

so that the LWP field is unchanged: the whole field contains the same total mass of liquid water as the original one, but

the maximum LWC is smaller;
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Table 1. Cloud properties resulting from the sensitivity tests. Each property is given at the first/last timestep of the one-hour-long period.

Symbol — indicates the same value as control.

Case cloud base height cloud layer depth liquid water path max water content cloud cover

(units) (m) (m) (g m−2) (mg kg−1) (%)

Control 825 / 875 350 / 700 1.6 / 9.4 9.7 / 34.0 14.3 / 27.7

LWCx0.6 — — 0.9 / 5.6 5.8 / 20.4 —

LWCx1.4 — — 2.2 / 13.1 13.6 / 47.5 —

∆H=-400 425 / 475 — — — —

∆H=400 1225 / 1275 — — — —

∆D=400 — 750 / 1100 — 6.0 / 26.7 —

CC=125 — — 6.7 / 30.8 41.4 / 105.3 46.2 / 59.8

– CC, where cloud fraction at each layer (and thereby the total cloud cover (CC) seen from above as well), is increased.245

To this end a collection of translated cloud fields is first created by incrementally shifting the original cloud field in

each horizontal direction (including diagonals), up to a given distance (e.g. 125 m). Then, the resulting translated cloud

fields are averaged together. Finally, the resulting 3D field of LWC is uniformly scaled at each vertical level so that the

original “in-cloud" LWC (defined in each model layer as horizontal domain average content divided by cloud fraction),

is unchanged.250

In sensitivity tests LWCx and ∆H, the impacts of changing LWC and cloud base height are well isolated. In ∆D and CC,

however, not only is the cloud geometry modified, but also the LWC distribution inside clouds and across the domain. In ∆D,

LWP is preserved, but the shape and absolute values of LWC vertical profiles are modified. This might result in unrealistic

features in clouds, hence in SSI fields. In CC, layer-wise mean in-cloud LWC is preserved, but as cloud fraction increases,

the total amount of water in the domain also increases. Table 1 summarizes the various tests performed and the corresponding255

modifications of the cloud field.

4 SSI distributions in observations and simulations

Five cumulus periods of 1 hour were selected in the observations following the method detailed in Sect. 3.1. Figure 3(a) shows

the SSI distributions for each period. For each case, an effective cloud cover is diagnosed by computing the fraction of the

measurements (99 pyranometers during one hour), with normalized SSI lower than 900 W m−2. This is referred to as “shadow260

cover" in opposition to the “cloud cover" classically defined as the fraction of a domain covered by clouds when seen from

above. Figure 3(a) also shows an SSI pdf for a clear-sky period, taken on 4 May 2013, 12:12-12:13 UTC, which was also

flagged as clear sky by Madhavan et al. (2017) and confirmed by all-sky images.

Looking at SSI distributions in the presence of broken clouds, one can see that all cases are characterized by similar bimodal

distributions. Their properties differ between the various observed cases, although one interesting common feature, already265
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Figure 3. Observed and simulated normalized SSI distributions. (a) Distributions for the 5 selected periods in UTC: P1: 18 April 2013,

13:00-14:00; P2: 20 April 2013, 9:12-10:12; P3: 25 April 2013, 12:32-13:32; P4: 5 May 2013, 9:30-10:30; P5: 5 May 2013, 11:36-12:36.

sc in the legend indicates the “shadow cover", which corresponds to the fraction of the surface occupied by cloud shadows (integration of

the distribution from 0 to 900 W m−2). The pdf for a clear-sky period (4 May 2013, 12:12-12:13 UTC) is also shown. (b) Distributions of

observed (same as panel a) and simulated SSI during a clear-sky period of 1 minute. (c) Distributions of observed (P5) and simulated SSI

Cumulated over the full hour. (d) Observed (P5) and (e) simulated distributions of the SSI as a function of time along the one-hour period.
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pointed out by Gristey et al. (2020b), is that a large number of values are significantly larger than the values expected in clear-

sky conditions — a typical signature of 3D radiative effects. In a sense, clouds act like the mirrors that are used to collect

solar radiation in concentrated solar power systems. Interestingly, based on the shadow cover values, it seems that maximum

cloud enhancement tends to increase with cloud cover. We believe that it is because the clear-sky region is receiving scattered

radiation from more surrounding clouds (the sensitivity of the SSI distribution to cloud cover is investigated in Sect. 6).270

Figure 3(b) presents simulated and observed distributions under clear-sky conditions. They are both unimodal and symmet-

ric, with approximately the same width and around the same mean value, suggesting that the impact of aerosols, which are not

accounted for in the simulations, was rather limited for that particular day. However, it is important to note that their widths

have distinct origins. The observed distribution results from instrumental, intrinsic variability, as well as heterogeneity in atmo-

spheric (e.g. water vapour, aerosols) and surface (e.g. albedo) properties, whereas variability in the simulations is dominated275

by Monte Carlo statistical noise. Both simulations and observations account for water vapour heterogeneity, but its effect on

solar radiation is too small to explain the obtained standard deviations. Increasing the number of photons in the Monte Carlo

simulation leads to a narrower distribution (not shown). Hence it is a coincidence that both sources of noise have the same

amplitude here: the inherent lack of heterogeneity in the LES is somehow balanced to the right amount by Monte Carlo noise.

Because these noises introduce much less variability than that caused by the presence and characteristics of clouds, in the280

remaining parts of this study, both simulations and observations are analyzed without further consideration of noise. Never-

theless, the detailed understanding of the observed clear-sky pdfs certainly deserves more attention to disentangle the sensors’

inter-calibration issues from the actual spatial variability of SSI across the observed domain.

Figure 3(c) compares the observed (P5) and simulated SSI distributions cumulated over the full hour. As for P5, only 95

are used (four were not working during this specific period), and only 95 pixels were randomly sampled in the simulation285

for fair comparison. The distributions have very similar shapes, although the observed one shows a bump in the right part of

the clear-sky mode that is not present in the simulated one. The cloud-shadow mode is also shifted towards lower values in

the simulation compared to the observations, while the simulated clear-sky mode peaks at a greater normalized SSI than the

observed one.

To further understand the cumulated distributions, Figures 3(d) and e show the SSI distributions for each minute of P5 and of290

the simulation. It is clear that the shape of the distributions is relatively constant throughout the hour. It can be seen, however,

that the cloud cover (integral of the cloud-shadow mode) increases along the simulation, as already noticed in Table 1. This

seems to increase 3D effects and, therefore, amplify the enhancement of SSI in clear-sky regions between cloud shadows,

as suggested by the shift towards larger values of the clear-sky peak. In the observations, the clear-sky mode appears quite

stationary, apart from the very beginning, which features larger values and probably explains the bump of the cumulated295

distribution (Fig. 3(c)). On the contrary, the cloud-shadow mode shifts to larger values with time, which could suggest that

clouds are getting optically thinner or that light entrapment between the surface and the clouds is getting more intense (Hogan

et al., 2019; Villefranque et al., 2023). It can also be noticed that small SSI values (that is, inside cloud shadows) are consistently

smaller in the simulation than in observations, meaning that the observed and simulated cloud fields are probably distinct in

terms of detailed cloud physical properties.300
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A detailed investigation would be needed to further understand all these differences, in particular, to disentangle the role of

assumptions made in the LES and radiation code (idealized surface, limited area domain with periodic boundary conditions,

approximate scattering phase function for cloud droplets, arbitrary and homogeneous value of the cloud droplet effective

radius...) from the role of actual differences of cloud properties and geometry. This is out of scope here, as we only aimed to

demonstrate that the combination of LES and Monte Carlo numerical tools is well suited to simulate realistic SSI distributions.305

To have a better match between observations and simulations, simulations should correspond to the same atmospheric and

surface conditions as the observations, which is not the case here. Note that the LASSO experiment on the Atmospheric

Radiation Measurements Southern Great Plain site was specially designed to allow strict comparison between observations

and LES (Gustafson Jr et al., 2020) and would provide a very relevant framework to investigate these questions.

5 Sensitivity of SSI distributions to spatiotemporal sampling310

We have shown in the previous section that cumulating SSI measurements from a dense network of 99 (or 95 in P5) pyra-

nometers over one hour allows to capture most of the spatial variability of SSI. However, such instrumental configuration is

unique to the HOPE campaign and cannot be practically deployed in all field campaigns. Hence this section aims at providing

guidance on the measurement strategy needed to estimate instantaneous SSI distributions in the presence of broken clouds. To

this end, we analyze the sensitivity of the distributions to the number of pyranometers used to compute this distribution and to315

the time period on which observations are cumulated. We apply the same strategy to the observations and simulations.

To gain insight into the way temporal and spatial sampling together operate, we first focus on the hourly distributions. Based

on the P5 observations, we assess the deterioration of the full distribution (95 pyranometers over one hour) induced by either

using fewer pyranometers or spanning a shorter period. Figure 4(a) shows the evolution of the RMSD between the approximate

and the full distributions for various numbers of pyranometers and periods of integration (all symmetrical around the middle of320

the full period). For each period of integration, the subsampling is repeated for 512 different random combinations of the same

number of pyranometers to characterize the uncertainty of the results. As expected, decreasing the number of measurement

sites or the duration of integration increases the RMSD. The sensitivity to the time period seems quite independent of the

number of pyranometers, as suggested by the fact that the curves are almost parallel to each other in Fig. 4(a). The individual

contributions of the cloud-shadow and clear-sky modes are shown in Fig. 4(b), with a dominant contribution from the clear sky325

(expected from the larger values). When setting the integration period to 10 min, a time scale at which the cloud field can be

considered stationary, at least 50 pyranometers over the 10 × 12 km2 are needed to reduce the RMSD down below 5× 10−4,

which is the minimum value needed to distinguish distributions corresponding to distinct cloud geometrical characteristics

(see Sect. 6). In particular, we note a strong reduction of the clear-sky RMSD from 4.5× 10−3 to 5× 10−4. Examples of

reconstructed distributions are shown in Fig. 4(c) and can be compared to the reference distribution represented by the pink330

shading. It shows that the sensitivity of the reconstructed distributions to integration time is smaller than their sensitivity to

the number of sites and that 10 sites are essentially enough to capture the variability measured at all sites. A similar RMSD is
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obtained when cumulating 5 pyranometers over 1 hour or 10 pyranometers over 10 min, or between 10 pyranometers over 1

hour and 50 pyranometers instantaneously.

The same analysis is now carried out for the simulation, where a larger number of measurement sites can be sampled335

(Fig. 4(d)). Here, the reference distribution to compute the RMSD contains all 1280 × 1280 pixels of the simulation, cumu-

lated over one hour. Qualitatively, the sensitivity of RMSD to subsampling is similar to the observations, that is, the error

increases when either the number of measurement sites or the integration time is reduced. However, the decrease of RMSD

with integration time is much faster at shorter integration times in the simulation. This may be related to a stronger background

wind in the simulation (10 m s−1) than in P5 (5 m s−1 at 1 km altitude as measured by radiosoundings). There is an inflexion340

point around 600 s for the sensitivity to the integration time when a single measurement site is used (the time position of this

inflexion point decreases with the number of sites). According to the mean wind in the simulation and assuming that clouds

do not significantly evolve, this corresponds to a 5 km distance sampling. These tests suggest that the hourly distribution is

captured satisfactorily (RMSD below 5× 10−4) when using 50 pyranometers over 4 min or 10 pyranometers over 20 min.

The decomposition of the RMSD between the clear-sky and cloud-shadow modes is shown in Fig. 4(e). Interestingly, clear-345

sky RMSD dominates for integration over less than 1000 s, while for larger integration times, both modes equally contribute.

Figure 4(f) shows the various distributions for a given duration (600 s) or a given number of pyranometers (10). It confirms a

stronger sensitivity to the number of measurement sites than to the integration time.

In the previous series of tests, sensitivity to integration time was explored, although when the hourly distribution of SSI is the

target, there is no reason to integrate over a shorter period of time. However, when the instantaneous spatial distribution of SSI350

is sought, temporal integration can become a solution to construct the full distribution, at least when the cloud field is advected

horizontally by the wind. This finding implies that we can trade a high spatial density of observations for longer integration

times. Figure 5 documents how combining temporal and spatial sampling in the simulation allows the reconstruction of the

reference instantaneous spatial distribution of SSI (1280 ×1280 pyranometers at the center of the simulation hour). To retrieve

a distribution with an RMSD below 5× 10−4 compared to the reference, at least 10 pyranometers need to be deployed over355

20 min, or alternatively 100 pyranometers over 5 min; the RMSD decrease is mainly controlled by that of the clear-sky mode

(Fig. 5(b)). The retrieved distributions shown in Fig. 5(c) confirm that the reference is well captured with such measurement

strategies. Interestingly, for long integration times, the RMSD starts increasing, which can be attributed to the non-stationarity

of the SSI spatial field, although this non-stationarity does not result in RMSD exceeding 10−3 in this ideal simulation.

To summarize this sensitivity study combining observations and simulations, a minimum of 10 pyranometers, uniformly360

deployed over an area of roughly 10 × 10 km2 can capture the instantaneous SSI distribution when integrated for at least 10

min. This means that any such deployment meant to characterize cloud field properties can provide valuable information in

a time resolution of roughly 10 minutes. This result aligns with the findings of Riihimaki et al. (2021), who observed that

for hourly averages the bimodal distribution was challenging to identify from a single site but became much clearer when

cumulating data from 10 sites. The next step would be to propose a smart deployment strategy allowing to capture the SSI365

distribution with even fewer pyranometers or with a lesser RMSD. We did not fully address this question here, but report a few

considerations. First, we observed in the few tests we did using the LES fields that it was possible to optimize the deployment
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Table 2. Summary of the sensitivity tests. All units are in W m−2, and correspond to normalized SSI, except for the last column (fraction of

surface covered by shadow/clear sky) in percentage. Here, “shadow" refers to values less than 500 W m−2, and “clear sky" to values greater

than 900 W m−2. p1 and p99 are respectively the first and 99th percentiles of the distributions.

Test case RMSD total/shadow/clear sky mean total/shadow/clear sky std total/shadow/clear sky p1/p99 fraction

(×10−4/×10−5/×10−4) shadow/clear sky

Control — / — / — 961.2 / 293.9 / 1076.3 269.3 / 82.9 / 49.8 193.1 / 1214.3 12.2 / 82.6

LWCx0.6 4.161 / 9.666 / 6.985 969.2 / 313.7 / 1065.2 240.7 / 84.5 / 49.6 210.6 / 1208.6 9.8 / 84.0

LWCx1.4 2.181 / 7.006 / 3.628 954.9 / 281.5 / 1081.9 285.7 / 80.8 / 48.8 184.9 / 1213.7 13.7 / 81.7

∆H = -400 7.228 / 10.640 / 12.208 961.0 / 321.0 / 1067.0 254.7 / 83.3 / 61.2 210.0 / 1261.1 11.5 / 83.0

∆H = 400 3.933 / 7.358 / 6.627 961.6 / 280.3 / 1080.1 275.0 / 84.1 / 43.5 185.6 / 1187.0 12.4 / 82.4

∆D = 400 6.700 / 14.749 / 11.186 961.1 / 336.5 / 1094.3 269.6 / 80.2 / 60.5 229.8 / 1242.7 12.0 / 77.1

CC = 125 13.629 / 38.823 / 22.748 918.8 / 340.8 / 1136.8 341.2 / 70.5 / 74.3 236.4 / 1301.7 21.8 / 68.1

of N pyranometers by selecting in an iterative way a combination of N points that would minimize RMSD for a given field.

This was done based on the knowledge of the full 2D SSI field hence can not, in practice, be repeated in a field experiment. In

any case, the deployment that minimizes RMSD at a given time also generally yields larger or similar RMSDs than uniform370

deployment as close as 10 minutes away from that reference time. Hence, we believe that brute force optimization, even if it

were possible in a true field experiment, would not be better than uniform. Nevertheless there might be a statistical distribution

so that resulting RMSDs would be smaller than the uniform distribution for a large ensemble of cloud cases. This remains to be

investigated. Although this sampling question has never been discussed for SSI to the best of our knowledge, it is a much more

standard problem in the community of rain gauge deployment. The statistical tools developed by this community, in particular375

kriging, could be a source of inspiration for the future (Volkmann et al., 2010; Adhikary et al., 2015; Papamichail and Metaxa,

1996; Xu et al., 2018).

6 Sensitivity of SSI distributions to changes of cloud properties

To illustrate the sensitivity tests presented in Sect. 3.3, Figs. 6(a)-(b) show the vertical profiles of LWC and cloud fraction

corresponding to one instant of the simulations (51st minute), for each sensitivity test. Figures 6(b)-(i) also show the simulated380

SSI fields at the same timestep, which further helps understand the modifications made to the cloud fields. Figure 7 and Table 2

present the results of the sensitivity tests in terms of the characteristics of the obtained distributions. In the following, the results

are interpreted, with particular emphasis on the 3D effects; note that the highlighted mechanisms might differ for other SZA

(here ranging from 34.5 to 36.8◦ only). We do not aim at providing an exhaustive analysis of Table 2; instead, we focus on a

few mechanisms and discuss how we understand them, this understanding resulting from the combination of many available385

sources of information (prior theoretical and bibliographical knowledge, tables and figures presented in this work).
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Figure 4. Spatiotemporal subsampling of the SSI distributions cumulated in observations (P5 period, left column) and simulation (Control,

right column). Top row: RMSD with respect to the full distribution as a function of the number of points used for the computation and

the cumulative period (x-axis) over which the distribution is computed; the shading indicates ± one standard deviation computed over 512

combinations for a given number of pyranometers and period. Middle row: RMSD computed over the cloud-shadow and the clear-sky modes.

Bottom rows: examples of SSI distributions computed from (c) observations and (f) simulations for different numbers of pyranometers and

periods; the shading represents the reference simulation computed over 95 pyranometers and cumulated over one hour for the observations

and computed over 1280×1280 points and cumulated over one hour for the simulation.
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Figure 5. Strategy to measure instantaneous SSI distributions. (a) RMSD with respect to the mid-period instantaneous distribution for

simulations as a function of the number of points used and the cumulative period over which the distribution is computed. The shading

indicates ± one standard deviation computed over 512 combinations for a given number of points and period. (b) RMSD is computed over

the cloud-shadow and the clear-sky modes. (c) Examples of SSI distributions retrieved from different numbers of measurement points. The

shading represents the reference distribution computed over 1280 × 1280 points at a given instant.

First, we see that increasing cloud LWC reduces total mean SSI since at first order cloud reflectivity depends on the total

water content in the field; more sunlight is reflected when clouds contain more water. Table 2 shows that increasing cloud LWC

increases the shadow fraction (corresponding to pixels with SSI < 500 W m−2 ) and reduces the clear-sky fraction, which is

due to cloud edges being less transmissive than in the control simulation. Looking at the orange solid line in Fig. 7, we see that390

increasing LWC also shifts the cloud-shadow mode towards lower values and the peak in the clear-sky mode towards slightly

larger values, which also results in a larger standard deviation of the total SSI (Table 2). This is due to a more widespread

impact of reflection by cloud sides (as illustrated by the wider footprint of the white contours in Fig. 6(d) that materialize

the 1100 W m−2 isocontour), although the largest values (maximum illumination) remain the same as in the original field,

suggesting a saturation of 3D effects with LWC. Reducing LWC (orange dashed line) results in the opposite effect.395

Contrary to LWC, an increase in cloud base height alone does not change total mean SSI (Table 2). This is because, at first

order, the mean SSI is driven by the cloud optical depth, which is unchanged. However, the SSI distribution (solid green line

in Fig. 7) is sensitive to cloud base height: increasing cloud base height leads to an increase in the horizontal extension of the

footprint of 3D effects (see Fig. 6(f)): as clouds are farther away from the surface, the downwelling diffuse flux can spread

farther away from cloud sides before reaching the ground, which leads to more directly illuminated pixels being also affected400

by neighbouring clouds. Since the radiative flux is somehow diluted horizontally, the maximum illumination is smaller than

for lower clouds. This also results in a smaller standard deviation of the clear-sky mode (Table 2). When clouds are closer to

the surface (green dashed line in Fig. 7 and Fig. 6(g)), less clear-sky pixels are affected by clouds, but the very localized over-

illumination by cloud sides is much more intense. Therefore, the mean radiative flux in the shadowed pixels is enhanced, and
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Figure 6. Cloud vertical profiles of (a) LWC and (b) cloud fraction, and SSI fields for control (c) and sensitivity tests (d-i) at minute 51 of

the simulation. In the fields, colours represent SSI values, white lines represent the 1100 W m−2 isocontour, and black lines represent the

500 W m−2 isocontour.
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Figure 7. Simulated SSI distributions (a) and zooms over cloud-shadow (b) and clear-sky (c) modes for the sensitivity tests relative to cloud

properties (LWC, cloud base height, cloud depth, and cloud cover). The blue-shaded distribution corresponds to the control simulation.

Distributions were computed using all available data (1280 × 1280 pixels of size 5 m × 5m, × 60 minutes), using bins of 3 W m−2. Details

regarding the sensitivity tests are given in Table 1.

the shadow fraction is reduced because the shadow edges are illuminated. This again compensates and results in an unchanged405

mean SSI.

When the cloud layer depth is increased (red line in Fig. 7 and Fig. 6(h)), the fraction of shadowed pixels also increases

since more radiation is intercepted by cloud sides (Várnai and Davies, 1999)). As more radiation is intercepted by cloud sides,

3D effects are more intense, and as this extra contribution comes from higher up in the atmosphere, they also have a wider

footprint: for any clear-sky pixel, the fraction of visible sky that is occupied by bright, reflecting cloud sides increases with410

cloud geometrical depth. Shadows are also brighter (the mean radiative flux of the shadowed pixels is enhanced by more than

40 W m−2), as clouds are overall optically thinner to slanted radiation because of the LWC scaling (necessary to preserve

vertically integrated optical depth), and because more scattered radiation from the neighbouring clouds can reach the shadows
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thanks to the wider scattering footprint. Note that this modification also leads to the conservation of mean SSI, but for different

reasons than cloud height variations: for higher clouds, shadows are darker and clear-sky regions brighter; whereas for deeper415

clouds, both are brighter, but as clear-sky covers a smaller area of the surface, it compensates the overall right-shift of the pdf.

Note that the shadow fraction is barely affected, meaning that mostly the proportion of intermediate values between 500 and

900 W m−2 is increased. This holds true throughout the whole simulated hour (not shown); more extensive investigation should

be performed to verify if this mean flux invariance is fundamental and remains true for other shifts of height and depth, as well

as for other cloud types. Finally, an increase in cloud cover with conservation of the mean in-cloud LWC (hence increasing420

total LWC in the field) leads to wider shadows and more scattered radiation reaching the surface in clear-sky regions because

cloud sides fill a larger portion of the sky which leads to more intense 3D effects, as demonstrated by the right-shift of the

clear-sky mode (the distribution becomes dominated by large SSI values), similar to the case of deeper clouds. As wider clouds

implies less space between neighbouring clouds, photons scattered by a given cloud side more easily reach a neighbouring

cloud shadow, which in turn leads to brighter shadows compared to the control simulation.425

Beyond the detailed modifications of SSI distributions discussed here, these sensitivity tests highlight that the impact of cloud

geometrical and physical properties on SSI distributions results from various non-trivial 3D physical processes that make the

interpretation much less straightforward than in the common plane-parallel framework. It is important to note that most of the

tested modifications would have no significant effect on the SSI distribution under the independent column approximation of

radiative transfer, where SSI distributions mostly depend on column-wise liquid water path and vertically projected cloud cover.430

The consideration of 3D effects is thus necessary to understand the modifications of the distributions and the way they relate

to clouds. Beyond the mean SSI, its partition between the shadow and clear-sky modes is critical, as the nature of illumination

(diffuse in cloud shadows vs mainly direct in clear-sky areas) makes a difference for many applications, in particular for

PV production. Note also that due to strong non-linearities in the radiative transfer, the impact of combined modifications

of the cloud field cannot be estimated by the linear combination of the impacts of the individual modifications, making this435

sensitivity study primarily useful for the qualitative understanding of the impacts rather than their quantitative assessment in

real situations.

7 Conclusions

In this paper, we focused on the instantaneous SSI spatial distribution, an under-explored quantity that is of utmost importance

for surface-atmosphere interactions and solar energy applications, especially under cumulus cloud conditions. We investigated440

the spatial distribution from both an observational and a numerical perspective. Spatially dense SSI observations from the

HOPE field campaign constitute a unique resource to investigate this otherwise barely accessible quantity. By comparing the

observed distributions for carefully selected cumulus situations to those simulated with state-of-the-art cloud and 3D radiative

transfer modelling, we showed that the numerical simulations are sufficiently reliable to further explore the links between cloud

field properties and SSI distributions.445
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We then investigated how the instantaneous SSI spatial distributions can be estimated using a limited number of pyranome-

ters by taking advantage of cloud motion that allows the sampling of a stationary cloud field from fixed points at the surface.

We demonstrated that, for a 10 × 10 km2 area, cumulating observations from 10 pyranometers over 10 min can provide the

same information on SSI spatial distribution as using 100 pyranometers over a shorter time period. Preliminary tests of opti-

mizing the spatial distribution of the pyranometers also indicated that 15 optimally distributed pyranometers could capture the450

same spatial variability as 100 uniformly distributed pyranometers. However, this deserves further analysis to understand how

such an optimized network can be deployed when one does not know in advance the details of the fields that will be observed.

Although the measurement strategy investigation was limited to cumulus situations and did not consider the impact of aerosols,

which could affect the results, this preliminary study was meant to demonstrate how simulations can be used to address this

question. It certainly provides a valuable basis for further dedicated, more detailed studies, and paves the way for designing455

measurement strategies tailored for specific applications related to the high-resolution characterization of SSI.

The simulation system was also used to study the sensitivity of the SSI distribution to the cloud properties. This highlighted

that both the geometrical and physical properties of the clouds can alter the SSI distribution, via the combination of complex

physical processes which are sometimes hard to disentangle. We nevertheless tried to emphasize that the irradiance at some

locations results from the contributions of the blue sky, the cloud edges and the cloud bottoms, which are combined according460

to their respective proportions in the hemisphere and luminance. This sensitivity study is again somehow preliminary and

would deserve a dedicated study, allowing to explore a variety of cumulus fields, not to mention other cloud types. Importantly

such future work should check whether the sensitivities highlighted by the simulations can be identified in the observations.

For that purpose the HOPE dataset, gathering several remote sensing instruments, would be very relevant.

As pointed out before, we did not consider aerosols and instead focused on the impact of clouds only. In reality, aerosols are465

ubiquitous, but their detailed representation in atmospheric and radiative models is challenging because their optical properties

depend on their size and composition, but also on their hygroscopicity and ambient humidity. Several physical processes have

also been identified that can explain the increase of aerosol optical depth in the vicinity of cumulus clouds (Eck et al., 2014).

Besides this complexity, we did not have observational data to properly account for their effects. Although aerosols were not

accounted for in the simulations we believe that the qualitative results of the paper, along with the physical interpretations470

regarding the impact of cloud properties, would largely hold for real conditions. Yet, it is useful to discuss what impacts

aerosols would have. According to Gristey et al. (2022), the presence of aerosols would typically shift the clear-sky mode to

lower values due to increased absorption and the cloud-shadow mode to higher values due to extra radiation scattered laterally

towards cloud shadows. Quantitatively, this impact could be as significant as those obtained from the sensitivity tests. In any

case, accounting properly for aerosols would have required appropriate observations and a detailed optical module that were475

beyond the scope of the present paper. In view of making our understanding of the characteristics of SSI distributions and their

sensitivity to the overlaying atmosphere more exhaustive, future work should strive to include aerosols in the simulations and

perform additional sensitivity tests.

This work is meant to be exploratory and to highlight a poorly known quantity that we believe will become of much more

interest to the research community in the coming years as the resolution of numerical weather prediction models increases480
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and as observational capabilities for characterizing 3D cloud structures improve. This study confirms that the SSI distribution

contains valuable information on cloud properties, including its 3D geometrical properties that most cloud profiling instruments

cannot fully capture due to limited spatial sampling. Future work should thus focus on the derivation of relevant cloud properties

from a network of pyranometers, which would be a significant step forward for atmospheric sciences. For cumulus situations,

the mean and standard deviation of the two peaks of the bimodal SSI distribution seem to provide a wealth of yet unexplored485

information. This study could also be extended to other campaigns conducted with the pyranometer network. This includes

the HOPE dataset acquired near Melpitz, where the network was deployed in a much smaller area of roughly 500 × 500

m2, to investigate variability at even smaller scales. Recently, the network was deployed in the framework of the Small-Scale

Variability of Solar Radiation campaign (S2VSR), which was conducted at the ARM Southern Great Plains site and targeted an

area of 6 x 6 km2. Although the dataset was not yet available at the start of this investigation, several ancillary observations are490

available based on routine ARM measurements, which can help further understand the factors influencing the SSI distribution.

Calibration/validation campaigns are also planned for the upcoming launch of the EarthCARE satellite mission, where small-

scale radiative closure experiments will be carried out and would benefit from such an instrumental deployment.

The fact that SSI distributions are so tightly related to most 3D thermodynamical properties of the atmosphere also offers

an advanced framework for evaluating LES in a much more stringent way than currently done when LES properties are495

generally spatially averaged to be compared to vertical profiles at well-instrumented sites. In particular, we believe that the

correct representation of LWC heterogeneity, which currently represents a challenge for LES, could be tackled with such

observations. Relying on the objective determination of cumulus cloud conditions set up in this study, we also advocate the

development of cloud classifications based on SSI observations using the metrics introduced in this study, in line with the

random-forest classifier recently proposed by Sedlar et al. (2021). Such classifications could be used for comparison of cloud500

conditions at different sites or to study the variability of weather conditions in a much more robust way than human-based

classifications. These diverse perspectives highlight the potential of considering SSI spatial distributions and suggest that in the

future, networks of radiation sensors should be more systematically deployed during field campaigns dedicated to boundary

layer clouds and surface-atmosphere interactions.

Data availability505

Simulation data supporting our results are available on Zenodo (He et al., 2024). The repository includes radiative trans-

fer simulation outputs, scripts to launch radiative transfer simulations with htrdr version 0.8.1 (https://www.meso-star.com/

projects/htrdr/htrdr.html, source code also in the archive) and to reproduce tables and figures, as well as namelists to run Large-

Eddy Simulations with the community code Meso-NH, version 5.4.3 (http://mesonh.aero.obs-mip.fr/mesonh/dir_open/dir_

MESONH/MNH-V5-4-3.tar.gz). Observational data are available at re3data (Registry of Research Data Repositories., 2017;510

Bomidi, 2022).

22

https://www.meso-star.com/projects/htrdr/htrdr.html
https://www.meso-star.com/projects/htrdr/htrdr.html
https://www.meso-star.com/projects/htrdr/htrdr.html
http://mesonh.aero.obs-mip.fr/mesonh/dir_open/dir_MESONH/MNH-V5-4-3.tar.gz
http://mesonh.aero.obs-mip.fr/mesonh/dir_open/dir_MESONH/MNH-V5-4-3.tar.gz
http://mesonh.aero.obs-mip.fr/mesonh/dir_open/dir_MESONH/MNH-V5-4-3.tar.gz


Author contribution

ZH, NV, QL and FC analysed the data; NV, FC and ZH performed the simulations; QL, FC, NV and ZH wrote the manuscript

draft; HD and JW reviewed and edited the manuscript.

Competing interests515

The authors declare that they have no conflict of interest.

Acknowledgements. The research leading to this work has been carried out as a part of the Smart4RES project (European Union’s Horizon

2020, No. 864 337). Part of this work was carried out in the framework of the Fine4Cast project, funded by France 2030 (ANR reference:

22-PETA-0008).

23



References520

Adhikary, S. K., Yilmaz, A. G., and Muttil, N.: Optimal design of rain gauge network in the Middle Yarra River catchment, Australia,

Hydrological processes, 29, 2582–2599, 2015.

Alam, M., Muttaqi, K., and Sutanto, D.: A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctua-

tions caused by cloud passing, IEEE Transactions on Energy Conversion, 29, 507–518, 2014.

Berg, L. K., Kassianov, E. I., Long, C. N., and L., M. D.: Surface summertime radiative forcing by shallow cumuli at the Atmospheric525

Radiation Measurement Southern Great Plains site, J. Geophys. Res., 116, https://doi.org/10.1029/2010JD014593, 2011.

Beyer, H. G.: Handling of small scale structures of the irradiance field for solar energy system analysis–a review, Energy Procedia, 97,

141–148, 2016.

Bomidi, M.: HD(CP)2 short term observations, sw broadband downwelling radiation (surface) data of Pyranometer network (no. 00), HOPE

campaign by TROPOS, data version 00, pID: de.koeln.rrzk/amd.de.hope/trop.pyrnet00.l1.rsds, 2022.530

Brown, A., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D., Lock, A., MacVean, M., Mo-

eng, C.-H., et al.: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Quarterly Journal of the Royal

Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128, 1075–1093, 2002.

Bühl, J., Seifert, P., Wandinger, U., Baars, H., Kanitz, T., Schmidt, J., Myagkov, A., Engelmann, R., Skupin, A., Heese, B., Klepel, A.,

Althausen, D., and Ansmann, A.: LACROS: the Leipzig Aerosol and Cloud Remote Observations System, in: Remote Sensing of535

Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI, edited by Comeron, A., Kas-

sianov, E. I., Schäfer, K., Stein, K., and Gonglewski, J. D., vol. 8890, p. 889002, International Society for Optics and Photonics, SPIE,

https://doi.org/10.1117/12.2030911, 2013.

Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B., Pincus, R., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P.,

Barker, H. W., Clothiaux, E. E., Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O’Hirok, W., Partain, P. T., Prigarin,540

S. M., Rublev, A. N., Stephens, G. L., Szczap, F., Takara, E. E., Várnai, T., Wen, G., and Zhuravleva, T. B.: The I3RC: Bringing Together

the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bulletin of the American Meteorological Society, 86, 1275–1293,

https://doi.org/10.1175/BAMS-86-9-1275, 2005.

Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Quarterly Journal

of the Royal Meteorological Society, 126, 1–30, http://doi.wiley.com/10.1002/qj.49712656202, 2000.545

de Andrade, R. C. and Tiba, C.: Extreme global solar irradiance due to cloud enhancement in northeastern Brazil, Renewable energy, 86,

1433–1441, 2016.

Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Boundary-Layer Meteorology, 18, 495–527,

https://doi.org/10.1007/BF00119502, 1980.

Eck, T., Holben, B., Reid, J., Arola, A., Ferrare, R., Hostetler, C., Crumeyrolle, S., Berkoff, T., Welton, E., Lolli, S., et al.: Observations of550

rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmospheric Chemistry and Physics, 14, 11 633–

11 656, 2014.

Emck, P. and Richter, M.: An upper threshold of enhanced global shortwave irradiance in the troposphere derived from field measurements

in tropical mountains, Journal of Applied Meteorology and Climatology, 47, 2828–2845, 2008.

24

https://doi.org/10.1029/2010JD014593
https://doi.org/10.1117/12.2030911
https://doi.org/10.1175/BAMS-86-9-1275
http://doi.wiley.com/10.1002/qj.49712656202
https://doi.org/10.1007/BF00119502


Endo, S., Zhang, ., Vogelmann, A. M., Kollias, P., Lamer, K., Oue, M., Xiao, H., Gustafson, W. I., and Romps, D. M.: Reconciling Differ-555

ences Between Large-Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloud-Base Vertical Velocity,

Geophys. Res. Lett., 46, 11 539–11 544, https://doi.org/10.1029/2019GL084893, 2019.

Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: On the relationship between shallow cumulus cloud field properties

and surface solar irradiance, Geophysical Research Letters, 47, e2020GL090 152, 2020a.

Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: Surface solar irradiance in continental shallow cumulus fields:560

Observations and large-eddy simulation, Journal of the Atmospheric Sciences, 77, 1065–1080, 2020b.

Gristey, J. J., Feingold, G., Schmidt, K. S., and Chen, H.: Influence of aerosol embedded in shallow cumulus cloud fields on the surface solar

irradiance, Journal of Geophysical Research: Atmospheres, 127, e2022JD036 822, 2022.

Gueymard, C. A.: Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and

photodiode radiometers. Part 1: Impacts on global horizontal irradiance, Solar Energy, 153, 755–765, 2017.565

Gustafson Jr, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo, S., Johnson, K. L., Krishna, B., Fairless, T., and Xiao, H.:

The large-eddy simulation (LES) atmospheric radiation measurement (ARM) symbiotic simulation and observation (LASSO) activity for

continental shallow convection, Bulletin of the American Meteorological Society, 101, E462–E479, 2020.

He, Z., Libois, Q., Villefranque, N., Deneke, H., Witthuhn, J., and Couvreux, F.: How to observe the small-scale spatial distribution of surface

solar irradiance, and how is it influenced by cumulus clouds?, https://doi.org/10.5281/zenodo.10948325., 2024.570

Hogan, R. J., Fielding, M. D., Barker, H. W., Villefranque, N., and Schäfer, S. A. K.: Entrapment: An Important Mechanism to Explain the

Shortwave 3D Radiative Effect of Clouds, Journal of the Atmospheric Sciences, 76, 2123–2141, https://doi.org/10.1175/JAS-D-18-0366.1,

2019.

Holmgren, W. F., Hansen, C. W., and Mikofski, M. A.: pvlib python: A python package for modeling solar energy systems, Journal of Open

Source Software, 3, 884, 2018.575

Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., and Zhang, Y.: Estimating surface solar irradiance from satellites: Past, present, and

future perspectives, Remote Sensing of Environment, 233, 111 371, 2019.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres, 113,

https://doi.org/10.1029/2008JD009944, 2008.580

Ineichen, P.: A broadband simplified version of the Solis clear sky model, Solar Energy, 82, 758–762, 2008.

Ineichen, P.: Validation of models that estimate the clear sky global and beam solar irradiance, Solar Energy, 132, 332–344, 2016.

Inman, R. H., Chu, Y., and Coimbra, C. F.: Cloud enhancement of global horizontal irradiance in California and Hawaii, Solar Energy, 130,

128–138, 2016.

Jakub, F. and Mayer, B.: The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of585

cloud streets, Atmospheric Chemistry and Physics, 17, 13 317–13 327, 2017.

Kuhn, P., Wilbert, S., Prahl, C., Schüler, D., Haase, T., Hirsch, T., Wittmann, M., Ramirez, L., Zarzalejo, L., Meyer, A., et al.: Shadow camera

system for the generation of solar irradiance maps, Solar Energy, 157, 157–170, 2017.

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P.,

Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier,590

G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois,

Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E.,

25

https://doi.org/10.1029/2019GL084893
https://doi.org/10.5281/zenodo.10948325.
https://doi.org/10.1175/JAS-D-18-0366.1
https://doi.org/10.1029/2008JD009944


Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour,

M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4

and its applications, Geoscientific Model Development, 11, 1929–1969, https://doi.org/10.5194/gmd-72811-1929-2018, 2018.595

Lappalainen, K. and Kleissl, J.: Analysis of the cloud enhancement phenomenon and its effects on photovoltaic generators based on cloud

speed sensor measurements, Journal of Renewable and Sustainable Energy, 12, 2020.

Lindsay, N., Libois, Q., Badosa, J., Migan-Dubois, A., and Bourdin, V.: Errors in PV power modelling due to the lack of spectral and angular

details of solar irradiance inputs, Solar Energy, 197, 266–278, 2020.

Lohmann, G. M.: Irradiance variability quantification and small-scale averaging in space and time: A short review, Atmosphere, 9, 264, 2018.600

Lohmann, G. M. and Monahan, A. H.: Effects of temporal averaging on short-term irradiance variability under mixed sky conditions,

Atmospheric measurement techniques, 11, 3131–3144, 2018.

Lohmann, G. M., Monahan, A. H., and Heinemann, D.: Local short-term variability in solar irradiance, Atmospheric chemistry and physics,

16, 6365–6379, 2016.

Lohou, F. and Patton, E. G.: Surface energy balance and buoyancy response to shallow cumulus shading, Journal of the Atmospheric Sciences,605

71, 665–682, 2014.

Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J.: Estimation of fractional sky cover from broadband shortwave radiometer mea-

surements, Journal of Geophysical Research: Atmospheres, 111, 2006.

Luger, S., Mock, J., Zehner, M., Lorenz, E., Kühnert, J., Weigl, T., Nagl, L., Rauscher, T., Becker, G., Betts, T. R., and Gottschalg, R.: 3D-

SIM (3D-Solar Irradiance Modelling): The Optimization of An Irradiance-Interpolation-Method and its Application for Central Europe,610

https://api.semanticscholar.org/CorpusID:131240813, 2013.

Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt, A., Bohn, B., Brueck, M., Bühl, J., Crewell, S., et al.: The HD (CP)

2 observational prototype experiment (HOPE)–An overview, Atmospheric chemistry and physics, 17, 4887–4914, 2017.

Madhavan, B. L., Kalisch, J., and Macke, A.: Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields,

Atmospheric Measurement Techniques, 9, 1153–1166, 2016.615

Madhavan, B. L., Deneke, H., Witthuhn, J., and Macke, A.: Multiresolution analysis of the spatiotemporal variability in global radiation

observed by a dense network of 99 pyranometers, Atmospheric Chemistry and Physics, 17, 3317–3338, 2017.

Marshak, A. and Davis, A., eds.: 3D Radiative Transfer in Cloudy Atmospheres, Physics of Earth and Space Environments, Springer-Verlag,

Berlin Heidelberg, ISBN 978-3-540-23958-1, dOI: 10.1007/3-540-28519-9, 2005.

Meso-Star: htrdr atmosphere starter pack v0.7, https://www.meso-star.com/projects/htrdr/htrdr-atmosphere-spk.html, dataset, 2021.620

Mishchenko, M., D. Travis, L., and Lacis, A.: Scattering, Absorption, and Emission of Light by Small Particles, vol. 4, 2002.

Mol, W., Heusinkveld, B., Mangan, M. R., Hartogensis, O., Veerman, M., and van Heerwaarden, C.: Observed patterns of surface solar

irradiance under cloudy and clear-sky conditions, Quarterly Journal of the Royal Meteorological Society, 2024.

Neggers, R. A. J., G., D. P., and Rodts, S. M. A.: Shallow cumulus convection: a validation of large-eddy simulation against aircraft and

Landsat observations, Quart. J. Roy. Meteorol. Soc., 129, 2671–2696, https://doi.org/10.1256/qj.02.93, 2003.625

Nouri, B., Wilbert, S., Segura, L., Kuhn, P., Hanrieder, N., Kazantzidis, A., Schmidt, T., Zarzalejo, L., Blanc, P., and Pitz-Paal, R.: Determi-

nation of cloud transmittance for all sky imager based solar nowcasting, Solar Energy, 181, 251–263, 2019.

Nouri, B., Blum, N., Wilbert, S., and Zarzalejo, L. F.: A hybrid solar irradiance nowcasting approach: Combining all sky imager systems and

persistence irradiance models for increased accuracy, Solar RRL, 6, 2100 442, 2022.

26

https://doi.org/10.5194/gmd-72811-1929-2018
https://api.semanticscholar.org/CorpusID:131240813
https://www.meso-star.com/projects/htrdr/htrdr-atmosphere-spk.html
https://doi.org/10.1256/qj.02.93


Oue, M., P., K., North, K. W., A., T., S., E., M, V. A., and I., G. W.: Estimation of cloud fraction profile in shallow convection using a630

scanning cloud radar, Geophys. Res. Lett., 43, 10 998–11 006, https://doi.org/10.1002/2016GL070776, 2016.

Pacifici, M., Rama, F., and de Castro Marins, K. R.: Analysis of temperature variability within outdoor urban spaces at multiple scales, Urban

Climate, 27, 90–104, 2019.

Papamichail, D. M. and Metaxa, I. G.: Geostatistical analysis of spatial variability of rainfall and optimal design of a rain gauge network,

Water resources management, 10, 107–127, 1996.635

Pinty, J.-P. and Jabouille, P.: A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: simulations of a squall line

and of orographic precipitations, Proceedings of the conference on cloud physics, pp. 217–220, 1998.

Qu, Z., Oumbe, A., Blanc, P., Espinar, B., Gesell, G., GSCHwIND, B., Klüser, L., Lefèvre, M., Saboret, L., Schroedter-Homscheidt, M., et al.:

Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method, Meteorologische Zeitschrift, 26,

33–57, 2017.640

Registry of Research Data Repositories.: SAMD, https://doi.org/10.17616/R3D944, last accessed: 2024-04-08; editing status 2023-08-29,

2017.

Riihimaki, L. D., Flynn, C., McComiskey, A., Lubin, D., Blanchard, Y., Chiu, J. C., Feingold, G., Feldman, D. R., Gristey, J. J., Herrera, C.,

et al.: The shortwave spectral radiometer for atmospheric science: Capabilities and applications from the ARM user facility, Bulletin of

the American Meteorological Society, 102, E539–E554, 2021.645

Sanchez, B., Roth, M., Simón-Moral, A., Martilli, A., and Velasco, E.: Assessment of a meteorological mesoscale model’s capability to

simulate intra-urban thermal variability in a tropical city, Urban Climate, 40, 101 006, 2021.

Sedlar, J., Riihimaki, L. D., Lantz, K., and Turner, D. D.: Development of a Random-Forest Cloud-Regime Classification Model Based on

Surface Radiation and Cloud Products, Journal of Applied Meteorology and Climatology, 60, 477–491, 2021.

Sengupta, M. and Andreas, A.: Oahu solar measurement grid (1-year archive): 1-second solar irradiance; Oahu, Hawaii (data), 2010.650

Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng,

C.-H., et al.: A large eddy simulation intercomparison study of shallow cumulus convection, Journal of the Atmospheric Sciences, 60,

1201–1219, 2003.

Tabar, M. R. R., Anvari, M., Lohmann, G., Heinemann, D., Wächter, M., Milan, P., Lorenz, E., and Peinke, J.: Kolmogorov spectrum of

renewable wind and solar power fluctuations, The European Physical Journal Special Topics, 223, 2637–2644, 2014.655

Tijhuis, M., van Stratum, B. J., Veerman, M. A., and van Heerwaarden, C. C.: An Efficient Parameterization for Surface Shortwave

3D Radiative Effects in Large-Eddy Simulations of Shallow Cumulus Clouds, Journal of Advances in Modeling Earth Systems, 15,

e2022MS003 262, 2023.

Várnai, T. and Davies, R.: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal hetero-

geneity, Journal of the atmospheric sciences, 56, 4206–4224, 1999.660

Veerman, M., van Stratum, B., and van Heerwaarden, C.: A case study of cumulus convection over land in cloud-resolving simulations with

a coupled ray tracer, Geophysical Research Letters, p. e2022GL100808, 2022.

Villefranque, N. and Hogan, R. J.: Evidence for the 3D Radiative Effects of Boundary-Layer Clouds From Observations of Direct and Diffuse

Surface Solar Fluxes, Geophysical Research Letters, 48, e2021GL093 369, 2021.

Villefranque, N., Fournier, R., Couvreux, F., Blanco, S., Cornet, C., Eymet, V., Forest, V., and Tregan, J.-M.: A Path-Tracing Monte Carlo665

Library for 3-D Radiative Transfer in Highly Resolved Cloudy Atmospheres, Journal of Advances in Modeling Earth Systems, 11, 2449–

2473, 2019.

27

https://doi.org/10.1002/2016GL070776
https://doi.org/10.17616/R3D944


Villefranque, N., Barker, H. W., Cole, J. N. S., and Qu, Z.: A Functionalized Monte Carlo 3D Radiative Transfer Model: Ra-

diative Effects of Clouds Over Reflecting Surfaces, Journal of Advances in Modeling Earth Systems, 15, e2023MS003 674,

https://doi.org/https://doi.org/10.1029/2023MS003674, e2023MS003674 2023MS003674, 2023.670

Volkmann, T. H., Lyon, S. W., Gupta, H. V., and Troch, P. A.: Multicriteria design of rain gauge networks for flash flood prediction in semiarid

catchments with complex terrain, Water resources research, 46, 2010.

Weigl, T., Nagl, L., Weizenbeck, J., Zehner, M., Augel, M., Giesler, B., Becker, G., Mayer, O., Betts, T., and Gottschalg,

R.: Modelling and Validation of Spatial Irradiance Characteristics for Localised Irradiance Fluctuations and Enhancements,

https://doi.org/10.4229/27thEUPVSEC2012-5CO.7.6, 2012.675

Xu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Liu, J., Zou, Y., and He, R.: A kriging and entropy-based approach to

raingauge network design, Environmental research, 161, 61–75, 2018.

Yordanov, G. H., Midtgård, O.-M., Saetre, T. O., Nielsen, H. K., and Norum, L. E.: Overirradiance (cloud enhancement) events at high

latitudes, in: 2012 IEEE 38th photovoltaic specialists conference (PVSC) part 2, pp. 1–7, IEEE, 2012.

28

https://doi.org/https://doi.org/10.1029/2023MS003674
https://doi.org/10.4229/27thEUPVSEC2012-5CO.7.6

