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11.09.2024 

Answer to Referee 1:  

The authors wish to thank the anonymous reviewer for his/her comments which greatly helped us to improve the 
quality of the paper. We are pleased to address the point-by-point answers to your review in blue in the supplement 
to this comment. 

Additionally, during the review process, we decided to revise the extreme value analysis (EVA) calculation 
method by removing the constant seasonal component. Recent studies have highlighted changes in the 
seasonal cycle of sea level within the same domain (Hermans et al., 2022; Roustan et al., 2022), suggesting 
that the assumption of a constant seasonal cycle may no longer be valid. Therefore, the seasonal term from 
equation (4) has been removed. The analyses have been re-performed and figures have been updated 
accordingly, which slightly affects the results. However, this modification does not affect the main text and 
conclusions of the paper. 

Best regards, 

The authors. 

Main comments: 

 One big concern that I have is about the uncertainties in the extreme value analysis, which are crucial since 
they are used to identify regions where the static and dynamic approaches lead to different results. There is 
no explanation of how uncertainties in the distribution parameters and resulting return level estimates are 
derived; is it the Delta Method, or Bootstrapping, or something else? Overall, the uncertainty estimates appear 
unrealistically small and that would lead to more places being identified where static and dynamic approaches 
are “different”. Looking for example at Figure S1.1 the uncertainties in the 100-year water levels (derived 
from ONLY 20 years of data) are only a few centimeters in some of the places and maybe 10-20 cm in others 
for the static approach. They become a bit larger in the dynamic approach because the shape parameter 
changes signs, but especially for those unbounded distributions the uncertainties are usually very large, 
particularly when GPD is fitted to short records (as is done here). I don’t think this can be correct and would 
mean that all the conclusion regarding “significant” differences between static and dynamic approaches are 
corrupted. I am not sure if maybe some uncertainties were ignored (like the ones in the shape parameter) or 
not propagated properly (as in the Delta Method), but something is off. I know the authors say they use the 
tool that was already published but that doesn’t mean it does the right thing. The reason I give “major revision” 
is because this is a critical point that may change the results/conclusions. 

Thank you for your comment. Uncertainties in the distribution parameters are accounted for. Indeed, the 
calculation of confidence intervals in the package used for this study (Mentaschi et al., 2016) relies on the Delta 
Method (asymptotic intervals) which tends to produce narrower and symmetric confidence intervals compared to 
other methods like the bootstrap method (Caires, 2011). This method has been used to propagate error components 
related to the uncertainty in estimating the long-term trend and long-term variability (99th percentile) to the error 
associated with fitting the stationary extreme value distribution, thereby combining both sources of uncertainty. 
This explanation has been added to the Methods section (Sect. 2.4, end of the “dynamic approach” subsection). 

However, the stationary-transform EVA (and associated confidence intervals) were performed using the 131-year 
period spanning from 1970 to 2100, and not from a 20-year period. The stationary-transform method (Mentaschi 
et al. 2016) was selected for the EVA as it accounts for the complete, long time series, hence reducing uncertainties 
in estimating the 1-in-100-year event (tail of the distribution). To transform the non-stationary time series into a 
stationary one, the long-term trend and variability were calculated using a running mean over a 20-year window 
(see Mentaschi et al. 2016). Results are thus centered around specific 20-year periods (e.g., 1995-2014, as shown 
in Figure S1.1). However, the extreme value distribution fit is based on and representative of the entire 131-year 
time series. Using a longer time series leads to narrower confidence intervals compared to those obtained from a 
shorter period. This effect is especially noticeable for the 1-in-100-year return levels, as shown in Figure RC1, 
which compares our 131-year EVA centered on a 20-year period with an analysis based on only 20 years. The 
legends for all the figures in the paper have been revised to avoid the confusion. 
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Figure RC1: Return period curves for ESWL at two of four locations of the Supplementary Materials: The Scottish 
coasts (unbounded case) and the Brittany coasts in France (bounded case): (blue) computed over the whole 1970-2100 
period and centered on the 1995-2014 period, (red) computed only on the 1995-2014 period. Note the different y-axes 
for the different panels. The dotted lines are the 95% confidence intervals associated with the EVA method applied to 
compute the ESLs.  

A separate test was performed to highlight the differences between our method and the bootstrap method, which 
calculates confidence intervals by resampling the peaks with replacement to evaluate the variability and reliability 
of the estimates. Both methods are not directly comparable because our approach involves normalizing the peaks 
to account for non-stationarity. For a direct comparison, the uncertainty in estimating non-stationary parameters 
(i.e., long-term trend and variability) is not considered. Consequently, the resulting curves and intervals differ 
slightly from those in Figure RC1. In this analysis, the 95% confidence intervals are calculated using a stationary 
EVA applied to the entire 131-year detrended time series. The time series was detrended using a 20-year running 
mean. The bootstrap method was performed with 1,000 samples of the peaks obtained from the stationary EVA. 
The findings indicate that, when using the bootstrap method, the intervals are nearly identical for the bounded case 
and slightly larger for the upper interval in the unbounded case, but they remain within the same order of magnitude 
(Fig. RC2). A sentence has been included L401 in the discussion: “The results are also dependent on the choice of 
the extreme value analysis method (e.g., Wahl et al., 2017), and can be sensitive to the choice of confidence interval 
calculation method, particularly in unbounded cases such as those found in the northern domain (Scottish coasts, 
North Sea) and in the Mediterranean Sea when wave contributions are included. However, such cases are not 
prevalent in our study area.” 
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Figure RC2: Return period curves for ESWL computed over the 1970-2100 period at two of four locations of the 
Supplementary Materials: The Scottish coasts (unbounded case) and the Brittany coasts in France (bounded case). The 
dotted lines are the 95% confidence intervals associated with the EVA method applied to compute the ESLs: with the 
delta method from Mentaschi et al. (2016) (blue) and bootstrap method (red). Note the different y-axes for the different 
panels.  

 Calafat et al. (2022; https://doi.org/10.1038/s41586-022-04426-5) showed that trends in storm surges are 
comparable to trends in MSL at several coastline stretches in Europe and that this has led to pretty large 
changes in return periods. This clearly challenges the conclusion which is also drawn here in line 370 that 
“changes in ESL primarily depend on SLR”. They also showed that small ensembles cannot capture the 
full picture of ESL changes. I would like to see some discussion about how the results presented here 
relate to that. 

A new paragraph has been added at the end of the Discussion to address the challenges in capturing dynamic 
changes in extremes. 

“Challenge on dynamic changes in extremes   

Our findings align with previous modeling studies using barotropic dynamic approaches (Jevrejeva et al., 2023; 
Muis et al., 2020; Vousdoukas et al., 2018), indicating that changes in ESLs primarily depend on mean SLR. This 
challenges recent research showing that historical trends in storm surges (Reinert et al., 2021; Calafat et al., 2022; 
Tadesse et al., 2022; Roustan et al., 2022) and tides (Pineau-Guillou et al., 2021) have been comparable in 
magnitude to historical mean sea level rise trends. However, the conclusions these authors draw from historical 
trends do not necessarily apply to future trends, which is the main focus of this article. Further research is needed 
to better understand and quantify dynamic projected changes in all the extreme components, their interactions, and 
timing (e.g., Melet et al., 2024). Currently, dynamic approaches typically do not account for projected changes in 
all coastal sea level components (mean sea level, tides, storm surges, waves, freshwater discharge) or their 
nonlinear interactions. These approaches often lack resolution to accurately capture the various contributions and 
their nonlinear interactions, as previously discussed. This can result in a misrepresentation of ESLs and their 
changes, potentially underestimating the significance of dynamic changes in extremes. Additionally, most studies 
projecting dynamic changes in extremes rely on small ensembles of model simulations or emission scenarios, 
similar to our study, due to the high computational cost of simulating all the different components and the limited 
availability of forcing data (Vousdoukas et al., 2017, 2018; Muis et al., 2020, 2022; Jevrejeva et al., 2023). For 
instance, global climate models used for driving projections often have relatively low atmospheric resolution, 
typically around 1° (0.5º in this study), with only a few models being part of the HighResMIP project (0.25º) that 
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better simulate extreme winds responsible for storm surges. Even with a 0.25° resolution, it may still be insufficient 
to accurately resolve historical and future atmospherically driven contributions, including for instance extra-
tropical cyclones in our region. The use of dedicated products such as downscaled atmospheric forcing (e.g., Euro-
CORDEX, Outten and Sobolowski, 2021) may offer a promising alternative. Finally, as suggested by Calafat et 
al. (2022), differences between driving climate models and internal climate variability may also lead to robustness 
challenges in projecting ESLs. For example, Muis et al. (2022) found little agreement between projected changes 
in storm surges using different HighResMIP models.” 

Specific comments 

19 “significant” in a statistical sense? If so which significance level? If not ina statistical sense I suggest changing 
and not using the term in a paper like this where statistical significance is also a big part 

Yes, in a statistical sense. The sentence has been changed to: “The impact of simulating dynamic changes in 
extremes is found statistically significant in the Mediterranean Sea with differences in the decennial return level of 
up to +20% compared to the static approach.” 

34-37 what about freshwater discharge? 

We did not include freshwater discharge here as the focus is on the ocean contributions to ESLs. But the freshwater 
input from rivers is indeed taken into account in the ocean model (Chaigneau et al., 2022). 

97 return levels 

Corrected. 

115-120 Would the model resolve changes in (coastal) tides as a result of SLR or is it too coarse? 

Yes, the model is accounting for interactions between SLR and coastal tides to some extent. For example, a large 
projected decrease in the mean amplitude of the M2 tidal constituent is found in the English Channel and Bristol 
Channel (Fig. 5c here and Fig. 18 in Chaigneau et al. (2022)). However, resolving these interactions may be limited 
by the fact that the global mean thermosteric sea level rise is not included as an input in NEMO due to the Boussinesq 
hypothesis and is instead added a posteriori (Sect. 2.3). Therefore, its impact (with global mean thermosteric SLR 
projected to be +30 cm by the end of the century under the SSP5-8.5 scenario) on the different components, including 
on tides, is not accounted for. Additionally, the ability to resolve these interactions may be further limited by the 
model horizontal resolution (5-10 km), the corresponding bathymetry and coastline resolution, and the fact that the 
NEMO version 3.6 used in this study does not allow for dry areas. The new version of NEMO (4.2) could improve 
this by incorporating wetting and drying processes (O’Dea et al., 2020). This paragraph has been added in the 
Discussion L379. 

137 after runoff there is a closing bracket but no opening one 

Corrected. 

153 types 

Corrected. 

173-201 Somewhere it should be highlighted that a “direct” method is used which fits the GPD to the still water 
levels which include (often large) deterministic tide signals as opposed to the more appropriate “indirect” methods 
such as SSJPM where the stochastic surge/wave part is analyzed with the extreme value models and combined with 
the tides.  

This comment is included in the Discussion L405-409 and has been revised: “It would be interesting to compare the 
results obtained with our simplified extreme value analysis method with a more sophisticated method such as a 
multivariate approach (Arns et al., 2017; Serafin et al., 2017; Sayol and Marcos, 2018; Marcos et al., 2019; Lambert 
et al., 2020) like the Skew Surge Joint Probability Method where the stochastic surge or wave part is analyzed with 
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extreme value models and then combined with the deterministic tidal signal. This would require an estimation of 
the dependence structure between the different processes/variables to account for the interactions between the 
different components. Here, the aim was to preserve the simulated dependence between all the extremes by using 
the direct method. For instance, by applying the direct method based on the whole time series, the extreme value 
analyses can account for the projected future decrease in tidal amplitude in the English Channel (Fig. 6c).” 

198 see my first major comment, it needs to be explained how those confidence levels are derived exactly 

See comment above. 

Fig. 2 Is that a real example or just (used as) a sketch? If it’s a real example it would be good to mention whether it 
uses the static or dynamic approach. 

Yes, it is just a sketch. 

242 The German Bight is equally (if not even more) complex than the Dutch coast. 

The sentence has been modified: “[…] in complex areas like the German Bight and the Dutch coast.” 

266 This seems to be quite relevant, what is the reason for not including it in the main manuscript? 

The amplification factors including the wave contribution have not been included in the main manuscript because 
they are sensitive to the chosen constant beach slope value of 4%, which is a limitation of this study. Therefore, as 
stated in the Discussion, the wave contribution is used in the main manuscript only to derive future changes in the 
large-scale wave contribution or to investigate the timing between different contributions, both being independent 
of the choice of beach slope. 

Fig. 4 Related to my point about uncertainties it would be interesting here to show the ranges of years including the 
distribution uncertainties and also see where those ranges overlap between SSPs and where they don’t 

Thank you for the suggestion. We have added a new figure (Figure 5) that displays the confidence intervals in years 
for each scenario and highlights the differences between the two scenarios in regions where they do not overlap. 

278 This related to my comment above about changes in tides and whether they can actually be resolved along the 
coast 

See comment above. 

325 lead to 

Thank you, done.  
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