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 20 
Abstract. High-altitude remote sites are unique places to study aerosol-cloud interactions since they are located at the altitude 

where clouds may form. At these remote sites, organic aerosols (OA) are the main constituents of the overall aerosol 

population, playing a crucial role in defining aerosol hygroscopicity (𝜅). To estimate the CCN budget at OA dominated sites, 

it is crucial to accurately characterize OA hygroscopicity (𝜅!") and how its temporal variability affects the CCN activity of 

the aerosol population since 𝜅!" is not well established due to complex nature of ambient OA. In this study, we performed 25 

CCN closures at a high-altitude remote site during summer season to investigate the role of 𝜅!"  in predicting CCN 

concentrations under different atmospheric conditions. In addition, we performed an OA source apportionment using Positive 

Matrix Factorization (PMF). Three OA factors were identified from the PMF analysis: hydrocarbon-like OA (HOA), less-

oxidized oxygenated OA (LO-OOA) and more-oxidized oxygenated OA (MO-OOA), with average contributions of 5%, 36% 

and 59% of the total OA, respectively. This result highlights the predominance of secondary organic aerosol with high degree 30 

of oxidation at this high-altitude site. To understand the impact of each OA factor on the overall OA hygroscopicity we defined 

three 𝜅!" schemes that assume different hygroscopicity values for each OA factor. Our results show that the different 𝜅!" 

schemes lead to similar CCN closure results between observations and predictions (slope and correlation ranging between 

1.08-1.40 and 0.89-0.94, respectively). However, the predictions were not equally accurate across the day. During nighttime, 

CCN predictions underestimated observations by 6-16%, while during morning and midday hours, when the aerosol was 35 

influenced by vertical transport of particles and/or new particle formation events, CCN concentrations were overestimated by 

0-20%. To further evaluate the role of 𝜅!" in CCN predictions, we established a new OA scheme that uses the OA oxidation 

level (parameterized by the f44 factor) to calculate 𝜅!" and predict CCN. This method also shows a large bias, especially during 
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midday hours (up to 40%), indicating that diurnal information about the oxygenation degree does not improve CCN 

predictions. Finally, we used a neural network model with four inputs: N80 (number concentration of particles with diameter 40 

>80 nm), OA fraction, f44 and surface global radiation) to predict CCN. This model matched the observations better than the 

previous approaches, with a bias within ±10% and with no daily variation, reproducing the CCN variability along the day. 

Therefore, neural network models seem to be an appropriate tool to estimate CCN concentrations using ancillary parameters. 

accordingly. 

1 Introduction 45 

Cloud condensation nuclei (CCN) are those aerosol particles that act as the seeds for cloud droplet activation. The number of 

CCN in the atmosphere determines the number of cloud droplets that form. This, in turn, affects cloud properties such as 

reflectivity and lifetime (Twomey, 1977; Albrecht, 1989), playing a critical role in the regulation of Earth's energy balance, 

climate and hydrological cycle (Lohmann and Feichter, 2005).  
The radiative forcing associated with the indirect effect of aerosols through aerosol-cloud interaction is larger (–1.0 ± 0.7 W 50 

m–2) than the direct effect of aerosol through aerosol–radiation interaction (–0.25 ± 0.25 W m–2) (IPCC, 2023). Therefore, 

understanding physicochemical properties of aerosol particles that can act as CCN could minimize CCN prediction errors, 

which are essential to reduce the global aerosol-cloud interactions uncertainty (Seinfeld et al., 2016). For that reason, the spatial 

and temporal variation of CCN together with parameters controlling CCN concentrations have been studied intensively in the 

last decades around the world (Deng et al., 2018; Paramonov et al., 2015; Rose et al., 2010; Salma et al., 2021; Schmale et al., 55 

2018; Park et al., 2023; Kulkarni et al., 2023; Rejano et al., 2021; Che et al., 2016). 

If ambient conditions that regulate water vapor supersaturation (SS) are disregarded, the main aerosol properties influencing 

the CCN activity are particle size, chemical composition and mixing state (Dusek et al., 2006; Cubison et al., 2008; Wang et 

al., 2010; Deng et al., 2018; Kuang et al., 2020b). To assess how these aerosol properties control the CCN activity under 

different ambient aerosol composition and mixing conditions, closure studies (i.e., comprehensive evaluation and comparison 60 

of measurements from different instruments or methodologies that aim to measure the same or related parameters) have been 

proven to be very useful (Cai et al., 2022; Crosbie et al., 2015; Ervens et al., 2010; Jurányi et al., 2010; Ren et al., 2018; 

Kulkarni et al., 2023).  

Particle number size distribution (PNSD) is the main factor controlling CCN estimations (Crosbie et al., 2015; Dusek et al., 

2006). Many studies assume an activation threshold diameter from which all particles are considered activated (Asmi et al., 65 

2011; Cho Cheung et al., 2020; Hoyle et al., 2016; Rose et al., 2017; Casquero-Vera et al., 2023). However, reducing aerosol-

cloud interaction uncertainties requires more accurate CCN predictions, which, in turn, requires knowledge about the aerosol 

chemical composition (Che et al., 2016, 2017).  

The effect of chemical composition in CCN activity is usually treated through the hygroscopicity parameter 𝜅 (Petters and 

Kreidenweis, 2007), which can be obtained using bulk or size-resolved chemical composition measurements through a simple 70 
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volume mixing rule (Petters and Kreidenweis, 2007). However, while aerosol hygroscopicity of inorganic substances is well 

characterized, quantification of organic aerosol (OA) hygroscopicity (𝜅!") remains challenging. This is due to the large variety 

of organic compounds within OA, resulting in a wide range of hygroscopicity values that introduces large uncertainties in 

CCN predictions  (Casans et al., 2023; Hallquist et al., 2009; Jimenez et al., 2009; Zhang et al., 2007). It has been proven that 

CCN predictions are very sensitive to 𝜅!" and a poor knowledge of 𝜅!" variability leads to large biases in CCN closures, 75 

especially at OA dominated sites  (Cai et al., 2022; Deng et al., 2019; Thalman et al., 2017; Gunthe et al., 2009; Liu and Wang, 

2010).  

To obtain an accurate estimation of 𝜅!", knowledge of OA sources and their time variability are required with high time-

resolution (Wu et al., 2016; Deng et al., 2019; Ren et al., 2023; Cai et al., 2018). Positive Matrix Factorization (PMF) has been 

proven to be a powerful tool for identifying the main OA components by using the organic mass spectra (Via et al., 2021; 80 

Minguillón et al., 2015; Crippa et al., 2013). Previous studies explained 𝜅!" variability in terms of OA sources assuming 

specific hygroscopicity values for each source (Cai et al., 2022; Cerully et al., 2015; Deng et al., 2019; Thalman et al., 2017) 

or established 𝜅!" parameterizations based on the oxidation degree (Duplissy et al., 2011; Mei et al., 2013; Wu et al., 2016; 

Chen et al., 2017). However, assumptions about 𝜅!" needed for accurate CCN predictions vary greatly among studied sites 

(Ervens et al., 2010; Cubison et al., 2008; Tao et al., 2021; Kuang et al., 2020b), due to the wide variety of sources and 85 

atmospheric processes affecting OA.   

Organic aerosol usually dominates aerosol mass concentration in the fine fraction at high-altitude environments (e.g., Fröhlich 

et al., 2015; Ripoll et al., 2015; Zhang et al., 2023) . In addition, since cloud formation conditions can occur at these sites, 

high-altitude sites are unique locations for studying aerosol-cloud interactions (Friedman et al., 2013; Li et al., 2020; Iwamoto 

et al., 2021; Jurányi et al., 2011). Moreover, these sites are often exposed to free troposphere conditions where the submicron 90 

aerosol population tends to be an internal mixture of background particles. In this case, satisfactory CCN predictions can be 

obtained using simple assumptions about aerosol chemical composition (Jurányi et al., 2010; Duan et al., 2023). However, 

during some conditions, such as thermally driven upslope flow, high-altitude sites might be influenced by planetary boundary 

layer (PBL) air with pollution particles being efficiently transported to high-altitude sites and affecting CCN activity  

(Jayachandran et al., 2018; Rejano et al., 2021). Also, at these sites high insolation conditions during midday hours promote 95 

photochemical processes producing that can lead to new particle formation (NPF) events, completely transforming the 

background aerosol population from a homogeneous aerosol population to a complex mixture of particles with different 

chemical and microphysical characteristics (Friedman et al., 2013; Rose et al., 2017; Shang et al., 2018). During these more 

complex conditions when NPF and/or PBL transport affect the aerosol population, simple approaches for CCN predictions 

tend to overpredict the observations (Asmi et al., 2012; Che et al., 2017; Hu et al., 2020; Zhang et al., 2017). Further 100 

investigation on how the changes in aerosol composition and hygroscopicity affect CCN variability at these sites is required. 

In this study, we investigate OA sources, their temporal variability and their influence on CCN predictions at a high-altitude 

mountain site during an intensive summer field campaign. To understand the influence of aerosol composition on CCN, we 

calculate the overall aerosol hygroscopicity from bulk chemical composition measurements and then assume different OA 
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schemes to retrieve 𝜅!". We focus the analysis on the influence that OA might have on the CCN predictions under different 105 

atmospheric conditions throughout the day. Additionally, a non-analytical model approach using neural networks was 

developed to predict CCN concentrations based on ancillary information on particle number concentration, OA mass fraction 

and oxygenation degree, and surface solar radiation. 

2 Measurements 

2.1 Experimental site 110 

Aerosol measurements presented in this study were conducted at Sierra Nevada station (SNS) from 8 June to 13 July 2021 in 

the frame of the BioCloud field campaign (Jaén et al., 2023). The main objective of the campaign was to evaluate the impact 

of biogenic and anthropogenic emissions on the CCN budget at this high-altitude mountain site. SNS is located in the Sierra 

Nevada Mountain range in south-eastern Spain (37.10°N, 3.39°W, 2500 m a.s.l.), which is part of AGORA (Andalusian Global 

Observatory of the Atmosphere). Measurements at SNS are performed following ACTRIS (Aerosol, Cloud and Trace gases 115 

Research Infrastructure, http://actris.eu) standards for in-situ measurements at high-altitude observatories (Pandolfi et al., 

2018) and the station is  part of the NOAA Federated Aerosol Network (NFAN, Andrews et al., 2019). 

SNS is located at a horizontal distance of 21 km and an altitude difference of 1820 meters from the city of Granada which is 

located downslope of the mountains in a valley. Granada is a medium-size city with a population of 232.208 (www.ine.es, 

2018), which increases up to 530.000 if the wider metropolitan area is considered. The main local aerosol source in Granada 120 

is road traffic, including both motor vehicle exhaust and re-suspension of particulate material from the roadways (Casquero-

Vera et al., 2021; Rejano et al., 2023; Titos et al., 2014) . These pollutants emitted at Granada area can influence the aerosol 

properties observed in Sierra Nevada (Rejano et al., 2023). Atmospheric aerosol at SNS has been reported to be affected by 

the transport of particles from Granada metropolitan area because of planetary boundary layer (PBL) growth and the mountain-

valley breeze phenomenon (Rejano et al., 2021; Jaén et al., 2023; Casquero-Vera et al., 2020).  Aerosol sources at SNS during 125 

summertime are primarily related to transport of pollutants from lower altitudes and regional transport, biogenic emissions 

from the vegetation, and desert dust transported from the Sahara Desert (Jaén et al., 2023). Furthermore, new particle formation 

(NPF) events are relatively frequent at midday, representing another important source of aerosol particles at this site (Casquero-

Vera et al., 2020; Rejano et al., 2021; De Arruda Moreira et al., 2019). 

2.2 Aerosol sampling and instrumentation 130 

Sample air for all instruments was obtained through a stainless-steel tube located in the rooftop of the observatory, which is a 

three-story building. Inside this tube there are several smaller stainless-steel pipes, which provide sample air to the different 

instruments (Baron and Willeke, 2001). All measurements reported here refer to ambient conditions and were performed 

without aerosol size cut. Further information about the observatory and experimental conditions can be found in previous 
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studies performed at SNS (Casquero-Vera et al., 2020; Rejano et al., 2021; Jaén et al., 2023). In the following we describe the 135 

instruments used in this study. 

A time-of-flight aerosol chemical speciation monitor, ToF-ACSM, (Fröhlich et al., 2013; Aerodyne Research Inc., Billerica, 

USA) was deployed to measure mass concentration and chemical composition of non-refractory submicron aerosol particles 

(NR-PM1) with a 10-minute time resolution. The chemical species determined by the instrument are OA, SO4-2, NO3-, NH4+ 

and Cl-. The instrument was operated at a flow rate of 3 lpm, and the air sample passed through a nafion dryer, maintaining 140 

the incoming relative humidity below 40%. During the campaign, the sample flow into the instrument was 0.108 lpm. A PM1 

standard aerodynamic lens focuses the sample flow into a narrow beam and transmits particles with vacuum aerodynamic 

diameter between 70 and 700 nm (Liu et al., 2007). Non-refractory particles are flash vaporized at 600 ºC with a tungsten 

vaporizer and ionized by electron impact at 70 eV. The instrument is equipped with a capture vaporizer that enhances 

vaporization and gives a collection efficiency of 1. After sample ionization, the ions are introduced into a time-of-flight mass 145 

spectrometer (ETOF, Tofwerk Inc.) where they are orthogonally extracted and separated according to their mass-to-charge 

ratio (m/z). The mass spectra are obtained for m/z ions ranging from 12 to 200 Th. Finally, the mass spectral signals are 

converted to mass concentration (in µg/m3) using the ionization efficiency calculated from calibration curves of known 

reference species (Fröhlich et al., 2013).  

Flow calibrations for the ToF-ACSM were performed before and after the BioCloud field campaign. The relative ionization 150 

efficiency (RIE) calibrations for NO3- and SO4-2 were performed before the campaign using dry, size-selected 300 nm particles 

of ammonium nitrate and ammonium sulphate generated by an aerosol generator atomizer (TSI 3076). For more details about 

the ToF-ACSM calibrations see Fröhlich et al. (2013). Data processing was performed using the data analysis package 

“Tofware” (version 2.5.13, https://www.tofwerk.com/software/tofware/) running in the Igor Pro 7 environment (Wavemetrics 

Inc., Oregon, USA). Data were corrected for changes during the campaign of the sample flow rate and N2 signal (m/z 28), 155 

which is assumed to be constant in the atmosphere. 

The CCN measurements were performed using a cloud condensation nuclei counter (CCNc) (Droplet Measurement 

Technologies, model CCN-200), which is based on a cylindrical continuous-flow thermal-gradient diffusion chamber where 

constant temperature gradients are applied, generating different SS conditions (Roberts and Nenes, 2005). One of the columns 

sampled polydisperse particles, while the other column was connected to a differential mobility analyzer (DMA) to measure 160 

size-resolved CCN. For both columns, CCN concentrations were measured at four SS values: 0.2, 0.4, 0.6 and 0.8%, taking 

10 minutes at each SS value. Only polydisperse measurements at 0.2, 0.4 and 0.6% SS are shown in this study. To ensure data 

quality due to instabilities of the instrument at each SS, CCN concentrations were filtered according to Rejano et al. (2021) 

criteria to ensure that NCCN measured at SS that differed by more than 20% from the SS set-point were disregarded. The total 

flow rate of the instrument was fixed at 0.5 lpm with an aerosol flow of 0.05 lpm and sheath flow of 0.45 lpm. The flow rates 165 

were calibrated onsite before and after the campaign and checked regularly during the campaign. SS calibration using 

monodisperse ammonium sulfate was also performed onsite at the beginning and at the end of the campaign following the 
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procedure described in ACTRIS guidelines (http://actris.nilu.no/Content/SOP). Both calibrations provided satisfactory results 

and showed no change in instrument performance. 

The particle number size distribution (PNSD) was measured in the mobility diameter range between 12-535 nm every 5 170 

minutes using a scanning mobility particle sizer (SMPS, TSI model 3938), composed of a differential mobility analyzer (DMA, 

TSI 3081) and a condensation particle counter (CPC; TSI 3750). The aerosol flow rate was 1 lpm and the sheath flow was 5 

lpm. The quality of the SMPS measurements were assured by frequently checking the flow rates and performing 203 nm PSL 

checks, following the ACTRIS and Global Atmospheric Watch (GAW) recommendations (Wiedensohler et al., 2012). 

An aethalometer (Model AE-33, Magee Scientific) was used to determine the equivalent black carbon (eBC) mass 175 

concentration with a time resolution of 1 min. The aethalometer draws the ambient air at a constant flow rate of 4 lpm. The 

eBC is determined from the aerosol absorption coefficient at 880 nm using a mass absorption cross section of 7.77 m2/g as 

recommended by the manufacturer. The PM1 mass concentration was estimated as the sum of the mass of non-refractory 

components obtained by ToF-ACSM and eBC mass concentration measured by the aethalometer as suggested by the second 

deliverable of Cost Action CA 16109 Colossal.  180 

Finally, a Hukseflux LP02-05 pyranometer was used to measure the surface global solar radiation with 5-minute resolution. 

3 Methodology 

3.1 Source apportionment of organic aerosol. 

The source apportionment of organic aerosol was performed using the positive matrix factorization (PMF) method (Paatero 

and Tapper, 1994) using the multilinear engine ME-2 (Paatero, 1999). The PMF is a multivariate factor analysis technique that 185 

allows the decomposition of the measured OA mass spectral matrix (X), where the matrix columns are the variables (m/z ions) 

and the matrix rows are the observations (ToF-ACSM timestamps), into two matrices: the factors or sources profiles matrix 

(F) and the contributions matrix (G): 

𝑥#$ = ∑ 𝑔#% · 𝑓%$
&
%'( + 𝑒#$ 						(1)		

where 𝑒#$ represent the elements of the residual matrix (E), accounting for unexplained information of X in the p factors 190 

solution. The number of PMF factors, p, is a pre-set parameter that must be established. Once the number of factors is fixed 

the algorithm solves Equation 1 iteratively, minimizing the Q function which is defined as: 

𝑄 = ∑ /)!"
*!"
0
+

#,$ 						(2)		

where 𝜎#$  are the measurement uncertainties corresponding to the 𝑥#$  input data. The solution with the correct number of 

factors should give Q/Qexp near unity, with Qexp being the expected value of Q and is calculated as Qexp = n·m-p·(n+m); being 195 

n the number of observations and m the number of variables).  
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To improve the source apportionment characterization and achieve environmentally meaningful solutions, the ME-2 

methodology allows establishment of a priori mass profiles of known OA sources, the so-called anchor profiles, based on 

previous scientific knowledge at experimental site (Canonaco et al., 2013) or on chamber data. The strength of this a priori 

constraint is modulated through the a-value approach (Paatero and Hopke, 2009; Brown et al., 2012). The a-value establishes 200 

how much deviation from the anchor profile the model allows to the solution factor. Thus, a fully constrained factor has an a-

value=0, whereas for unconstrained factors the a-value=1. The ME-2 engine initialization and the results analysis was done 

using the SoFi v.8 toolkit (Source Finder, Canonaco et al., 2013) for Igor Pro environment. The PMF was run for a range of 

solutions from 3 to 5 factors and the mass spectra considered ranged between 12 and 120 Th, since higher m/z ions contribute 

only marginally to the mass spectra and exhibit low signal-to-noise ratio (SNR<0.2).  205 

3.2 CCN estimations and activation properties using κ-Köhler theory. 

The 𝜅-Köhler theory establishes a mathematical relation between water vapor supersaturation ratio, critical diameter (which is 

the threshold size at which particles become CCN, Dcrit) and 𝜅 parameter (Petters and Kreidenweis, 2007). Therefore, from the 

overall 𝜅 of an aerosol population we can estimate the Dcrit at a certain SS using 𝜅-Köhler theory. This method assumes a 

homogenous aerosol population mixture (internally mixed) where all particles larger than this cutoff diameter activate (Jurányi 210 

et al., 2011). Thus, CCN number concentration, NCCN, is estimated summing up the PNSD from Dcrit to the upper limit of the 

size distribution as follows:  

𝑁--.(𝑆𝑆) = ∫ /.
/ 0123

𝑑 log𝐷3#$%
3&'!((55)

      (4) 

Alternatively, we can do the inverse calculation integrating the PNSD from its upper limit to the diameter at which the integral 

value equals the simultaneously measured NCCN(SS) with the CCNc. Then, the effective hygroscopicity parameter can be 215 

retrieved using 𝜅-Köhler theory from aerosol size distribution and CCN concentration measurements (Jurányi et al., 2011). 

These CCN-derived 𝜅 values (𝜅--.) quantify the effective hygroscopicity of activated particles in the CCNc and exhibit a 

dependency on SS (Kammermann et al., 2010). 

3.3 Estimation of aerosol hygroscopicity from chemical composition measurements. 

One of the most commonly used approaches to estimate the total aerosol hygroscopicity from chemical composition 220 

measurements is based on the Zdanovskii-Stokes-Robinson (ZSR) approach. Considering ambient aerosols as a mixture of 

individual compounds, the hygroscopicity parameter can be retrieved using a mixing rule in terms of the volume fractions of 

the chemical species (Petters and Kreidenweis, 2007) as follows: 

𝜅78)9 = ∑ 𝜅#𝜀##       (3)  

where 𝜀# is the volume fraction of each chemical species and 𝜅# its corresponding hygroscopicity. This approximation provides 225 

a successful explanation of observations as shown in previous studies (Bougiatioti et al., 2009; Rose et al., 2010; Wang et al., 

2010; Bougiatioti et al., 2016). The summation is performed over all chemical species considered for the calculation of 𝜅78)9 
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parameter. In this study we have considered three main terms in equation 3: OA, inorganic aerosol (IA) and eBC. Thus, 𝜅78)9 

can be estimated as follows: 

𝜅78)9 = 𝜅!"𝜀!" + 𝜅:"𝜀:" + 𝜅;-𝜀;-      (4)  230 

where  𝜅!" (𝜀!"), 𝜅:" (𝜀:") and 𝜅;- (𝜀;-) are the hygroscopicity parameters (volume fractions) of organic aerosols, inorganic 

aerosols, and BC, respectively. The contribution of IA to 𝜅78)9 considers some inorganic salts (ammonium nitrate, ammonium 

sulfate, ammonium bisulfate and sulfuric acid) present in the atmosphere. The volume fractions of these inorganic salts were 

obtained by the simplified ion pairing scheme presented by Gysel et al. (2007) using the inorganic species measured by the 

ToF-ACSM (SO4-2, NO3- and NH4+ ions). The density and hygroscopicity parameter for each inorganic salt were taken from 235 

previous studies (Kuang et al., 2020b; Wu et al., 2016) and are summarized in Table S1. 

The inorganic contribution to 𝜅78)9 is assumed to be a well-defined term in Equation 4. We assumed that BC particles are 

completely hydrophobic (𝜅;-=0) for calculating 𝜅78)9, which is a reasonable assumption as suggested in previous studies 

(Deng et al., 2019; Kuang et al., 2020b; Schmale et al., 2018). Unlike inorganic species that exhibit a well characterized 

hygroscopic behavior, the water uptake capacity of OA species is poorly understood because of the presence of diverse organic 240 

species  (Casans et al., 2023; Hallquist et al., 2009; Kanakidou et al., 2005; Rastak et al., 2017). This diversity makes 

determining 𝜅!" extremely challenging (Kuang et al., 2020a). In Section 4.2, we will present different OA schemes in term of 

the PMF solution to estimate 𝜅!" assuming different density and hygroscopicity values for each OA source. 

3.4 Performing non-analytical solutions for CCN predictions: neural networks. 

Apart from analytical solutions based on predefined relationships between variables, non-analytical solutions like machine 245 

learning techniques have become a powerful alternative to predict certain variables using ancillary information as input. 

Indeed, neural networks has been applied with remarkable success in recent years for regression problems in the framework 

of atmospheric sciences (Biancofiore et al., 2017; Comrie, 1997; Spellman, 1999), to relate atmospheric variables with non-

linear and highly complex behavior.  

For our regression problem, we built a neural network which uses 4 input parameters and has NCCN as the output parameter. 250 

Our neural network consists of a two-layer feed-forward network with sigmoid hidden neurons and linear output neurons. We 

chose 10 neurons hidden layer after verifying that results didn’t improve with more neurons. We used the back-propagation 

algorithm (Rumelhart et al., 1986) with Bayesian regularization (Foresee and Hagan, 1997) for training the network. Data were 

split in training, validation and test using 55% of the data for training, 20% of the data to halt training when generalization 

stops improving (neural network validation), and the remaining 25% of data was used for testing. Each subset of data was 255 

obtained by randomly selection of observations. The entire modeling process was performed using the neural net fitting tool 

of MATLAB software.  
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4 Results 

4.1 BioCloud field campaign overview. 

In this section we present an overview of the PM1 chemical composition including identification of OA sources  and the 260 

analysis of CCN activation properties from 8 June to 13 July 2021 within the framework of BioCloud field campaign. 

4.1.1 Sub-micron aerosol chemical composition and source apportionment. 

The average PM1 concentration during the campaign was 3.85±2.88 µg/m3, with 10-min average concentrations ranging from 

0.15 to 15.3 µg/m3. Figure 1a shows the mean PM1 concentration and relative contribution of the considered species (OA, SO4-

2, NO3-, NH4+, Cl-, eBC) to the total PM1. On average, the most abundant aerosol component is OA (2.68 µg/m3), followed by 265 

SO4-2 (0.46 µg/m3) and eBC (0.33 µg/m3), with relative contributions of 70%, 12% and 9%, respectively. Inorganic 

components (SO4-2, NO3-, NH4+, Cl-) represent 20% of the total PM1 concentration on average, indicating the large contribution 

of organics at this high-altitude remote site during summertime. Similar OA dominance is observed in remote sites worldwide 

in summertime (Fröhlich et al., 2015; Heikkinen et al., 2020; Jimenez et al., 2009; Ripoll et al., 2015; Zhang et al., 2007). The 

most abundant inorganic component is SO4-2 due to the higher SO2 oxidation rates under high insolation conditions that favor 270 

the formation of this compound (Pey et al., 2009; Titos et al., 2014). NO3- and NH4+ species exhibit similar low mass 

concentrations (0.15 µg/m3) probably due to the high summer temperatures that favor the instability of ammonium nitrate. Cl- 

shows a negligible concentration, near to the detection limit of the instrument. The mean eBC mass concentration (0.33 µg/m3) 

is in the range of those previously observed at SNS (Rejano et al., 2021), and in the range of values reported at other high-

altitude remote sites during summer, with values ranging between 0.2 and 0.5 µg/m3 across all sites (Ripoll et al., 2015; Zeb 275 

et al., 2020; Gramsch et al., 2020). 

To gain insight into the local and regional aerosol sources and the underlying atmospheric aerosol processes that control aerosol 

evolution, diurnal variations of the mass concentration of the measured aerosol species were investigated (Figure 1b). The 

mass concentration of inorganic species exhibited an increase throughout the day starting at 8:00 UTC (local time –2 h). NH4+, 

SO4-2  and NO3- mass concentrations followed a similar diurnal pattern. OA also increased at midday, but the increase is more 280 

sharped, reaching a maximum between 12:00-16:00 UTC. The eBC mass concentration increased more gradually, starting at 

3:00 UTC and reaching a maximum at 11:00 UTC. Based on these diurnal patterns, inorganic species and eBC are most likely 

transported from the Granada urban area due to upslope mountain breezes and the increase of the PBL height during daytime. 

OA exhibits a larger increase in concentration at midday hours compared to the other species (Figure 1b), which might suggest 

the influence of upslope transport but also to additional sources of OA in the vicinity of the measurement site (such as local 285 

emissions or secondary processes as nucleation). 
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Figure 1. a) Pie chart of PM1 inorganic species (SO4-2, NO3-, NH4+, Cl-), organic aerosol and eBC mass concentration averaged 
over the BioCloud campaign and b) mean diurnal pattern evolution for each species. 

Analyzing the OA mass spectra using PMF methodology, it is possible to infer whether the OA origin is locally formed and/or 290 

transported. To further explore the phenomenology of OA, the OA mass concentration was separated into different OA factors 

according to the PMF analysis. According to the Q/Qexp values and the physical interpretation of the PMF solution, the most 

reliable solution was the 3 factors solution with the following OA sources: hydrocarbon-like OA (HOA), less-oxidized 

oxygenated OA (LO-OOA) and more-oxidized oxygenated OA (MO-OOA). Once the three OA sources were identified, a new 

constrained PMF solution was obtained to improve the source apportionment. We constrained the HOA factor to the Crippa 295 

et al. (2013) anchor profile, which is considered the standard mass profile for HOA, with an a-value=0.1. The LO-OOA and 

MO-OOA factors were kept unconstrained to adapt better to the site-specific aerosol characteristics.  

The mass spectra profiles and the time-series for each OA factor are presented in Figure 2. As mentioned above, the first factor 

was constrained to the standard HOA profile and, therefore, the obtained mass spectrum has high contribution of CxHy+ 

fragments (m/z 41, 43, 55, 57, 69, 71; Figure 2a1), also known as aliphatic hydrocarbons. These ions are typically related to 300 

primary emissions of diesel exhaust (Canagaratna et al., 2010; Crippa et al., 2013). The other two factors accounted for virtually 

all OA at SNS (around 95%) and were resolved freely by the model. Both secondary factors (LO-OOA and MO-OOA) are 

quite oxidized with large contributions of m/z 28 and 44 (Figure 2b1 and 2c1). OA at this site is mostly composed of 

oxygenated OA, which agrees with previous observations at mountain sites during summertime conditions when SOA 

formation through photochemical oxidation is more efficient (Ripoll et al., 2015). The fraction of m/z 43 (C2H3O+) and 44 305 

(CO2+) ions relative to the whole mass spectra (f43 and f44, respectively) indicates the aerosol oxidation degree and allows 
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differentiation of the OOA into less oxidized OOA (i.e., LO-OOA with higher f43/f44 ratio) and more oxidized OOA (i.e., MO-

OOA, lower f43/f44 ratio)  (Fröhlich et al., 2015; Ng et al., 2010). 

The results of the PMF show average contributions of 5%, 36% and 59% of HOA, LO-OOA and MO-OOA, respectively, to 

the total OA concentrations during the measurement campaign. The low contribution of the HOA factor (which represents a 310 

3.5% of the total PM1 during the campaign), highlights the absence of important primary OA (POA) local sources close to the 

measurement site. However, sporadic peaks were observed throughout the field campaign (Figure 2a2), probably related to 

occasional local combustion emissions (Jaén et al., 2023). The first half of the campaign (before 26 of June) was characterized 

by a higher contribution of MO-OOA (mean values for this period were 2.0±1.4 and 0.7±0.8 µg/m3 for MO-OOA and LO-

OOA respectively), while LO-OOA becomes more relevant during the second half of the campaign (mean values for this 315 

period were 1.1±0.9 and 1.2±1.6 µg/m3 for MO-OOA and LO-OOA respectively) (Figure 2). The higher abundance of MO-

OOA in the first half of the campaign might be associated with less efficient transport and predominance of stagnant conditions 

favoring the presence of aged aerosols, while the higher LO-OOA concentration might be associated with more efficient 

transport to SNS due to vertical transport of particles and gaseous precursors from lower altitudes by orographic buoyant 

upward flows. These differences in the OA origin during each period can be related to different meteorological conditions for 320 

the two periods. 

Figure S1 shows the timeseries of meteorological variables (temperature, pressure and relative humidity) during the campaign. 

The second half of the campaign is characterized by higher temperatures, higher pressure and lower relative humidity compared 

to the first half.  These characteristics are likely to promote a more efficient mountain-valley breeze during the second half of 

the campaign. To check the effectiveness of aerosol transport due to mountain-valley breeze regime, eBC concentration can 325 

be used as a tracer of transported aerosols from lower altitudes, due to absence of local BC sources. During the second half of 

the campaign, eBC shows a more pronounced diurnal pattern reaching higher concentrations during midday hours compared 

with the first half of the campaign (Figure S2). Thus, the atmospheric condition differences during the campaign could explain 

the predominance of each OA factor. 
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 330 
Figure 2. Mass spectra of the three OA factors (left panels) and their time-series evolution (right panels) during the BioCloud field 

campaign. 

4.1.2 CCN activation properties 

Aerosol chemical composition plays an important role in defining aerosol hygroscopicity and CCN activation properties 

(Svenningsson et al., 2006; Liu et al., 2018). In this sub-section we link some aerosol physical properties which are directly 335 

related to the CCN activity, such as total particle concentration (Ntot), nucleation mode particle concentration (defined as the 

concentration of particles below 25 nm, Nnucl), Aitken mode particle concentration (diameters between 25 and 100 nm, NAit), 

accumulation mode particle concentration (defined as the particle concentration above 100 nm, Nacc), and some activation 

parameters (NCCN, Dcrit, 𝜅--. ) at different SS values with the sub-micron chemical composition described previously. A 

statistical overview of these parameters (mean, median, standard deviation, percentiles 25 and 75) are shown in Table S2. The 340 

mean NCCN values ranged from 320±280 cm-3 at SS=0.2% to 800±700 cm-3 at SS=0.6%. The mean Dcrit value at SS=0.2% is 

111±21 nm, indicating that particle activation is limited to accumulation mode particles. At higher SS some Aitken mode 

particles start to contribute to NCCN, since mean Dcrit values decrease with SS (72±18 nm at 0.4% and 58±16 nm at 0.6%). In 

contrast, CCN-derived 𝜅 values (𝜅--.) are mainly constrained to the range between 0.1 - 0.25 (which is the interquartile range 

for all SS, see Table S2), showing little dependence on SS with median values of 0.18, 0.15 and 0.13 at SS=0.2%, 0.4% and 345 

0.6%, respectively. Overall, the aerosol activation properties agree with previous observations of these parameters at SNS 
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(Rejano et al., 2021; Casquero-Vera et al., 2020)  and with those reported at other mountain sites during summer season (Asmi 

et al., 2012; Georgakaki et al., 2021; Jurányi et al., 2011; Rejano et al., 2021). 

To evaluate the influence of chemical species on the activation properties, Figure 3 shows the mean diurnal patterns of OA 

factors, IA, eBC and particle concentration for each aerosol mode (Nnuc, NAit and Nacc), along with 𝜅--. and particle and CCN 350 

number concentrations. All variables exhibit a clear diurnal pattern, but with some differences among them. Regarding particle 

number concentration in the different modes, Nnucl exhibits a clear and sharp peak around midday hours (maximum at 14:00 

UTC) due to the impact of new particle formation (NPF) events (Figure 3a). Nacc exhibits a flatter pattern, with the increase in 

concentrations observed at midday mostly associated with vertical transport due to the mountain-valley breeze regime and 

PBL height increase along the day. NCCN at all SS values follows a similar diurnal evolution (Figure 3b) as Nacc with maximum 355 

CCN concentrations observed during the midday hours and minimum concentrations during nighttime.  

The overall hygroscopicity of the activated particles (𝜅--.) exhibits an inverse diurnal pattern to the other aerosol variables 

(Figure 3d), with a decrease during morning and midday hours coinciding with the NCCN increase. This decrease of 𝜅--. is 

accompanied by an increase in the OA contribution to PM1 (Figure 3d), however, it is not directly related because 𝜅--. starts 

to decrease around 3:00 UTC and the OA/PM1 ratio starts to increase around 6:00 UTC.  The OA/PM1 ratio maximum (values 360 

higher than 0.75) was observed between 12:00-15:00 UTC due to the higher relative increase of LO-OOA and MO-OOA with 

respect to IA and eBC during those hours (Figure 3c) coinciding with the 𝜅--. minimum between 13:00-14:00 UTC for all 

SS. Figure 3c reveals that all species are affected by vertical upslope transport during morning and midday hours, however, 

LO-OOA can be also affected during midday hours by SOA formation linked to photochemical oxidation induced by high 

concentration of O3 and NOx (Figure S3a) together with high temperatures (Figure S3b) (Minguillón et al., 2016; Via et al., 365 

2021). During nighttime, we observed the highest values of 𝜅--.; this is probably related to the large contribution of inorganics 

to PM1 in this period since IA species have the highest hygroscopicity values. At all SS investigated, 𝜅--. values are very 

similar during nighttime (around 0.32), while 𝜅--. differences among SS values are enhanced during midday hours (Figure 

3d). This difference is likely due to the aerosol population becoming more dominated by OA (mainly LO-OOA) during midday 

and requiring higher SS to activate less hygroscopic particles. Note that the diurnal pattern of 𝜅--. at all SS is constrained 370 

between 0.15 to 0.3, which is in the typical range for hygroscopic organic species (Kuang et al., 2020a), in agreement with the 

predominance of MO-OOA in our PM1 measurements. These observations indicate that OA and its oxygenation degree (higher 

or lower contribution of MO-OOA/LO-OOA) might be an important factor controlling the overall aerosol hygroscopicity at 

SNS during the day.  
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 375 

Figure 3. Mean diurnal pattern of a) particle number concentration and each aerosol mode (Ntot, Nnucl, NAit, Nacc); b) CCN 
concentrations, c) OA factors and IA species mass concentration and d) OA and PM1 ratio and CCN-derived kappa. 

4.2 Predicting CCN concentration: role of organic aerosol. 

In the previous section we observed that the diurnal variability of the κ parameter might be related with the OA content as well 

as with its oxidation degree. In this section we apply different approaches to predict CCN concentrations and evaluate the 380 

impact of OA sources in the overall performance of the closure scheme depending on the underlying assumptions. We use the 

total aerosol hygroscopicity calculated from PM1 chemical composition measurements (𝜅78)9) using three different organic 

hygroscopicity schemes for CCN calculation and discuss the degree of agreement of the different CCN closures under different 

atmospheric conditions. Then, another approach to estimate 𝜅!"  in terms of the f44 parameter is presented to link the 

hygroscopicity changes with the aerosol oxidation degree. Finally, a neural network-based approach using ancillary parameters 385 

is used to predict the CCN concentrations at Sierra Nevada. 
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4.2.1 Using different OA hygroscopicity schemes 

Using the bulk chemical composition measurements, we estimated the overall 𝜅78)9 as explained in Section 2.4 to predict 

NCCN using 𝜅-Köhler theory and PNSD data. For the IA contribution to  𝜅78)9, the Cl- species was neglected due to its low 

contribution at SNS (Cl- concentrations were very close to the detection limit of the instrument), as shown in Section 4.1.1. In 390 

this study we used different 𝜅 values for the obtained OA factors (HOA, LO-OOA and MO-OOA) to compute the overall 

𝜅78)9 in three different ways: 

• Scheme 1: we assume that 𝜅<!" = 𝜅=!>!!" = 𝜅?!>!!" = 0.1, which is the typical value observed for 𝜅!" in a wide 

variety of environments (Gunthe et al., 2009; Jurányi et al., 2011; Rose et al., 2010; Schmale et al., 2018). 

• Scheme 2: we assume that HOA are hydrophobic particles, 𝜅<!"  = 0 (Cappa et al., 2011; Jimenez et al., 2009; 395 

Kanakidou et al., 2005; Thalman et al., 2017), and LO-OOA and MO-OOA components have a constant 𝜅 value of 

0.1.  

• Scheme 3: since the level of oxidation of OA affects its hygroscopicity, we assume specific hygroscopicity values for 

LO-OOA and MO-OOA (𝜅=!>!!"	= 0.08 and 𝜅?!>!!"	= 0.16) as reported by (Cerully et al., 2015). HOA is again 

assumed to be non-hygroscopic (𝜅<!"	= 0). 400 

Table 1 summarizes the densities and hygroscopicity values of HOA, LO-OOA and MO-OOA used for calculating the 𝜅78)9 

value for the different OA schemes. The volume fractions of OA components were obtained assuming the density of OOA as 

1.4 g/cm3 and for HOA the typical POA density of 1 g/cm3 was assumed (Kuang et al., 2020a; Wu et al., 2016). 

 
Table 1. Assumed densities and hygroscopicity values for each OA factor in the different OA schemes. 405 

OA factor Parameter 

 𝜌 (g/cm3) 𝜅 

     

  Scheme 1 Scheme 2 Scheme 3 

     

HOA 1 0.1 0 0 

LO-OOA 1.4 0.1 0.1 0.08 

MO-OOA 1.4 0.1 0.1 0.16 

 

Figure 4 shows the violin plots of the retrieved 𝜅 values for each OA scheme, 𝜅78)9, and the calculated 𝜅 values from the 

CCNc measurements, 𝜅--., at different SS. The 𝜅78)9  values exhibit lower variability (ranging from 0.1 to 0.35) compared to 

the 𝜅--. values (from 0.06 to 0.7). The probability density function (PDF) of 𝜅78)9 for schemes 1 and 2 are very similar, with 

maximum around 0.14. The main difference in the data distribution between both schemes is observed at low hygroscopicity 410 
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values, which have been identified as periods of higher HOA contribution (i.e., during HOA peak events). Scheme 3 exhibits 

a clearly different data distribution compared to schemes 1 and 2 due to the assumption of a time dependent 𝜅!"  in terms of 

the relative contribution of LO-OOA and MO-OOA factors. In general, scheme 3 results in higher 𝜅78)9 values (mean and 

median values are 0.20) since we assumed a higher hygroscopicity for the MO-OOA factor, which is the main factor controlling 

OA at SNS. Also, Figure 4 shows that the data is more homogenously distributed around the mean value for scheme 3, while 415 

the distributions for schemes 1 and 2 are skewed towards lower values. 

 
Figure 4. Violin plot of κ distribution data for the chemical schemes (κchem) and the CCN calculation at different SS values (κCCN). 
The boxes represent the interquartile distance, and the asterisk is the mean value. 

The 𝜅--. values exhibit very different data distributions relative to the 𝜅78)9 values. All 𝜅--. PDFs show a clear maximum 420 

and positive skewness with some outlier observations (higher mean than median values). This is likely due to the larger 

variability of the parameters used to retrieve aerosol hygroscopicity in the supersaturated regime (i.e., NCCN and PNSD via 𝜅-

Köhler theory) compared to smaller changes in chemical composition. This is particularly important in the case of SNS since 

the sub-micron chemical composition is dominated by OA, and despite the changes in hygroscopicity among OA constituents, 

the range of change in 𝜅78)9	 is quite limited, because 𝜅78)9  is less sensitive to temporal changes in composition. As 425 
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anticipated, higher SS values result in a shift to lower values in the data distribution due to activation of less hygroscopic 

particles. Across all SS values, mean 𝜅--. are higher than 𝜅78)9 for the different OA schemes. However, the differences 

between 𝜅--. and 𝜅78)9 median values are minimal. It is important to note that the 𝜅--. accounts only for activated particles 

in the CCNc, whereas 𝜅78)9  accounts only for aerosol particles in the size range allowed by the aerodynamic lens in the ToF-

ACSM. Therefore, depending on the SS, both instruments may be measuring particles in different size ranges (as mentioned 430 

in Section 2.2). This effect might have the largest influence at SS=0.6% because the median Dcrit values is 60 nm which is 

below the optimum size range of the ToF-ACSM (70-800 nm). Moreover, both methods assume internally mixed particles to 

estimate the overall 𝜅, which is an important limitation in the case of externally mixed particles (Wang et al., 2010; Ren et al., 

2018; Kulkarni et al., 2023).  

Based on the calculated 𝜅78)9 values we estimated NCCN  using 𝜅-Köhler theory with a time-resolution of 30-minutes. In 435 

addition, we have used a simpler approach to estimate NCCN from PNSD data, which consists in assuming that particles above 

a certain size are activated. In this case, we selected 80 nm as the fixed activation diameter and N80 (number concentration of 

particles with diameter larger than 80 nm) is used as a proxy for NCCN. This threshold diameter has been selected because at 

medium SS values (0.4-0.5%), the Dcrit for a wide variety of aerosol types is constrained between 70-90 nm (Rejano et al., 

2023). The comparison between predicted and measured NCCN at the different SS values for the different OA schemes is shown 440 

in Figure 5. The results show that CCN closure  dependence depends on SS when the N80 approach is used. This is expected 

since this simple approach does not include the Dcrit dependence with SS. In this case, the predicted NCCN values overestimate 

the measurements at low SS and underestimate the measurements at high SS level. At SS=0.4% the mean Dcrit is 72±18 nm 

and, therefore, despite the diurnal and day-to-day variability in Dcrit which might hamper the predictions using N80, the N80 
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proxy explains very accurately the NCCN observations at this specific SS with the best correlation coefficient (r=0.94) and slope 445 

of the regression (1.06). 

 

Figure 5. Log-log scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN 
obs) using the four prediction schemes. The solid blue line represents the 1:1 line and the dashed lines are the +/-10%.  The linear 
equation and Pearson correlation coefficient (r) is also included. 450 

For the chemical CCN closure approach (OA schemes 1-3), all the schemes overestimate the CCN observations with slope 

values ranging from 1.08 to 1.4 and correlation coefficients between 0.89-0.94 (Figure 5), indicating similar CCN closure for 

all SS and schemes. A slightly worse agreement between predictions and observations is observed at SS=0.2% probably due 
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to higher discrepancy between 𝜅--. and 𝜅78)9 at this SS, as previous studies have pointed out for low SS values  (Cai et al., 

2018; Mei et al., 2013). Closure results for schemes 1 and 2 are very similar, despite the observed difference in 𝜅78)9 values 455 

between both schemes. This similarity is due to the low contribution of HOA at SNS. For scheme 3, the results indicate that 

assuming a lower/higher 𝜅  for LO-OOA/MO-OOA, respectively, rather than the standard 𝜅!" =0.1, leads to a larger 

overestimation of the predicted NCCN (especially at SS=0.2). Moreover, scheme 3 results show no improvement in the 

correlation coefficients compared to the other OA schemes. Despite the large variability observed in the OA components, our 

results demonstrate that the simple approach of assuming a constant 𝜅!" of 0.1, even for a complex environment dominated 460 

by OA, seems to provide satisfactory predictions of CCN concentration. 

These results agree with other CCN closures studies based on bulk chemical composition under varying assumptions of OA 

hygroscopicity (e.g., Kulkarni et al., 2023b; Meng et al., 2014; Ren et al., 2018b; Zhang et al., 2017b). Mei et al. (2013) 

obtained good CCN closures at OA-dominated conditions (70-80% of PM1) assuming a constant 𝜅!" values of 0.08 and 0.13 

(which are very close to 𝜅!"	= 0.1 used in this study). Rose et al. (2011) reported NCCN overestimations of 20% assuming 𝜅!" 465 

= 0.1 near Guangzhou area (China), but better results (overestimation of 10%) were observed when further assumptions about 

the hygroscopicity of low volatility particles were included. Assuming 𝜅!"	= 0.1 using both bulk and size-resolved chemical 

composition, Meng et al. (2014) showed at a coastal site in Hong Kong that NCCN overestimations reached values of 26% and 

10%, respectively. These authors concluded that CCN closures can be less sensitive to hygroscopicity considerations and some 

mixing state considerations may play a role. In contrast, Ren et al. (2018b) demonstrated at an urban environment that aerosol 470 

mixing state plays a minor role in CCN prediction when 𝜅!" exceeds 0.1. They obtained good closure (closure ratios of 1.0-

1.16) using bulk chemical and internally mixture assumptions in the Beijing urban area under clean conditions. Siegel et al. 

(2022) also obtained accurate NCCN closure results (slopes between 0.82-0.91) in the Arctic under internally mixed assumptions 

by characterizing very precisely the organic hygroscopicity based on laboratory experiments and field observations. When 

considering remote sites without the influence of local emissions, Cai et al. (2018) demonstrated that either bulk or size-475 

resolved chemical composition measurements can achieve practically the same agreement in NCCN predictions. Therefore, the 

accuracy of NCCN predictions can exhibit a wide variety of results depending on the characteristics of the experimental site and 

the atmospheric conditions. 

To get a deeper understanding of the performance of CCN predictions and gain knowledge about how the differences in OA 

composition during the day may or may not affect the CCN predictions, we calculated the diurnal evolution of the relative bias 480 

([NCCN pred-NCCN obs]/NCCN obs) of the N80 approach and each OA scheme. Since the SS did not appear to cause significant 

differences in the estimation of the CCN among the three OA schemes, from now on, we focus the analysis at SS=0.4%. Figure 

6 shows the median diurnal evolution of the relative bias of each scheme for SS=0.4%. In this analysis we consider CCN 

predictions to be accurate when the associated uncertainty is within the range of ±10% (grey shadowed area in Figure 6) which 

is the instrument uncertainty associated with NCCN (Schmale et al., 2017). All schemes exhibit similar diurnal patterns in 485 

relative bias with negative values during nighttime hours and positive during midday hours. There is a clear difference between 

the relative bias pattern obtained by N80 and the OA schemes. Figure 6a shows both the diurnal pattern of Dcrit at 0.4% and the 
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threshold size of 80 nm. As expected, the difference between the observed Dcrit and the assumed threshold size (80 nm) is 

clearly related to the bias value and, in general, the positive/negative bias is associated Dcrit values larger/smaller than 80 nm. 

The largest deviations with respect to observations are found during nighttime hours (underestimation of NCCN obs between 20-490 

30%), when the Dcrit is considerably below 80 nm. Therefore, the use of this approach should be limited to situations when the 

Dcrit is fairly constant and restricted to a specific SS.  

 

Figure 6. Diurnal evolution of the median relative bias in CCN predictions at SS=0.4% for each prediction scheme. The grey shaded 
area in all panels represents the ±10% relative bias. The Dcrit at SS=0.4% is shown in panel a) and the horizontal line represents the 495 
threshold size of 80 nm. The ratio between LO-OOA and MO-OOA mass concentrations shown in panel b).  

For the OA schemes, the diurnal evolution of the relative bias is similar to the N80 approach with negative relative bias during 

nighttime and positive during daytime. The relative bias  ranges from -6% to -16% for all OA schemes during the nighttime 

period which is a smaller range than observed for the Dcrit = 80 nm scheme. The nighttime period is associated with free 

tropospheric conditions dominated by aged aerosol (OA is dominated by MO-OOA). Conversely, during morning/midday 500 

hours the relative bias increases from its minimum value at 6:00 UTC (3-8% underestimation) to its maximum value at 10:00 

UTC (14-20% overestimation) (Figure 6b). The LO-OOA/MO-OOA ratio and relative bias diurnal patterns show similar shape 

(Figure 6b), but with 1 hour of delay between the maxima values for each parameter. This suggests that the largest bias occurs 

when the relative contribution of LO-OOA and MO-OOA starts changing. When the ratio LO-OOA/MO-OOA is constant the 

relative bias remains constant as well. These results indicate that the relative bias in CCN predictions is highly dependent on 505 

the LO-OOA and MO-OOA variability and their relative contribution to OA. Since these factors have different degrees of 

oxidation, in the next section we present a new OA scheme that describes 𝜅!" in terms of OA oxidation degree.  
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4.2.2 Parameterizing 𝜿𝑶𝑨 in terms of OA oxidation degree using f44 parameter 

In this sub-section we calculate 𝜅!" based on 𝜅--. assuming that 𝜅:" and 𝜅;- are well-known terms in Equation 5 (Cerully et 

al., 2015; Kuang et al., 2020b; Thalman et al., 2017): 

𝜅!" =
B))*>B+,C+,>B-)C-)

C.,
					(5)		515 

With this approach, the mean and median values of calculated 𝜅!" are 0.18 and 0.15 at SS=0.4%, respectively, which are 

values higher than the standard value of 𝜅!"=0.1 but are within the range of ambient 𝜅!" observations in the supersaturated 

regime (Levin et al., 2014; Gunthe et al., 2011; Kawana et al., 2016). The inferred values of 𝜅!" confirm the predominance of 

MO-OOA species in the activated particles at SS=0.4% since it is very close to the assumed value of 0.16 for  𝜅?!>!!" in the 

OA scheme 3 (Table 1). Figure S3 shows the probability density function (PDF) for the effective 𝜅!" at SS=0.4% retrieved 520 

with this method.  The PDF distribution shows its maximum at 𝜅!"=0.11, which is similar to the assumed 𝜅!" (~0.1) for 

scheme 1. The PDF also exhibits a clear positive skewness revealing the influence of more hygroscopic species at SS=0.4%   

Previous studies have parameterized 𝜅!" as a function of the oxidation degree using the f44 parameter (Kuang et al., 2020a). 

Therefore, we explore a potential improvement of the 𝜅!"   calculation at SNS by establishing a new OA scheme (named here 

as scheme 4) based on a linear relationship between 𝜅!" and f44. This enables calculation of the 𝜅78)9 as follows: 525 

𝜅78)9 = (𝑚 · 𝑓DD + 𝑛)𝜀!" + 𝜅:"𝜀:" + 𝜅;-𝜀;- 						(6)		

where m and n are the slope and the intercept of the linear relationship between 𝜅!" and f44. To establish the parameterization, 

the dataset has been split randomly in two subsets: the first is used to obtain the linear regression and the second to check its 

performance for CCN calculation. Each data subset consists of 50% of the data.  In the first subset of data, we re-sampled the 

f44 values into 80 bins and calculated the corresponding average 𝜅!"  values for each f44 bin. Then, the empirical 530 

parameterization was obtained by establishing a linear regression between the averaged 𝜅!" values and f44. As shown in Figure 

7 there is a clear linear trend between the binned values of 𝜅!" and f44. For high values of f44 (especially above 0.26) the 𝜅!" 

values exhibit higher dispersion. The 𝜅!" and f44 relationship obtained in this analysis (slope of 3.24) is for 0.2 < f44 < 0.32. 

These high value of f44 are due to the high oxidation degree of OA and the low contribution of HOA at this site. Previous 

studies that reported a linear relationship between 𝜅!" and f44 were developed for less oxidized aerosol with f44 values ranging 535 

from 0.05 to 0.20  (Duplissy et al., 2011; Kuang et al., 2020b; Chen et al., 2017; Mei et al., 2013). Those studies also reported 

lower slopes for the 𝜅!"-f44 relationship, ranging between 2.1-2.4. Like the SNS analysis being reported on here, these studies 

from the literature were performed at OA-dominated sites during warm season. However, these other sites observed lower f44 

values due to a higher contribution of HOA and biomass burning related OA (Duplissy et al., 2011; Mei et al., 2013; Chang et 

al., 2010). For fresh emitted biomass burning particles, Chen et al. (2017) also obtained a lower slope value of 2.3 associated 540 

with low f44 values (f44 <0.1). A significantly lower slope for the 𝜅!"-f44 relationship (1.04) was reported by Kuang et al. 
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(2020a) for measurements on the north China plain during winter where the aerosol composition was dominated by higher 

contribution of HOA and coal combustion OA (f44 <0.15 ). In contrast to these values reported in the literature, the 𝜅!"-f44 

relationship retrieved in our study is for higher values of f44 and exhibits the largest slope. Our results therefore suggest that 

the fit to the 𝜅!"-f44 relationship depends on the oxygenation degree of the organic particles. However, some of the variability 545 

observed among studies in the 𝜅!"-f44 relationship might arise from differences in 𝜅!" calculation, such as the value of SS 

used and/or whether bulk or size-resolved measurements were available.  

 

Figure 7. Scatter plot of κOA at SS=0.4% respect to f44. The linear regression is applied to the binned data. 

After applying scheme 4 to the other half of the dataset, the CCN closure at SS=0.4% exhibits a similar slope and correlation 550 

coefficient (1.13 and 0.93, respectively, see Figure 8a) as the three other OA schemes. For high f44 values (> 0.25) the CCN 

closure is better (slope of 1.05), while for low f44 values (<0.25) the CCN predictions tend to overestimate the CCN 

concentrations and exhibit higher data dispersion. This is also observed in the median diurnal pattern of the relative bias (Figure 

8b). During nighttime conditions (when high f44 values are observed) the new OA scheme can explain the observations within 

the ±10% range and improves the CCN closure relative to the previous OA schemes. However, the relative bias increases up 555 

to 35% (Figure 8b) during morning and midday hours when the aerosol is characterized by lower f44 values associated with 

higher LO-OOA contribution. The sensitivity of 𝜅!" to changes in f44 is highly dependent on aerosol sources and atmospheric 

conditions, and significant deviations have been observed depending on the site (Kuang et al., 2020a). Our results are 

comparable with those of Zhang et al., (2016). They analyzed the impact of aerosol oxidation level on CCN predictions at a 

suburban site in Northern China using the 𝜅!"-f44 relation presented by (Mei et al., 2013). They showed that for OA mass 560 

fractions higher than 0.6 the NCCN predictions are very sensitive to f44 values and the best CCN closures were observed for 
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f44>0.15 with slope value around 0.94 at SS=0.39%. As observed in this study and in (Zhang et al., 2016), accurate NCCN 

predictions at OA-dominated sites using 𝜅!"-f44 relation are challenging since both 𝜅!" and NCCN are very sensitive to f44 

values. 

 565 

Figure 8. a) Scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN obs) 
using the OA scheme 4. Datapoints are colored-coded by the corresponding f44 value. Datapoints with f44>0.25 are also represented 
as small black dots The black dash line represents the 1:1 line. The linear equation and Pearson correlation coefficient (r) are also 
included for all data and for filtered data in parenthesis. The yellow solid and dash lines represent the linear regression of all and 
filtered data, respectively.  b) Median diurnal evolution of the relative bias at SS=0.4% of the OA scheme 4 (left Y axis) and f44 (right 570 
Y axis). The grey shaded area represents the ±10% relative bias. The red shaded area represents the relative bias range for the other 
OA schemes shown in Figure 6b. 

To sum up, the new 𝜅!"  calculation using f44 parameterization shows good agreement between CCN calculations and 

observations during nighttime (bias ranging between 0-10% from 21:00 UTC to 6:00 UTC), however, it results in worse 

predictions during morning and midday hours at SNS. After verifying that all OA schemes for calculating 𝜅!" yield nearly 575 

identical results, with the most significant biases occurring under conditions influenced by daytime vertical upslope transport 

of particles and/or NPF events, we conclude that using a bulk 𝜅78)9 to predict NCCN consistently results in discrepancies with 

observations. The clear diurnal variability of aerosol properties and atmospheric conditions may require size-resolved chemical 

composition or mixing state assumptions for the aerosol population, like externally mixed aerosol or even combination of 

aerosol populations with different mixing state (Kulkarni et al., 2023; Zhang et al., 2017; Ren et al., 2018), to improve the 580 

results throughout the day. 

4.2.3 Non-analytical approach for CCN prediction: neural networks 

In this section, we develop a prediction scheme based on a neural network that uses 4 input parameters (N80, OA/PM1, f44 and 

surface global radiation) to account for the main features affecting the CCN concentration at SNS, respectively: aerosol 
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concentration in the CCN-active size range, OA contribution to total PM1 and its oxygenation degree (related to OA 585 

hygroscopicity) and insolation conditions that might affect secondary processes influenced by photochemistry. More details 

on the neural network architecture were explained in Section 3.4. 

Figure 9 shows the performance of the neural network approach for CCN estimation at SS=0.4% (slope of 0.92 and correlation 

coefficient of 0.96). This neural network approach  shows the best correlation with observations in this study. Comparing with 

the analytical approaches using bulk chemical composition measurements, this model shows a general underestimation of 590 

measurements (slope <1) contrasting with the overestimation obtained for all OA scheme approaches (all slopes >1). In terms 

of capturing the diurnal variability, this new approach performs better, since the median diurnal pattern remains within the 

±10% range (Figure 9b). The neural network can describe NCCN variability throughout the day, even during morning and 

midday hours when all four OA schemes exhibited the highest bias values. The neural network scheme also explains the CCN 

variability during the most complex aerosol conditions at SNS. The inclusion of the surface global radiation in the neural 595 

network model acts as a proxy of photochemical activity and secondary processes influence which helps to diminish the 

overestimation peak observed for all OA schemes during the midday hours.  

This newly developed model is able to manage the non-linear and time-dependent relationships between variables during the 

hours when aerosol population might be an external mixture of background particles, upslope transport particles and/or 

particles produced during NPF events, suggesting it is a suitable approach for CCN prediction throughout the day. Park et al. 600 

(2023) also proposed machine learning approaches to develop CCN predictions based on multiple linear regression and non-

negative matrix factorization techniques. They concluded that these methods are robust  and capable of simulating either 

internal or external mixing conditions. However, the CCN predictions observed in our study are more accurate (R2=0.88) than 

the results observed by Park et al. (2023) (R2 between 0.71-0.81). This might be due to the input parameters considered in the 

neural network, since Park et al. (2023) only considered aerosol size distribution measurements without any consideration of 605 

chemical composition or hygroscopicity. Nair et al. (2021) used a random forest regression model and also reported strong 

agreement between CCN estimations and observations during an aircraft campaign. They used model-simulated data of aerosol 

composition, atmospheric trace gases and meteorological variables without aerosol size information to estimate NCCN at 

SS=0.4%, finding a Kendall correlation coefficient of 0.76. 

Our analysis along with these previous literature results indicate that machine learning approaches are very useful for 610 

accurately predicting NCCN under different conditions in terms of other aerosol properties. Further, this suggests that CCN 

coverage can be improved worldwide by using machine learning and making use of more routinely measured parameters  such 

as aerosol size distribution, OA properties and global radiation. However, further studies assessing the potential of these tools 

at multiple sites and during long-time scales are still necessary. 
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 615 

Figure 9. a) Scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN obs) for 
the testing sub-dataset (25% of the whole dataset) at SS=0.4% using the neural network approach. The linear regression and Pearson 
correlation coefficient (r) are also included. b) Median diurnal evolution of the relative bias at SS=0.4% of the neural network model. 
Also, the grey shaded area represents the ±10% relative bias. 

5 Summary and conclusions 620 

We analyzed the influence of 𝜅!" on CCN estimations from bulk chemical composition measurements using different OA 

schemes to describe the overall aerosol hygroscopicity. We investigated the physicochemical properties and CCN activity of 

the aerosol population at a high-altitude mountain site (SNS station) in the south-eastern Iberian Peninsula, where atmospheric 

conditions can allow cloud formation.  

Our results show the important contribution of OA to the total PM1 mass concentration at SNS where it represents up to the 625 

70% of the PM1. After applying PMF analysis, we have determined that MO-OOA and LO-OOA are the main factors that 

control both OA and total PM1. During nighttime hours aerosol particles are more aged and hygroscopic with a predominant 

contribution of MO-OOA and inorganic species. During the morning (6:00-10:00 UTC) the aerosol population starts to be 

affected by orographic buoyant upward flows of aerosol from the urban area due to mountain-valley breeze regime and PBL 

influence. During this time LO-OOA and eBC make a higher relative contribution to the aerosol population, resulting in a 630 

decrease in the overall hygroscopicity. The aerosol population properties continue to change during midday hours (11:00-

16:00 UTC, highest insolation hours), when the LO-OOA factor and nucleation mode particles exhibit the highest 
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concentration of the day. This is likely caused by SOA formation through photochemical reactions during NPF events, in 

combination with other sources such as upslope transport.  

The CCN concentration has been estimated by using different OA hygroscopicity schemes based on bulk chemical 635 

composition. CCN closure for all OA schemes exhibited slopes and correlation coefficients in the range between 1.08-1.40 

and 0.89-0.94, respectively. We find that using a fixed size threshold for CCN activation exhibited a very pronounced diurnal 

pattern. All OA schemes investigated resulted in similar CCN closure statistics. OA schemes performed better at night (bias 

between -16% and -6%), when the OA is more oxidized and the aerosol is more aged, than during the day, when the OA is 

less oxidized, and the aerosol is more influenced by photochemical and boundary layer processes (bias from 0% to 20%). We 640 

also propose a new OA scheme based on the f44 parameter, which reflects the oxidation degree of the OA and results in similar 

overall values as the other OA schemes for the closure slope and correlation coefficient (1.13 and 0.93, respectively). The new 

OA scheme did improve the closure results for more aged aerosol (f44>0.25) which is measured at night, but not during the 

day (bias values up to 40%) when the aerosol is more complex and f44 values are lower. These findings indicate that factors 

beyond the bulk 𝜅!" characterization must be considered when the aerosol is more complex.  645 

We attribute the observed positive bias of all OA schemes to two main causes. First, the ToF-ACSM provides information of 

a limited aerosol size range often dominated by accumulation particles which is more affected by inorganic species (Meng et 

al., 2014; Che et al., 2016, 2017) and, therefore, the real 𝜅78)9 of the whole aerosol population might be overestimated by 

𝜅78)9 measured with the ToF-ACSM. In addition, we must consider the effect of the well-known differences in the size ranges 

considered between the different instruments in this field campaign (ToF-ACSM, 70-700 nm; SMPS, 12-535 nm and CCNc, 650 

none size cutoff). Second, when the aerosol population consists of a complex mixture of particles, which at SNS can be 

observed during PBL influence conditions, the underlying assumptions for estimating CCN predictions based on internally 

mixed aerosol particles can introduce an intrinsic bias and  𝜅!" assumptions have a secondary role. Moreover, during morning 

and midday hours related to more complex conditions, the relationship between variables might change over time and can have 

a non-linear nature. Therefore, the analytical model approaches presented here cannot explain the CCN changes along the day. 655 

The big take-away is that the complexity of the aerosol should be considered when using bulk chemical composition 

measurements to predict CCN concentrations worldwide .  

For that reason, we built a neural network approach which is able to predict CCN concentrations throughout the day. Using 

four input parameters for the neural network (N80, OA/PM1, f44 and surface global radiation), we were able to predict accurately 

NCCN in all conditions throughout the day (within ±10% relative bias) revealing that this approach was the best for CCN 660 

predictions at this complex remote site. It is important to note that the disadvantage of predicting atmospheric parameters using 

neural networks is that the model is a “black box” which is trained with data of a specific site and can only forecast in that 

specific site or similar locations. Despite this, it may be possible to use neural networks improve our understanding of global 

CCN coverage using few aerosol parameters without needing to consider details of aerosol complexity such as mixing state. 

 665 
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