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Abstract. Cut-off Lows (COL) are mid-tropospheric cyclonic systems that frequently form over southern South America, 13 

where they can cause high-impact precipitation events. However, their prediction remains a challenging task, even in state-of-14 

the-art numerical weather prediction systems. In this study, we assess the skill of the Global Ensemble Forecasting System 15 

(GEFS) in predicting COL formation and evolution over the South American region where the highest frequency and intensity 16 

of such events is observed. The target season is austral autumn (March to May), in which the frequency of these events 17 

maximizes. Results show that GEFS is skillful in predicting the onset of COLs up to 3 days ahead, even though forecasts 18 

initialized up to 7 days ahead may provide hints of COL formation. We also find that as the lead time increases, GEFS is 19 

affected by a systematic bias in which the forecast tracks lay to the west of their observed positions. Analysis of two case 20 

studies provide useful information on the mechanisms explaining the documented errors. These are mainly related to the depth 21 

and the intensity of the cold core, which affect the thermodynamic instability patterns  (thus shaping precipitation downstream) 22 

as well as the horizontal thermal advection which can act to reinforce or weaken the COLs.  These are mainly related to 23 

inaccuracies in forecasting the vertical structure, including their cold core and associated low-level circulation. These 24 

inaccuracies potentially affect thermodynamic instability patterns (thus shaping precipitation downstream) as well as the 25 

horizontal thermal advection which can act to reinforce or weaken the COLs. These results are expected to provide not only 26 

further insight into the physical processes at play in these forecasts, but also useful tools to be used in operational forecasting 27 

of these high-impact weather events over southern South America.  28 
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1 Introduction 29 

Severe weather phenomena can significantly impact densely populated regions (e.g. Curtis et al., 2017; Newman and Noy, 30 

2023; Sanuy et al., 2021). Over southern South America, these are frequently associated with heavy precipitation events 31 

triggered by low-pressure systems known as Cut-off Lows (COLs; Campetella and Possia 2007; Godoy et al., 2011a; Muñoz 32 

and Schultz, 2021). COLs are synoptic-scale weather systems that originate from elongated cold troughs in the middle 33 

troposphere, which subsequently detach ('cut off') from the main westerly current (Palmén and Newton, 1969). This 34 

segregation from the main flow explains the isolated and erratic behavior of these systems, which suppose pose a significant 35 

challenge in operational weather forecasting, even for state-of-the-art numerical weather prediction (NWP) systems (Muofhe 36 

et al., 2020; Yáñez-Morroni et al., 2018). Naturally, this can have an impact on the reliability of weather forecasts and early 37 

warnings which may be particularly relevant for southern South America considering the remarkable affectation from COLs 38 

(Godoy et al., 2011a). 39 

Previous studies have focused on quantifying the explicit forecast errors associated with COLs in NWP systems. Gray et al. 40 

(2014) examined forecast ensembles from three operational forecast centers in the Northern Hemisphere and found that 41 

forecast errors were systematically larger in COL compared to no-COL events for the same prediction time. Similarly, Saucedo 42 

(2010) conducted an assessment of the prediction skill of the Global Forecast System (GFS) and Weather Research & 43 

Forecasting (WRF) models in southern South America for three COL events. His results indicated that forecast accuracy varies 44 

significantly depending on the individual COL cases and emphasized the need for an accurate representation of the COL center 45 

position during initialization to achieve better forecast results.   46 

Other studies, such as those from Muofhe et al. (2020) and Binder et al. (2021), have linked errors in precipitation forecasts 47 

with inaccuracies in the location of the COL centers. In their evaluation of Météo-France forecasts, Binder et al. (2021) 48 

analyzed a single COL event and documented an eastward shift in both precipitation and COL position, primarily due to an 49 

initial underestimation of the COL intensity. Meanwhile, Muofhe et al. (2020) assessed the skill of the NWP model currently 50 

used operationally at the South African Weather Service to simulate five COL events. They observed variations in the 51 

predictive skill of COL-related precipitation across different development stages of the COLs, attributing these differences to 52 

inaccurate positioning of their centers. Moreover, studies by Bozkurt et al. (2016), Yáñez-Morroni et al. (2018) and Portmann 53 

et al. (2020) have underscored the influence of the COL-induced circulation on extreme precipitation events, emphasizing the 54 

complexity and challenge of predicting these phenomena. In particular, Portmann et al. (2020) noted that uncertainties in the 55 

COL genesis position substantially affect the vertical thermal structure of a surface cyclone development as well as its 56 

subsequent evolution. 57 

While previous studies have examined the skill of NWP systems in forecasting COLs, they usually cover a short period of 58 

time and do not address a compound evaluation of positional and intensity errors. For instance, the recent paper by Lupo et al. 59 

(2023) has quantified biases in COL forecasts globally, but for the operational version of the GFS model in a 7-year period 60 

running from 2015 to 2022. In this context, there is a necessity to deepen our comprehension of COL predictive skill, given 61 
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the close linkage with heavy rainfall events. Our study tries to fill this gap, focusing on southern South America, a hotspot 62 

region for COL development (e.g., Reboita et al., 2010; Godoy, 2012 henceforth GD12; Pinheiro et al., 2017).  63 

Our main goal is to assess the prediction skill of COLs in the National Centers for Environmental Prediction (NCEP)’s Global 64 

Ensemble Forecasting System (GEFS). This is achieved through quantifying forecast errors using an objective feature-tracking 65 

methodology which involves the identification and tracking of COLs along the forecast trajectories to produce a set of forecast 66 

versus observed COLs.  67 

In this study, we specifically address three aspects of COLs: their onset time, their central position and their intensity. In 68 

particular, we seek to respond the following questions: 69 

1. What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 70 

forecasts? 71 

2. After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 72 

3. Can errors in COL forecasts impact those of precipitation further downstream? 73 

It should be noted that this study can be considered as a first step towards a full characterization of the physical mechanisms 74 

controlling the forecast skill of COLs and how the associated errors in state-of-the-art NWP systems are transferred into other 75 

associated variables such as precipitation, atmospheric instability and winds. The rest of the paper is organized as follows: the 76 

datasets and methodology are described in Section 2. The results on the forecast skill of the GEFS in both COL onset and their 77 

evolution stages are included in Section 3, followed by a summary and the concluding remarks in Section 4. 78 

2 Data and methodology 79 

2.1 The GEFS Reforecast dataset 80 

Daily averages from the GEFS Reforecast version 2 dataset (Hamill et al., 2013)  are used as a representative sample of the 81 

GEFS model for the purpose of this study. This dataset consists of 11 ensemble members - one control run alongside 10 82 

perturbed members - and covers a prediction horizon of 16 days after initialization. During the first week, data is saved at 3-83 

hourly intervals considering a horizontal resolution of T254 (roughly 40 km x 40 km at 40° latitude) and 42 vertical levels. In 84 

the second week, the intervals increase to 6-hourly and the horizontal resolution decreases to T190 (around 54 km x 54 km at 85 

40° latitude) with no changes in the number of vertical levels. The GEFS Reforecast dataset can be freely downloaded from 86 

ftp://ftp.cdc.noaa.gov/Projects/Reforecast2, where the reforecasts have been saved at 1ºx1º horizontal resolution from the 87 

native resolution data using bilinear interpolation with wgrib2 software. It is worth noting that for all calculations within the 88 

paper, we considered the ensemble mean as the basis for analysis and comparisons (i.e., no assessment is performed on 89 

individual ensemble members). To validate the GEFS skill, we use the fifth version of the ECMWF Reanalysis Dataset  (ERA5; 90 

Hersbach et al. 2020) as a representation of the real-world conditions. The ERA5 data, with the original resolution of 91 

approximately 0.25° x 0.25°, were coarsened to the same resolution of the reforecast to ease comparison.  92 
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Our analysis focused on the forecast verification of atmospheric variables at the 300 hPa level. This level was chosen because 93 

it hosts both the largest frequencies and intensities of COLs within the Southern Hemisphere (e.g., Reboita et al., 2010; Pinheiro 94 

et al., 2021). To detect COLs, we analyzed the geopotential height and the zonal wind component at 300 hPa as well as the 95 

300/850 thickness. We also evaluated other variables of interest such as the geopotential height at 850 hPa and the total 96 

accumulated precipitation to represent the lower-level circulation and related impacts of COLs. 97 

2.2 Temporal domain and study area 98 

The temporal domain of our study is based on the availability of reforecast data, ranging from 1985 to 2020. Specifically, we 99 

focus on the austral autumn season, covering the months of March, April, and May, which is the season with the highest 100 

frequency of COLs in South America (Reboita et. al., 2010; Pinheiro et. al., 2017; Muñoz et al., 2020). Regarding the spatial 101 

domain, we focused on the area of greatest occurrence of COLs, which encompasses the western side of southern South 102 

America (Reboita et al., 2010;  Campetella and Possia, 2007;  GD12). Specifically, we utilized the area situated between 103 

latitudes 37.6° and 29.9° S and longitudes 77.6° and 68.75° W, as illustrated in Figure 1. This region has been extensively 104 

studied in the past by GD12, who found that the COLs in this area are particularly strong and can often cross the Andes 105 

Mountain range, leading to conditions prone to high-impact weather events over the continent further downstream (Godoy et 106 

al., 2011a). 107 

2.3 COL identification and tracking algorithm 108 

The methodology used to build the COL dataset from GEFS and ERA5 data aligns with the approach outlined by GD12 and 109 

underpinned by a detection algorithm grounded in the conceptual framework put forth by Nieto et al. (2005). The methodology 110 

looks for local minima in the 300 hPa geopotential height field by simply comparing the local height with neighboring grid 111 

points under certain restrictions of size (i.e. number of surrounding points) and intensity. When a minimum is detected, a 112 

second requirement is it being associated with a cold core, for which the 850/300 hPa layer thickness is considered as a proxy 113 

of the mean layer temperature. Finally, points that successfully passed criteria 1 and 2 must also be accompanied by easterly 114 

winds to their polar side to be labeled as a COL.  The COLs dataset from GEFS and ERA5 is built following the approach 115 

outlined by GD12 and based on the conceptual framework of COL by Nieto et al. (2005). This conceptual model characterizes 116 

a COL as a closed cyclonic circulation isolated from the main westerly current and characterized by a cold core at mid-levels.   117 

To detect COLs, the tracking algorithm uses the geopotential height and the zonal wind component at 300 hPa as well as the 118 

300/850 hPa thickness, following a series of steps to classify potential grid points as COLs: 1) In order to detect the closed 119 

circulation, the algorithm looks for local minima in the 300 hPa geopotential height field. It selects a grid point that is at least 120 

5 geopotential meter (gpm) lower than six of the eight surrounding grid points to ensure a higher geopotential height. If this 121 

condition is not met, the algorithm checks that fourteen out of the sixteen surrounding grid points have a higher or equal value 122 

within 20 gpm of the candidate grid point. 2) To ensure that the system is isolated from the westerly current, the algorithm 123 

requires changes in wind direction in at least six grid points located south of the candidate grid point. 3) Finally, to confirm 124 
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the presence of a cold core, the algorithm employs the 850/300 hPa thickness as an indicator of temperature. It searches for a 125 

local minimum in thickness at the candidate point, following a procedure similar to the one used in the initial detection step. 126 

If a cold core is not found, the algorithm iterates through the eight surrounding grid points, accounting for possible 127 

displacements of the cold core relative to the geopotential minimum, as described in previous studies. 128 

For validation purposes, we performed a visual inspection of the ERA5 COLs outputs. This visual check confirmed that each 129 

event aligns with the conceptual model proposed by Nieto et al. (2005). Additionally, we stipulated that each COL should be 130 

identifiable for a minimum of two days in the reanalysis data. A total of 34 events met all the established criteria. 131 

Once we identified the COLs, we tracked them using the nearest neighbor method in the GEFS and ERA5 datasets and 132 

determined their trajectories. Only those forecasted COLs that fill on specific matching criteria were retained for the subsequent 133 

statistical analysis. First, the trajectories were considered matched if at least one point (corresponding to one day) matched in 134 

time along the life cycle of the individual systems. Second, we state that the distance between the predicted and the observed 135 

first point of the trajectories should not exceed 800 kilometers. This distance choice corresponds to the typical diameter of 136 

COL systems, which is between 600 and 1200 kilometers (Kentarchos and Davies, 1998). In agreement with Froude et al. 137 

(2007), our spatial matching approach focuses primarily on the starting point of the predicted trajectories rather than the entire 138 

trajectory. This emphasis is because, although the trajectories may initially closely match the observed trajectories, they are 139 

likely to diverge as the forecast lead time increases. Following the identification of the COLs, we validated the GEFS COL 140 

dataset by comparing it with the ERA5 COL dataset. A GEFS COL was considered to correspond to the same system as in the 141 

ERA5 COL dataset if their initial positions and respective trajectories satisfied predefined spatial and temporal criteria. The 142 

forecasted COL trajectories that met these criteria were used to generate diagnostics, quantifying errors in predicted positions, 143 

intensities, and other properties of the COLs. The spatial criterion required that the distance between the forecasted and 144 

reanalysis trajectories did not exceed 800 kilometers — this threshold was chosen based on the typical diameter of COL 145 

systems, which ranges between 600 and 1200 kilometers (Kentarchos and Davies, 1998). Notably, our spatial criterion 146 

primarily focuses on the initial segment of the forecast trajectories rather than the entire track, consistent with the methodology 147 

of Froude et al. (2007). This approach is justified by the expectation that forecast accuracy is generally higher at the start of 148 

the trajectory, where GEFS trajectories are likely to be more closely aligned with their ERA5 counterparts. Regarding the 149 

temporal criterion, a match was considered valid if at least one point along the system's life cycle coincided in time (i.e., within 150 

a 24-hour period). 151 

2.4 Verification metrics 152 

For the quantification of the model skill, we used a Lagrangian perspective to derive error statistics. This methodology has 153 

been previously employed to build position and intensity error statistics in previous investigations on tropical and extratropical 154 

cyclones such as in Froude et al. (2007) and Hamill et al. (2011). The validation metrics used in this study are sketched in 155 

Figure 2 and are as follows: 156 
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● Direct Positional Error (DPE): This metric is defined as the horizontal distance between the observed and forecast 157 

positions at the same forecast time. 158 

● Cross-Track Error (CTE): This metric represents the component of DPE that is perpendicular to the observed track. 159 

It provides information on the bias to the left or right of the observed track. 160 

● Along-Track Error (ATE): This metric represents the component of DPE that is along the observed track. It provides 161 

information on the directional bias along the track, indicative of whether the forecasts predict a faster or slower motion 162 

of the system compared to the reanalysis. 163 

We adopted the convention that a positive (negative) value of CTE indicates a bias to the right (left) of the observed track, 164 

while a positive (negative) value of ATE indicates that the model has a fast (slow) bias in its forecast track. forecast position 165 

is biased fast (slow). It is important to note that CTE and ATE cannot be calculated for the first analyzed position of a COL 166 

since they depend on the existence of an observed position the day before the valid time. For a more detailed explanation of 167 

these metrics, see Heming (2017). 168 

3 Results 169 

As a first step to determine the temporal horizon at which the GEFS model can forecast COLs, we analyze the central position 170 

of the COLs and their intensity (given by the Laplacian of the geopotential height field). The intensity of COLs is defined by 171 

the maximum value of the Laplacian of the geopotential height field, where this maximum corresponds to the location of the 172 

COLs center.  We show results only for the seven days before the observed onset stage of COLs events since no COLs were 173 

detected beyond this period in the preliminary analysis. We present results for forecasts initialized up to seven days prior to 174 

the observed onset of COL events, as the preliminary analysis indicated that no COLs were forecasted beyond this lead time. 175 

It should be noted that hereafter "onset stage" or "onset" of the COL refers to the beginning of the segregation stage, also 176 

known as stage 2 of the COL life cycle as defined by Nieto et al. (2005). We organized each forecast into eight groups based 177 

on their initialization day, namely init 0, init 1, init 2, init 3, init 4, init 5, init 6, and init 7. Forecasts labeled as init 0 correspond 178 

to those initialized at the onset day of the COL, while forecasts labeled as init 1 to init 7 indicate forecasts initialized one to 179 

seven days before the onset day of the COL, respectively. 180 

3.1 Predictive skill of COL onset time in GEFS 181 

Figure 3 shows the percentage of detected COLs as a function of their initialization day, i.e. how many days in advance could 182 

these systems be forecasted in the GEFS dataset. During initializations closest to the onset days (init 0 to init 2), over 94% of 183 

the total events (32 out of 34 COLs) were accurately predicted by the GEFS. However, this accuracy decreases significantly 184 

from init 3 onwards: 71% at init 3, 56% at init 4 and down to only 9% at init 7. It is interesting to highlight, still, that the 185 

reforecasts were able to correctly predict most COLs on the same date they were observed, even when the initializations were 186 

farthest from the onset days (i.e. init 4 and init 5), indicating the accuracy of GEFS for predicting the timing of the events.  187 
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Figure 4 illustrates the quartile distribution of the DPE and intensity error in the GEFS model for the onset day of the COLs 188 

where each boxplot represents a different initialization day. The boxes represent the interquartile range (IQR), which comprises 189 

50% of the error distribution, with the median value indicated by a bold black line. Initially, a gradual increase in the median 190 

of DPE can be observed as the number of days before the onset of COL increases (Fig. 4a). The DPE increase varies from 140 191 

kilometers at the first initialization (init 0) to about 300 kilometers at init 3. At the same time, the IQR expands from 300 192 

kilometers at init 1 to 900 kilometers at init 3, indicating a widening spread of DPE with increasing forecast time. In contrast, 193 

the median of the intensity error exhibits a negative trend: it decreases from -2.5 gpm/m2 at init 1 to -8 gpm/m2 at init 3, with 194 

an IQR that varies significantly with the day of initialization. For subsequent initializations (init 5 to init 7), we observe a 195 

continuous increase in DPE from 400 kilometers to approximately 600 kilometers, alongside a consistent negative trend in 196 

intensity errors, with values around -13.0 gpm/m2. However, it is important to note that these results are based on a smaller 197 

sample size than previous initializations and caution should be exercised when generalizing these results. 198 

Figure 5 shows eight polar scatter plots illustrating the errors in the position of the predicted COLs in comparison to the 199 

reanalysis, with each plot corresponding to a particular initialization day. During the early initializations, the GEFS exhibits 200 

errors contained within a radius of 3° (approximately 300 km) around the observed positions and shows no discernible 201 

directional deviation. This indicates that the position errors are randomly distributed and show no systematic bias, which is 202 

particularly clear up to init 2. Meanwhile Conversely, initializations from init 3 to init 5 show a larger spread, with more points 203 

deviating significantly from the observed cyclone positions. While we detected a southward deviation, the zonal (i.e. east-204 

west) behavior was less uniform, as init 3 showed a southern bias, init 4, a southwestern bias, and init 5, a slight southwestern 205 

deviation. This indicates overall a slight deviation towards the south (on average between 1º and 3°), even if there is no clear 206 

longitudinal direction bias. Forecasts initialized with a larger lead time showed a larger spread, partly due to a smaller number 207 

of predicted COLs, but also revealing a predominant southwesterly bias of the model. 208 

3.2 Predictive skill of COL intensity and tracks in GEFS 209 

In this section, we investigate whether there is any bias in predicting cyclone intensity, propagation speed, and trajectory. We 210 

focused on the forecasts initialized up to 3 days before the segregation date since the number of detected cases is significantly 211 

lower for forecasts initialized beyond that point (i.e. init 4 to init 7), as explained in Figure 3. Also, considering that most COLs 212 

have a duration of 4-5 days or less (not shown), we restricted our analysis to forecast lead times within 3 days of the detection 213 

of the COLs in the ERA5 reanalysis.  Given that a preliminary study shows that a large portion of COLs in the study region 214 

have lifespans of 3–4 days or more, with nearly 80% lasting beyond 3 days (not shown), we have focused our analysis on 215 

forecast lead times of up to 3 days following the initial detection of these COLs in the ERA5 reanalysis. 216 

Figure 6 shows the quartile distribution of track errors, including  DPE, ATE, CTE and the intensity error between the GEFS 217 

and ERA5 trajectories for init 0 to init 3. Regarding DPE error, eEach initialization shows similar sensitivity. For init: in the 218 

case of init 1 and init 2 (Fig. 6b,c), errors increase from 166 to over 320 kilometers within two or three days after COL detection 219 

in the ERA5 reanalysis. The situation is similar for init 0 (Fig. 6a), where the error increases from 144 to over 275 kilometers 220 
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in the same period. Not surprisingly, init 3 (Fig. 6d) has the largest mean error, with a linear increase from 290 to 550 221 

kilometers. As regards IQR, it shows a linear increase, indicating that the dispersion of the position errors increases along the 222 

cyclone forecast period.  223 

Conversely, a negative trend is observed in the intensity errordifference between the matched GEFS trajectories and the 224 

corresponding ERA5 reanalysis trajectories(Figure 7). The magnitude of the error for init 0 and init 1 (Fig. 67a,b) initially 225 

increases from -2.0 to over -4.3 gpm/m2 within two to three days after COL detection in the ERA5 reanalysis. For init 2 and 226 

init 3 (Fig. 67c,d), however, a further increase in escalation of the error can be observed. While init 2 shows an increase in the 227 

magnitude of error from -4.9 to -11.68 gpm/m2, init 3 shows an even more pronounced initial error of -8.14, which subsequently 228 

increases in their magnitude to -9.0 gpm/m2. Regarding the dispersion of the error, it is noteworthy that init 1 and init 2 (Fig. 229 

67b,c) show a slightly positive trend, indicating an increase in the uncertainty of the predicted system intensity. In contrast, 230 

the last initialization (Fig. 67d) shows a significantly larger dispersion and a more variable behavior during the analyzed period. 231 

Despite the observed variability, however, a trend towards greater dispersion is discernible. 232 

Given that the DPE may stem from biases in either the translation speed of the COL (ATE) or from its direction of motion 233 

(CTE), as shown graphically in Fig. 2, we disaggregate their relative contributions in Figs. 8 and 9, respectively. In general, 234 

the ATE distribution exhibits a negative bias towards the later stages of the forecast tracks, except for init 2 (Fig. 8c) which 235 

shows slightly positive values. The ATE distribution exhibits a negative bias towards the later stages of the forecast trajectories, 236 

except for init 2 and init 0 (Fig. 6c) which show slightly positive values. Both init 1 and init 3 (Fig.68b,d) exhibit negative 237 

biases with median distances of around 200 and 300 kilometers, respectively. This negative bias in ATE may indicate that 238 

GEFS tends to underestimate the translational speeds of COL towards the latter stages of the forecast lead times. Regarding 239 

the CTE distribution (Fig. 69), no clear bias is observed; however, there are some noticeable trends in different initializations. 240 

In particular, init 2 (Fig. 69c) shows negative values at around 100 kilometers. On the other hand, init. 3 (Fig. 69d) displays 241 

predominantly positive values, representing a poleward bias according to its definition.  242 

3.3 Case studies 243 

In this subsection, we focus on two COLs that exhibited very different levels of prediction performance during their onset 244 

stage (Fig. 4a). The first case study, from March-April 2013, is characterized by small DPE values, below the first quartile in 245 

Fig. 4a, indicative of a forecast with high accuracy in the GEFS dataset. In contrast, the second case study, from March 2019, 246 

was associated with remarkably larger DPE values, with errors ranging between the median and the third quartile. This 247 

represents a scenario in which the prediction has a suboptimal performance. It is important to note that the selection of the case 248 

studies was based also on the impact model errors had on the associated precipitation downstream. For the analysis of 249 

precipitation, we considered as the area of influence of the COLs approximately 7 degrees (about ~700 km radius) from the 250 

geopotential height minimum at 300 hPa. Before exploring the associated errors in the GEFS dataset, we provide a brief 251 

description of the synoptic environment around each COL during its segregation stage. 252 
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3.3.1 Case study 1: COL development on March 31st, 2013 253 

On March 31st, 2013, a COL formed to the west of the Andes Mountains at 36°S and 75.5°W. Its lifespan lasted for six days, 254 

covering a distance of over 2,000 kilometers into the Atlantic Ocean (not shown). This event was associated with severe 255 

weather conditions which resulted in unprecedented flash floods in the region, leading to loss of lives, significant infrastructural 256 

damage and economic losses of USD 1.3 billion (Pink, 2018). 257 

During the segregation phase of the COL, the main atmospheric features included an amplified ridge upstream downstream of 258 

the system, the presence of two jet streaks - one to the north and one to the south of the COL - and a well-defined cold-core in 259 

the middle levels (Fig.7a,c), and a cyclonic system off the central coast of Chile at lower levels.  The COL extended towards 260 

the lower troposphere where a closed cyclonic circulation can be observed, as indicated by the closed circulation at 850 hPa, 261 

directly beneath the COL at 300 hPa (Fig. 7c). The circulation of the cyclonic system (Fig 10c)  fostered cold air advection 262 

underneath the COL center which helped to sustain and intensify the COL itself (not shown). Regarding to the precipitation 263 

field, During this its early development stages, this COL led to high amounts of record-breaking rainfall of over 25 mm per 264 

day with peaks in excess of 50 mm in certain areas over south-central South America ( Fig. 710b). 265 

Forecast-wise, it is found that the location of the COL formation was accurately predicted 1 and 3 days ahead and even 5 days 266 

ahead with a bias of less than 200 kilometers northwest of its observed position (init 1, and init 3 and init 5 ; second, and third 267 

and fourth rows in Fig. 710). However, these, but both initializations underestimated its intensity by -6 gpm/m2, -11 gpm/m2 268 

and -14 gpm/m2 in init 1, and init 3 and init 5, respectively. The GEFS model accurately predicted the strength and extent of 269 

the upper-level strong winds associated with the COL (jet-split structure) and the upstream ridge of the COL  for init 1, init 3 270 

and init 5 (Fig. 7d, g, j). Particularly, during init 5 (Fig. 7j) it predicted better the intensity of the jet streak on the polar side of 271 

COL than the jet on the equatorial side. At mid-levels, the model successfully captured the cold core during init 1 and init 3, 272 

although with slightly less strength compared to ERA5 reanalysis. However, it failed to capture the cold core during init 5. 273 

The GEFS accurately predicted the strength and extent of upper high winds associated with the COL (Fig. 10d,g).  Additionally,  274 

the cyclonic circulation at lower levels was displaced to the north relative to the observation (Fig. 7c,f,i), leading to the COL 275 

and lower-level cyclones being out of phase. This results in a different vertical structure in the forecasts with regard to the 276 

observations, which is consistent with the underestimation of the COLs intensity in the model. As discussed by Pinheiro et al. 277 

(2021), the intensity of the COL directly affects its vertical structure. In this case, the incorrect forecast position of the cyclone 278 

at low levels likely weakened the upward vertical motion and low-level moisture convergence, both of which are key factors 279 

for precipitation development. This implies a weaker vertical coupling in the forecast, resulting from the discrepancy in the 280 

intensity of the COL  However, it underestimated the strength of the cold core in middle levels and misplaced the location of 281 

the cyclonic circulation at lower levels, which shifted to the north of the observation site (Fig. 10f,i). This suggests that the 282 

vertical coupling with the COL was affected, potentially impacting the intensity of the system. Regarding precipitation 283 

forecasts, in both init 1 and init 3, the regions with significant rainfall were located southeast of their actual position and 284 

amounts were overall underestimated, particularly in init 3. On the other hand, init 5 exhibited even less skill, with intensity 285 
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and location errors of around -14 gpm/m2 and 200 kilometers northwest of its observed position, respectively. The GEFS also 286 

encountered difficulties in predicting the jet split structure, inadequately represented the low-level circulation, and failed to 287 

capture the cold core at mid-levels, which naturally had an impact on the predicted precipitation amounts as well (Fig. 10k). 288 

Rainfall forecasts located the highest precipitation in the northeast of the country, outside the area affected by the COL system. 289 

This suggests that GEFS may not perform well in producing precipitation associated with COLs. Regarding precipitation 290 

forecasts, GEFS performs well in predicting the location of precipitation associated with COL (with a slightly southeast bias), 291 

but it underestimates the amount of precipitation, especially during init 3 and init 5, with underestimations around 20 mm/day 292 

(Fig. 7h,k).  293 

3.3.2 Case study 2: COL development on March 9th, 2019 294 

On March 9th, 2019, another COL formed off the coast of Chile, at 33°S and 74°W (first row of Fig. 811). This system was 295 

weaker than the one described in case 1the previous COL and lasted four days. It caused some weak precipitation in south-296 

central South America, but the amounts were lower than those associated with the first COL. 297 

The synoptic environment during the segregation stage of this COL in the ERA5 reanalysis (first row of Fig. 811) included an 298 

upper-level ridge with a NW-SE axis to the southwest of the COL, a split jet structure, a strong low-level cyclone positioned 299 

just beneath the COL center off the coast of Chile, and a small cold core at middle levels. Although this COL had a smaller 300 

structure than the first COL, the cyclonic system extended into the lower levels, as evidenced by the accompanying low-level 301 

cyclone identified in Fig. 811c. In the precipitation field, two distinct maxima were identified: one located northeast of the 302 

analysis domain, associated with a decaying frontal zone in that area, which is linked to a surface cyclone positioned over the 303 

South Atlantic Ocean (not shown), and another maximum over western Argentina, directly related to the ascent zone east of 304 

the COL. The frontal system mentioned here is separated from the COL and its associated dynamics. In the precipitation field, 305 

two distinct maxima were observed: one situated northeast of the domain of analysis, probably linked to a decaying frontal 306 

zone over that area (not shown), and another one over western Argentina related to the ascent zone at the east of the COL. The 307 

subsequent validation of the GEFS forecast focuses only on this second feature as it was the one directly associated with (or 308 

triggered by) the COL. 309 

The GEFS forecasts for March 9th, 2019 initialized 1, 3 and 5 days ahead are shown in Fig. 811 (second to fourth rows). In 310 

init 1 (Fig. 11, second row) the forecasted COL was approximately 15 gpm/m2 shallower and located around 210 kilometers 311 

to the southeast compared to ERA5. Regarding the circulation at upper levels, GEFS predicted well the strength and extent of 312 

high winds associated with the COL. Forecasts showed that the predicted position and intensity of the COL were consistently 313 

inaccurate across the three initializations. The COL was predicted to be shallower and displaced to the southeast, the system 314 

was shifted approximately 210 km and 430 km from its observed location for init 1 and init 3, and it could not be even captured 315 

in init 5. Meanwhile, the intensity was underestimated by approximately 15 to 17 gpm/m2. However, the circulation at low 316 

and middle levels was less accurate. GEFS predicted the 850hPa cyclone to be located further north than expected, and at 317 

middle levels, it failed to represent the cold core. For init 3 (Fig. 11, third row), the forecasted COL was approximately 17 318 
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gpm/m2 shallower and 430 kilometers southeast of its actual intensity and location. In this case, while GEFS predicted well 319 

the strength of the winds associated with COL, their position was predicted wrong,  eastward compared to its actual position. 320 

At low and mid-levels, the forecast was also inaccurate; the 850 hPa cyclone was weaker and displaced more northward than 321 

observed, and the strength of the cold trough at middle levels was underestimated and displaced towards the east. With respect 322 

to the upper-level winds associated with the COL, the GEFS demonstrated a good skill in forecasting both their intensity and 323 

their spatial positioning, particularly in relation to jet streaks on the polar flank of the COL. However, the model exhibited 324 

notable challenges in accurately representing the cold-core structure at mid-levels, with a complete absence of this feature in 325 

init 5. At lower levels, the representation of the closed cyclone at 850 hPa was similarly problematic, with the system being 326 

consistently displaced northward and exhibiting weaker intensity than observations, especially in inits 3 and 5. Regarding 327 

rainfall amounts, both initializations underestimated the rainfall within the ascent zone of the COL and predicted to be northeast 328 

of their observed position, over the central and northeastern parts of the country (Figure 11e, h). As for the last initialization 329 

(Fig. 11, fourth row), the model failed to predict the COL. GEFS displaced the upper circulation towards the southeast, 330 

including the jets and associated upper ridge. At low levels, GEFS also failed to predict the cyclone off the coast of Chile. 331 

Meanwhile, the thickness field showed a small, less intense cold trough, resulting in a lack of rainfall amounts over the zone 332 

influenced by the COL, as shown in Fig. 11k. In terms of precipitation, GEFS underestimated rainfall amounts in all 333 

initializations and was not able to represent the observed precipitation at the lee side of the Andes mountains (Fig. 8e,h,k), 334 

displacing the predicted precipitation northeast of the observed location, particularly over central and northeastern Argentina. 335 

However, while the GEFS model generally underestimated rainfall amounts across all initializations, it is important to note 336 

that this behavior is expected given the model's relatively coarse resolution (1x1 degree), especially at the lee side of the Andes 337 

where the complex features of COLs usually difficult the simulation of precipitation even in high-resolution regional models 338 

like WRF (Yañez-Morroni et al., 2018). 339 

Based on these results, a wrongly positioned and less intense COL can lead to a poor forecast of the vertical structure of the 340 

two case studies, including their cold core and associated low-level circulationthe cold core, subsequently affecting dynamical 341 

processes such as horizontal temperature advection, thermodynamic instability, vorticity advection and associated ascent 342 

which are ingredients for precipitation production downstream. Such errors may be related to the inadequate representation of 343 

diabatic effects or interaction with the Andes Cordillera (Garreaud and Fuenzalida 2007). Even though the characterization of 344 

such processes are beyond the scope of this study, they will be addressed in future work. 345 

4 Discussion and Conclusions 346 

This study explored the prediction skill of cut-off lows (COLs) in the NCEP Global Ensemble Forecasting System (GEFS) 347 

with a focus on the region with the highest frequency of COL occurrence in South America during austral autumn (March to 348 

May). The analysis made use of a verification framework centered on the individual systems. These were identified and tracked 349 

using a feature-based approach applied to the 300 hPa level geopotential height as the primary variable.   350 
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The main conclusions can be built on the questions posed at the Introduction of the study: 351 

● What is the temporal scale at which GEFS can reliably predict the initiation phase of COLs, and how precise are these 352 

forecasts? 353 

The GEFS model is highly accurate in predicting the start of the segregation stage of COLs up to three days in 354 

advance, but this accuracy drops significantly as the lead time increases beyond four days. The percentage of COLs 355 

detected by the model decreases to 56% and 29% for predictions initialized four and seven days ahead of the 356 

segregation, respectively. Our analysis also revealed that  COL centers diverge by an approximate distance of 200 357 

km relative to the observations up to three days in advance. However, this error increases to 600 kilometers for 358 

forecasts more than four days ahead. Also, it has been shown that forecasts initialized up to two days in advance have 359 

no directional deviations while forecasts initialized at least three days ahead of COL formation have ahave a 360 

predominant southerly bias. At the same time, the intensity errors show a consistent increase in magnitude, with 361 

values ranging from -2.5 gpm/m2 in init 1 to approximately -13.0 gpm/m2 at higher lead times. 362 

● After formation, can GEFS accurately predict the subsequent trajectories of the COLs? 363 

From our results, we can conclude that the GEFS model has variable skill when forecasting the trajectories of COLs. 364 

Overall, errors in position increase from 200 to 400 kilometers in forecasts of one to two days of lead time. Within 365 

this time period, trajectories tend to be slower in comparison to the observed behavior. Even though this pattern of 366 

errors is also found for longer lead times, errors in predictions three days ahead increase substantially, and skill beyond 367 

four days is dramatically reduced. We can conclude that the trajectories of COLs can be relatively well predicted with 368 

lead times up to three days, and forecasts initialized beyond that threshold are significantly degraded and depict a 369 

poor representation of the actual paths. Intensity-wise, we found that GEFS forecasts are characterized by an increase 370 

in the magnitude of underestimation of COL intensity as the lead time increases. 371 

● Can errors in COL forecasts impact those of precipitation further downstream? 372 

Although this study is based on only two case studies, our analysis suggests that the predictive skill of COLs, 373 

particularly regarding their formation location, intensity and trajectory, can influence precipitation forecasts 374 

downstream. Even though in this study we have provided only partial evidence on this point from the analysis of two 375 

case studies, we can conclude that in these events the predictive skill of COLs (including their formation location, 376 

intensity and trajectory) had a significant impact on the precipitation forecasts downstream. In particular, the errors 377 

in the location and depth of the COLs were linked to the mechanism sustaining these systems. In our case studies, the 378 

strength of the COLs cold core  affects the thermodynamic instability patterns, potentially influencing vertical motion 379 

and precipitation formation downstream. This is sustained by the well-documented relationship between COLs cold-380 

core and atmospheric instability response (Pinheiro et al., 2021;  Hirota et al., 2016; Nieto et al., 2007;  Porcu et al., 381 

2007;  Llasat et al., 2007; Palmen and Newton 1969), through which the dynamical ascent and atmospheric instability 382 

associated with the cold-core trigger and/or enhance precipitation events (Godoy et al., 2011;  Nieto et al. 2007).For 383 

example, underestimating the strength of the cold core of COLs can significantly alter thermodynamic instability 384 
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patterns, affecting vertical motion and precipitation formation downstream. Moreover, incorrectly forecasting the 385 

position of a low-level cyclonic system in association with COLs can significantly impact the vertical coupling of 386 

COLs, potentially influencing their intensity. This aligns well with Pinheiro et al. (2021), who suggested a possible 387 

relation between the intensity of COLs in South America and their vertical depth. These deficiencies, transferred into 388 

the higher levels, are able to shape the intensity of the system and, via this alteration, some of the mechanisms 389 

responsible for precipitation formation. As such, a weaker (stronger) COL will foster more (less) vorticity advection, 390 

resulting in favored (unfavored) ascent downstream. Therefore, predicted precipitation amounts will naturally be 391 

modulated by these errors (e.g. Saucedo, 2010).  392 

Results from this study can be compared with similar recent studies. For instance, Lupo et al. (2023) have concluded that the 393 

operational GFS model has a systematic bias to move Southern Hemisphere troughs and COLs too quickly downstream, even 394 

though in our study region the identified bias is towards the west. (i.e. slower than observed). It should be noted, however, that 395 

the GEFS and the operational GFS share some common components but are different models, particularly regarding the 396 

horizontal resolution. As such, results from both studies are not directly comparable.  397 

Regarding the case studies, previous authors analyzing the synoptic evolution and predictive skill of COLs in other regions of 398 

the world, such as Portman et al. (2022) and Moufhe et al. (2020), have concluded that a proper representation of the COL’s 399 

vertical structure is crucial for an accurate prediction of these systems. Pinheiro et al. (2021) also argue that the intensity of 400 

the COLs affect the entire structure of these systems, and that errors in their intensity/position can easily affect their associated 401 

precipitation fields. 402 

Although  a detailed investigation of the physical mechanisms underlying these forecast errors was beyond the scope of this 403 

study, this issue is of great scientific importance for understanding the challenges typically found in predicting COLs. In this 404 

context, the GEFS bias, such as the westward bias and underestimation of intensity, likely arises from the model's inadequate 405 

representation of eddy-mean flow interactions, as explored by Nie et al. (2022, 2023) and Pinheiro et al. (2022). Moreover, in 406 

our study region, the positioning of the jet stream and the enhancement of transient wave activity over the South Pacific 407 

identified in previous work (GD12) are key to understanding these biases.Therefore, exploring the physical mechanisms 408 

underlying these forecast errors is essential. Future work exploring the simulation of jet streams and Rossby wave activity 409 

could provide crucial insights. Preliminary research has already shown that specific Rossby wave patterns preceding COLs 410 

can be predicted up to a week in advance, although with reduced confidence beyond that period (Choquehuanca et al., 2023). 411 

It should be stressed once again that this study is proposed as a first step towards a full characterization of the physical processes 412 

responsible for COL formation, evolution and predictive skill in NWP systems. Several open questions remain, which will be 413 

addressed in future studies. Among them, it is unclear why the predicted trajectories are systematically slower than the 414 

observations. A negative correspondence between COL intensity and location was also observed in the GEFS dataset, 415 

suggesting that the most intense COLs seem to be associated with lower positional errors. However, the underlying mechanism 416 

sustaining such a relationship (if any) is not clear. 417 



14 

 

As a final note, future studies will dive into the relative contributions of COL intensity, location and speed on the resulting 418 

forecasted precipitation fields, as a deeper understanding of the interplay between these might bring useful information for 419 

operational weather predictions of high-impact events over southern South America. 420 
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Figures 544 

 545 
 546 

Figure 1: Spatial distribution of COLs in the region of highest COL frequency in southern South America from 1985 to 2020. Black 547 
crosses represent the start of trajectories of COLs detected in the study area (77.6°-68.75°W and 37.6°-29.9°S, solid black box) and 548 
lines represent their trajectories where colors represent the duration of each COL. 549 
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 550 

Figure 2: Measures of cyclone track forecast error: Direct Positional Error (DPE; violet arrow), Cross-Track Error (CTE; green 551 
arrow) and Along-Track Error (ATE; red arrow).  Obs0 and Obs1 are observed positions at times 0 and 1, while Fc0 and Fc1 are 552 
their respective forecasted positions. The gray circles (yellow squares) represent the observations (the forecasts).  553 
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 554 

 555 

Figure 3: Percentage of forecasted COL initiations as a function of initializations,  from init 0 (forecast initialized in the onset day) 556 
to init 7 (forecast initialized seven days before the onset of the COL). The red, gray, orange and yellow bars indicate the forecasted 557 
date of the onset day of COL relative to the observed date of onset day, from one day ahead of formation to two days after, 558 
respectively.  559 
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 560 

Figure 4: Variation in a) onset position (DPE) and b) the intensity error as a function of initializations. The whiskers at the top 561 
(bottom) of the boxes represent the error’s 75th (25th) quantile. The black thick horizontal lines inside the boxes represent the 562 
median (the 50th quantile) and the points outside the whiskers are considered outliers. The red numbers at the bottom indicate the 563 
number of systems identified under each initialization. 564 
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 565 

Figure 5: Scatter diagrams of COL initial position deviation decomposed in longitudinal and latitudinal errors (in degrees), where 566 
the central axis is the initial position observed. Each plot represents a different initialization: ranging from a) Init 0  (forecast 567 
initialized in the onset day) to  h)  Init7 (7 days in advance). The gray/black dots indicate the location of the predicted COLs as a 568 
function of the initialization day (see the color bar for reference on the number of predicted systems per day). The red dots show the 569 
mean location after averaging all the COLs predicted in each initialization day. 570 
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 571 

Figure 6: Boxplots of errors in track forecasts for: DPE, ATE, CTE (on the left axis) and Intensity (on the right axis) along the life 572 
cycle of the COLs. Each plot represents initializations at a) Init 0, b) Init 1, c) Init 2, and d) Init 3.  573 

 574 
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Figure 7: Segregation stage of the COL formed on March 31st, 2013. (Top) ERA5 and (rows 2 to 4) GEFS predictions of (first 576 
column) geopotential height (Z) and wind (U) at 300 hPa, (second column) geopotential height (Z) at 300 hPa and accumulated 577 
precipitation (Accum. prep.) over 24 hours, and (right column) geopotential height (Z) at 850 hPa alongside the 850/3000 hPa layer 578 
thickness (DZ) GEFS predictions correspond to init 1 (second row), init 3 (third row) and init 5 (fourth row), initialized on March 579 
30th, March 28th and March 26th, 2013, respectively.      580 

 581 
 582 



26 

 

 583 



27 

 

Figure 8: As in Figure 7 but for the COL formed on March 9th, 2019. In this case, the GEFS predictions corresponding to init 1 584 
(second row), init 3 (third row) and init 5 (fourth row) were initialized on March 8th, March 6th and March 4th, 2019, respectively.   585 


	1 Introduction
	2 Data and methodology
	2.1 The GEFS Reforecast dataset
	2.2 Temporal domain and study area
	2.3 COL identification and tracking algorithm
	2.4 Verification metrics

	3 Results
	3.1 Predictive skill of COL onset time in GEFS
	3.2 Predictive skill of COL intensity and tracks in GEFS
	3.3 Case studies
	3.3.1 Case study 1: COL development on March 31st, 2013
	3.3.2 Case study 2: COL development on March 9th, 2019


	4 Discussion and Conclusions
	References
	Figures

