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Abstract. Cut-off Lows (COL) are mid-tropospheric cyclonic systems that frequently form over southern South America, 13 

where they can cause high-impact precipitation events. However, their prediction remains a challenging task, even in state-of-14 

the-art numerical weather prediction systems. In this study, we assess the skill of the Global Ensemble Forecasting System 15 

(GEFS) in predicting COL formation and evolution over the South American region where the highest frequency and intensity 16 

of such events is observed. The target season is austral autumn (March to May), in which the frequency of these events 17 

maximizes. Results show that GEFS is skillful in predicting the onset of COLs up to 3 days ahead, even though forecasts 18 

initialized up to 7 days ahead may provide hints of COL formation. We also find that as the lead time increases, GEFS is 19 

affected by a systematic bias in which the forecast tracks lay to the west of their observed positions. Analysis of two case 20 

studies provide useful information on the mechanisms explaining the documented errors. These are mainly related to the depth 21 

and the intensity of the cold core, which affect the thermodynamic instability patterns  (thus shaping precipitation downstream) 22 

as well as the horizontal thermal advection which can act to reinforce or weaken the COLs. These results are expected to 23 

provide not only further insight into the physical processes at play in these forecasts, but also useful tools to be used in 24 

operational forecasting of these high-impact weather events over southern South America.  25 

1 Introduction 26 

Severe weather phenomena can significantly impact densely populated regions (e.g. Curtis et al., 2017; Newman and Noy, 27 

2023; Sanuy et al., 2021). Over southern South America, these are frequently associated with heavy precipitation events 28 

triggered by low-pressure systems known as Cut-off Lows (COLs; Campetella and Possia 2007; Godoy et al., 2011a; Muños 29 

and Schultz, 2021). COLs are synoptic-scale weather systems that originate from elongated cold troughs in the middle 30 
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troposphere, which subsequently detach ('cut off') from the main westerly current (Palmén and Newton, 1969). This 31 

segregation from the main flow explains the isolated and erratic behavior of these systems, which suppose a significant 32 

challenge in operational weather forecasting, even for state-of-the-art numerical weather prediction (NWP) systems (Muofhe 33 

et al., 2020; Yáñes-Morroni et al., 2018). Naturally, this can have an impact on the reliability of weather forecasts and early 34 

warnings which may be particularly relevant for southern South America considering the remarkable affectation from COLs 35 

(Godoy et al., 2011a). 36 

Previous studies have focused on quantifying the explicit forecast errors associated with COLs in NWP systems. Gray et al. 37 

(2014) examined forecast ensembles from three operational forecast centers in the Northern Hemisphere and found that 38 

forecast errors were systematically larger in COL compared to no-COL events for the same prediction time. Similarly, Saucedo 39 

(2010) conducted an assessment of the prediction skill of the Global Forecast System (GFS) and Weather Research & 40 

Forecasting (WRF) models in southern South America for three COL events. His results indicated that forecast accuracy varies 41 

significantly depending on the individual COL cases and emphasized the need for an accurate representation of the COL center 42 

position during initialization to achieve better forecast results.   43 

Other studies, such as those from Muofhe et al. (2020) and Binder et al. (2021), have linked errors in precipitation forecasts 44 

with inaccuracies in the location of the COL centers. In their evaluation of Météo-France forecasts, Binder et al. (2021) 45 

analyzed a single COL event and documented an eastward shift in both precipitation and COL position, primarily due to an 46 

initial underestimation of the COL intensity. Meanwhile, Muofhe et al. (2020) assessed the skill of the NWP model currently 47 

used operationally at the South African Weather Service to simulate five COL events. They observed variations in the 48 

predictive skill of COL-related precipitation across different development stages of the COLs, attributing these differences to 49 

inaccurate positioning of their centers. Moreover, studies by Bozkurt et al. (2016), Yáñes-Morroni et al. (2018) and Portmann 50 

et al. (2020) have underscored the influence of the COL-induced circulation on extreme precipitation events, emphasizing the 51 

complexity and challenge of predicting these phenomena. In particular, Portmann et al. (2020) noted that uncertainties in the 52 

COL genesis position substantially affect the vertical thermal structure of a surface cyclone development as well as its 53 

subsequent evolution. 54 

While previous studies have examined the skill of NWP systems in forecasting COLs, they usually cover a short period of 55 

time and do not address a compound evaluation of positional and intensity errors. For instance, the recent paper by Lupo et al. 56 

(2023) has quantified biases in COL forecasts globally, but for the operational version of the GFS model in a 7-year period 57 

running from 2015 to 2022. In this context, there is a necessity to deepen our comprehension of COL predictive skill, given 58 

the close linkage with heavy rainfall events. Our study tries to fill this gap, focusing on southern South America, a hotspot  59 

region for COL development (e.g., Reboita et al., 2010; Godoy, 2012 henceforth GD12; Pinheiro et al., 2017).  60 

Our main goal is to assess the prediction skill of COLs in the National Centers for Environmental Prediction (NCEP)’s Global 61 

Ensemble Forecasting System (GEFS). This is achieved through quantifying forecast errors using an objective feature-tracking 62 

methodology which involves the identification and tracking of COLs along the forecast trajectories to produce a set of forecast 63 

versus observed COLs.  64 

https://doi.org/10.5194/egusphere-2024-1063
Preprint. Discussion started: 3 June 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

In this study, we specifically address three aspects of COLs: their onset time, their central position and their intensity. In 65 

particular, we seek to respond the following questions: 66 

1. What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 67 

forecasts? 68 

2. After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 69 

3. Can errors in COL forecasts impact those of precipitation further downstream? 70 

It should be noted that this study can be considered as a first step towards a full characterization of the physical mechanisms 71 

controlling the forecast skill of COLs and how the associated errors in state-of-the-art NWP systems are transferred into other 72 

associated variables such as precipitation, atmospheric instability and winds. The rest of the paper is organized as follows: the 73 

datasets and methodology are described in Section 2. The results on the forecast skill of the GEFS in both COL onset and their 74 

evolution stages are included in Section 3, followed by a summary and the concluding remarks in Section 4. 75 

2 Data and methodology 76 

2.1 The GEFS Reforecast dataset 77 

Daily averages from the GEFS Reforecast version 2 dataset (Hamill et al., 2013)  are used as a representative sample of the 78 

GEFS model for the purpose of this study. This dataset consists of 11 ensemble members - one control run alongside 10 79 

perturbed members - and covers a prediction horizon of 16 days after initialization. During the first week, data is saved at 3-80 

hourly intervals considering a horizontal resolution of T254 (roughly 40 km x 40 km at 40° latitude) and 42 vertical levels. In 81 

the second week, the intervals increase to 6-hourly and the horizontal resolution decreases to T190 (around 54 km x 54 km at 82 

40° latitude) with no changes in the number of vertical levels. The GEFS Reforecast dataset can be freely downloaded from 83 

ftp://ftp.cdc.noaa.gov/Projects/Reforecast2, where the reforecasts have been saved at 1ºx1º horizontal resolution from the 84 

native resolution data using bilinear interpolation with wgrib2 software. It is worth noting that for all calculations within the 85 

paper, we considered the ensemble mean as the basis for analysis and comparisons (i.e., no assessment is performed on 86 

individual ensemble members). To validate the GEFS skill, we use the fifth version of the ECMWF Reanalysis Dataset  (ERA5; 87 

Hersbach et al. 2020) as a representation of the real-world conditions. The ERA5 data, with the original resolution of 88 

approximately 0.25° x 0.25°, were coarsened to the same resolution of the reforecast to ease comparison.  89 

Our analysis focused on the forecast verification of atmospheric variables at the 300 hPa level. This level was chosen because 90 

it hosts both the largest frequencies and intensities of COLs within the Southern Hemisphere (e.g., Reboita et al., 2010; Pinheiro 91 

et al., 2021). To detect COLs, we analyzed the geopotential height and the zonal wind component at 300 hPa as well as the 92 

300/850 thickness. We also evaluated other variables of interest such as the geopotential height at 850 hPa and the total 93 

accumulated precipitation to represent the lower-level circulation and related impacts of COLs. 94 
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2.2 Temporal domain and study area 95 

The temporal domain of our study is based on the availability of reforecast data, ranging from 1985 to 2020. Specifically, we 96 

focus on the austral autumn season, covering the months of March, April, and May, which is the season with the highest 97 

frequency of COLs in South America (Reboita et. al., 2010; Pinheiro et. al., 2017; Muñoz et al., 2020). Regarding the spatial 98 

domain, we focused on the area of greatest occurrence of COLs, which encompasses the western side of southern South 99 

America (Reboita et al., 2010;  Campetella and Possia, 2007;  GD12). Specifically, we utilized the area situated between 100 

latitudes 37.6° and 29.9° S and longitudes 77.6° and 68.75° W, as illustrated in Fig. 1. This region has been extensively studied 101 

in the past by GD12, who found that the COLs in this area are particularly strong and can often cross the Andes Mountain 102 

range, leading to conditions prone to high-impact weather events over the continent further downstream (Godoy et al., 2011a). 103 

2.3 COL identification and tracking algorithm 104 

The methodology used to build the COL dataset from GEFS and ERA5 data aligns with the approach outlined by GD12 and 105 

underpinned by a detection algorithm grounded in the conceptual framework put forth by Nieto et al. (2005). The methodology 106 

looks for local minima in the 300 hPa geopotential height field by simply comparing the local height with neighboring grid 107 

points under certain restrictions of size (i.e. number of surrounding points) and intensity. When a minimum is detected, a 108 

second requirement is it being associated with a cold core, for which the 850/300 hPa layer thickness is considered as a proxy 109 

of the mean layer temperature. Finally, points that successfully passed criteria 1 and 2 must also be accompanied by easterly 110 

winds to their polar side to be labeled as a COL.  111 

Once we identified the COLs, we tracked them using the nearest neighbor method in the GEFS and ERA5 datasets and 112 

determined their trajectories. Only those forecasted COLs that fill on specific matching criteria were retained for the subsequent 113 

statistical analysis. First, the trajectories were considered matched if at least one point (corresponding to one day) matched in 114 

time along the life cycle of the individual systems. Second, we state that the distance between the predicted and the observed 115 

first point of the trajectories should not exceed 800 kilometers. This distance choice corresponds to the typical diameter of 116 

COL systems, which is between 600 and 1200 kilometers (Kentarchos and Davies, 1998). In agreement with Froude et al. 117 

(2007), our spatial matching approach focuses primarily on the starting point of the predicted trajectories rather than the entire 118 

trajectory. This emphasis is because, although the trajectories may initially closely match the observed trajectories, they are 119 

likely to diverge as the forecast lead time increases. 120 

2.4 Verification metrics 121 

For the quantification of the model skill, we used a Lagrangian perspective to derive error statistics. This methodology has 122 

been previously employed to build position and intensity error statistics in previous investigations on tropical and extratropical 123 

cyclones such as in Froude et al. (2007) and Hamill et al. (2011). The validation metrics used in this study  are sketched in Fig. 124 

2 and are as follows: 125 
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● Direct Positional Error (DPE): This metric is defined as the horizontal distance between the observed and forecast 126 

positions at the same forecast time. 127 

● Cross-Track Error (CTE): This metric represents the component of DPE that is perpendicular to the observed track. 128 

It provides information on the bias to the left or right of the observed track. 129 

● Along-Track Error (ATE): This metric represents the component of DPE that is along the observed track. It provides 130 

information on the directional bias along the track, indicative of whether the forecasts predict a faster or slower motion 131 

of the system compared to the reanalysis. 132 

We adopted the convention that a positive (negative) value of CTE indicates a bias to the right (left) of the observed track, 133 

while a positive (negative) value of ATE indicates that the forecast position is biased fast (slow). It is important to note that 134 

CTE and ATE cannot be calculated for the first analyzed position of a COL since they depend on the existence of an observed 135 

position the day before the valid time. For a more detailed explanation of these metrics, see Heming (2017). 136 

3 Results 137 

As a first step to determine the temporal horizon at which the GEFS model can forecast COLs, we analyze the central position 138 

of the COLs and their intensity (given by the Laplacian of the geopotential height field). We show results only for the seven 139 

days before the observed onset stage of COLs events since no COLs were detected beyond this period in the preliminary 140 

analysis. It should be noted that hereafter "onset stage" or "onset" of the COL refers to the beginning of the segregation stage, 141 

also known as stage 2 of the COL life cycle as defined by Nieto et al. (2005). We organized each forecast into eight groups 142 

based on their initialization day, namely init 0, init 1, init 2, init 3, init 4, init 5, init 6, and init 7. Forecasts labeled as init 0 143 

correspond to those initialized at the onset day of the COL, while forecasts labeled as init 1 to init 7 indicate forecasts initialized 144 

one to seven days before the onset day of the COL, respectively. 145 

3.1 Predictive skill of COL onset time in GEFS 146 

Figure 3 shows the percentage of detected COLs as a function of their initialization day, i.e. how many days in advance could 147 

these systems be forecasted in the GEFS dataset. During initializations closest to the onset days (init 0 to init 2), over 94% of 148 

the total events (32 out of 34 COLs) were accurately predicted by the GEFS. However, this accuracy decreases significantly 149 

from init 3 onwards: 71% at init 3, 56% at init 4 and down to only 9% at init 7. It is interesting to highlight, still, that the 150 

reforecasts were able to correctly predict most COLs on the same date they were observed, even when the initializations were 151 

farthest from the onset days (i.e. init 4 and init 5), indicating the accuracy of GEFS for predicting the timing of the events.  152 

Figure 4 illustrates the quartile distribution of the DPE and intensity error in the GEFS model for the onset day of the COLs 153 

where each boxplot represents a different initialization day. The boxes represent the interquartile range (IQR), which comprises 154 

50% of the error distribution, with the median value indicated by a bold black line. Initially, a gradual increase in the median 155 

of DPE can be observed as the number of days before the onset of COL increases (Fig. 4a). The DPE increase varies from 140 156 
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kilometers at the first initialization (init 0) to about 300 kilometers at init 3. At the same time, the IQR expands from 300 157 

kilometers at init 1 to 900 kilometers at init 3, indicating a widening spread of DPE with increasing forecast time. In contrast, 158 

the median of the intensity error exhibits a negative trend: it decreases from -2.5 gpm/m2 at init 1 to -8 gpm/m2 at init 3, with 159 

an IQR that varies significantly with the day of initialization. For subsequent initializations (init 5 to init 7), we observe a 160 

continuous increase in DPE from 400 kilometers to approximately 600 kilometers, alongside a consistent negative trend in 161 

intensity errors, with values around -13.0 gpm/m2. However, it is important to note that these results are based on a smaller 162 

sample size than previous initializations and caution should be exercised when generalizing these results. 163 

Figure 5 shows eight polar scatter plots illustrating the errors in the position of the predicted COLs in comparison to the 164 

reanalysis, with each plot corresponding to a particular initialization day. During the early initializations, the GEFS exhibits 165 

errors contained within a radius of 3° (approximately 300 km) around the observed positions and shows no discernible 166 

directional deviation. This indicates that the position errors are randomly distributed and show no systematic bias, which is 167 

particularly clear up to init 2. Conversely, initializations from init 3 to init 5 show a larger spread, with more points deviating 168 

significantly from the observed cyclone positions. While we detected a southward deviation, the zonal (i.e. east-west) behavior 169 

was less uniform, as init 3 showed a southern bias, init 4, a southwestern bias, and init 5, a slight southwestern deviation. This 170 

indicates overall a slight deviation towards the south (on average between 1º and 3°), even if there is no clear longitudinal 171 

direction. Forecasts initialized with a larger lead time showed a larger spread, partly due to a smaller number of predicted 172 

COLs, but also revealing a predominant southwesterly bias of the model. 173 

3.2 Predictive skill of COL intensity and tracks in GEFS 174 

In this section, we investigate whether there is any bias in predicting cyclone intensity, propagation speed, and trajectory. We 175 

focused on the forecasts initialized up to 3 days before the segregation date since the number of detected cases is significantly 176 

lower for forecasts initialized beyond that point (i.e. init 4 to init 7), as explained in Figure 3. Also, considering that most COLs 177 

have a duration of 4-5 days or less (not shown), we restricted our analysis to forecast lead times within 3 days of the detection 178 

of the COLs in the ERA5 reanalysis.  179 

Figure 6 shows the quartile distribution of DPE between the GEFS and ERA5 trajectories for init 0 to init 3. Each initialization 180 

shows similar sensitivity: in the case of init 1 and init 2 (Fig. 6b,c), errors increase from 166 to over 320 kilometers within two 181 

or three days after COL detection in the ERA reanalysis. The situation is similar for init 0 (Fig. 6a), where the error increases 182 

from 144 to over 275 kilometers in the same period. Not surprisingly, init 3 (Fig. 6d) has the largest mean error, with a linear 183 

increase from 290 to 550 kilometers. As regards IQR, it shows a linear increase, indicating that the dispersion of the position 184 

errors increases along the cyclone forecast period.  185 

Conversely, a negative trend is observed in the intensity difference between the matched GEFS trajectories and the 186 

corresponding ERA5 reanalysis trajectories (Figure 7). The error for init 0 and init 1 (Fig. 7a,b) initially increases from -2.0 to 187 

over -4.3 gpm/m2 within two to three days after COL detection in the ERA reanalysis. For init 2 and init 3 (Fig. 7c,d), however, 188 

a further increase in the error can be observed. While init 2 shows an increase from -4.9 to -11.68, init 3 shows an even more 189 
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pronounced initial error of -8.14, which subsequently increases to -9.0. Regarding the dispersion of the error, it is noteworthy 190 

that init 1 and init 2 (Fig. 7b,c) show a slightly positive trend, indicating an increase in the uncertainty of the predicted system 191 

intensity. In contrast, the last initialization (Fig. 7d) shows a significantly larger dispersion and a more variable behavior during 192 

the analyzed period. Despite the observed variability, however, a trend towards greater dispersion is discernible. 193 

Given that the DPE may stem from biases in either the translation speed of the COL (ATE) or from its direction of motion 194 

(CTE), as shown graphically in Fig. 2, we disaggregate their relative contributions in Figs. 8 and 9, respectively. In general, 195 

the ATE distribution exhibits a negative bias towards the later stages of the forecast tracks, except for init 2 (Fig. 8c) which 196 

shows slightly positive values. Both init 1 and init 3 (Fig.8b,d) exhibit negative biases with median distances of around 200 197 

and 300 kilometers, respectively. This negative bias in ATE may indicate that GEFS tends to underestimate the translational 198 

speeds of COL towards the latter stages of the forecast lead times. Regarding the CTE distribution (Fig. 9), no clear bias is 199 

observed, however, there are some noticeable trends in different initializations. In particular, init 2 (Fig. 9c) shows negative 200 

values at around 100 kilometers. On the other hand, init. 3 (Fig. 9d) displays predominantly positive values, representing a 201 

poleward bias according to its definition.  202 

3.3 Case studies 203 

In this subsection, we focus on two COLs that exhibited very different levels of prediction performance during their onset 204 

stage (Fig. 4a). The first case study, from March-April 2013, is characterized by small DPE values, below the first quartile in 205 

Fig. 4a, indicative of a forecast with high accuracy in the GEFS dataset. In contrast, the second case study, from March 2019, 206 

was associated with remarkably larger DPE values, with errors ranging between the median and the third quartile. This 207 

represents a scenario in which the prediction has a suboptimal performance. It should be noted that the selection of the case 208 

studies was based also on the impact the model errors had on the associated precipitation downstream. Before exploring the 209 

associated errors in the GEFS dataset, we provide a brief description of the synoptic environment around each COL during its 210 

segregation stage. 211 

3.3.1 Case study 1: COL development on March 31st, 2013 212 

On March 31st, 2013, a COL formed to the west of the Andes Mountains at 36°S and 75.5°W. Its lifespan lasted for six days, 213 

covering a distance of over 2,000 kilometers into the Atlantic Ocean (not shown). This event was associated with severe 214 

weather conditions which resulted in unprecedented flash floods in the region, leading to loss of lives, significant infrastructural 215 

damage and economic losses of USD 1.3 billion (Pink, 2018). 216 

During the segregation phase of the COL, the main atmospheric features included an amplified ridge downstream of the system, 217 

the presence of two jet streaks - one to the north and one to the south of the COL - and a well-defined cold-core in the middle 218 

levels, and a cyclonic system off the central coast of Chile at lower levels. The circulation of the cyclonic system (Fig 10c)  219 

fostered cold air advection underneath the COL center which helped to sustain and intensify the COL itself (not shown). During 220 
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its early development stages, this COL led to record-breaking rainfall of over 25 mm per day with peaks in excess of 50 mm 221 

in certain areas over south-central South America ( Fig. 10b). 222 

Forecast-wise, it is found that the location of the COL formation was accurately predicted 1 and 3 days ahead (init 1 and init 223 

3; second and third rows in Fig. 10), but both initializations underestimated its intensity by approximately 6 gpm/m2 and 11 224 

gpm/m2 in init 1 and init 3, respectively. The GEFS accurately predicted the strength and extent of upper high winds associated 225 

with the COL (Fig. 10d,g). However, it underestimated the strength of the cold core in middle levels and misplaced the location 226 

of the cyclonic circulation at lower levels, which shifted to the north of the observation site (Fig. 10f,i). This suggests that the 227 

vertical coupling with the COL was affected, potentially impacting the intensity of the system. Regarding precipitation 228 

forecasts, in both init 1 and init 3, the regions with significant rainfall were located southeast of their actual position and 229 

amounts were overall underestimated, particularly in init 3. On the other hand, init 5 exhibited even less skill, with intensity 230 

and location errors of around -14 gpm/m2 and 200 kilometers northwest of its observed position, respectively. The GEFS also 231 

encountered difficulties in predicting the jet split structure, inadequately represented the low-level circulation, and failed to 232 

capture the cold core at mid-levels, which naturally had an impact on the predicted precipitation amounts as well (Fig. 10k). 233 

Rainfall forecasts located the highest precipitation in the northeast of the country, outside the area affected by the COL system. 234 

This suggests that GEFS may not perform well in producing precipitation associated with COLs. 235 

3.3.2 Case study 2: COL development on March 9th, 2019 236 

On March 9th, 2019, another COL formed off the coast of Chile, at 33°S and 74°W (first row of Fig. 11). This system was 237 

weaker than the previous COL and lasted for four days. It caused some weak precipitation in south-central South America, but 238 

the amounts were lower than those associated with the first COL. 239 

The synoptic environment during the segregation stage of this COL in the ERA5 reanalysis (first row of Fig. 11) included an 240 

upper-level ridge with a NW-SE axis to the southwest of the COL, a split jet structure, a strong low-level cyclone positioned 241 

just beneath the COL center off the coast of Chile, and a small cold core at middle levels. Although this COL had a smaller 242 

structure than the first COL, the cyclonic system extended into the lower levels, as evidenced by the accompanying low-level 243 

cyclone identified in Fig. 11c. In the precipitation field, two distinct maxima were observed: one situated northeast of the 244 

domain of analysis, probably linked to a decaying frontal zone over that area (not shown), and another one over western 245 

Argentina related to the ascent zone at the east of the COL. The subsequent validation of the GEFS forecast focuses only on 246 

this second feature as it was the one directly associated with (or triggered by) the COL. 247 

The GEFS forecasts for March 9th, 2019 initialized 1, 3 and 5 days ahead are shown in Fig. 11 (second to fourth rows). In init 248 

1 (Fig. 11, second row) the forecasted COL was approximately 15 gpm/m2 shallower and located around 210 kilometers to the 249 

southeast compared to ERA5. Regarding the circulation at upper levels, GEFS predicted well the strength and extent of high 250 

winds associated with the COL. However, the circulation at low and middle levels was less accurate. GEFS predicted the 251 

850hPa cyclone to be located further north than expected, and at middle levels, it failed to represent the cold core. For init 3 252 

(Fig. 11, third row), the forecasted COL was approximately 17 gpm/m2 shallower and 430 kilometers southeast of its actual 253 
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intensity and location. In this case, while GEFS predicted well the strength of the winds associated with COL, their position 254 

was predicted wrong,  eastward compared to its actual position. At low and mid-levels, the forecast was also inaccurate; the 255 

850 hPa cyclone was weaker and displaced more northward than observed, and the strength of the cold trough at middle levels 256 

was underestimated and displaced towards the east. Regarding rainfall amounts, both initializations underestimated the rainfall 257 

within the ascent zone of the COL and predicted to be northeast of their observed position, over the central and northeastern 258 

parts of the country (Figure 11e, h). As for the last initialization (Fig. 11, fourth row), the model failed to predict the COL. 259 

GEFS displaced the upper circulation towards the southeast, including the jets and associated upper ridge. At low levels, GEFS 260 

also failed to predict the cyclone off the coast of Chile. Meanwhile, the thickness field showed a small, less intense cold trough, 261 

resulting in a lack of rainfall amounts over the zone influenced by the COL, as shown in Fig. 11k.  262 

Based on these results, a wrongly positioned and less intense COL can lead to a poor forecast of the cold core, subsequently 263 

affecting dynamical processes such as horizontal temperature advection, thermodynamic instability, vorticity advection and 264 

associated ascent which are ingredients for precipitation production downstream. Such errors may be related to the inadequate 265 

representation of diabatic effects or interaction with the Andes Cordillera (Garreaud and Fuenzalida 2007). However, it is 266 

beyond the scope of this study to draw conclusions regarding how GEFS simulates the processes associated with COLs. 267 

4 Discussion and Conclusions 268 

This study explored the prediction skill of cut-off lows (COLs) in the NCEP Global Ensemble Forecasting System (GEFS) 269 

with a focus on the region with the highest frequency of COL occurrence in South America during austral autumn (March to 270 

May). The analysis made use of a verification framework centered on the individual systems.  These were identified and 271 

tracked using a feature-based approach applied to the 300 hPa level geopotential height as the primary variable.   272 

The main conclusions can be built on the questions posed at the Introduction of the study: 273 

What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 274 

forecasts? 275 

The GEFS model is highly accurate in predicting the start of the segregation stage of COLs up to three days in advance, but 276 

this accuracy drops significantly as the lead time increases beyond four days. The percentage of COLs detected by the model 277 

decreases to 56% and 29% for predictions initialized four and seven days ahead of the segregation, respectively. Our analysis 278 

also revealed that  COL centers diverge by an approximate distance of 200 km relative to the observations up to three days in 279 

advance. However, this error increases to 600 kilometers for forecasts more than four days ahead. Also, it has been shown that 280 

forecasts initialized up to two days in advance have no directional deviations while forecasts initialized at least three days 281 

ahead of COL formation have a predominant southerly bias. At the same time, the intensity errors show a consistent increase 282 

in magnitude, with values ranging from -2.5 gpm/m2 in init 1 to approximately -13.0 gpm/m2 at higher lead times. 283 

After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 284 
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From our results, we can conclude that the GEFS model has variable skill when forecasting the trajectories of COLs. Overall, 285 

errors increase from 200 to 400 kilometers in position in forecasts of one to two days of lead time. Within this time period, 286 

trajectories tend to be slower in comparison to the observed behavior. Even though this pattern of errors is also found for 287 

longer lead times, errors in predictions three days ahead increase substantially, and skill beyond four days is dramatically 288 

reduced. We can conclude that the trajectories of COLs can be relatively well predicted with lead times up to three days, and 289 

forecasts initialized beyond that threshold are significantly degraded and depict a poor representation of the actual paths. 290 

Intensity-wise, we found that GEFS forecasts are characterized by an increase in the magnitude of underestimation of COL 291 

intensity as the lead time increases. 292 

Can errors in COL forecasts impact those of precipitation further downstream? 293 

Even though in this study we have provided only partial evidence on this point from the analysis of two case studies, we can 294 

conclude that in these events the predictive skill of COLs (including their formation location, intensity and trajectory) had a 295 

significant impact on the precipitation forecasts downstream. In particular, the errors in the location and depth of the COLs 296 

were linked to the mechanism sustaining these systems, among which the thermodynamic instability played a role. For 297 

example, underestimating the strength of the cold core of COLs can significantly alter thermodynamic instability patterns, 298 

affecting vertical motion and precipitation formation downstream. Moreover, incorrectly forecasting the position of a low-299 

level cyclonic system in association with COLs can significantly impact the vertical coupling of COLs, potentially influencing 300 

their intensity. This aligns well with Pinheiro et al. (2021), who suggested a possible relation between the intensity of COLs 301 

in South America and their vertical depth. These deficiencies, transferred into the higher levels, are able to shape the intensity 302 

of the system and, via this alteration, some of the mechanisms responsible for precipitation formation. For instance, a weaker 303 

(stronger) COL will foster more (less) vorticity advection, resulting in favored (unfavored) ascent downstream. Therefore, 304 

predicted precipitation amounts will naturally be modulated by these errors (e.g. Saucedo, 2010).  305 

Results from this study can be compared with similar recent studies. For instance, Lupo et al. (2023) have concluded that the 306 

operational GFS model has a systematic bias to move Southern Hemisphere troughs and COLs too quickly downstream, even 307 

though in our study region the identified bias is towards the west (i.e. slower than observed). It should be noted, however, that 308 

the GEFS and the operational GFS share some common components but are different models, particularly regarding the 309 

horizontal resolution. As such, results from both studies are not directly comparable.  310 

Regarding the case studies, previous authors analyzing the synoptic evolution and predictive skill of COLs in other regions of 311 

the world, such as Portman et al. (2022) and Moufhe et al. (2020), have concluded that a proper representation of the vertical 312 

structure of the COL is crucial for a proper representation and prediction of these systems. Pinheiro et al. (2021) also argue 313 

that the intensity of the COLs affect the entire structure of these systems, and that errors in their intensity/position can easily 314 

affect their associated precipitation fields. 315 

It should be stressed once again that this study is proposed as a first step towards a full characterization of the physical processes 316 

responsible for COL formation, evolution and predictive skill in NWP systems. Several open questions remain, which will be 317 

addressed in future studies. Among them, it is unclear why the predicted trajectories are systematically slower than the 318 
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observations. A negative correspondence between COL intensity and location was also observed in the GEFS dataset, 319 

suggesting that the most intense COLs seem to be associated with lower positional errors. However, the underlying mechanism 320 

sustaining such a relationship (if any) is not clear. 321 

As a final note, future studies will dive into the relative contributions of COL intensity, location and speed on the resulting 322 

forecasted precipitation fields, as a deeper understanding of the interplay between these might bring useful information for 323 

operational weather predictions of high-impact events over southern South America. 324 
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Figures 436 

 437 
 438 

Figure 1: Spatial distribution of COLs in the region of highest COL frequency in southern South America from 1985 to 2020. Black 439 
crosses represent the start of trajectories of COLs detected in the study area (77.6°-68.75°W and 37.6°-29.9°S, solid black box) and 440 
lines represent their trajectories where colors represent the duration of each COL. 441 
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 442 

Figure 2: Measures of cyclone track forecast error: Direct Positional Error (DPE; violet arrow), Cross-Track Error (CTE; green 443 
arrow) and Along-Track Error (ATE; red arrow).  Obs0 and Obs1 are observed positions at times 0 and 1, while Fc0 and Fc1 are 444 
their respective forecasted positions. The gray circles (yellow squares) represent the observations (the forecasts). 445 
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 446 

Figure 3: Percentage of forecasted COL initiations as a function of initializations,  from init 0 (forecast initialized in the onset day) 447 
to init 7 (forecast initialized seven days before the onset of the COL). The red, gray, orange and yellow bars indicate the forecasted 448 
date of the onset day of COL relative to the observed date of onset day, from one day ahead of formation to two days after, 449 
respectively.  450 
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 451 

Figure 4: Variation in a) onset position (DPE) and b) the intensity error as a function of initializations. The whiskers at the top 452 
(bottom) of the boxes represent the error’s 75th (25th) quantile. The black thick horizontal lines inside the boxes represent  the 453 
median (the 50th quantile) and the points outside the whiskers are considered outliers. The red numbers at the bottom indicate the 454 
number of systems identified under each initialization. 455 
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 456 

Figure 5: Scatter diagrams of COL initial position deviation decomposed in longitudinal and latitudinal errors (in degrees), where 457 
the central axis is the initial position observed. Each plot represents a different initialization: ranging from a) Init 0  (forecast 458 
initialized in the onset day) to  h)  Init7 (7 days in advance). The gray/black dots indicate the location of the predicted COLs as a 459 
function of the initialization day (see the color bar for reference on the number of predicted systems per day). The red dots show the 460 
mean location after averaging all the COLs predicted in each initialization day. 461 
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 462 

Figure 6: Boxplots of DPE tracks along the life cycle of the COLs, where each plot represents initializations at a) Init 0, b) Init 1, c) 463 
Init 2, and d) Init 3. The red numbers at the top indicate the number of systems identified for each forecast lead time. 464 
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 465 

Figure 7: As in  Figure 7 but for the intensity error.  466 
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 467 

Figure 8: As in Figure 7 but for the along-track error ATE. 468 
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 469 

Figure 9: As in Figure 7 but for the cross-track error CTE. 470 
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Figure 10: Segregation stage of the COL formed on March 31st, 2013. (Top) ERA5 and (rows 2 to 4) GEFS predictions of (first 472 
column) geopotential height (Z) and wind (U) at 300 hPa, (second column) geopotential height (Z) at 300 hPa and accumulated 473 
precipitation (Accum. prep.) over 24 hours, and (right column) geopotential height (Z) at 850 hPa alongside the 850/3000 hPa layer 474 
thickness (DZ) GEFS predictions correspond to init 1 (second row), init 3 (third row) and init 5 (fourth row), initialized on March 475 
30th, March 28th and March 26th, 2013, respectively.      476 
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Figure 11: As in Figure 11 but for the COL formed on March 9th, 2019. In this case, the GEFS predictions corresponding to init 1 478 
(second row), init 3 (third row) and init 5 (fourth row) were initialized on March 8th, March 6th and March 4th, 2019, respectively.   479 
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