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Abstract. Cut-off Lows (COL) are mid-tropospheric cyclonic systems that frequently form over southern South America, 13 

where they can cause high-impact precipitation events. However, their prediction remains a challenging task, even in state-of-14 

the-art numerical weather prediction systems. In this study, we assess the skill of the Global Ensemble Forecasting System 15 

(GEFS) in predicting COL formation and evolution over the South American region where the highest frequency and intensity 16 

of such events is observed. The target season is austral autumn (March to May), in which the frequency of these events 17 

maximizes. Results show that GEFS is skillful in predicting the onset of COLs up to 3 days ahead, even though forecasts 18 

initialized up to 7 days ahead may provide hints of COL formation. We also find that as the lead time increases, GEFS is 19 

affected by a systematic bias in which the forecast tracks lay to the west of their observed positions. Analysis of two case 20 

studies provide useful information on the mechanisms explaining the documented errors. These are mainly related to 21 

inaccuracies in forecasting the vertical structure, including their cold core and associated low-level circulation. These 22 

inaccuracies potentially affect thermodynamic instability patterns (thus shaping precipitation downstream) as well as the 23 

horizontal thermal advection which can act to reinforce or weaken the COLs. These results are expected to provide not only 24 

further insight into the physical processes at play in these forecasts, but also useful tools to be used in operational forecasting 25 

of these high-impact weather events over southern South America.  26 

1 Introduction 27 

Severe weather phenomena can significantly impact densely populated regions (e.g. Curtis et al., 2017; Newman and Noy, 28 

2023; Sanuy et al., 2021). Over southern South America, these are frequently associated with heavy precipitation events 29 

triggered by low-pressure systems known as Cut-off Lows (COLs; Campetella and Possia 2007; Godoy et al., 2011a; Muñoz 30 
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and Schultz, 2021). COLs are synoptic-scale weather systems that originate from elongated cold troughs in the middle 31 

troposphere, which subsequently detach ('cut off') from the main westerly current (Palmén and Newton, 1969). This 32 

segregation from the main flow explains the isolated and erratic behavior of these systems, which pose a significant challenge 33 

in operational weather forecasting, even for state-of-the-art numerical weather prediction (NWP) systems (Muofhe et al., 2020; 34 

Yáñez-Morroni et al., 2018). Naturally, this can have an impact on the reliability of weather forecasts and early warnings 35 

which may be particularly relevant for southern South America considering the remarkable affectation from COLs (Godoy et 36 

al., 2011a). 37 

Previous studies have focused on quantifying the explicit forecast errors associated with COLs in NWP systems. Gray et al. 38 

(2014) examined forecast ensembles from three operational forecast centers in the Northern Hemisphere and found that 39 

forecast errors were systematically larger in COL compared to no-COL events for the same prediction time. Similarly, Saucedo 40 

(2010) conducted an assessment of the prediction skill of the Global Forecast System (GFS) and Weather Research & 41 

Forecasting (WRF) models in southern South America for three COL events. His results indicated that forecast accuracy varies 42 

significantly depending on the individual COL cases and emphasized the need for an accurate representation of the COL center 43 

position during initialization to achieve better forecast results.   44 

Other studies, such as those from Muofhe et al. (2020) and Binder et al. (2021), have linked errors in precipitation forecasts 45 

with inaccuracies in the location of the COL centers. In their evaluation of Météo-France forecasts, Binder et al. (2021) 46 

analyzed a single COL event and documented an eastward shift in both precipitation and COL position, primarily due to an 47 

initial underestimation of the COL intensity. Meanwhile, Muofhe et al. (2020) assessed the skill of the NWP model currently 48 

used operationally at the South African Weather Service to simulate five COL events. They observed variations in the 49 

predictive skill of COL-related precipitation across different development stages of the COLs, attributing these differences to 50 

inaccurate positioning of their centers. Moreover, studies by Bozkurt et al. (2016), Yáñez-Morroni et al. (2018) and Portmann 51 

et al. (2020) have underscored the influence of the COL-induced circulation on extreme precipitation events, emphasizing the 52 

complexity and challenge of predicting these phenomena. In particular, Portmann et al. (2020) noted that uncertainties in the 53 

COL genesis position substantially affect the vertical thermal structure of a surface cyclone development as well as its 54 

subsequent evolution. 55 

While previous studies have examined the skill of NWP systems in forecasting COLs, they usually cover a short period of 56 

time and do not address a compound evaluation of positional and intensity errors. For instance, the recent paper by Lupo et al. 57 

(2023) has quantified biases in COL forecasts globally, but for the operational version of the GFS model in a 7-year period 58 

running from 2015 to 2022. In this context, there is a necessity to deepen our comprehension of COL predictive skill, given 59 

the close linkage with heavy rainfall events. Our study tries to fill this gap, focusing on southern South America, a hotspot 60 

region for COL development (e.g., Reboita et al., 2010; Godoy, 2012 henceforth GD12; Pinheiro et al., 2017).  61 

Our main goal is to assess the prediction skill of COLs in the National Centers for Environmental Prediction (NCEP)’s Global 62 

Ensemble Forecasting System (GEFS). This is achieved through quantifying forecast errors using an objective feature-tracking 63 
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methodology which involves the identification and tracking of COLs along the forecast trajectories to produce a set of forecast 64 

versus observed COLs.  65 

In this study, we specifically address three aspects of COLs: their onset time, their central position and their intensity. In 66 

particular, we seek to respond the following questions: 67 

1. What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 68 

forecasts? 69 

2. After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 70 

3. Can errors in COL forecasts impact those of precipitation further downstream? 71 

It should be noted that this study can be considered as a first step towards a full characterization of the physical mechanisms 72 

controlling the forecast skill of COLs and how the associated errors in state-of-the-art NWP systems are transferred into other 73 

associated variables such as precipitation, atmospheric instability and winds. The rest of the paper is organized as follows: the 74 

datasets and methodology are described in Section 2. The results on the forecast skill of the GEFS in both COL onset and their 75 

evolution stages are included in Section 3, followed by a summary and the concluding remarks in Section 4. 76 

2 Data and methodology 77 

2.1 The GEFS Reforecast dataset 78 

Daily averages from the GEFS Reforecast version 2 dataset (Hamill et al., 2013)  are used as a representative sample of the 79 

GEFS model for the purpose of this study. This dataset consists of 11 ensemble members - one control run alongside 10 80 

perturbed members - and covers a prediction horizon of 16 days after initialization. During the first week, data is saved at 3-81 

hourly intervals considering a horizontal resolution of T254 (roughly 40 km x 40 km at 40° latitude) and 42 vertical levels. 82 

The GEFS Reforecast dataset can be freely downloaded from ftp://ftp.cdc.noaa.gov/Projects/Reforecast2, where the reforecasts 83 

have been saved at 1ºx1º horizontal resolution from the native resolution data. It is worth noting that for all calculations within 84 

the paper, we considered the ensemble mean as the basis for analysis and comparisons (i.e., no assessment is performed on 85 

individual ensemble members). To validate the GEFS skill, we use the fifth version of the ECMWF Reanalysis Dataset  (ERA5; 86 

Hersbach et al. 2020) as a representation of the real-world conditions. The ERA5 data, with the original resolution of 87 

approximately 0.25° x 0.25°, were coarsened to the same resolution of the reforecast to ease comparison.  88 

Our analysis focused on the forecast verification of atmospheric variables at the 300 hPa level. This level was chosen because 89 

it hosts both the largest frequencies and intensities of COLs within the Southern Hemisphere (e.g., Reboita et al., 2010; Pinheiro 90 

et al., 2021). To detect COLs, we analyzed the geopotential height and the zonal wind component at 300 hPa as well as the 91 

300/850 thickness. We also evaluated other variables of interest such as the geopotential height at 850 hPa and the total 92 

accumulated precipitation to represent the lower-level circulation and related impacts of COLs. 93 
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2.2 Temporal domain and study area 94 

The temporal domain of our study is based on the availability of reforecast data, ranging from 1985 to 2020. Specifically, we 95 

focus on the austral autumn season, covering the months of March, April, and May, which is the season with the highest 96 

frequency of COLs in South America (Reboita et. al., 2010; Pinheiro et. al., 2017; Muñoz et al., 2020). Regarding the spatial 97 

domain, we focused on the area of greatest occurrence of COLs, which encompasses the western side of southern South 98 

America (Reboita et al., 2010;  Campetella and Possia, 2007;  GD12). Specifically, we utilized the area situated between 99 

latitudes 37.6° and 29.9° S and longitudes 77.6° and 68.75° W, as illustrated in Figure 1. This region has been extensively 100 

studied in the past by GD12, who found that the COLs in this area are particularly strong and can often cross the Andes 101 

Mountain range, leading to conditions prone to high-impact weather events over the continent further downstream (Godoy et 102 

al., 2011a). 103 

2.3 COL identification and tracking algorithm 104 

The COLs dataset from GEFS and ERA5 is built following the approach outlined by GD12 and based on the conceptual 105 

framework of COL by Nieto et al. (2005). This conceptual model characterizes a COL as a closed cyclonic circulation isolated 106 

from the main westerly current and characterized by a cold core at mid-levels.   107 

To detect COLs, the tracking algorithm uses the geopotential height and the zonal wind component at 300 hPa as well as the 108 

300/850 hPa thickness, following a series of steps to classify potential grid points as COLs: 1) In order to detect the closed 109 

circulation, the algorithm looks for local minima in the 300 hPa geopotential height field. It selects a grid point that is at least 110 

5 geopotential meter (gpm) lower than six of the eight surrounding grid points to ensure a higher geopotential height. If this 111 

condition is not met, the algorithm checks that fourteen out of the sixteen surrounding grid points have a higher or equal value 112 

within 20 gpm of the candidate grid point. 2) To ensure that the system is isolated from the westerly current, the algorithm 113 

requires changes in wind direction in at least six grid points located south of the candidate grid point. 3) Finally, to confirm 114 

the presence of a cold core, the algorithm employs the 850/300 hPa thickness as an indicator of temperature. It searches for a 115 

local minimum in thickness at the candidate point, following a procedure similar to the one used in the initial detection step. 116 

If a cold core is not found, the algorithm iterates through the eight surrounding grid points, accounting for possible 117 

displacements of the cold core relative to the geopotential minimum, as described in previous studies. 118 

For validation purposes, we performed a visual inspection of the ERA5 COLs outputs. This visual check confirmed that each 119 

event aligns with the conceptual model proposed by Nieto et al. (2005). Additionally, we stipulated that each COL should be 120 

identifiable for a minimum of two days in the reanalysis data. A total of 34 events met all the established criteria. 121 

Following the identification of the COLs, we validated the GEFS COL dataset by comparing it with the ERA5 COL dataset. 122 

A GEFS COL was considered to correspond to the same system as in the ERA5 COL dataset if their initial positions and 123 

respective trajectories satisfied predefined spatial and temporal criteria. The forecasted COL trajectories that met these criteria 124 

were used to generate diagnostics, quantifying errors in predicted positions, intensities, and other properties of the COLs. The 125 
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spatial criterion required that the distance between the forecasted and reanalysis trajectories did not exceed 800 kilometers — 126 

this threshold was chosen based on the typical diameter of COL systems, which ranges between 600 and 1200 kilometers 127 

(Kentarchos and Davies, 1998). Notably, our spatial criterion primarily focuses on the initial segment of the forecast 128 

trajectories rather than the entire track, consistent with the methodology of Froude et al. (2007). This approach is justified by 129 

the expectation that forecast accuracy is generally higher at the start of the trajectory, where GEFS trajectories are likely to be 130 

more closely aligned with their ERA5 counterparts. Regarding the temporal criterion, a match was considered valid if at least 131 

one point along the system's life cycle coincided in time (i.e., within a 24-hour period). 132 

2.4 Verification metrics 133 

For the quantification of the model skill, we used a Lagrangian perspective to derive error statistics. This methodology has 134 

been previously employed to build position and intensity error statistics in previous investigations on tropical and extratropical 135 

cyclones such as in Froude et al. (2007) and Hamill et al. (2011). The validation metrics used in this study are sketched in 136 

Figure 2 and are as follows: 137 

● Direct Positional Error (DPE): This metric is defined as the horizontal distance between the observed and forecast 138 

positions at the same forecast time. 139 

● Cross-Track Error (CTE): This metric represents the component of DPE that is perpendicular to the observed track. 140 

It provides information on the bias to the left or right of the observed track. 141 

● Along-Track Error (ATE): This metric represents the component of DPE that is along the observed track. It provides 142 

information on the directional bias along the track, indicative of whether the forecasts predict a faster or slower motion 143 

of the system compared to the reanalysis. 144 

We adopted the convention that a positive (negative) value of CTE indicates a bias to the right (left) of the observed track, 145 

while a positive (negative) value of ATE indicates that the model has a fast (slow) bias in its forecast track. It is important to 146 

note that CTE and ATE cannot be calculated for the first analyzed position of a COL since they depend on the existence of an 147 

observed position the day before the valid time. For a more detailed explanation of these metrics, see Heming (2017). 148 

3 Results 149 

As a first step to determine the temporal horizon at which the GEFS model can forecast COLs, we analyze the central position 150 

of the COLs and their intensity. The intensity of COLs is defined by the maximum value of the Laplacian of the geopotential 151 

height field, where this maximum corresponds to the location of the COLs center. We present results for forecasts initialized 152 

up to seven days prior to the observed onset of COL events, as the preliminary analysis indicated that no COLs were forecasted 153 

beyond this lead time. It should be noted that hereafter "onset stage" or "onset" of the COL refers to the beginning of the 154 

segregation stage, also known as stage 2 of the COL life cycle as defined by Nieto et al. (2005). We organized each forecast 155 

into eight groups based on their initialization day, namely init 0, init 1, init 2, init 3, init 4, init 5, init 6, and init 7. Forecasts 156 
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labeled as init 0 correspond to those initialized at the onset day of the COL, while forecasts labeled as init 1 to init 7 indicate 157 

forecasts initialized one to seven days before the onset day of the COL, respectively. 158 

3.1 Predictive skill of COL onset time in GEFS 159 

Figure 3 shows the percentage of detected COLs as a function of their initialization day, i.e. how many days in advance could 160 

these systems be forecasted in the GEFS dataset. During initializations closest to the onset days (init 0 to init 2), over 94% of 161 

the total events (32 out of 34 COLs) were accurately predicted by the GEFS. However, this accuracy decreases significantly 162 

from init 3 onwards: 71% at init 3, 56% at init 4 and down to only 9% at init 7. It is interesting to highlight, still, that the 163 

reforecasts were able to correctly predict most COLs on the same date they were observed, even when the initializations were 164 

farthest from the onset days (i.e. init 4 and init 5), indicating the accuracy of GEFS for predicting the timing of the events.  165 

Figure 4 illustrates the quartile distribution of the DPE and intensity error in the GEFS model for the onset day of the COLs 166 

where each boxplot represents a different initialization day. The boxes represent the interquartile range (IQR), which comprises 167 

50% of the error distribution, with the median value indicated by a bold black line. Initially, a gradual increase in the median 168 

of DPE can be observed as the number of days before the onset of COL increases (Fig. 4a). The DPE increase varies from 140 169 

kilometers at the first initialization (init 0) to about 300 kilometers at init 3. At the same time, the IQR expands from 300 170 

kilometers at init 1 to 900 kilometers at init 3, indicating a widening spread of DPE with increasing forecast time. In contrast, 171 

the median of the intensity error exhibits a negative trend: it decreases from -2.5 gpm/m2 at init 1 to -8 gpm/m2 at init 3, with 172 

an IQR that varies significantly with the day of initialization. For subsequent initializations (init 5 to init 7), we observe a 173 

continuous increase in DPE from 400 kilometers to approximately 600 kilometers, alongside a consistent negative trend in 174 

intensity errors, with values around -13.0 gpm/m2. However, it is important to note that these results are based on a smaller 175 

sample size than previous initializations and caution should be exercised when generalizing these results. 176 

Figure 5 shows eight polar scatter plots illustrating the errors in the position of the predicted COLs in comparison to the 177 

reanalysis, with each plot corresponding to a particular initialization day. During the early initializations, the GEFS exhibits 178 

errors contained within a radius of 3° (approximately 300 km) around the observed positions and shows no discernible 179 

directional deviation. This indicates that the position errors are randomly distributed and show no systematic bias, which is 180 

particularly clear up to init 2. Meanwhile, initializations from init 3 to init 5 show a larger spread, with more points deviating 181 

significantly from the observed cyclone positions. While we detected a southward deviation, the zonal (i.e. east-west) behavior 182 

was less uniform, as init 3 showed a southern bias, init 4, a southwestern bias, and init 5, a slight southwestern deviation. This 183 

indicates overall a slight deviation towards the south (on average between 1º and 3°), even if there is no clear longitudinal bias. 184 

Forecasts initialized with a larger lead time showed a larger spread, partly due to a smaller number of predicted COLs, but also 185 

revealing a predominant southwesterly bias of the model. 186 
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3.2 Predictive skill of COL intensity and tracks in GEFS 187 

In this section, we investigate whether there is any bias in predicting cyclone intensity, propagation speed, and trajectory.  We 188 

focused on the forecasts initialized up to 3 days before the segregation date since the number of detected cases is significantly 189 

lower for forecasts initialized beyond that point (i.e. init 4 to init 7), as explained in Figure 3. Given that a preliminary study 190 

shows that a large portion of COLs in the study region have lifespans of 3–4 days or more, with nearly 80% lasting beyond 3 191 

days (not shown), we have focused our analysis on forecast lead times of up to 3 days following the initial detection of these 192 

COLs in the ERA5 reanalysis. 193 

Figure 6 shows the quartile distribution of track errors, including  DPE, ATE, CTE and the intensity error between the GEFS 194 

and ERA5 trajectories for init 0 to init 3. Regarding DPE, each initialization shows similar sensitivity. For init 1 and init 2 195 

(Fig. 6b,c), errors increase from 166 to over 320 kilometers within two or three days after COL detection in the ERA5 196 

reanalysis. The situation is similar for init 0 (Fig. 6a), where the error increases from 144 to over 275 kilometers in the same 197 

period. Not surprisingly, init 3 (Fig. 6d) has the largest mean error, with a linear increase from 290 to 550 kilometers. As 198 

regards IQR, it shows a linear increase, indicating that the dispersion of the position errors increases along the cyclone forecast 199 

period.  200 

Conversely, a negative trend is observed in the intensity error and the corresponding ERA5 reanalysis trajectories. The 201 

magnitude of the error for init 0 and init 1 (Fig. 6a,b) initially increases from -2.0 to over -4.3 gpm/m2 within two to three days 202 

after COL detection in the ERA5 reanalysis. For init 2 and init 3 (Fig. 6c,d), however, a further escalation of the error can be 203 

observed. While init 2 shows an increase in the magnitude of error from -4.9 to -11.68 gpm/m2, init 3 shows an even more 204 

pronounced initial error of -8.14, which subsequently increases in their magnitude to -9.0 gpm/m2. Regarding the dispersion 205 

of the error, it is noteworthy that init 1 and init 2 (Fig. 6b,c) show a slightly positive trend, indicating an increase in the 206 

uncertainty of the predicted system intensity. In contrast, the last initialization (Fig. 6d) shows a significantly larger dispersion 207 

and a more variable behavior during the analyzed period. Despite the observed variability, however, a trend towards greater 208 

dispersion is discernible. 209 

The ATE distribution exhibits a negative bias towards the later stages of the forecast trajectories, except for init 2 and init 0 210 

(Fig. 6c) which show slightly positive values. Both init 1 and init 3 (Fig.6b,d) exhibit negative biases with median distances 211 

of around 200 and 300 kilometers, respectively. This negative bias in ATE may indicate that GEFS tends to underestimate the 212 

translational speeds of COL towards the latter stages of the forecast lead times. Regarding the CTE distribution (Fig. 6), no 213 

clear bias is observed; however, there are some noticeable trends in different initializations. In particular, init 2 (Fig. 6c) shows 214 

negative values at around 100 kilometers. On the other hand, init. 3 (Fig. 6d) displays predominantly positive values, 215 

representing a poleward bias according to its definition.  216 
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3.3 Case studies 217 

In this subsection, we focus on two COLs that exhibited very different levels of prediction performance during their onset 218 

stage (Fig. 4a). The first case study, from March-April 2013, is characterized by small DPE values, below the first quartile in 219 

Fig. 4a, indicative of a forecast with high accuracy in the GEFS dataset. In contrast, the second case study, from March 2019, 220 

was associated with remarkably larger DPE values, with errors ranging between the median and the third quartile. This 221 

represents a scenario in which the prediction has a suboptimal performance. It is important to note that the selection of the case 222 

studies was based also on the impact model errors had on the associated precipitation downstream. For the analysis of 223 

precipitation, we considered as the area of influence of the COLs approximately 7 degrees (about ~700 km radius) from the 224 

geopotential height minimum at 300 hPa. Before exploring the associated errors in the GEFS dataset, we provide a brief 225 

description of the synoptic environment around each COL during its segregation stage. 226 

3.3.1 Case study 1: COL development on March 31st, 2013 227 

On March 31st, 2013, a COL formed to the west of the Andes Mountains at 36°S and 75.5°W. Its lifespan lasted for six days, 228 

covering a distance of over 2,000 kilometers into the Atlantic Ocean (not shown). This event was associated with severe 229 

weather conditions which resulted in unprecedented flash floods in the region, leading to loss of lives, significant infrastructural 230 

damage and economic losses of USD 1.3 billion (Pink, 2018). 231 

During the segregation phase of the COL, the main atmospheric features included an amplified ridge upstream of the system, 232 

the presence of two jet streaks - one to the north and one to the south of the COL - and a well-defined cold-core in the middle 233 

levels (Fig.7a,c). The COL extended towards the lower troposphere where a closed cyclonic circulation can be observed, as 234 

indicated by the closed circulation at 850 hPa, directly beneath the COL at 300 hPa (Fig. 7c). Regarding to the precipitation 235 

field, this COL led to high amounts of rainfall of over 25 mm per day with peaks in excess of 50 mm in certain areas over 236 

south-central South America ( Fig. 7b). 237 

Forecast-wise, it is found that the location of the COL formation was accurately predicted 1 and 3 days ahead and even 5 days 238 

ahead with a bias of less than 200 kilometers northwest of its observed position (init 1, init 3 and init 5 ; second, third and 239 

fourth rows in Fig. 7). However, these initializations underestimated its intensity by -6 gpm/m2, -11 gpm/m2 and -14 gpm/m2 240 

in init 1, init 3 and init 5, respectively. The GEFS model accurately predicted the strength and extent of the upper-level strong 241 

winds associated with the COL (jet-split structure) and the upstream ridge of the COL  for init 1, init 3 and init 5 (Fig. 7d, g, 242 

j). Particularly, during init 5 (Fig. 7j) it predicted better the intensity of the jet streak on the polar side of COL than the jet on 243 

the equatorial side. At mid-levels, the model successfully captured the cold core during init 1 and init 3, although with slightly 244 

less strength compared to ERA5 reanalysis. However, it failed to capture the cold core during init 5. Additionally,  the cyclonic 245 

circulation at lower levels was displaced to the north relative to the observation (Fig. 7c,f,i), leading to the COL and lower-246 

level cyclones being out of phase. This results in a different vertical structure in the forecasts with regard to the observations, 247 

which is consistent with the underestimation of the COLs intensity in the model. As discussed by Pinheiro et al. (2021), the 248 
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intensity of the COL directly affects its vertical structure. In this case, the incorrect forecast position of the cyclone at low 249 

levels likely weakened the upward vertical motion and low-level moisture convergence, both of which are key factors for 250 

precipitation development. This implies a weaker vertical coupling in the forecast, resulting from the discrepancy in the 251 

intensity of the COL. Regarding precipitation forecasts, GEFS performs well in predicting the location of precipitation 252 

associated with COL (with a slightly southeast bias), but it underestimates the amount of precipitation, especially during init 253 

3 and init 5, with underestimations around 20 mm/day (Fig. 7h,k).  254 

3.3.2 Case study 2: COL development on March 9th, 2019 255 

On March 9th, 2019, another COL formed off the coast of Chile, at 33°S and 74°W (first row of Fig. 811). This system was 256 

weaker than the one described in case 1 and lasted four days. It caused some weak precipitation in south-central South America, 257 

but the amounts were lower than those associated with the first COL. 258 

The synoptic environment during the segregation stage of this COL in the ERA5 reanalysis (first row of Fig. 811) included an 259 

upper-level ridge with a NW-SE axis to the southwest of the COL, a split jet structure, a strong low-level cyclone positioned 260 

just beneath the COL center off the coast of Chile, and a small cold core at middle levels. Although this COL had a smaller 261 

structure than the first COL, the cyclonic system extended into the lower levels, as evidenced by the accompanying low-level 262 

cyclone identified in Fig. 8c. In the precipitation field, two distinct maxima were identified: one located northeast of the 263 

analysis domain, associated with a decaying frontal zone in that area, which is linked to a surface cyclone positioned over the 264 

South Atlantic Ocean (not shown), and another maximum over western Argentina, directly related to the ascent zone east of 265 

the COL. The frontal system mentioned here is separated from the COL and its associated dynamics. The subsequent validation 266 

of the GEFS forecast focuses only on this second feature as it was the one directly associated with (or triggered by) the COL. 267 

The GEFS forecasts for March 9th, 2019 initialized 1, 3 and 5 days ahead are shown in Fig. 8 (second to fourth rows). Forecasts 268 

showed that the predicted position and intensity of the COL were consistently inaccurate across the three initializations. The 269 

COL was predicted to be shallower and displaced to the southeast, the system was shifted approximately 210 km and 430 km 270 

from its observed location for init 1 and init 3, and it could not be even captured in init 5. Meanwhile, the intensity was 271 

underestimated by approximately 15 to 17 gpm/m2. With respect to the upper-level winds associated with the COL, the GEFS 272 

demonstrated a good skill in forecasting both their intensity and their spatial positioning, particularly in relation to jet streaks 273 

on the polar flank of the COL. However, the model exhibited notable challenges in accurately representing the cold-core 274 

structure at mid-levels, with a complete absence of this feature in init 5. At lower levels, the representation of the closed 275 

cyclone at 850 hPa was similarly problematic, with the system being consistently displaced northward and exhibiting weaker 276 

intensity than observations, especially in inits 3 and 5. In terms of precipitation, GEFS underestimated rainfall amounts in all 277 

initializations and was not able to represent the observed precipitation at the lee side of the Andes mountains (Fig. 8e,h,k), 278 

displacing the predicted precipitation northeast of the observed location, particularly over central and northeastern Argentina. 279 

However, while the GEFS model generally underestimated rainfall amounts across all initializations, it is important to note 280 

that this behavior is expected given the model's relatively coarse resolution (1x1 degree), especially at the lee side of the Andes 281 
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where the complex features of COLs usually difficult the simulation of precipitation even in high-resolution regional models 282 

like WRF (Yañez-Morroni et al., 2018). 283 

Based on these results, a wrongly positioned and less intense COL can lead to a poor forecast of the vertical structure of the 284 

two case studies, including their cold core and associated low-level circulation, subsequently affecting dynamical processes 285 

such as horizontal temperature advection, thermodynamic instability, vorticity advection and associated ascent which are 286 

ingredients for precipitation production downstream. Such errors may be related to the inadequate representation of diabatic 287 

effects or interaction with the Andes Cordillera (Garreaud and Fuenzalida 2007). Even though the characterization of such 288 

processes are beyond the scope of this study, they will be addressed in future work. 289 

4 Discussion and Conclusions 290 

This study explored the prediction skill of cut-off lows (COLs) in the NCEP Global Ensemble Forecasting System (GEFS) 291 

with a focus on the region with the highest frequency of COL occurrence in South America during austral autumn (March to 292 

May). The analysis made use of a verification framework centered on the individual systems. These were identified and tracked 293 

using a feature-based approach applied to the 300 hPa level geopotential height as the primary variable.   294 

The main conclusions can be built on the questions posed at the Introduction of the study: 295 

● What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 296 

forecasts? 297 

The GEFS model is highly accurate in predicting the start of the segregation stage of COLs up to three days in 298 

advance, but this accuracy drops significantly as the lead time increases beyond four days. The percentage of COLs 299 

detected by the model decreases to 56% and 29% for predictions initialized four and seven days ahead of the 300 

segregation, respectively. Our analysis also revealed that  COL centers diverge by an approximate distance of 200 301 

km relative to the observations up to three days in advance. However, this error increases to 600 kilometers for 302 

forecasts more than four days ahead. Also, it has been shown that forecasts initialized up to two days in advance have 303 

no directional deviations while forecasts initialized at least three days ahead of COL formation have a southerly bias. 304 

At the same time, the intensity errors show a consistent increase in magnitude, with values ranging from -2.5 gpm/m2 305 

in init 1 to approximately -13.0 gpm/m2 at higher lead times. 306 

● After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 307 

From our results, we can conclude that the GEFS model has variable skill when forecasting the trajectories of COLs. 308 

Overall, errors in position increase from 200 to 400 kilometers in forecasts of one to two days of lead time. Within 309 

this time period, trajectories tend to be slower in comparison to the observed behavior. Even though this pattern of 310 

errors is also found for longer lead times, errors in predictions three days ahead increase substantially, and skill beyond 311 

four days is dramatically reduced. We can conclude that the trajectories of COLs can be relatively well predicted with 312 

lead times up to three days, and forecasts initialized beyond that threshold are significantly degraded and depict a 313 
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poor representation of the actual paths. Intensity-wise, we found that GEFS forecasts are characterized by an increase 314 

in the magnitude of underestimation of COL intensity as the lead time increases. 315 

● Can errors in COL forecasts impact those of precipitation further downstream? 316 

Our two case studies suggest that the predictive skill of COLs, particularly regarding their formation location, 317 

intensity and trajectory, can influence precipitation forecasts downstream. In particular, the errors in the location and 318 

depth of the COLs appear to be linked to the mechanism sustaining these systems. In our case studies, the strength of 319 

the COLs cold core could affect the thermodynamic instability patterns, potentially influencing vertical motion and 320 

precipitation formation downstream, even though further research would be needed to assess the actual role of the 321 

mechanisms at play. This is also further supported by the well-documented relationship between COLs cold-core and 322 

atmospheric instability response (Pinheiro et al., 2021;  Hirota et al., 2016; Nieto et al., 2007; Porcu et al., 2007; 323 

Llasat et al., 2007; Palmen and Newton 1969), through which the dynamical ascent and atmospheric instability 324 

associated with the cold-core trigger and/or enhance precipitation events (Godoy et al., 2011;  Nieto et al. 2007). 325 

Moreover, incorrectly forecasting the position of a low-level cyclonic system in association with COLs can 326 

significantly impact the vertical coupling of COLs, potentially influencing their intensity. This aligns well with 327 

Pinheiro et al. (2021), who suggested a possible relation between the intensity of COLs in South America and their 328 

vertical depth. These deficiencies, transferred into the higher levels, are able to shape the intensity of the system and, 329 

via this alteration, some of the mechanisms responsible for precipitation formation. As such, a weaker (stronger) COL 330 

will foster more (less) vorticity advection, resulting in favored (unfavored) ascent downstream. Therefore, predicted 331 

precipitation amounts will naturally be modulated by these errors (e.g. Saucedo, 2010). It should be noted however 332 

that these conclusions are driven by two case studies, and more research dealing with the processes associated with 333 

COL formation are needed.  334 

Results from this study can be compared with similar recent studies. For instance, Lupo et al. (2023) have concluded that the 335 

operational GFS model has a systematic bias to move Southern Hemisphere troughs and COLs too quickly downstream, even 336 

though in our study region the identified bias is towards the west. (i.e. slower than observed). It should be noted, however, that 337 

the GEFS and the operational GFS share some common components but are different models, particularly regarding the 338 

horizontal resolution. As such, results from both studies are not directly comparable.  339 

Regarding the case studies, previous authors analyzing the synoptic evolution and predictive skill of COLs in other regions of 340 

the world, such as Portman et al. (2022) and Moufhe et al. (2020), have concluded that a proper representation of the COL’s 341 

vertical structure is crucial for an accurate prediction of these systems. Pinheiro et al. (2021) also argue that the intensity of 342 

the COLs affect the entire structure of these systems, and that errors in their intensity/position can easily affect their associated 343 

precipitation fields. 344 

Although  a detailed investigation of the physical mechanisms underlying these forecast errors was beyond the scope of this 345 

study, this issue is of great scientific importance for understanding the challenges typically found in predicting COLs. In this 346 

context, the GEFS bias, such as the westward bias and underestimation of intensity, likely arises from the model's inadequate 347 
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representation of eddy-mean flow interactions, as explored by Nie et al. (2022, 2023) and Pinheiro et al. (2022). Moreover, in 348 

our study region, the positioning of the jet stream and the enhancement of transient wave activity over the South Pacific 349 

identified in previous work (GD12) are key to understanding these biases.Therefore, exploring the physical mechanisms 350 

underlying these forecast errors is essential. Future work exploring the simulation of jet streams and Rossby wave activity 351 

could provide crucial insights. Preliminary research has already shown that specific Rossby wave patterns preceding COLs 352 

can be predicted up to a week in advance, although with reduced confidence beyond that period (Choquehuanca et al., 2023). 353 

It should be stressed once again that this study is proposed as a first step towards a full characterization of the physical processes 354 

responsible for COL formation, evolution and predictive skill in NWP systems. Several open questions remain, which will be 355 

addressed in future studies. Among them, it is unclear why the predicted trajectories are systematically slower than the 356 

observations. A negative correspondence between COL intensity and location was also observed in the GEFS dataset, 357 

suggesting that the most intense COLs seem to be associated with lower positional errors. However, the underlying mechanism 358 

sustaining such a relationship (if any) is not clear. 359 

As a final note, future studies will dive into the relative contributions of COL intensity, location and speed on the resulting 360 

forecasted precipitation fields, as a deeper understanding of the interplay between these might bring useful information for 361 

operational weather predictions of high-impact events over southern South America. 362 
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Figures 486 

 487 
 488 

Figure 1: Spatial distribution of COLs in the region of highest COL frequency in southern South America from 1985 to 2020. Black 489 
crosses represent the start of trajectories of COLs detected in the study area (77.6°-68.75°W and 37.6°-29.9°S, solid black box) and 490 
lines represent their trajectories where colors represent the duration of each COL. 491 
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 492 

Figure 2: Measures of cyclone track forecast error: Direct Positional Error (DPE; violet arrow), Cross-Track Error (CTE; green 493 
arrow) and Along-Track Error (ATE; red arrow).  Obs0 and Obs1 are observed positions at times 0 and 1, while Fc0 and Fc1 are 494 
their respective forecasted positions. The gray circles (yellow squares) represent the observations (the forecasts).  495 
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 496 

 497 

Figure 3: Percentage of forecasted COL initiations as a function of initializations,  from init 0 (forecast initialized in the onset day) 498 
to init 7 (forecast initialized seven days before the onset of the COL). The red, gray, orange and yellow bars indicate the forecasted 499 
date of the onset day of COL relative to the observed date of onset day, from one day ahead of formation to two days after, 500 
respectively.  501 
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 502 

Figure 4: Variation in a) onset position (DPE) and b) the intensity error as a function of initializations. The whiskers at the top 503 
(bottom) of the boxes represent the error’s 75th (25th) quantile. The black thick horizontal lines inside the boxes represent the 504 
median (the 50th quantile) and the points outside the whiskers are considered outliers. The red numbers at the bottom indicate the 505 
number of systems identified under each initialization. 506 
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 507 

Figure 5: Scatter diagrams of COL initial position deviation decomposed in longitudinal and latitudinal errors (in degrees), where 508 
the central axis is the initial position observed. Each plot represents a different initialization: ranging from a) Init 0  (forecast 509 
initialized in the onset day) to  h)  Init7 (7 days in advance). The gray/black dots indicate the location of the predicted COLs as a 510 
function of the initialization day (see the color bar for reference on the number of predicted systems per day). The red dots show the 511 
mean location after averaging all the COLs predicted in each initialization day. 512 
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 513 

Figure 6: Boxplots of errors in track forecasts for: DPE, ATE, CTE (on the left axis) and Intensity (on the right axis) along the life 514 
cycle of the COLs. Each plot represents initializations at a) Init 0, b) Init 1, c) Init 2, and d) Init 3.  515 
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 517 
Figure 7: Segregation stage of the COL formed on March 31st, 2013. (Top) ERA5 and (rows 2 to 4) GEFS predictions of (first 518 
column) geopotential height (Z; black solid lines, contour interval 40 gpm) and wind (U; shaded) at 300 hPa, (second column) 519 
geopotential height (Z; black solid lines, contour interval 40 gpm) at 300 hPa and accumulated precipitation (Accum. prep.; shaded) 520 
over 24 hours, and (right column) geopotential height (Z; orange solid lines, contour interval 20 gpm) at 850 hPa alongside the 521 
850/300 hPa layer thickness (DZ; shaded) GEFS predictions correspond to init 1 (second row), init 3 (third row) and init 5 (fourth 522 
row), initialized on March 30th, March 28th and March 26th, 2013, respectively.  523 
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Figure 8: As in Figure 7 but for the COL formed on March 9th, 2019. In this case, the GEFS predictions corresponding to init 1 525 
(second row), init 3 (third row) and init 5 (fourth row) were initialized on March 8th, March 6th and March 4th, 2019, respectively.   526 
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