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REVIEWER #1 

 

AC:  Dear Referee, we are grateful for the time dedicated to the revision of our manuscript and for 

the suggestions, which help us to improve our paper. Here we provide a point-by-point response to 

his/her comments. All required changes will be included in the new manuscript version.  

 

 
RC (1): This paper presents a valuable collation of historical snow records for an understudied region. 

As such, the authors should fully document and deposit the data in a public repository, in compliance 

with the Copernicus Publications data policy: https://www.the-

cryosphere.net/policies/data_policy.html 

AC (1): Following this valuable suggestion, we have deposited the dataset that supports this study in 

the Zenodo open data repository (CERN). The dataset can be accessed through the following link: 

https://zenodo.org/records/12699507 

 
RC (2): The cluster analysis is detailed, but I am not sure that the discussion reveals much more than 

could have been illustrated by plotting the snow metrics against elevation and examining the outliers. 

Although the wavelet analysis is rather preliminary and descriptive, it presents results and so should 

be moved to the Results section. 

AC (2): Following your recommendation, in new manuscript weôll move the wavelet analysis in the 

Results section.  

 

RC (3): 15 

The difference between ñsnow cover durationò and ñnumber of days with snowò is not clear, and is 

not made clear until line 183. State ñnumber of days with snowfallò throughout. 

AC (3): Ok, thank you for the suggestion.  

 

RC (4): 31 

Snowfall is certainly an essential climate variable, but it is not a GCOS Essential Climate Variable 

distinct from precipitation, so do not use that specific term. 

AC (4): Ok, in the new manuscript version weôll remove this term. 

 

RC (5): 257-300 

The description of Climatol tests is barely comprehensible without reading the references. 

AC (5): Following this suggestion, we have revised the description of Climatol test. Here we provide 

the new description. Note that the changes with respect to the original manuscript version are 

highlighted in yellow.  

 

ñThe tolerance test has been performed using the Climatol method. The latter has been developed by 

Guijarro (2018) and is widely employed for the QC, homogenization and in filling of the missing data 

https://www.the-cryosphere.net/policies/data_policy.html
https://www.the-cryosphere.net/policies/data_policy.html


for a set of climatological time series. The Climatol data processing starts with a normalization of the 

original data. In this respect, Climatol offers different approaches for normalization, depending on 

the climatological variable. In this study, the type of normalization (std) has been set to 1 (which 

means that data normalization is based on deviations from mean) for SCD and NDS, whereas we 

selected std = 2 (which means normalize using ratio to normal climatological value) for HN. The 

approach used by Climatol to detect outliers is inspired by the principles of the spatial consistency 

check. In particular, for any candidate time series, this method use data from neighbouring stations 

to estimate a corresponding reference series as a weighted average, employing a geographic proximity 

criterion using Euclidean distances.  

In the default settings of the Toolbox, the vertical and horizontal distances (expressed in meters and 

kilometres, respectively) between a suitable neighbouring station and the candidate one have the same 

weight. Following Buchmann et al. (2022), to take into consideration the influence of altitude on the 

snow, in this study we have adjusted the scale parameter of the vertical coordinate (wz) so that the 

elevation counts 100 time more; in other words, the approach used in our work means that an altitude 

difference of 500 m corresponds to a horizontal distance of 50 km. The estimated reference series are 

used to create time series of anomalies for their corresponding observed series by subtracting the 

estimated values from the observed ones. The values of the anomalies time series that exceed a 

determined threshold (dz.max) are labelled as outliers and so the correspondent data in the original 

series are discarded. More specifically, the dz.max value, set by default to ±5 standard deviations, 

was properly tuned to ensure that the flagged outlying values were not rejected because of their 

extremeness. After several sensitivity experiments, in which we manually inspected the data flagged 

as potential outliers, the dz.max parameter has been set as follows: dz.max = 15 for SCD and NDS 

and dz.max = 20 for HN. Using this criterion, the tolerance test flagged as outliers only two NDS 

monthly observations, related to Frigento and Roccasicura time series. 

 

Climatol has been employed in this study also to check for homogeneity of the investigated time 

series. The use of this toolbox for the homogenisation of snowfall data has been explored, with 

encouraging results, in some recent works (Buchmann et al., 2022; Buchmann et al., 2023). As 

described in detail by Guijarro (2018) and by Kuya et al. (2022), the Climatol homogenization method 

is based on the Standard Normal Homogeneity Test (SNHT; Alexandersson, 1986) for the 

identification of the breaks and on a linear regression approach for the adjustments (Easterling and 

Peterson, 1995). The SNHT is applied to the anomalies time series previously introduced in the 

description of the tolerance test. In brief, the Climatol homogenization process is structured in two 

procedures: the application of the SNHT on stepped overlapping temporal windows and on the whole 

series. 

In the first one, called ñstepped overlapping windowsò, the toolbox computes the SNHT test for all 

series, retaining the maximum SNHT value for each series. The series having a maximum SNHT 

value greater than a specific threshold (snht1) are split into two subseries at the point of the maximum 

SNHT value. Subsequently, the sub-series are tested again and the procedure is iterated until the 

maximum SNHT value of the sub-series is below the snht1 threshold. 

After this procedure, the test is applied to the whole series in order to detect further breaks, using a 

threshold value snht2. Once detected a break for a determinate candidate time series, the latter is 

corrected back in time starting from the most recent homogeneous time interval. The break magnitude 

corrections are computed as the variation of the mean before and after homogenisation procedure.  

More specifically, given a time series Y, the correction factor (CF) is calculated as:  

 

                                                                      ὅὊ
  

 
                                                            (1) 

 

Where Yb and Ya are the mean values between the beginning of the measurements of Y and the break 

point (before) and from the break point to the end (after), respectively. Q is the non-standardised ratio 



time series, defined as the ratio between the reference and candidate, and ůQ and Qm are the standard 

deviation and mean of Q, respectively. 

Additional details about the calculation of the adjustment factor can be found in Guijarro (2018), in 

Kuya et al. (2022) and in Buchmann et al. (2023). The last step of Climatol processing consists in the 

filling of all missing values using the weighted ratios of neighbouring series and in the production of 

the final high quality, homogeneous and complete time series. It is important highlighting that 

Climatol offers the opportunity to carry out a first explanatory analysis of the data, which is very 

useful for the tuning of several parameters, including snht1 and snht2. The main settings adopted to 

run Climatol for tolerance test of QC and homogenization are listed in Table 1. 

Using this set-up, Climatol flagged as inhomogeneous seven SCD and two NDS time series. Details 

about date in which the breaks occurred and the corresponding value of SNHT are supplied in the 

Supplementary Material. From a visual inspection of such time series, the results of the homogeneity 

test seemed very reasonable. The identified breaks were further examined against the metadata 

reported on the Hydrological Yearbooks. However, the latter contain only few useful information, 

that allowed to verify only if the stations were relocated (this is not the case for any of the stations 

identified as inhomogeneous). 

We therefore do not have enough information to determine the cause of the inhomogeneities. We 

decided to adopt a precautionary approach and, therefore, the detected breaks were accepted.ò 

 

 

RC (6): 360 

Relationships of PCs to geographical features are stated but not made clear to the reader. 

AC (6): Thank you for this comment. Here we provide a detailed description of the Principal 

Component Analysis (PCA) results for each of the three investigated variables: snow cover duration 

(SCD), number of days with snowfall (NDS) and height of new snow (HN). Such analysis will be 

included in the new version of the manuscript as Appendix B. It is important highlighting that the 

aim of our PCA analysis is to identify the dominant recurring spatial patterns over time of the 

investigated parameters. A natural evolution of this type of analysis is the research of the atmospheric 

circulation characteristics that are associated with the identified spatial structures of SCD, NDS and 

HN variables. This aspect is very interesting and fits well with our research interests. However, it 

falls out the scope of this paper, so it will be addressed in future work.  

 

For SCD, we have selected the first four Principal Components (PCs), which account for the 75% of 

the total variance. Fig. 1 of this document shows the spatial pattern of the PC scores. Please 

consider Fig. 1 of the original manuscript for locations mentioned therein. The first PC (Fig. 1a), 

which represents the 61% of the total variance, reflects the altitude-related variability across the whole 

elevation range. Areas with positive scores coincide with some of the main mountain ridges of the 

considered region (Gran Sasso, Marsicani, Majella and Partenio). Negative scores mark low-elevation 

areas as well as the eastern and southern mountain slopes of the Central Apennine chain, where the 

local topographic features are not favourable to the persistence of snowfall on the ground. More 

compelling evidence about the relationship between PC1 and elevation is provided by Fig. 2, in which 

the PC1 scores are plotted against the altitude. A solid positive correlation was found (the linear 

correlation coefficient, ɟ, is equal to 0.87).  

The PC2 (Fig. 1b) separates the Central Apennine sector (Abruzzo and Molise regions) from the 

Southern area. In the first one, the scores are generally positive, whereas in the second one they are 

slightly negative. The high positive scores found in several sectors of Abruzzo and Molise (mainly in 

the Gran Sasso and Marsicani areas) indicate relevant positive SCD anomalies.  

PC3 spatial pattern (Fig. 1c) is characterized by a clear west-east gradient. More specifically, positive 

scores have been found in the Majella area, in the eastern side of Marsicani mountains and in the 

eastern side of Molise and Southern Apennine. In the western sector of Abruzzo region, negative 

scores prevail, instead. This pattern might reflect specific large-scale atmospheric weather regimes, 



associated with the incoming, over the study region, of cold continental air masses from the Balkan 

Peninsula. Such atmospheric scenario promotes conditions favourable to the occurrence and 

persistence of snowfall on the ground over eastern slopes of Apennine.  

In the PC4 spatial pattern (Fig. 1d), the scores are generally around 0.0, except for the northern side 

of Abruzzo (Gran Sasso mountains). This pattern might reflect specific atmospheric conditions that 

enhance the snow duration on the ground only in high-elevation sites of the northern Abruzzo region. 

 

 

 

 

 
Fig. 1. Spatial patterns of the first four modes resulting from the Principal Component Analysis applied to monthly SCD 

data. 

 

 
Fig. 2. First principal component (PC1) scores resulting from PCA applied to monthly SCD data as function of the 

elevation (in m). Each point represents one station.  



 

 

For NDS variable, we have selected the first nine PCs, which capture the 70% of the total variance. 

According to Fig. 3a, the first PC represents a scenario in which the spatial distribution of the 

considered parameter is strictly related to the elevation. In this sense, additional evidence comes from 

Fig. 4, which clearly demonstrates the strong relationship between PC1 scores and elevation (ɟ = 

0.87).  

In the PC2 spatial pattern (Fig. 3b), there is a relevant gradient in terms of PC scores in the Abruzzo 

region. More specifically, the scores gradually switch from negative to positive values moving 

eastward. Areas with positive scores match with Majella, Marsicani, Matese and with Southern 

Apennine reliefs (Partenio, Picentini and Lucania mountains). It may hypothesize that behind this 

NDS spatial pattern there is a synoptic scale atmospheric circulation scheme like that described for 

PC3 of SCD variable, i.e. a configuration associated with the incoming, over the Italian Peninsula, of 

cold air masses from Balkan region.  

In the PC3 spatial pattern (Fig. 3c), the scores are negative over a large part of the study area. Positive 

values are restricted to the Campania Apennine (Partenio and Picentini mountains). Therefore, this 

spatial pattern might represent meteorological scenarios in which the snowfall events mainly affect 

the meridional sector of the considered area.  

The PC4 (Fig. 3d) exhibits a spatial structure close to PC2. However, in this case the zonal gradient 

is not limited to the Abruzzo region, but it is extended to the whole area. As for PC2, scores gradually 

increase from west to east, so the largest values have been found on the eastern slopes of Apennines 

and over the Gargano area. 

 

 
Fig. 3. Spatial patterns of the first four modes resulting from the Principal Component Analysis applied to monthly NDS 

data. 



 
Fig. 4. First principal component (PC1) scores resulting from PCA applied to monthly NDS data as function of the 

elevation (in m). Each point represents one station.  

The other five selected PCs are presented in Fig. 5. It is worth noting that such spatial patterns 

represent a very small fraction of variability (2% for PC5, PC6, PC7 and PC8, and 1% for PC9), so 

it is not straightforward identifying a ñcoherentò behaviour in the spatial distribution of the scores. 

More specifically, in the PC5 spatial pattern (Fig. 5a), the most relevant positive NDS anomalies 

occurred in the Gran Sasso area (northern of Abruzzo) and in the Campania Apennine (Partenio 

mountains). PC6 pattern (Fig. 5b) is close to PC5: however, in this case positive scores, and so 

positive NDS anomalies, are confined to the Marsicani mountains area. The PC7 spatial pattern (Fig. 

5c) reflect meteorological scenarios that determine positive NDS anomalies over the central and 

northern sectors of Abruzzo region, Molise and Campania Apennine. In PC8 spatial pattern (Fig. 5d), 

positive scores are confined to specific sector of Abruzzo (Gran Sasso and Marsicani mountains) and 

to the southern sector of Molise. Finally, in PC9 the highest scores are located over the Gran Sasso 

area, Molise region and, locally, over the Campania Apennine (Fig. 5e).  

 

 
Fig. 5. Spatial patterns of the fifth, sixth, seventh, eighth and ninth modes resulting from the Principal Component 

Analysis applied to monthly NDS data. 



The results for height of new snow variable (HN) are presented in Fig. 6. Similarly to SCD, the first 

four PCs have been selected. The first PC, accounting for the 52% of the total variance, shows a 

spatial pattern strongly modulated by the altitude (Fig. 6a). As for SCD and NDS, a strong positive 

correlation between scores and elevation has been detected (ɟ = 0.83). However, in this case the 

scores associated to stations above 800 m ASL exhibit a great variability (see Fig. 7), due to the 

relevant incidence of orographic effects on snowfall amounts. 

The analysis of PC2 spatial pattern (Fig. 6b) reveals a clear west-east gradient in the Central Apennine 

area. The large positive scores found over Majella area, Marsicani mountains, Matese and most of 

the Southern Apennine indicate that such areas receive snowfall amounts substantially higher than 

average, whereas the negative scores over western side of Apennines are synonymous of HN quantity 

near or below average. This spatial pattern can be interpreted as the result of large-scale 

configurations that promote the incoming of cold continental air masses in the Central Mediterranean 

area. In this scenario, the Central and Southern Italy are often affected by a cyclonic area driving a 

north-eastern flow, which enhances orographic precipitation events over the eastern slopes of 

Apennines.  

In the PC3 spatial pattern (Fig. 6c), the positive scores are concentrated over the Southern Apennine, 

in some areas of Molise and in the Reatini mountains. In the Abruzzo region, the scores are generally 

negative, instead. Finally, the PC4 spatial pattern (Fig. 6d) is characterized by large positive scores 

over the western side of Marsicani area and the Reatini mountains. In both PC3 and PC4, areas 

marked with positive scores receive snowfall amounts higher than average. Such spatial patterns can 

be related to specific large-scale weather patterns that modulate the spatial distribution of snowfall 

precipitation in the considered region. 

 

 
Fig. 6. Spatial patterns of the first four modes resulting from the Principal Component Analysis applied to monthly HN 

data. 

 
 
 
 
 



 
Fig. 7. First principal component (PC1) scores resulting from PCA applied to monthly HN data as function of the elevation 

(in m). Each point represents one station. 

 
RC (7): 360 

There is some appeal to having elevation on the y-axis, but it would conventional for it to be on the 

x-axis as the independent variable. This would also better show the overlap in elevation between 

clusters and the increasing gradient. Rather than the generic x = ay^b, it would be better to show the 

power fit equations as SCD = az^b. 

AC (7): Following the valuable refereeôs suggestion, we have revised the Fig. 5, Fig. 6 and Fig. 7 of 

our manuscript. Here we present the new version of such figures. Note that the independent variable 

z in the power fit equations stands for elevation (in m).  

 

 
Figure 5: Climatology of snow cover duration (SCD) for (a) full, (b) early, (c) winter and (d) late season. Average values 

are for the period 1971-2000. Each point represents a station that is color-coded according to the membership cluster. The 

black solid line represents the power fit. The text boxes show the power fit equation and the average and standard deviation 

values for each cluster. 

 


