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Abstract. A full-Stokes model provides the most accurate but also the most 9	
expensive representation of ice sheet dynamics.  The Blatter-Pattyn model is a widely 10	
used less expensive approximation that is valid for ice sheets characterized by a small 11	
aspect ratio.  Here we introduce a novel transformation of the Stokes equations into a 12	
form that closely resembles the Blatter-Pattyn equations.  The transformed exact Stokes 13	
equations only differ from the approximate Blatter-Pattyn equations by a few additional 14	
terms, while their variational formulations differ only by the presence of a single term in 15	
each horizontal direction (one term in 2D and two terms in 3D).  Specifically, the 16	
variational formulations differ only by the absence (or the neglect) of the vertical velocity 17	
in the second invariant of the strain rate tensor in the Blatter-Pattyn model when 18	
compared to the Stokes case.  Here we make use of the new transformation in two 19	
different ways.  First, we consider incorporating the transformed equations into a code 20	
that can be very easily converted from a Stokes to a Blatter-Pattyn model, and vice-versa, 21	
simply by switching these terms on or off.  This may be generalized so that the Stokes 22	
model is switched on adaptively only where the Blatter-Pattyn model loses accuracy, 23	
hopefully retaining most of the accuracy of the Stokes model but at a lower cost.  Second, 24	
the key role played by the vertical velocity in converting the transformed Stokes model 25	
into the Blatter-Pattyn model motivates new approximations that improve on the Blatter-26	
Pattyn model, heretofore the best approximate ice sheet model.  These applications 27	
require the use of a grid that enables the discrete continuity equation to be invertible for 28	
the vertical velocity in terms of the horizontal velocity components.  Examples of such 29	
grids, such as the first order P1-E0 grid and the second order P2-E1 grid are given in both 30	
2D and 3D.  It should be noted, however, that the transformed Stokes model has the same 31	
type of gravity forcing as the Blatter-Pattyn model, i.e., determined by the slope of the ice 32	
sheet upper surface, thereby forgoing some of the grid-generality of the traditional 33	
formulation of the Stokes model.  This is not a serious disadvantage, however, since in 34	
practice it has not impaired the widespread use of the Blatter-Pattyn model. 35	
 36	
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1 Introduction 37	
 38	
Concern and uncertainty about the magnitude of sea level rise due to melting of the 39	
Greenland and Antarctic ice sheets have led to increased interest in improved ice sheet 40	
and glacier modeling.  The gold standard is a full-Stokes model (i.e., a model that solves 41	
the nonlinear, non-Newtonian Stokes system of equations for incompressible ice sheet 42	
dynamics) because it is applicable to all geometries and flow regimes.  However, the 43	
Stokes model is computationally demanding and expensive to solve.  It is a nonlinear, 44	
three-dimensional model involving four variables, namely, the three velocity components 45	
and pressure.  In addition, pressure is a Lagrange multiplier enforcing incompressibility 46	
and this creates a more difficult indefinite “saddle point” problem.  As a result, full-47	
Stokes models exist but are not commonly used in practice (examples are FELIX-S, Leng 48	

et al., 2012; Elmer/Ice, Gagliardini et al., 2013). 49	

 50	
Because of these difficulties with the Stokes model, there is much interest in 51	

simpler and cheaper approximate models.  There is a hierarchy of very simple models 52	
such as the shallow ice (SIA) and shallow-shelf (SSA) models, and there are also various 53	
higher-order approximations.  These culminate in the Blatter-Pattyn (BP) approximation 54	
(Blatter, 1995; Pattyn, 2003), which is currently used in production code packages such 55	
as ISSM (Larour et al., 2012), MALI (Hoffman et al., 2018; Tezaur et al., 2015) and 56	
CISM (Lipscomb et al., 2019).  This approximation is based on the assumption of a small 57	

ice sheet aspect ratio, i.e.,    ε = H L≪1, where   H , L  are the vertical and horizontal 58	
length scales, and consequently it eliminates certain stress terms and implicitly assumes 59	
small basal slopes.  Both the Stokes and Blatter-Pattyn models are described in detail in 60	
Dukowicz et al. (2010), hereafter referred to as DPL (2010).  Although the Blatter-Pattyn 61	
model is reasonably accurate for large-scale motions, accuracy deteriorates for small 62	

horizontal scales, less than about five ice thicknesses in the ISMIP–HOM model 63	

intercomparison (Pattyn et al., 2008; Perego et al., 2012), or below a 1 km resolution as 64	
found in a detailed comparison with full Stokes calculations (Rückamp et al, 2022).  This 65	
can become particularly important for calculations involving details near the grounding 66	
line where the full accuracy of the Stokes model is needed (Nowicki and Wingham, 67	
2008).  Attempts to address the problem while avoiding the use of full Stokes solvers 68	
include variable grid resolution coupled with a Blatter-Pattyn solver (Hoffman et al., 69	

2018) and variable model complexity, where a Stokes solver is embedded locally in a 70	
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lower order model (Seroussi et al., 2012).  Better approximations, more accurate than 71	

Blatter-Pattyn but cheaper than Stokes, are not currently available. 72	
 73	

The present paper introduces two innovations that may begin to address some of 74	
these issues.  The first is a novel transformation of the Stokes model, described in §3, 75	
which puts it into a form closely resembling the Blatter-Pattyn model and differing only 76	
by the presence of a few extra terms.  This allows a code to be switched over from Stokes 77	
to Blatter-Pattyn, and vice-versa, globally or locally, by the use of a single parameter that 78	
turns off these extra terms.  As a result, variable model complexity can be very simply 79	
implemented, as described in §6.1.  The second innovation is the introduction of new 80	

finite element grids that decouple the discrete continuity equation and allow it to be 81	

solved for the vertical velocity in terms of the horizontal velocity components.  Several 82	

elements that may be used to construct such grids are described in Appendix C in both 83	

2D and 3D, primarily the first order P1-E0 and second order P2-E1 elements (these two 84	

elements are so-named because they employ edge-based pressures).  Within the 85	

framework of the transformed Stokes model these grids facilitate new approximations 86	

that improve on the Blatter-Pattyn approximation so that it is no longer strictly limited to 87	

a small ice sheet aspect ratio.  We describe two such approximations in §6.2. There is 88	
another very significant benefit.  A conventional ice sheet Stokes model discretized on 89	
such a grid is numerically equivalent to an inherently stable positive-definite 90	
minimization (i.e., optimization) problem, as demonstrated in Appendix D.  This is in 91	
contrast to the ubiquitous Stokes finite element practice of needing to use elements that 92	
satisfy the “inf-sup” or “LBB” condition for stability (see Elman et al., 2014, and the 93	
brief discussion in §4.3.1). 94	
 95	
2 The Standard Formulation of the Stokes Ice Sheet Model 96	
2.1 The Assumed Ice Sheet Configuration 97	
 98	
An ice sheet may be divided into two parts, a part in contact with the bed and a floating 99	
ice shelf located beyond the grounding line.  The Stokes ice sheet model is capable of 100	
describing the flow of an arbitrarily shaped ice sheet, including a floating ice shelf as 101	
illustrated in Fig. 1, given appropriate boundary conditions (e.g., Cheng et al., 2020).  102	
One limitation of the methods proposed here, in common with the Blatter-Pattyn model, 103	
will be that upper and basal surfaces must able to be connected by a vertical line of sight, 104	
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as is the case in Fig. 1.  Here, for simplicity, we will only consider a fully grounded ice 105	
sheet with periodic lateral boundary conditions, i.e., no ice shelf. 106	

	107	
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 109	
 Figure 1 A simplified illustration of the admissible ice sheet configuration. 110	
 111	

Referring to Fig. 1, the entire surface of the ice sheet is denoted by  S .  An upper 112	

surface, labeled  SS  and specified by   ς s x, y, z( ) = z − zs x, y( ) = 0 , is exposed to the 113	

atmosphere and thus experiences stress-free boundary conditions.  The bottom or basal 114	

surface, denoted by  SB  and specified by   ς b x, y, z( ) = z − zb x, y( ) = 0 , is in contact with 115	

the bed.  The basal surface may be subdivided into two sections,   SB = SB1 + SB2 , where 116	

  SB1 , specified by   z = zb1 x, y( ) , is the part where ice is frozen to the bed (a no-slip 117	

boundary condition), and   SB2 , specified by   z = zb2 x, y( ) , is where frictional sliding 118	

occurs.  We assume Cartesian coordinates such that   xi = x, y, z( )  are position coordinates 119	

with   z = 0  at the ocean surface, and the index   i ∈ x, y, z{ }  represents the three Cartesian 120	

indices.  Later we shall have occasion to introduce the restricted index   i( )∈ x, y{ }  to 121	

represent just the two horizontal indices.  The associated unit normal vectors are  ni
s( ) , 122	

  ni
b1( ) ,   ni

b2( )  at the stress-free and basal surfaces, respectively.  For the particular geometry 123	

illustrated in Fig. 1 we see that   nz
s( ) > 0  and   nz

b1( ) , nz
b2( ) < 0 .  Unit normal vectors 124	

appropriate for the ice sheet configuration of Fig. 1 are given by 125	
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ni
s( ) = nx

s( ) ,ny
s( ) ,nz

s( )( ) = ∂ς s x, y, z( ) ∂xi

∂ς s x, y, z( ) ∂xi

=
−∂zs ∂x ,−∂zs ∂y ,1( )

1+ ∂zs ∂x( )2
+ ∂zs ∂y( )2

,

ni
b( ) = nx

b( ) ,ny
b( ) ,nz

b( )( ) = −
∂ς b x, y, z( ) ∂xi

∂ς b x, y, z( ) ∂xi

=
∂zb ∂x ,∂zb ∂y ,−1( )

1+ ∂zb ∂x( )2
+ ∂zb ∂y( )2

.

  (1) 126	

 127	
2.2 The Stokes Equations 128	
 129	
The Stokes model is given by a system of nonlinear partial differential equations and 130	
associated boundary conditions (Greve and Blatter, 2009; DPL, 2010).  In a Cartesian 131	
coordinate system the Stokes equations, the three momentum equations and the 132	

continuity equation, for the three velocity components   ui = u,v,w( )  and the pressure  P  133	

are given by 134	

 
  

∂τ ij

∂x j

− ∂P
∂xi

+ ρgi = 0 , (2) 135	

 
  

∂ui

∂xi

= 0 , (3) 136	

where ρ  is the density, and  gi  is the acceleration due to gravity vector, arbitrarily 137	

oriented in general but here taken to be oriented in the negative z-direction, 138	

  gi = 0,0,−g( ) .  Repeated indices imply summation (the Einstein notation).  The 139	

deviatoric stress tensor τ ij  is given by 140	

 
   
τ ij = 2µn

!ε ij , (4) 141	

where  µn  is a nonlinear ice viscosity defined by 142	

 
   
µn =η0

!ε 2( )(1−n) 2n
, (5) 143	

and 
   
!ε 2 = !ε ij

!ε ij 2  is the second invariant of the strain rate tensor 
  
!ε ij .   The strain rate 144	

tensor is given by 145	

 
   
!ε ij =

1
2

∂ui

∂x j

+
∂uj

∂xi

⎛

⎝
⎜

⎞

⎠
⎟ , (6) 146	

and therefore the second invariant may be written out as 147	
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!ε 2 = 1
2

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 1

4
∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂z

+ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (7) 148	

Note that the second invariant is positive-definite, i.e.,   !ε
2 ≥ 0 .  As usual, ice is assumed 149	

to obey Glen’s flow law, where  n  is the Glen’s law exponent (  n = 1  for a linear 150	
Newtonian fluid, and typically   n = 3  in ice sheet modeling, resulting in a nonlinear non-151	

Newtonian fluid).  The coefficient  η0  is defined by   η0 = A−1/n / 2 , where  A  is an ice flow 152	

factor, here taken to be a constant but in general depending on temperature and other 153	
variables (see Schoof and Hewitt, 2013).  The three-dimensional Stokes system (2), (3) 154	
requires a set of boundary conditions at every bounding surface, each set being composed 155	
of three components.  Aside from the periodic lateral boundary conditions used in our test 156	
problems, the relevant boundary conditions are as follows 157	

(1) Stress-free boundary conditions on surfaces  SS  not in contact with the bed, such 158	

as the upper surface  SS : 159	

 
  
τ ijn j

s( ) − Pni
s( ) = 0 . (8) 160	

The basal boundary conditions are given by 161	

(2) No-slip or frozen to the bed conditions on surface segment   SB1 : 162	

   ui = 0   (9) 163	

(3) Frictional tangential sliding conditions on surface segment   SB2 :   164	

Frictional conditions are more complicated and are discussed in detail in Appendix A.  In 165	
summary, these conditions are composed of two parts, 166	

(3a) A single condition enforcing tangential flow at the basal surface:  167	

   uini
b2( ) = 0 .  (10) 168	

(3b) Two conditions specifying the horizontal components of the tangential 169	
frictional stress force vector.  From Appendix A, the simplest representation of these two 170	
conditions is 171	

 
  
nz

b2( ) τ i( ) jn j
b2( ) + f i( )( )− n i( )

b2( ) τ zjnj
b2( ) + fz( ) = 0 , (11) 172	

where   i( )∈ x, y{ }  is the notation previously introduced for restricted (horizontal) indices, 173	

and  fi  is a specified frictional sliding force vector, tangential to the bed 
  

ni
b2( ) fi = 0( ) .  174	
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This is potentially a complicated function of position and velocity (e.g., Schoof, 2010), 175	
however, here we assume only simple linear frictional sliding, 176	

  fi = β x( ) ui , (12) 177	

where   β x( ) > 0  is a position-dependent drag law coefficient.  For simplicity we assume 178	

there is no melting or refreezing at the bed resulting in vertical inflows or outflows.  If 179	
needed, these can be easily added (Dukowicz et al., 2010; Heinlein et al., 2022). 180	
 181	
2.3 The Stokes Variational Principle 182	
 183	
A variational principle, if available, is usually the most compact way of representing a 184	
particular problem.  The Stokes model possesses a variational principle that is 185	
particularly useful for discretization purposes and for the specification of boundary 186	
conditions (see DPL, 2010, for a fuller description of the variational principle applied to 187	
ice sheet modeling).  There are a number of significant advantages.  For example, all 188	
boundary conditions are conveniently incorporated in the variational formulation, all 189	
terms in the variational functional, including boundary condition terms, contain lower 190	
order derivatives than in the momentum equations, and the solution of the discrete 191	
problem automatically involves a symmetric matrix.  In discretizing the momentum 192	
equations, stress terms at boundaries involve derivatives that require information from 193	
across boundaries.  This problem does not arise in the variational formulation since all 194	
terms are evaluated in the interior.  Finally, stress-free boundary conditions, as at the 195	
upper surface for example, need not be specified at all since they are automatically 196	
incorporated in the functional as natural boundary conditions.  In discrete applications, 197	
the variational method presented here is closely related to the Galerkin finite element 198	
method, a subset of the weak formulation method in which the test and trial functions are 199	
the same (see Schoof, 2010, in connection with the Blatter-Pattyn model). 200	
 201	

The variational functional for the standard Stokes model may be written in two 202	
alternative forms: 203	
 (1) Basal boundary conditions imposed using Lagrange multipliers: 204	

 

    

A[ui , P,λi ,Λ]= dV
4n

n+1
η0
!ε 2( ) 1+n( ) 2n

− P
∂ui

∂xi

+ ρgw
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ dS λiuiSB1
∫ + dS Λuini

b2( ) + 1
2
β x( ) uiui

⎡

⎣
⎢

⎤

⎦
⎥SB 2

∫ ,
 (13) 205	
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where  λi  and Λ  are Lagrange multipliers used to enforce the no-slip condition and 206	

frictional tangential sliding, respectively.  As in DPL (2010), arguments enclosed in 207	

square brackets, here   ui , P,λi ,Λ , indicate those variables that are used in the variation of 208	

the functional. 209	
(2) Basal boundary conditions imposed by direct substitution: 210	

In this case, the two conditions (9), (10) are used directly in the functional to specify all 211	

three velocity components  ui  in the first case, and the vertical velocity  w  in terms of the 212	

horizontal velocity components in the second case, along the entire basal boundary in 213	
both the volume and surface integrals in (13).  In particular, (10) is used in the following 214	
form, 215	

 
  
w = −

u
i( )n i( )

b2( )

nz
b2( ) = u

i( )
∂zb

∂x
i( )

,  (14) 216	

to replace  w  in terms of the horizontal velocity components 
 
u i( )  on the basal boundary 217	

segment   SB2 .  Here we use  zb  as a shorthand notation for   zb x, y( ) .  The variational 218	

functional in this case becomes 219	

 

    

A[ui , P]= dV
4n

n+1
η0
!ε 2( ) 1+n( ) 2n

− P
∂ui

∂xi

+ ρg w
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) + u

i( )n i( )
b2( ) nz

b2( )( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ .
 (15) 220	

Note that (14) has been explicitly used to replace  w  in the basal boundary component of 221	
the functional (15) but, importantly, it must also be used in the volume integral part of 222	

(15) to replace all values of  w  that lie on the basal boundary segment   SB2 . 223	

 224	
As described in DPL (2010), a variational procedure, i.e., taking the variation 225	

with respect to the independent functions   ui , P, λi , Λ  in (13), and   ui , P  in (15), yields the 226	

full set of Euler-Lagrange equations and boundary conditions that specify the standard 227	
Stokes model, equivalent to (2)-(11).  In the case of (13), the system determines all the 228	

discrete variables specified on the mesh: the velocity components and the pressure,   ui , P , 229	

together with the Lagrange multipliers,   λi ,Λ .  In the case of (15), the system only 230	

determines the unspecified velocity variables  ui  and the pressure  P .  The specified 231	

https://doi.org/10.5194/egusphere-2024-1052
Preprint. Discussion started: 29 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 9 

values of velocity are then obtainable a posteriori from (9) or (14).  As a result, system 232	
(15) is smaller and simpler and is therefore the one predominantly used in this paper. 233	
 234	
3. A Transformation of the Stokes Model  235	
3.1 Origin of the Transformation 236	
 237	
The transformation is motivated by the Blatter-Pattyn approximation.  Consider the 238	
vertical component of the momentum equation and the corresponding stress-free upper 239	
surface boundary condition in the Blatter-Pattyn approximation (from DPL, 2010, for 240	
example), which are given by 241	

 

  

∂
∂z

2µn

∂w
∂z

⎛
⎝⎜

⎞
⎠⎟
− ∂P
∂z

− ρg = 0,

2µn

∂w
∂z

− P
⎛
⎝⎜

⎞
⎠⎟

nz
s( ) = 0 at z = zs x, y( ).

  (16) 242	

These equations may be rewritten in the form 243	

 

  

∂
∂z

P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( )⎛
⎝⎜

⎞
⎠⎟
= 0,

P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( )⎛
⎝⎜

⎞
⎠⎟

nz
s( ) = 0 at z = zs x, y( ).

 (17) 244	

This suggests the introduction of a new variable  !P , to be called the transformed pressure, 245	

 
   
!P = P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( ),  (18) 246	

which simplifies system (17) as follows 247	

 

   

∂ !P
∂z

= 0,

!P nz
s( ) = 0 at z = zs x, y( ).

  (19) 248	

This is a complete one-dimensional partial differential system, that, when integrated from 249	
the top surface down yields  250	

    !P = 0 .  (20) 251	
Thus, the transformed pressure vanishes in the Blatter-Pattyn case.  The definition (18) 252	
forms the basis of the present transformation but we also use the continuity equation to 253	

eliminate  ∂w ∂z  as is done in the Blatter-Pattyn approximation (see DPL, 2010).  254	
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Therefore, the transformation consists of eliminating  P  and  ∂w ∂z  in the Stokes system 255	
(2), (4)-(11) (i.e., everywhere except in the continuity equation (3) itself) by means of 256	

 
   
P = !P − 2µn

∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρg zs − z( ) , (21) 257	

 
 

∂w
∂z

= − ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

, (22) 258	

where  zs  is a shorthand notation for   zs x, y( ) . 259	

 260	
In the standard Stokes system the pressure P is primarily a Lagrange multiplier 261	

enforcing incompressibility but with a very large hydrostatic component.  The 262	

transformation eliminates the hydrostatic pressure from   !P , as illustrated in Fig. 2 where 263	

the two pressures, plotted along grid lines, from Exp. B in the ISMIP–HOM model 264	

intercomparison (Pattyn et al., 2008) at L = 10 km are compared.  The standard Stokes 265	

pressure  P  is some three orders of magnitude larger than the transformed pressure   !P . 266	
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 267	
Figure 2. Standard pressure  P  compared to the transformed pressure   !P  in Exp. B from 268	

the ISMIP–HOM model intercomparison.  Note that  P  is in MPa while   !P  is in kPa. 269	
 270	

The transformed pressure   !P  is again a Lagrange multiplier enforcing 271	
incompressibility, i.e., it may be viewed as the effective pressure in the transformed 272	

system.  Alternatively, since    !P = 0  in the Blatter-Pattyn approximation, the definition of 273	

  !P  from (18) may be written as   
!P = P − PBP , where 274	

 
  
PBP = −2µn

∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρg zs − z( )   275	
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is the effective Blatter-Pattyn pressure (Tezaur et al., 2015).  As a result, we have 276	

  P = PBP + !P , and therefore   !P  is actually the “Stokes” correction to the Blatter-Pattyn 277	

pressure. 278	
 279	
3.2 The Transformed Stokes Equations 280	
 281	
Introducing (21), (22) into the Stokes system of equations (2)-(11) results in the 282	
following transformed Stokes system: 283	

 
   

∂ !τ ij

∂x j

− ξ̂ ∂ !P
∂xi

− ρg
∂zs

∂x
i( )
= 0 , (23) 284	

 
  
ξ̂
∂ui

∂xi

= 0 , (24) 285	

where quantities that are modified in the transformation are indicated by a tilde, e.g.,   !P .  286	

Corresponding to (4), the modified Stokes deviatoric stress tensor 
  
!τ ij  is given by 287	

 

   

!τ ij = 2 !µn
"!ε ij +

∂u
i( )

∂x
i( )
δ ij

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, (25) 288	

where  
δ ij  is the Kronecker delta, the modified strain rate tensor 

  
!"ε ij , corresponding to (6), 289	

is given by 290	

 

   

!"ε ij =

∂u
∂x

1
2

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

∂v
∂y

1
2

∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

− ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (26) 291	

and, corresponding to (5), the modified viscosity, 292	

 
   
!µn =η0

"!ε 2( )(1−n) 2n
,  (27) 293	

is given in terms of the second invariant 
   
!"ε 2 = !"ε ij

!"ε ij 2 , which, in expanded form becomes 294	

   

!"ε 2 = ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂x

∂v
∂y

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (28) 295	
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The dummy variables  ξ = 1, ξ̂ = 1  identify terms that are dropped in the Blatter-Pattyn 296	
approximation, as explained below.  Since (28) differs from (7) only by the use of 297	

substitution (22), the transformation leaves the second invariant   !"ε
2  and viscosity   !µn  298	

unchanged provided the continuity equation (24) is satisfied, i.e.,   !"ε
2 = !ε 2  and   !µn = µn , 299	

and in particular, the transformed second invariant remains positive-definite, i.e.,   !"ε
2 ≥ 0 . 300	

 301	
The boundary conditions for the transformed equations, corresponding to (8)-(11), 302	

are given by 303	

BCs on  SS : 
   
!τ ijn j

s( ) − !ξ !P ni
s( ) = 0 , (29) 304	

BCs on   SB1 :   ui = 0 ,  (30) 305	

BCs on   SB2 :   uini
b2( ) = 0 , (31) 306	

 
   
nz

b2( ) !τ
i( ) j

n j
b2( ) + β x( ) u

i( )( )− n
i( )
b2( ) !τ zjnj

b2( ) + β x( ) u
j( )n j( )

b2( ) nz
b2( )( ) = 0 . (32) 307	

Equations (31), (32) constitute the three required boundary conditions for frictional 308	
sliding (see Appendix A).  Note that (32) differs from (11) because (14) has been used to 309	
eliminate the vertical velocity component  w  in favor of the horizontal velocity 310	

components 
 
u i( ) . 311	

 312	

The dummy variables  ξ , ξ̂  in (23)-(25) and (26)-(29) have been introduced to 313	
identify the terms that are neglected in the two types of the Blatter-Pattyn approximation 314	
that we consider in §3.4.  Specifically, these two types are (a) the standard Blatter-Pattyn 315	

approximation,  ξ = 0, ξ̂ = 0 , as originally derived (Blatter, 1995; Pattyn, 2003; DPL, 316	

2010), which solves for just the horizontal velocity components   u,v , and (b) the extended 317	

Blatter-Pattyn approximation,  ξ = 0, ξ̂ = 1 , described more fully later, which contains the 318	
standard approximation and also provides the additional equations for determination of 319	

the consistent vertical velocity component  w  and pressure   !P .  Keeping all terms, i.e., 320	

 ξ = 1, ξ̂ = 1 , specifies the full transformed Stokes model. 321	
 322	

The transformed system (25)-(32) and the standard Stokes system (2)-(11) yield 323	
exactly the same solution.  However, in common with the Blatter-Pattyn approximation, 324	
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transformation (21) implies the use of a gravity-oriented coordinate system because of the 325	
particular form of the gravitational forcing term, while the standard Stokes model does 326	
not have this restriction.  This is only a minor limitation.  A somewhat more restrictive 327	

limitation is the appearance of   zs x, y( ) , an implicitly single valued function, to describe 328	

the vertical position of the upper surface of the ice sheet.  This means that care must be 329	
taken in case of reentrant upper surfaces (i.e., S-shaped in 2D) and sloping cliffs at the ice 330	
edge, a restriction not present in the standard Stokes model.  As noted earlier, we assume 331	
that the upper and basal surfaces are connected by a vertical line of sight.  With a 332	
reentrant ice surface, such a vertical line must be broken up into individual segments with 333	

each segment having its own “upper” surface location   zs x, y( ) .  Fortunately, such 334	

situations do not normally arise in practice.  Exactly these same limitations exist in the 335	
Blatter-Patten model, which does not hinder its use in practice. 336	
 337	
3.3 The Transformed Stokes Variational Principle 338	
 339	
It is easy to verify that the transformed Stokes system (23)-(32) results from the variation 340	

with respect to    ui , !P  of the following functional: 341	

 

    

!A[ui , !P]= dV
4n

n+1
η0
"!ε 2( ) 1+n( ) 2n

− ξ̂ !P
∂ui

∂xi

+ ρgu
i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) + u

i( )n i( )
b2( ) nz

b2( )( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (33) 342	

where   !"ε
2  is the transformed second invariant from (28).  Basal boundary conditions in 343	

(33) are imposed by direct substitution, as in (15).  Alternatively, one could impose 344	
boundary conditions using Lagrange multipliers, as in (13), but direct substitution is 345	
preferred because it is simpler and involves fewer variables.  The remarks made in §2.3 346	

about replacing all values of  w  that lie on the basal boundary segment   SB2  by (14) apply 347	

here also. 348	
 349	
3.4 Two Blatter-Pattyn Approximations 350	
3.4.1 The Standard Blatter-Pattyn Approximation 351	
 352	
The standard (or traditional) Blatter-Pattyn approximation (originally introduced by 353	
Blatter, 1995; Pattyn, 2003; later by DPL, 2010; Schoof and Hewitt, 2013) is obtained by 354	
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setting  ξ = 0, ξ̂ = 0 .  This yields the following Blatter-Pattyn variational functional in 355	
terms of horizontal velocity components only, 356	

 

    

ABP[u
i( )]= dV

4n
n+1

η0
!ε BP

2( ) 1+n( ) 2n
+ ρgu

i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) +ς u

i( )n i( )
b2( ) nz

b2( )( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (34) 357	

where 358	

 
   

!ε BP
2 = ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂x

∂v
∂y

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

2

+ ∂v
∂z

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (35) 359	

and the corresponding Euler-Lagrange equations and boundary conditions are given by 360	

 

  

∂τ
i( ) j
BP

∂x j

− ρg
∂zs

∂x
i( )
= 0;

τ
i( ) j
BP nj

b2( ) + β x( ) u
i( ) +ζ u

j( )n j( )
b2( ) nz

b2( )( )n i( )
b2( ) nz

b2( )( ) = 0

on SB2 , τ
i( ) j
BP nj

s( ) = 0 on SS , u
i( ) = 0 on SB1,

⎧

⎨
⎪

⎩
⎪

  (36) 361	

where the Blatter-Pattyn stress tensor 
 
τ i( ) j

BP  is 362	

 

   

τ
i( ) j
BP =η0

!ε BP
2( )(1−n) 2n

2 2 ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

∂u
∂z

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2 ∂u
∂x

+ 2 ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

∂v
∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. (37) 363	

There is a new dummy variable ζ  in (34) introduced to identify the basal boundary term 364	

that is normally dropped  ζ = 0( )  in the standard Blatter-Pattyn approximation but which 365	

was restored  ζ = 1( )  in Dukowicz et al. (2011) to better deal with arbitrary basal 366	

topography. 367	
 368	

The Blatter-Pattyn model is a well-behaved nonlinear approximate system for the 369	
horizontal velocity components   u,v  because in this case the variational formulation is 370	
actually a convex optimization problem whose solution minimizes the functional.  As 371	
noted in the Introduction, the Blatter-Pattyn approximation is widely used in practice as 372	
an economical and relatively accurate ice sheet model.  If desired, the vertical velocity 373	
component  w  is computed a posteriori by means of the continuity equation. 374	
 375	
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Remark #1: The original formulation (e.g., Pattyn, 2003) also approximates the normal 376	

unit vectors   ni
b2( )  on the frictional part of the basal boundary   SB2  by making the small 377	

slope approximation (Dukowicz et al., 2011; Perego et al., 2012).  However, this 378	
additional approximation is unnecessary since any computational savings are negligible. 379	
 380	
3.4.2 The Extended Blatter-Pattyn Approximation 381	
 382	
A second form of the Blatter-Pattyn approximation is obtained from the transformed 383	
variational principle (33) by making the assumption, 384	

 
   

∂w
∂x
≪

∂u
∂z

, ∂w
∂y
≪

∂v
∂z

 , (38) 385	

and therefore neglecting    ∂w ∂x, ∂w ∂y  in the transformed second invariant   !"ε
2 , or 386	

equivalently, in the strain rate tensor 
  
!"ε ij  from (26), consistent with the original small 387	

aspect ratio approximation (Blatter, 1995; Pattyn, 2003; DPL, 2010; Schoof and 388	

Hindmarsh, 2008).  This corresponds to setting  ξ = 0, ξ̂ = 1  in the transformed Stokes 389	

model.  That is, we neglect vertical velocity gradients but keep the pressure Lagrange 390	
multiplier term.  This will be called the extended Blatter-Pattyn approximation (EBP) 391	
because, in contrast to the standard Blatter-Pattyn approximation, all the variables, i.e., 392	

   u,v,w, !P , are retained.  Notably, assumption (38) is equivalent to just setting   w = 0  in 393	

the second invariant   !"ε
2  in the full transformed Stokes model (i.e., with  ξ = 1, ξ̂ = 1 ).  In 394	

other words, the extended BP approximation is obtained by neglecting vertical velocities 395	
everywhere in (33) except where they occurs in the velocity divergence term.  This aspect 396	
of the transformed Stokes model will be exploited later to obtain approximations that 397	
improve on Blatter-Pattyn.  Thus, the extended Blatter-Pattyn functional is given by 398	

 

    

AEBP[ui , !P]= dV
4n

n+1
η0
"ε BP

2( ) 1+n( ) 2n
− !P

∂ui

∂xi

+ ρgu
i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) +ς u

i( )n i( )
b2( ) nz

b2( )( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (39) 399	

where the Blatter-Pattyn second invariant    !ε BP
2  is given by (35).  Taking the variation of 400	

the functional, the resulting system of extended Blatter-Pattyn Euler-Lagrange equations 401	
and their boundary conditions is given by 402	
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  (1) Variation with respect to 
 
u i( )  yields the horizontal momentum equation: 403	

   

∂τ
i( ) j
BP

∂x j

− ∂ !P
∂x

i( )
− ρg

∂zs

∂x
i( )
= 0;

τ
i( ) j
BP nj

s( ) − !P n
i( )
s( ) = 0 on SS , u

i( ) = 0 on SB1,

τ
i( ) j
BP nj

b2( ) + β x( ) u
i( ) +ζ u

k( )n k( )
b2( ) nz

b2( )( )n i( )
b2( ) nz

b2( )( ) = 0

on SB2 ,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (40) 404	

where  
 
τ i( ) j

BP  is given by (37).   405	

 (2) Variation with respect to  w  yields the vertical momentum equation:  406	

 
   

− ∂ !P
∂z

= 0; !P nz
s( ) = 0 on SS , (41) 407	

 (3) Variation with respect to   !P  yields the continuity equation: 408	

  
  

∂w
∂z

+
∂u

i( )
∂x

i( )
= 0; w = 0 on SB1, or w = −u

i( )n i( )
b2( ) nz

b2( ) on SB2.   (42) 409	

This appears to be a coupled system for the complete set of variables,    u,v,w, !P , just as in 410	
the transformed Stokes model.  However, it is apparent that the vertical momentum 411	

equation system (41) is decoupled and results in    !P = 0 , as was already shown in §3.1.  412	
This eliminates pressure from the horizontal momentum equation (40), making it 413	
identical to the standard Blatter-Pattyn system (36).  Finally, having obtained the 414	
horizontal velocities from the solution of (40), the continuity equation (42) may be solved 415	
for the vertical velocity component  w  (but see the comments regarding the discrete case 416	
that follow (43)). 417	
 418	

In summary, the extended Blatter-Pattyn model, (40)-(42), is equivalent to the 419	
standard Blatter-Pattyn model, (36), for the horizontal velocities,   u,v , except that it also 420	

includes two additional equations that determine the pressure   !P  and the vertical velocity 421	

 w , which are usually ignored in the standard Blatter-Pattyn approximation when only the 422	
horizontal velocity is of interest.  Because of this, we distinguish between the Blatter-423	
Pattyn model that solves for just the two horizontal velocities (i.e., the standard Blatter-424	
Pattyn approximation, (36)), and the Blatter-Pattyn system that solves for all the variables 425	
(i.e., the extended Blatter-Pattyn approximation, (40)-(42)).  It may not be obvious why 426	
we wish to deal with the extended Blatter-Pattyn system since we already know that it is 427	
equivalent to the simpler Blatter-Pattyn model.  As it turns out, the Blatter-Pattyn system 428	
is needed for future applications, to be described in §6, because it allows for a dual-model 429	
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code and for easy switching between the Blatter-Pattyn and Stokes models, which may be 430	
a useful feature in a general ice sheet code (e.g., ISSM, Larour et al., 2012), and because 431	
it also enables an adaptive hybrid scheme where the cheaper Blatter-Pattyn 432	
approximation is used locally within a Stokes model. 433	
 434	

To complete the solution of the Blatter-Pattyn system once pressure   !P  and the 435	
horizontal velocities   u,v  are available, the continuity equation (42) needs to be solved for 436	
the vertical velocity  w .  The use of the continuity equation to solve for the vertical 437	
velocity  w  is a novel feature of the Blatter-Pattyn approximation since the continuity 438	
equation is not normally used for this purpose.  Using Leibniz’s theorem, the continuity 439	
equation may be integrated starting from the bottom to obtain the vertical velocity in 440	
terms of horizontal velocity components, as follows 441	

 
  
w u,v( ) = wz=zb

−
∂u

i( )
∂x

i( )
zb

z

∫ d ′z = u
i( )
∂zb

∂x
i( )
−

∂u
i( )

∂x
i( )

zb

z

∫ d ′z = − ∂
∂x

i( )
u

i( )zb

z

∫ d ′z . (43) 442	

Note that we have replaced 
 
wz=zb

 by 
 
u

i( ) ∂zb ∂x
i( ) .  This is valid for either of the basal 443	

boundary conditions (9) or (10) (here (10) is in the form given by (14)).  When solving 444	
the Blatter-Pattyn system, the right-hand-side is known.  However, (43) also works 445	

symbolically when the horizontal velocities 
 
u i( )  are not yet known, and therefore   w u,v( )  446	

is a functional of the unknown horizontal velocity distribution. 447	
 448	

Thus far, we have only considered continuum results.  A discrete finite element 449	
formulation, however, may not be well behaved.  The solution of the discretized Stokes 450	
models and the associated Blatter-Pattyn approximations, and the ability to solve for the 451	
vertical velocity as in (43), will depend on the choices made for the grids and for the 452	
finite elements that are to be used.  These issues will be discussed next. 453	
 454	
4. Finite Element Discretization 455	
4.1 Standard and Transformed Stokes Discretizations 456	
 457	
In practice, both traditional Stokes and Blatter-Pattyn models are discretized using finite 458	
element methods (e.g., Gagliardini et al., 2013; Perego et al., 2012).  We follow this 459	
practice except that here the discretization originates from a variational principle.  This 460	
has a number of advantages (see §2.3 and DPL, 2010).  The following is a brief outline of 461	
the finite element discretization.  Additional details about the grid and the associated 462	
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discretization are provided in Appendix C.  For simplicity, we confine ourselves to two 463	

dimensions with coordinates   x, z( )  and velocities   u,w( ) .  Generalization to three 464	

dimensions should be clear (an example of a three-dimensional grid appropriate for our 465	
purpose is discussed in Appendix C).  Further, we present only the simpler case of direct 466	
substitution for the basal boundary conditions in the variational functional, i.e., (15) or 467	
(33).  The remarks in this Section apply to both the standard and transformed Stokes 468	
models; for example, the discrete pressure variable  p  may refer to either the standard 469	

pressure  P  or the transformed pressure   !P . 470	
 471	

Consider an arbitrary grid with a total of  
N = nu + nw + np  unknown discrete 472	

variables at appropriate nodal locations   1≤ i ≤ N , with  nu  horizontal velocity variables, 473	

 nw  vertical velocity variables, and  
np  pressure variables, such that 474	

   
U = U1,U2 ,!,U N{ }T

= u1,u2 ,!,unu
{ }, w1,w2 ,!,wnw

{ }, p1, p2 ,!, pnw
{ }{ }T

= u,w, p{ }T
 (44) 475	

is the vector containing all the unknown discrete variables.  These are the degrees of 476	
freedom of the model.  If using Lagrange multipliers for basal boundary conditions then 477	

discrete variables corresponding to   λz ,Λ  must be added.  Variables are expanded in 478	

terms of shape functions   Ni
k x( )  associated with each nodal variable  i  in each element 479	

 k , such that 
  
U k x( ) = Ui Ni

k x( )
i
∑  is the spatial variation of all the variables in element 480	

 k .  The summation is over all variable nodes located in element  k .  Shape functions 481	
associated with a given node may differ depending on the variable (i.e.,   u,w,  or p ).  482	

Substituting into the functional, (15) or (33), integrating and assembling the contributions 483	
of all elements, we obtain a discretized variational functional in terms of the nodal 484	
variable vectors   u,w, p , as follows 485	

 
   
A u,w, p( ) = A k u,w, p( )

k
∑ , (45) 486	

where    A
k u,w, p( )  is the local functional evaluated by integrating over element  k .  Since 487	

the term in the functional involving the product of pressure and divergence of velocity is 488	
linear in pressure and velocity, and the term responsible for gravity forcing is linear in 489	
velocity, the functional (45) may be written in matrix form as follows 490	

 
   A u,w, p( ) =M u,w( ) + pT MUP

T u + MWP
T w( ) + uT FU + wT FW ,  (46) 491	

https://doi.org/10.5194/egusphere-2024-1052
Preprint. Discussion started: 29 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 19 

where the shorthand notation from (44) is used, i.e., 
   
u = u1,u2 ,!,unu

{ }T
, etc.  Parentheses 492	

indicate a functional dependence on the indicated variables.  Comparison with (15) and 493	

(33) indicates that    M u,w( )  is a nonlinear positive-definite function of the velocity 494	

components   u,w ,  MUP , MWP  are constant  
nu × np  and  

nw × np  matrices, respectively, 495	

arising from the incompressibility constraint in the functional, and   FU , FW  are constant 496	

gravity forcing vectors, of dimension  nu  and  nw , respectively.  Note that   FU = 0, FW ≠ 0  497	

in the standard Stokes model and   FU ≠ 0, FW = 0  in the transformed Stokes model.  The 498	

discrete functional    M u,w( )  differs in the two models but it remains positive-definite in 499	

both, which has important consequences, as will be seen in Appendix D. 500	
 501	

Discrete variation of the functional corresponds to partial differentiation with 502	
respect to each of the discrete variables in  U .  Thus, the discrete Euler-Lagrange 503	
equations that correspond to the u-momentum, w-momentum, and continuity equations, 504	
respectively, are given by 505	

 

   

R u,w, p( ) =
RU u,w, p( )
RW u,w, p( )

RP u,w( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

MU u,w( ) + MUP p + FU

MW u,w( ) + MWP p + FW

MUP
T u + MWP

T w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 ,  (47) 506	

where   R u,w, p( )  is the residual vector (actually, it is the negative of the usual definition 507	

of the residual) with components    RU u,w, p( ) = ∂A ∂u ,    RW u,w, p( ) = ∂A ∂w , and 508	

  RP u,w( )=  ∂A ∂p .  The functionals    MU u,w( ) = ∂M ∂u ,    MW u,w( ) = ∂M ∂w  are 509	

nonlinear vectors of dimension  nu  and  nw , respectively.  Altogether, (47) is a set of  N  510	

equations for the  N  unknown discrete variables  Ui .  As explained previously, all 511	

boundary conditions are already included in functional (46), and therefore are also 512	
included in the discrete Euler-Lagrange equations (47). 513	
 514	

Since the overall system (47) is nonlinear, it is typically solved using Newton-515	
Raphson iteration, expressed in matrix notation as follows 516	

 
  
M uK ,wK( ) ΔU K+1 + R uK ,wK , pK( ) = 0 ,  (48) 517	
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where  K  is the iteration index, 
   M u,w( ) = ∂2A U( ) ∂Ui ∂U j  is a symmetric  N × N  518	

Hessian matrix, and   ΔK+1  is the column vector given by 519	

 
  
ΔU K+1 = uK+1 − uK ,wK+1 − wK , pK+1 − pK⎡⎣ ⎤⎦

T
. 520	

Given  Ui
K  from the previous iteration, (48) is a linear matrix equation that is solved for 521	

the  N  new variables   Ui
K+1  at each iteration.  In view of (46) and (47), the Hessian matrix 522	

  M u,w( )  may be decomposed into several submatrices, as follows 523	

 

  

M u,w( ) =
MUU u,w( ) MUW u,w( ) MUP

MUW
T u,w( ) MWW u,w( ) MWP

MUP
T MWP

T 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (49) 524	

Submatrices    MUW u,w( ) = ∂2M ∂u∂w , etc., depend nonlinearly on   u,w .  Thus, 525	

  MUU u,w( ), MWW u,w( )  are square  nu × nu ,  nw × nw  matrices, respectively, while 526	

  MUW u,w( )  is a rectangular  nu × nw matrix since   nu , nw  may not be equal.  As noted 527	

earlier,  MWP  is a  
nw × np matrix and therefore not square unless  

np = nw .  Additionally, 528	

  MUU u,w( )  and   MWW u,w( )  are symmetric by definition. 529	

 530	
4.2 Blatter-Pattyn Discretizations 531	
 532	
For completeness, we express the Blatter-Pattyn approximations from §3.4 in matrix 533	
form, as follows 534	

(1) The standard Blatter-Pattyn model from §3.4.1 takes the simple form 535	

    R
BP u( ) =MU u,0( ) + FU = 0 ,  (50) 536	

with the corresponding Newton-Raphson iteration given by 537	

   
M BP uK( ) ΔuK+1 + RBP uK( ) = 0 ,  (51) 538	

where the Blatter-Pattyn Hessian matrix is   M
BP u( ) = MUU u,0( ) . 539	
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(2) The extended Blatter-Pattyn approximation from §3.4.2 becomes 540	

 

   

REBP u,w, p( ) =
MU u,0( ) + MUP p + FU

MWP p

MUP
T u + MWP

T w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 , (52) 541	

and the Newton-Raphson iteration is given by 542	

 
  
M EBP uK( ) ΔU K+1 + REBP uK ,wK , pK( ) = 0 ,  (53) 543	

where the associated Hessian matrix is 544	

 

  

M EBP u( ) =
MUU u,0( ) 0 MUP

0 0 MWP

MUP
T MWP

T 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (54) 545	

 546	
4.3 Solvability Issues 547	
 548	
We now consider the solution of the three linear matrix problems (48), (51), (53).  While 549	
there is no issue in the continuous case, there may be problems in the discrete case 550	
depending on the choice of the grid and the finite elements, as noted earlier. 551	
 552	
4.3.1 Solvability of the Standard and Transformed Stokes Models 553	
 554	
The Hessian matrix in the standard and transformed Stokes cases, (49), has the form 555	

 
  
M u,w( ) = A B

BT 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (55) 556	

where  557	

   

  

A = AT =
MUU u,w( ) MUW u,w( )
MUW

T u,w( ) MWW u,w( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, B =

MUP

MWP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, BT = MUP

T MWP
T⎡

⎣⎢
⎤
⎦⎥

.  558	

The general form (55) is characteristic of Stokes-type problems, or more generally, of 559	
constrained minimization problems using Lagrange multipliers.  In finite element 560	
terminology these are “mixed” problems, meaning that velocity components and the 561	
pressure occupy different finite element spaces, or else they are “saddle point” problems 562	

since the Hessian matrix   M u,w( )  is symmetric but indefinite, with both positive and 563	
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negative eigenvalues.  This can give rise to solution instabilities.  To avoid this, elements 564	
that are to be used must satisfy the so-called inf-sup or LBB condition constraining the 565	
matrix  B  in (55).  There is a very large literature on the subject, e.g., Elman et al. (2014).  566	
Testing for stability is not trivial.  Both the standard and transformed Stokes models are 567	
subject to these issues and in general must use inf-sup-stable finite elements.  An 568	
example of an inf-sup stable element is the popular second-order Taylor-Hood P2-P1 569	
element with piecewise quadratic velocity and linear pressure (Hood and Taylor, 1973).  570	
Both the standard and transformed Stokes models are stable using the Taylor-Hood 571	
element.  Some results involving the Taylor-Hood element are shown in Fig. 13 for Test 572	
B, one of the test problems described in Appendix B that corresponds to Exp. B from the 573	
ISMIP–HOM model intercomparison (Pattyn et al., 2008). 574	
 575	
4.3.2 Solvability of the Standard Blatter-Pattyn Model 576	
 577	
The standard Blatter-Pattyn approximation is not subject to these stability issues since 578	
pressure, the Lagrangian multiplier, is absent in (51).  As a result, the standard Blatter-579	
Pattyn variational formulation (34) is actually a well-behaved and stable positive-definite 580	
minimization or optimization problem. 581	
 582	
4.3.3 Solvability of the Extended Blatter-Pattyn Model 583	
 584	
We noted earlier that the transformed Stokes model works well using the Taylor-Hood 585	
element in Test B.  Since the extended Blatter-Pattyn model has the same structure as the 586	
transformed full-Stokes model and yields the same solution for horizontal velocity as the 587	
standard Blatter-Pattyn model, one might expect its discrete implementation to behave 588	
well.  However, the extended Blatter-Pattyn model fails badly in this problem, with 589	
nonsensical results for the vertical velocity.  This may be because there is an additional 590	
requirement for the stability of a Stokes-type problem that is not met in this case, namely, 591	
the matrix  A  in (55) must be elliptic on the whole   u,w  space (Auricchio et al., 2017).  592	
However, there is a much simpler explanation.  Consider the vertical momentum 593	
equation, the second of the extended Blatter-Pattyn model equations from (52).  As is 594	
seen in §3.4.2 or from the second of the equations in (52) in the extended Blatter-Pattyn 595	
approximation, this equation is a decoupled linear system for the pressure.  Since the 596	

equation involves the  MWP  matrix, we have a decoupled set of  nw  equations that needs to 597	
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be solved for the  
np  pressure variables.  This is not possible unless the matrix  MWP is 598	

square.   For the same reason, the third of the equations in (52) cannot be solved for  w  599	

unless matrix  MWP
T  is invertible.  In other words, the extended Blatter-Pattyn model (52) 600	

only works when  
nw = np , which is not the case in a Taylor-Hood discretization.  This is 601	

because in finite element discretizations of Stokes problems, the pressure approximation 602	
is typically one degree lower than the velocity approximation, which leads to fewer 603	
pressure variables than velocity variables.  In the case of the Taylor-Hood element, the 604	

difference is very large and we have 
  
nw ≫ np  (see §7 for more details).  This means that 605	

in the extended Blatter-Pattyn model vertical velocity is greatly underdetermined, which 606	
accounts the problem in the Taylor-Hood calculation.  This problem also manifests itself 607	
in Taylor-Hood discretizations of Stokes models but to a much lesser extent.  For 608	
example, mass is poorly conserved in the Taylor-Hood discretization of the standard 609	
Stokes model (Boffi et al., 2012).  In the transformed Stokes case there tend to be 610	

velocity oscillations that tend to go away when using a grid in which  
np = nw (see Fig. 13, 611	

Panels E and F). 612	
 613	
4.3.4 The Solvability Condition 614	
 615	
Summarizing, the extended Blatter-Pattyn approximation is problematic unless we have 616	

  
np = nw . (56) 617	

In addition, the resulting square matrix MWP must be non-singular, which we assume to be 618	

the case for a reasonable finite element discretization.  This makes it possible to solve for 619	

the pressure in the extended Blatter-Pattyn system (52) because  MWP  is square and 620	

invertible.  We henceforth refer to (56), together with non-singularity, as the solvability 621	
condition for the pressure.  This is a characteristic or a property associated with the 622	
discrete grid and the boundary conditions.  In Appendix C, we consider several grids that 623	
exhibit this property.  The specific solvability condition given by (56) applies when direct 624	

substitution is used for basal boundary conditions.  The number of unknown pressures  
np  625	

must be augmented if Lagrange multipliers are used and (56) becomes  
np + λz + Λ = nw  626	

(See Appendix C, §C2). 627	
 628	
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The solvability condition has an additional implication.  If matrix  MWP  is square 629	

and invertible due to (56), then its transpose  MWP
T  is also square and invertible.  This 630	

implies that the continuity equation in (47) and (52), that is, 631	

   MUP
T u + MWP

T w = 0 ,  (57) 632	

is solvable for the vertical velocity  w  in terms of the horizontal velocities, as follows 633	

  w u( ) = −MWP
−T MUP

T u , (58) 634	

where the matrix  MWP
−T  is defined by 635	

   
  
MWP

−T = MWP
T( )−1

= MWP
−1( )T

. (59) 636	

Note that (58) is the discrete form of equation (43).  Thus, since the invertibility of  MWP  637	

implies the invertibility of  MWP
T , the solvability condition (56) implies the solvability of 638	

the continuity equation (58), and vice-versa.  As we shall see, this property is not just a 639	
useful property but it is necessary for the new Stokes approximations that improve on the 640	
Blatter-Pattyn approximation, as discussed in §6.2. 641	
 642	
 Perhaps the main reason for the importance of the solvability condition is 643	
demonstrated in Appendix D.  Appendix D shows that a variational principle that 644	
complies with the solvability condition is equivalent to an optimization or minimization 645	
problem, which is sufficient for the stability of the corresponding Stokes model.  Thus, 646	
for example, the extended Blatter-Pattyn model fails with a Taylor-Hood P2-P1 grid, 647	
which does not satisfy the solvability condition, but works well with a variant, the P2-E1 648	
grid, shown in Fig. 13A, that does satisfy the solvability condition.  Several finite 649	
elements that satisfy the condition are presented in Appendix C.  One particular element, 650	
the P1-E0 element, is particularly useful for use with the transformed Stokes model 651	
because the solvability condition is satisfied locally, i.e., along individual vertical grid 652	
lines, as shown in Appendix C.  This element is used in most of the 2D test problems 653	
featured here. 654	
 655	
5. Comparison of the Standard and Transformed Stokes Models 656	
 657	
To compare the standard and transformed Stokes models we use two 2D test problems, 658	
namely, Exp. B from the ISMIP-HOM benchmark (Pattyn et al, 2008), and Exp. D*, a 659	
modified version of Exp. D from the ISMIP-HOM suite.  A description of these tests is 660	
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provided in Appendix B, where they are referred to as Test B and Test D*.  Test B 661	
involves no-slip boundary conditions on a sinusoidal bed, and Test D* evaluates sliding 662	
of the ice sheet along a flat bed in the presence of sinusoidal friction.  The tests are 663	
discretized using P1-E0 elements on a regular grid composed of  n  quadrilaterals in the 664	
 x -direction and  m  quadrilaterals in the  z -direction, with each quadrilateral divided into 665	
two triangles as illustrated in Figs. C3 and described in Appendix D.  The results 666	
presented in this Section are for a relatively coarse 40x40 grid, i.e.,   m = n = 40 , except 667	
when we consider the convergence of the models with grid refinement. 668	
 669	
5.1 Convergence of Solutions with Grid Refinement 670	
 671	
We first look at the convergence of the transformed and standard Stokes models as the 672	
grid is refined in Fig. 3.  In particular, we look at the convergence of ice transport through 673	
a vertical cross section of the ice sheet at  x = L .  The ice transport  T  is defined by 674	

 
  
T = u L, z( )

zb

zs∫ dz ,  (60) 675	

where the vertical profile   u L, z( )  is plotted in Fig. 4 for several cases at the 40x40 676	

resolution.  Fig. 3 plots the absolute value of the transport error  E = T −TR  as a function 677	

of the resolution  r , where  r  is the number of quadrilaterals in either direction (since 678	

 r = m = n ) and  TR  is the converged value of the transport obtained by Richardson 679	

extrapolation using the two highest resolution values.  The transport is evaluated at 680	
various resolutions   r = 5,10,15, 20, 30, 40 , and plotted at two domain lengths,  L = 5 and 681	
10 km.  Trying to estimate the rate of convergence in this way is highly uncertain, as 682	
discussed in §7, but estimating the error is a more reasonable thing to do.  Both models 683	
are consistent with second order convergence, as expected from the use of linear 684	
elements, but they behave quite differently in the two test problems.  The transformed 685	
Stokes model (TS) is some two orders of magnitude more accurate at all resolutions than 686	
the standard Stokes model (SS) in Test B calculations although they start from the same 687	
initial conditions.  However, the accuracy of the two models is quite similar in Test D* 688	
calculations, with the SS error actually somewhat smaller than the TS error.  This is 689	
confirmed when we compare the details of the  u -velocity solutions in Figs. 4 and 5 at the 690	
40x40 resolution.  The TS and SS profiles differ noticeably from each other but are quite 691	
similar in the Test D* case.  However, the standard and transformed Stokes models do 692	
eventually converge to the same solution. 693	
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 694	
Figure 3.  Convergence of ice transport in Tests B and D* with grid refinement. 695	

Transformed Stokes plots are in blue and standard Stokes plots are in red. 696	

	697	
5.2 The Vertical Profile of Solutions 698	
 699	
Fig. 4 shows the vertical profiles of the horizontal velocity  u  at  x = L  for the 40x40 700	
resolution in the transformed and standard Stokes models.  There is a noticeable 701	
difference in the two profiles in Test B, as is to be expected from Fig. 3 results where we 702	
see that the SS calculation is not yet as well converged as the TS case at this resolution.  703	
Also shown in Fig. 4 are profiles from the two frictional sliding problems, Tests D and 704	
D*.  The Test D profile, i.e., Exp. D from the ISMIP-HOM benchmark, is almost 705	
vertically constant, indicating that the originally chosen value for basal friction is too 706	
small, i.e., more appropriate for a shallow-shelf approximation.  This motivated the 707	
modification of Test D to Test D*, as described in Appendix B.  In contrast to the Test B 708	
case, the standard and transformed frictional Test D and D* plots cannot be visually 709	
distinguished from each other, as might be expected from the similar error convergence 710	
for the Test D* results in Fig. 3. 711	
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 712	
Figure 4. The u-velocity profile at location  x = L  as a function of height from the bed. 713	

 714	
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5.3 The Upper Surface Horizontal Velocity 715	
 716	
Figs. 5 and 6 show the u-velocity at the upper surface at the 40x40 resolution for Tests B 717	
and D*, respectively.  This is the basic benchmark used in ISMIP-HOM to compare the 718	
different ice sheet models.  Here we compare four cases: the standard Stokes model (SS), 719	
the transformed Stokes model (TS), the Blatter-Pattyn (BP) model, and for reference, the 720	
very high resolution full-Stokes calculation “oga1” presented in the ISMIP-HOM paper 721	
(SS-HR).  The SS-HR calculation is also available independently in Gagliardini and 722	
Zwinger (2008).  Results are presented for two domain lengths,  L = 5 km and 10 km, to 723	
observe the behavior of the SS and TS models in the aspect ratio range where the Blatter-724	
Pattyn model begins to fail. 725	
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Figure 5. Upper surface u-velocity,   u x, zs( )  - Test B, No-slip boundary conditions. 727	

 728	
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 729	

Figure 6. Upper surface u-velocity,   u x, zs( )  - Test D*, Modified frictional sliding case. 730	

 731	
The TS and the SS-HR plots in Fig. 5 lie on top of one another (the SS-HR plot 732	

(dotted) has been slightly offset upward for clarity), indicating that the transformed 733	
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Stokes model is already fully converged, and confirming that the standard and 734	
transformed Stokes models do indeed converge to the correct Stokes solution.  We again 735	
observe that the SS results are not yet converged in Test B at this resolution, particularly 736	
at   L = 5  km.  As also seen in the ISMIP-HOM benchmark paper, the Blatter-Pattyn 737	
calculation (BP) shows large deviations from the Stokes results, especially so at   L = 5  738	
km where surface velocity is entirely out of phase with the Stokes results.  Test D* 739	
frictional sliding results follow a similar pattern in Fig. 6.  Since convergence of the SS 740	
and TS models is very similar in the frictional case, the SS and TS plots overlie one 741	
another (the SS plot has been slightly offset upward for visibility), confirming that the 742	
two Stokes models converge to the same solution.  As was seen in Test B, the Blatter-743	
Pattyn error is quite large at   L = 10  km, and dramatically so at   L = 5  km. 744	
 745	
6. Some Applications of the Transformed Stokes Model 746	
6.1 Adaptive Switching between Stokes and Blatter-Pattyn Models 747	
 748	
One way of reducing the cost of a full Stokes calculation is to use it adaptively with a 749	
cheaper approximate model in a given problem.  That is, one may use the cheaper model 750	
in those parts of a problem where it is accurate, and the more expensive full Stokes model 751	
where the approximate model loses accuracy.  One example of such an adaptive approach 752	
is the tiling method by Seroussi et al. (2012).  However, there are drawbacks to such 753	
methods, such as the difficulty of incorporating two or more presumably quite different 754	
models into a single model, and the additional complexity of a transition zone in order to 755	
couple the disparate models. 756	
 757	

Using the transformed Stokes model in such an adaptive role is attractive because 758	
it may be switched between the Stokes and Blatter-Pattyn cases simply by switching the 759	

parameter  ξ ∈ 0,1{ }  between its two values.  To avoid complications and more difficult 760	

programming it is essential that both the Stokes and the Blatter-Pattyn parts of the code 761	
have the same number of discrete variables.  This implies that the extended Blatter-Pattyn 762	

approximation  ( ξ̂ = 1) must be used, which therefore implies the use of a grid that 763	

satisfies the solvability condition for reasons discussed in §4 and Appendix C.  To do 764	
this, we will discretize using the P1-E0 element.  To demonstrate the idea of adaptive 765	
switching with a transformed Stokes model, we introduce a new test problem, Test O, 766	
described in Appendix B and illustrated in Fig. B1.  This consists of an inclined ice slab 767	
whose movement is obstructed by a thin obstacle protruding 20% of the ice depth up 768	
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from the bed.  No-slip boundary conditions are applied along the bed and on the obstacle 769	
itself.  Because of the localized nature of the obstacle, the conditions for the Blatter-770	
Pattyn approximation to be valid, (38), must fail near the obstacle and therefore the full 771	
Stokes model is needed for good accuracy, at least locally. 772	

BP: ξ = 0

Stokes: ξ = 1

 773	
Figure 7.  Mask function (white curve,  z = FM x( ) ) to indicate where the Stokes and BP 774	

models are activated in the adaptive hybrid 20% obstacle test problem.  The dark brown 775	

region delineates the region where   ∂w ∂x ≤ 0.1 ∂u ∂z  in a Blatter-Pattyn calculation. 776	

 777	
 To implement this idea, we first use a Blatter-Pattyn calculation to outline regions 778	

where   ∂w ∂x ≤ 0.1 ∂u ∂z , approximately localizing where the Blatter-Pattyn 779	

approximation is valid.  This determines a mask function  z = FM x( ) , illustrated in Fig. 7 780	

by the two white curves, that specifies where the two models must be used.  Defining the 781	

centroid of a triangular element by   xC , zC( ) , the code makes he following selection in 782	

each element, 783	

 
  

zC ≤ FM xC( ) ⇒ Set ξ = 0, i.e., the Blatter-Pattyn region,

zC > FM xC( ) ⇒ Set ξ = 1, i.e., the Stokes region.
 784	

Somewhat counterintuitively, the Stokes region occupies the upper part of the domain in 785	
Fig. 7 and includes the obstacle, while the Blatter-Pattyn region occupies much of the 786	
bottom part of the domain.  It would be possible to introduce a transition zone, e.g., 787	

  0 ≤ ξ x, z( ) ≤1 , but this was not deemed necessary and it was not done in the present 788	

calculation. 789	
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 790	
Figure 8.  Comparing results for the Transformed Stokes (TS, i.e., the exact Stokes),  791	

the Adaptive-Hybrid (AH), and the Blatter-Pattyn (BP) models for Test O. 792	
 793	
 The Adaptive-Hybrid results are shown in Fig. 8, which shows curves of the 794	
horizontal velocity  u  at seven different vertical positions specified as a percentage of the 795	
distance between top and bottom, such that  σ = 100%  is at the top surface.  The top right 796	
panel shows the results for the adaptive-hybrid model.  For comparison, the top left panel 797	
and the bottom panel show results for the full Stokes and the Blatter-Pattyn calculations, 798	
respectively.  All calculations are at the 40x40 resolution.  The Adaptive-Hybrid results 799	
are very similar to the full Stokes results, reproducing most features of the velocity 800	
profiles, including the velocity bump at the top surface, indicating that even the top 801	
surface feels the presence of the obstacle.  The Blatter-Pattyn results are much less 802	
accurate; they completely miss the details of the flow near the obstacle.  We also 803	
calculate a measure of the error relative to the transformed Stokes results, the overall 804	
RMS u-Error, defined as follows 805	

 
  
RMS u-Error = uk − uk

TS( )2

k=1

nu

∑ nu ,  (61) 806	

where  uk
TS  is the transformed Stokes horizontal velocity discrete variable.  The overall 807	

RMS u-Error in the Blatter-Pattyn case is 0.493 m/a while the Adaptive-Hybrid error is 808	
0.440 m/a, smaller in the Blatter-Pattyn case, as expected, but the difference is not big 809	
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and not as striking as the visual differences in Fig. 8.  Nevertheless, the adaptive-hybrid 810	
method can be judged successful by the results presented in Fig. 8 alone.  Unfortunately, 811	
a reasonable estimate of the computational cost savings cannot be made because of the 812	
small-scale nature of these calculations that were carried out on a personal computer. 813	
 814	
6.2. Two Stokes Approximations Beyond Blatter-Pattyn 815	
 816	

As shown in §3.4, simply setting  w = 0  in the second invariant   !"ε
2  in the transformed 817	

functional   !A , given by (28) and (33), respectively, results in the Blatter-Pattyn system of 818	
equations.  This suggests that approximating the vertical velocity  w  in the transformed 819	
functional would be a good way to create approximations that improve on the Blatter-820	
Pattyn approximation since providing no information at all, i.e.,   w = 0 , already produces 821	
an excellent approximation.  We will look at only two such methods in this Section even 822	
though many other variations are possible.  The first method, to be called the BP+ 823	
approximation, improves the Blatter-Pattyn approximation simply by using a lagged 824	
value of the vertical velocity in the functional (33).  It is implemented using a 825	
combination of Newton and Picard iterations such that at each Newton iteration the 826	

variational functional is evaluated using the known vertical velocity  wK

 from the 827	

previous iteration, where  K  is the iteration index.  The vertical velocity,  
wK = w uK( ) , is 828	

obtained by using (58) together with a grid that is consistent with an invertible continuity 829	
equation, such as the P1-E0 grid from Appendix C.  The second method, to be called the 830	
Dual-Grid approximation, approximates the transformed Stokes model by discretizing the 831	
continuity equation on a coarser grid.  Since vertical velocity  w  is to be determined by 832	
inverting the continuity equation, this has the effect of approximating the vertical velocity 833	
while at the same time reducing the number of pressure and vertical velocity variables.  834	
The degree of grid coarsening determines the accuracy of the resulting approximation. 835	
 836	
6.2.1 An Improved Blatter-Pattyn or BP+ Approximation 837	
 838	

To prepare, we introduce a pair of 2D variational quasi-functionals,     !APS1[u,w]  and 839	

    !APS 2[ !P] .  Noting that    !P = 0  in the Blatter-Pattyn approximation, we drop the pressure 840	

term from the transformed functional (33) and define a new functional, 841	
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!APS1[u,w]= dV
4n

n+1
η0
"!ε 2( ) 1+n( ) 2n

+ ρgu
∂zs

∂x
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ 1
2

dS β x( ) u2 +ζ u nx
b2( ) nz

b2( )( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,
 (62) 842	

where 843	

 
   
!"ε 2 = ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

. (63) 844	

Since the continuity equation has been eliminated, we introduce incompressibility 845	
separately by defining another functional, 846	

 
    
!APS 2[ p]= dV p

∂u
∂x

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟V∫ . (64) 847	

Since direct substitution is used for boundary conditions, then (9) and (14) are the 848	
appropriate basal boundary conditions needed to specify  w  in (64); no boundary 849	
condition is required for the pressure.  Here we are effectively viewing the pressure  p  as 850	
a “test function” in the finite element sense.  This gives us great flexibility to create 851	
elements that satisfy the solvability condition (56).  In a triangulation, for example, some 852	
pressures may be assigned to every two triangles, as in a P1-E0 grid, while others may be 853	
assigned to a single triangle to achieve an equal number of pressure and vertical velocity 854	
variables. 855	
 856	

The discrete variation of     !APS1[u,w]  with respect to  u , results in a set of  nu  Euler-857	

Lagrange equations, 858	

 
    
R̂U u,w( ) = ∂ !APS1 u,w( )

∂u
= MU u,w( ) + FU = 0 . (65) 859	

This may be recognized as the standard Blatter-Pattyn model, (50), when   w = 0 .  The 860	

discrete variation of     !APS 2[ p]  with respect to  p , results in the continuity equation, (57), 861	

 
    
R̂P u,w( ) = ∂ !APS 2 p( )

∂p
= MUP

T u + MWP
T w = 0 . (66) 862	

These two systems are now combined to form the BP+ approximation, as follows 863	

 
  
R̂ u,w( ) = R̂U u,w( ), R̂P u,w( )⎡⎣ ⎤⎦

T
= 0 .  (67) 864	

This is a single system of  
nu + np  equations to determine the  nu + nw  discrete velocities 865	

  u,w , implying that (67) is viable only on grids satisfying the solvability condition, 866	
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np = nw .  Just as in the standard Blatter-Pattyn approximation in §3.4.1, the vertical 867	

momentum equation is missing, but instead of neglecting  w , the vertical velocity is now 868	
obtained consistently from the continuity equation. 869	
 870	

There are two ways of solving the BP+ system (67), as follows 871	
(1) BP+, Newton/Picard iteration version: 872	

If   w = ŵ xi( )  is some arbitrary specified function of position, then (65) becomes a 873	

nonlinear set of  nu  equations that may be solved for the horizontal velocity  u  using 874	

Newton iteration, as follows 875	

 
  
M̂UU uK , ŵ( )Δu + R̂U uK , ŵ( ) = 0 ,  (68) 876	

where    M̂UU u, ŵ( ) = ∂MU u, ŵ( ) ∂u ,   Δu = uK+1 − uK , and  K  is the iteration index.  In 877	

particular, if we choose   ŵ = wK , where  wK  is the horizontal velocity from the previous 878	

iteration (i.e.,  
wK = w uK( )  from (58), where  uK  is the horizontal velocity from the 879	

previous iteration), we obtain the following Picard iteration: 880	

 

  

Starting from K = 0, choose an initial guess, u0 ≠ 0,

Do:  w K = w uK( ) = M PW
−1 M PUuK ,

Solve  M̂UU uK ,w K( )Δu + R̂U uK ,w K( ) = 0,

uK+1 = uK + Δu,
K = K +1,

Repeat until convergence.

 (69) 881	

The advantage of this method is that iteration is rapid since each iteration step is 882	
equivalent to the short Newton step of the standard Blatter-Pattyn model, (36).  On the 883	
other hand, as a Picard iteration, its convergence is expected to be only linear. 884	
 885	
 (2) BP+, Quasi-variational, Newton iteration version: 886	

Although a variational principle does not exist, it is still possible to make use of 887	
Newton-Raphson iteration to obtain second order convergence.  To do this, we treat (67) 888	
as a single multidimensional nonlinear system and solve it using Newton-Raphson 889	
iteration, as follows 890	
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M̂UU uK ,wK( ) M̂UW uK ,wK( )
M PU M PW

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Δu
Δw

⎡

⎣
⎢

⎤

⎦
⎥ +

R̂U uK ,wK( )
R̂P uK ,wK( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0 , (70) 891	

where   M̂UU u,w( ) = ∂R̂U u,w( ) ∂u  and   M̂UW u,w( ) = ∂R̂U u,w( ) ∂w .  The convergence is 892	

quadratic once in the basin of attraction but each iteration is more expensive than in the 893	
Picard version because the linear system (70) is approximately double the size of the one 894	
in (69).  It remains to be seen which version proves to be preferable in practice. 895	
 896	

Both BP+ versions converge to the same solution.  Fig. 9 compares the upper 897	
surface u-velocity from the improved Blatter-Pattyn (BP+) approximation to the standard 898	
Blatter-Pattyn approximation and to a reference exact Stokes calculation.  The RMS u-899	
Error of the BP+ approximation relative to the exact Stokes case is shown in Fig. 12.  The 900	
BP+ approximation is noticeably more accurate than the BP approximation, especially so 901	
in the   L = 5  km case where the Blatter-Pattyn solution bears no resemblance to the 902	
correct solution while the BP+ approximation retains very good accuracy.  This is 903	
confirmed by the RMS u-Error results in Fig. 12. 904	
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 905	
Figure 9.  Comparing Approximations. Test B, Upper surface u-velocity. 906	

TS-Ref: Transformed Stokes; BP: Blatter-Pattyn; BP+: Improved Blatter-Pattyn. 907	
Resolution: 24x24. 908	

 909	
 The two versions depend either on solving the continuity equation to obtain 910	

 w = w u( ) , or the use of a grid that incorporates such a solvable continuity equation.  911	

Solution of the continuity equation to obtain  w  may already be available for the purpose 912	
of temperature advection in production code packages that either incorporate or are based 913	
on the Blatter-Pattyn approximation.  Thus, these new approximations, and particularly 914	
the Newton/Picard version, may be especially attractive for use in such codes since they 915	
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substantially improve the accuracy of the basic Blatter-Pattyn model, as seen in Fig. 9, at 916	
little or no additional cost. 917	
 918	
6.2.2 A “Dual-Grid” Transformed Stokes Approximation 919	
 920	
In §6.2.1, the BP+ approximation was based on directly approximating or lagging the 921	

vertical velocity  w  in the second invariant   !"ε
2  in the transformed functional   !A .  Here we 922	

take a different approach and instead approximate the continuity equation in the 923	
transformed Stokes model, which indirectly approximates  w .  To do this we discretize 924	
the continuity equation on a grid that is coarser than the one used for the momentum 925	
equations and then interpolate the vertical velocity to the appropriate locations on the 926	
finer grid.  This reduces the number of unknown variables in the problem, making it 927	
cheaper to solve but hopefully without much loss of accuracy.  As described in Appendix 928	
B, our test problem grids are logically rectangular, divided into  n  cells horizontally and 929	
 m  cells vertically, thus allowing considerable freedom to specify the coarse grid.  The 930	
coarse grid is constructed by dividing the fine grid into  s  equal segments in each 931	
direction.  This presupposes that the integers  n  and  m  are each divisible by  s , such that 932	

there are   s2  coarse cells in total, with each coarse cell containing   nm / s2  fine cells.  The 933	

primary grid (i.e., the fine grid) was chosen to have   n = m = 24 , resulting in a reference 934	

 24× 24  fine grid, so as to maximize the number of different coarse grids that may be 935	
used for this test.  Coarse grids were constructed using   s = 2,3,4,6 , and this resulted in 936	

fine/coarse grid combinations labeled by  24×12, 24×8, 24× 6, 24× 4 , respectively.  937	
Similar to a P1-E0 fine grid, coarse grid vertical velocities  w  are located at vertices and 938	
pressures at vertical edges.  Fig. 10 illustrates the case of a single coarse and four fine 939	
quadrilateral cells for a grid fragment with   n = m = 2  and   s = 1.  For the Test B problem, 940	
using direct substitution for basal boundary conditions, there will be  nm  u-variables and 941	

  nm s2  w- and p-variables each, for a total of 
  
nm 1+ 2 s2( )  unknown variables, 942	

considerably fewer than the   3nm  variables in the full resolution (i.e., fine grid) case, 943	
depending on the value of  s .  The coarse grid terms in the functional that are affected, 944	

  
!P ∂u ∂x + ∂w ∂z( )  and  ∂w ∂x , are computed using coarse grid variables and 945	

interpolated to the fine grid.  We will consider two versions of the approximation 946	
depending on how the coarse grid terms are calculated and distributed on the fine grid. 947	
 948	
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(1) Approximation A, Bilinear interpolation: 949	
 Referring to Fig. 10, the four velocities at the vertices of the coarse grid 950	

quadrilateral, i.e.,   u1,u3,u7 ,u9  and   w1,w2 ,w3,w4 , are used to obtain   u,w  at the remaining 951	

five vertices of the fine grid by means of bilinear interpolation.  Thus, the five velocities 952	

  u2 ,u4 ,u5,u6 ,u8  are obtained in terms of vertex velocities   u1,u3,u7 ,u9 , and similarly for the 953	

 w  velocities.  The resulting complete set of fine grid variables, interpolated from coarse 954	

grid variables, are used calculate the divergence  D = ∂u ∂x + ∂w ∂z( )  and the quantity 955	

 ∂w ∂x  in each of the eight triangular elements    t1,t2 ,!,t8  of the fine grid.  Coarse grid 956	

pressures    
!P1, !P2  are associated with the coarse grid triangles   T1,T2 .  The products    

!P1 D  in 957	

elements   t1,t2 ,t3,t5  and    
!P2 D  in elements   t4 ,t6 ,t7 ,t8  are then accumulated over the entire 958	

grid to obtain   
!P ∂u ∂x + ∂w ∂z( )  for use in the transformed functional   !A .  Similarly, the 959	

quantity  ∂w ∂x  is computed in the fine grid elements from coarse grid variables for use 960	

in the second invariant   !"ε
2 . 961	
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 962	
 963	

Figure 10.  A Sample of a Coarse/Fine P1-E0 Grid for the Dual-Grid Approximation. 964	
Resolution:   n = m = 2, s = 1.  Coarse grid is in red, fine grid in black. 965	

 966	
(2) Approximation B, Linear interpolation: 967	
 In this version, the three velocities at the vertices of the two coarse grid triangles 968	

  T1  and   T2 , i.e.,   u1,u3,u7  and   w1,w2 ,w3  in   T1 , and   u7 ,u3,u9  and   w3,w2 ,w4  in   T2 , 969	

approximate the divergence  D = ∂u ∂x + ∂w ∂z( )  and the quantity  ∂w ∂x  as constant 970	

values in the two coarse triangles.  The constant quantities    
!P1 D ,    

!P2 D  are then 971	

accumulated over the entire grid.  The constant quantity  ∂w ∂x  in each coarse triangle is 972	
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then distributed to each of the eight fine grid elements    t1,t2 ,!,t8  depending on whether 973	

the centroid of the fine triangular element is in   T1  or   T2 .  As in the previous case, this is 974	

then used in the second invariant   !"ε
2  when evaluating the transformed functional   !A . 975	

 976	
 While the number and type of unknown variables is the same in the two versions, 977	
they differ considerably in accuracy, as is seen in Figs. 11 and 12.  Fig. 11 compares the 978	
upper surface u-velocity in both version, Approximations A and B, for the four coarse 979	
grid combinations and the reference 24x24 fine grid calculation.  Fig. 12 compares the 980	
overall accuracy the same way by means of the RMS u-Error.  As might be expected, the 981	
accuracy of Approx. A is better than the accuracy of Approx. B, particularly in the case 982	
when   L = 10  km.  Both versions are more accurate than the Blatter-Pattyn and BP+ 983	
approximations, except at the lowest 24x4 resolution when only the Approx. A version 984	
retains that distinction. 985	
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 986	
Figure 11.  Comparing Approximations A and B.  Test B.  Upper surface u-velocity. 987	

TS-Ref: Reference Stokes 24x24; Fine/Coarse resolutions (r x R):  24xR, R=12, 8, 6, 4. 988	
 989	
 In summary, the dual-grid approximation improves on the Blatter-Pattyn 990	
approximation in both versions and at all resolutions, as seen in Fig. 12.  Compared to the 991	
BP+ approximations, here the vertical momentum equation is retained, although in 992	
approximated form.  In fact, the solution procedure here is very similar to that of the 993	
unapproximated Stokes model except that the dimensions of the pressure and the vertical 994	
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velocity variables are reduced.  Despite the differences with the unapproximated case, the 995	

arguments in Appendix D regarding stability extend to the case  
nu > nw = np  appropriate 996	

for the dual-grid approximation.  As argued in Appendix D, provided the solvability 997	

condition  
nw = np  holds on the coarse grid, the “reduced” continuity equation may be 998	

solved for the coarse vertical velocity in terms of the fine horizontal velocity 999	

variables, w = w u( ) , and in turn, the coarse pressure may be obtained in terms of the fine 1000	

horizontal velocity variables,  p = p u( ) , as in (79).  As a result, pressure may be 1001	

eliminated in the dual grid version of the functional, converting the variational 1002	
formulation into a stable minimization problem.  Thus, the solvability condition still 1003	
applies, but this time it applies to the coarse grid. 1004	
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 1005	
Figure 12.  Comparing RMS u-Error in Different Approximations, Test B, 1006	

Resolutions (r x R):  Approx. BP, BP+:  24x24; Approx. A, B:  24xR, R=12, 8, 6, 4. 1007	
 1008	
7. Second-Order Discretizations 1009	
 1010	
So far we have been using first-order elements, primarily P1-E0.  However, in current 1011	
practice Stokes models are often based on the popular second-order Taylor-Hood P2-P1 1012	
element (Leng et al., 2012; Gagliardini et al., 2013).  The two-dimensional P2-P1 1013	
element, illustrated in Fig. 13A, has velocities on element vertices and edge midpoints 1014	
and pressures on element vertices, resulting in a quadratic velocity and linear pressure 1015	
within the element.  The element satisfies the conventional inf-sup stability condition 1016	
(Elman et al., 2014) but not the solvability condition (56).  For example, in Test B with 1017	
direct substitution for basal boundary conditions, the number of vertical velocity 1018	

variables in the Taylor-Hood element,   nw = 4nm , is typically much larger than the 1019	

number of pressure variables, 
  
np = n m+1( ) , where   n,m  have been defined previously.   1020	
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 1021	
Figure 13.  Comparing second-order discretizations based on the P2-P1 and P2-E1 1022	
elements from panel A to first-order discretizations using the P1-E0 element running Test 1023	
B with L=10 km.  For simplicity, only transformed Stokes calculations are compared; 1024	
standard Stokes results behave similarly.  Panel B compares the relative accuracy of the 1025	
various schemes with increasing resolution, while panels C through F compare the 1026	
horizontal and vertical velocities at medium and maximum resolutions, i.e.,   r = 8,16  for 1027	

second-order and   r = 20,40  for first-order cases.  Plots labeled  σ = 100%  indicate the 1028	

upper surface while dashed plots labeled  σ = 25%  indicate surfaces a quarter of the way 1029	
up from the bottom. 1030	
 1031	
 Stokes models work well with a Taylor-Hood grid, as illustrated in Fig. 13, where 1032	
both P2-P1 and P1-E0 models converge to a common Test B solution, but models that 1033	
require the solvability condition (56) will not work on a P2-P1 grid, as discussed in 1034	
connection with the extended Blatter-Pattyn approximation in §4.3.3.  For these 1035	
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applications an alternative will be needed if one wishes to use a second order 1036	
discretization.  An alternative second-order element, consistent with an invertible 1037	
continuity equation, can be created by modifying the Taylor-Hood element to produce the 1038	
P2-E1 element illustrated in Fig. 13A.  This element is second-order for velocities and 1039	
linear for pressure, just like the P2-P1 element, but the pressure is edge-based, as in the 1040	
P1-E0 element.  The pressure is located midway between the velocities on the vertical 1041	
cell edges, including an “imaginary” vertical edge joining the velocities in the middle of 1042	
the vertical column as shown in Fig. 13A.  Since pressures are collinear with vertical 1043	
velocities along vertical grid edges as in the P1-E0 element, the analysis in Appendix C, 1044	
§C2, demonstrates that element P2-E1 also satisfies the solvability condition (56).  1045	
Preferably, as explained in Appendix C, §C3, a P2-E1 grid is constructed using vertical 1046	
columns of quadrilaterals.  A three-dimensional analog of this element exists and is 1047	
presented in Appendix C. 1048	
 1049	
Remark #2:  In addition to the P2-E1 element, it is possible to construct other elements 1050	
that feature an invertible continuity equation with second-order accurate velocities.  Thus, 1051	
noting that there are   2nm  triangular elements in a Test B problem grid, it is sufficient 1052	
that each triangular element contains two pressures, resulting in the same total number of 1053	

vertical velocity and pressure variables, namely,   
nw = np = 4nm .  The pressure will not be 1054	

linear within the element but this is unimportant since, as noted before, pressure has no 1055	
physical significance.  1056	
 1057	
 Fig. 13B shows the approximate error of the ice transport  T  from (60) as a 1058	
function of grid refinement for the second-order P2-P1 and P2-E1 grids in transformed 1059	
Stokes Test B calculations, together with similar results for the first-order P1-E0 grid 1060	

from Fig. 3, for comparison.  Calculation of the error  E = T −TR , as defined in §5.1, is 1061	

difficult because we do not have the converged value of the transport  TR .  To estimate it, 1062	

we use Richardson extrapolation, assuming a rate of convergence proportional to  r −c , 1063	
where  r  is the resolution and  c  is the order of convergence, taken to be either   c = 2  in a 1064	
first order model and   c = 3  in a second order model.  This gives a reasonable estimate of 1065	
the magnitude of the error as plotted in Fig. 13B.  We note that both second order models 1066	
show approximately the same error at resolution   r = 16  as the first order P1-E0 model at 1067	
resolution   r = 40 , and similarly for coarser resolutions such as   r = 8  and   r = 20 , 1068	
respectively.  However, although here the computational costs are not representative, it is 1069	
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safe to say that these second-order calculations are considerably more expensive than the 1070	
first-order calculations at comparable resolution or accuracy. 1071	
 1072	
 Panels C, D in Fig. 13 compare the u-velocities, and panels E, F compare the w-1073	
velocities, respectively, from several Test B calculations using the two second-order 1074	
models in comparison with first-order P1-E0 model results from Fig. 3.  Each panel 1075	
shows results from the upper surface ( σ = 100% ) in solid lines and results from a surface 1076	
a quarter of the way up from the bottom ( σ = 25% ) in dashed lines.  Panels C, E show 1077	
results from medium resolution calculations (  r = 8, 20  in the second-order and first-order 1078	
calculations, respectively) and panels D, F show the corresponding results from the  1079	
higher resolution calculations (  r = 16,40 ).  At these resolutions the accuracy of the first- 1080	
and second-order calculations is very similar so for clarity the second-order results are 1081	
displaced horizontally from the first-order results by 0.05 nondimensional units.  The P2-1082	
E1 results in magenta are displaced to the left and the P2-P1 results in blue are displaced 1083	
to the right.  In general, models satisfying the solvability condition, namely the P1-E0 1084	
and P2-E1 models, are better behaved than the Taylor-Hood model, particularly in the 1085	
vertical velocity results, panels E and F, where velocity oscillations are present in the P2-1086	
P1 results.  This is presumably related to the well-known “weak” mass conservation of 1087	
the Taylor-Hood element.  This problem is greatly improved by “enriching” the pressure 1088	
space with constant pressures in each triangular element (Boffi et al., 2012).  In the 2D 1089	

Test B problem this increases the number of pressure variables from 
  
np = n m+1( )  in the 1090	

basic Taylor-Hood element to   n 3m+1( ) , much closer to the   4nm  needed to satisfy the 1091	

solvability condition.  On the other hand, it should be noted that the pressure in the P2-E1 1092	
case is highly oscillatory while in the P2-P1 case it is well behaved.  However, this is not 1093	
at all concerning since, as mentioned earlier in Remark #2, the transformed pressure, a 1094	
Lagrange multiplier, has no physical significance. 1095	
 1096	
8. Summary 1097	
 1098	
This paper introduces two main innovations.  Together, the two innovations expand the 1099	
scope of traditional methods used in ice sheet modeling.  The first innovation is a 1100	
transformation of the ice sheet Stokes equations into a form that closely resembles the 1101	
Blatter-Pattyn approximate model.  This creates the ability to easily convert from one 1102	
model to the other.  The variational formulation of the Blatter-Pattyn approximation 1103	
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differs from the corresponding formulation of the transformed Stokes model only by the 1104	
absence of the vertical velocity  w  in the second invariant of the strain rate tensor.  This 1105	
makes it possible to create new Stokes approximations by focusing on the smallness of 1106	
vertical velocity compared to other terms in the variational functional.  Two such 1107	
approximations are presented, the BP+ approximation and the dual-grid approximation, 1108	
which are cheaper than full-Stokes and more accurate than Blatter-Pattyn.  Both 1109	
approximations are based on using an approximate vertical velocity that is obtained 1110	
inexpensively for this purpose, in general by solving the continuity equation for the 1111	
vertical velocity in terms of the horizontal velocity components.  In the variational 1112	
formulation, the continuity equation is obtained by variation with respect to the pressure, 1113	

yielding a system of  
np  equations to solve for the  nw  vertical velocity variables.  Thus, 1114	

vertical velocity can only be obtained from the solution of the discrete continuity 1115	
equation if the number of unknown vertical velocity variables is equal to the number of 1116	

unknown pressure variables, i.e.,  
nw = np .  This is called the solvability condition. 1117	

 1118	
The second innovation is the introduction of finite element grids in which the 1119	

solvability condition is satisfied.  These grids incorporate a decoupled and invertible 1120	
discrete continuity equation.  This has two important consequences.  The first is that it 1121	
allows for the numerical solution of the continuity equation for the vertical velocity in 1122	

terms of the horizontal velocity components,   w = w u,v( ) , which is a prerequisite in the 1123	

different approximations made possible by the transformed Stokes formulation.  A 1124	
second very important consequence is that invertibility of the continuity equation and the 1125	
availability of the vertical velocity in terms of the horizontal velocity components can be 1126	
used to remove the need for pressure as a Lagrange multiplier.  Removing the pressure 1127	
from the system of Stokes equations, or from the variational functional, means that a 1128	
Stokes problem discretized with such a grid becomes a well-behaved minimization 1129	
problem rather than a mixed or saddle-point problem.  This eliminates the need for the 1130	
inf-sup or LBB condition that is normally required to be satisfied in finite element 1131	
formulations.  Some examples of such grids for use in both 2D and 3D are given in 1132	
Appendix C.  An important case is the P1-E0 grid that has been used in most of the test 1133	
problems in this paper.  To construct such grids we can focus on the term involving 1134	
pressure in the variational functionals (15) and (33) in isolation from the other terms, as is 1135	
done in (64).  The pressure may then be considered a finite element “test function”, 1136	

allowing us to construct appropriate test functions that yield  nw  independent equations 1137	
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corresponding to the linear system of continuity equations (57), which is sufficient to 1138	
solve for the vertical velocity in terms of the horizontal velocity components.  This is 1139	
already done in MALI (Hoffman et al., 2018), an ice sheet model based on the Blatter-1140	
Pattyn approximation, to obtain the vertical velocity  w  needed for the advection of ice 1141	
temperature (Mauro Perego, private communication). 1142	
 1143	
 We have also introduced some minor innovations in the implementation of the 1144	
frictional tangential sliding boundary condition that is often challenging to implement 1145	
numerically.  Implementation directly into the Stokes equations involves the formation of 1146	
the normal component of the stress force at the boundary.  This is extremely complex 1147	
(e.g., see DPL, 2010).  Appendix A describes an alternative that avoids this complication.  1148	
The variational formulation makes it possible to also implement this boundary condition 1149	
using Lagrange multipliers, but this may not be desirable because it introduces extra 1150	
variables.  A much more attractive alternative is the use of the no-penetration condition in 1151	
the form given by (14) to eliminate the vertical velocity by direct substitution along the 1152	
frictional portion of the basal boundary, as discussed in connection with the functional 1153	
(15).  This automatically enforces both the frictional sliding condition and the no-1154	
penetration condition. 1155	
 1156	

Finally, we need to point out that no cost comparisons have been presented.  This 1157	
is because the present calculations were made on a personal computer using the program 1158	
Mathematica, which is not at all representative of the computer hardware or the methods 1159	
that are used in practical ice sheet modeling.  Furthermore, no effort was made to 1160	
optimize the calculations or to take advantage of parallelization.  As a result, cost 1161	
comparisons would have been highly misleading. 1162	
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Appendix A: The Frictional Sliding Boundary Condition 1286	
 1287	
The frictional sliding boundary condition requires the specification of the tangential 1288	
component of the frictional stress force.  Dukowicz et al. (2010) obtain this by defining 1289	
the frictional stress force at the basal surface as follows 1290	

 
  
σ ijn j

b2( ) = τ ij − Pδ ij( )nj
b2( ) = − fi   1291	

where  
σ ij  is the stress tensor,  

δ ij  is the Kronecker delta, and  fi  is the frictional sliding 1292	

force vector from §2.2, and then subtracting out the normal component.  The result is 1293	

 
  
τ ij −τ nδ ij( )nj

b2( ) + fi = 0  (71) 1294	

where 
  
τ n = ni

b2( )τ ijn j
b2( )  is the normal component of the stress force.  However, the three 1295	

components of (71) are not independent because they already satisfy the tangency 1296	
condition at the basal surface.  Since we already have one component of the basal 1297	
frictional boundary condition, namely, the tangency condition (10), we therefore need 1298	
only two more conditions and these are typically taken to be the two horizontal 1299	
components of (71).  This option is problematic because of the need to form the highly 1300	

complex quantity  τ n . 1301	

 1302	
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A simpler alternative is obtained by simply using the unneeded vertical 1303	

component of (71) to eliminate  τ n  from the two horizontal components.  The vertical 1304	

component of (71) gives 1305	

 
  
τ nnz

b2( ) = τ zjnj
b2( ) + fz .   (72) 1306	

Substituting this into (71), we obtain the desired two conditions, as follows 1307	

 
  
nz

b2( ) τ i( ) jn j
b2( ) + f i( )( )− n i( )

b2( ) τ zjnj
b2( ) + fz( ) = 0 . (73) 1308	

This is boundary condition (11) as used in §2.2.   1309	
 1310	

Alternatively, one could use of a Lagrange multiplier Λ  in the variational 1311	
principle, as is done in (13) and in Dukowicz et al. (2011).  This yields the tangency 1312	
condition (10) together with 1313	

 
  
τ ijn j

b2( ) + Λ− P( )ni
b2( ) + fi = 0 .  (74) 1314	

Equation (74) provides three conditions, which, together with (10), is one too many.  1315	
However, one of these conditions must be used to determine the quantity  Λ− P .  1316	

Contracting (74) with   ni
b2( ) , and using the fact that  fi  is tangential to the basal surface, 1317	

gives us  Λ− P = −τ n , which, when substituted into (74) gives us agreement with (71).  1318	

Alternatively, employing the vertical component of (74) to determine  Λ− P , yields 1319	

  
Λ− P = − fz +τ zjnj

b2( )( ) nz
b2( ) .  Substituting this into (74) gives the preferred boundary 1320	

condition (73). 1321	
 1322	
Appendix B: Test Problems 1323	
 1324	
We will use three two-dimensional test problems to demonstrate the new methods.  The 1325	
geometrical configuration of the three test problem grids is illustrated in Fig. B1.  The 1326	
first problem, Test B, is actually Exp. B from the ISMIP-HOM benchmark suite (Pattyn 1327	
et al., 2008); it features a no-slip condition (infinite friction) on a sinusoidal basal surface.  1328	
The second problem, Test D*, featuring sinusoidal friction along a uniformly sloped 1329	
plane basal surface, is a replacement with modified parameters for Exp. D from the 1330	
benchmark suite.  This is because the ice flow in Exp. D is very nearly vertically uniform 1331	
(as seen in Fig. 4), which is more characteristic of a shallow-shelf approximation.  1332	
Increasing basal friction in Test D * rectifies this.  These two test problems, Tests B and 1333	
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D*, are used to illustrate and compare the performance of the new transformation versus 1334	
the traditional Stokes formulation. 1335	

ISMIP-HOM Test Problem B - No Slip
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 1336	
Figure B1. Test problem grids.  For clarity, a very coarse 5x5 configuration is used. 1337	

 1338	
A third problem, Test O (for “Obstacle”) has been introduced to illustrate 1339	

adaptive switching between the transformed Stokes and the extended Blatter-Pattyn 1340	
model in a problem where the small aspect ratio assumption underlying the Blatter-Pattyn 1341	
approximation fails locally.  Test O has a unique feature, namely, a thin no-slip obstacle, 1342	
located at   x = 4 km  and extending vertically   200 m  from the bed (20 % of the ice sheet 1343	

thickness), as illustrated in Fig. B1, which forces the ice flow near the obstacle to adjust 1344	
abruptly.  Because of the no-slip boundary conditions along the obstacle surface, a 1345	
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triangular element in the lee of the obstacle, with one vertical edge and one edge along 1346	
the bed, would be a “null” element since all vertex velocities would be zero.  This would 1347	
create zero stress and therefore a local singularity in ice viscosity in the element.  To 1348	
avoid this, all elements at the back of the obstacle are “reversed” as compared to the ones 1349	
at the front of the obstacle, as shown in Fig. B1. 1350	
 1351	

All tests feature a sloping flat upper surface, given by 1352	

   zs x( ) = −x Tan θ( ) , (75) 1353	

where  θ = 0.5°  for Tests B and O, and  θ = 0.3°  for Test D* (note that this differs from the 1354	

 0.1°  slope in Test D), with a free-stress upper boundary condition in all cases.  The 1355	
sinusoidal bottom surface elevation for Test B is specified by 1356	

   zb x( ) = zs x( )− H0 + H1 Sin ω x( ) , (76) 1357	

where the depth   H0 = 1000 m ,   H1 = 500 m ,   ω = 2π L , and  L  is the perturbation 1358	

wavelength, which is also the domain length.  The bottom surface in Tests D* and O is 1359	
parallel to the upper surface so the bottom surface elevation is 1360	

   zb x( ) = zs x( )− H0 . (77) 1361	

The length  L  in the ISMIP-HOM suite ranges from   5 km  to   160 km , but here we 1362	

consider only the two cases at the high end of the aspect ratio   H0 L  range, namely, 1363	

  L = 5 km  and   L = 10 km , where the inaccuracy of the Blatter-Pattyn approximation 1364	
becomes noticeable.  Lateral boundary conditions in all cases are periodic.  The spatially 1365	
varying friction coefficient for Test D* is given by 1366	

   β x( ) = β0 + β1 Sin ω x( ) , (78) 1367	

where the friction coefficients are  β0 = β1 = 104
  Pa a m−1

 (these are an order of 1368	

magnitude higher than in Test D).   Physical parameters used for the test problems are the 1369	

same as in ISMIP-HOM, namely, ice-flow parameter   A = 10−16 Pa−3a−1 , ice density 1370	

  ρ = 910 kg m−3 , and gravitational constant   g = 9.81 ms2 .  In general, units are MKS, 1371	
except where time is given per annum, which is convertible to per second by the factor 1372	

  3.1557 ×107 s a−1 . 1373	
 1374	

https://doi.org/10.5194/egusphere-2024-1052
Preprint. Discussion started: 29 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 51 

Appendix C: Grids Satisfying the Solvability Condition 1375	
C1  A Solvable Continuity Equation 1376	
 1377	
As discussed in §4, the invertibility of the discrete continuity equation, at least in the 1378	
simplest case of direct substitution for basal boundary conditions, requires a special grid 1379	

that satisfies the solvability condition (56), i.e.,  
np = nw .  Here we discuss several such 1380	

grids and their properties. 1381	
 1382	

The finite element discretization of our test problems, described in Appendix B 1383	
and illustrated in Fig. B1, is constructed using vertical columns of quadrilaterals that are 1384	
subdivided into triangles.  Fig. C1 illustrates three different two-dimensional elements on 1385	
triangles or quadrilaterals that may be used to construct grids that may be used to satisfy 1386	
the solvability condition (56) in certain circumstances.  The P1-E0 element is quite 1387	
general and satisfies the solvability condition along each vertical grid edge, as will be 1388	
demonstrated in Appendix C, §C2.  As noted before, it has velocities located at triangle 1389	
vertices, resulting in a linear velocity distribution within the triangle (P1), and pressure is 1390	
located on the vertical edge of each triangle, resulting in constant pressure over the two 1391	
triangles that share that edge (E0).  A second order version of the P1-E0 element, the P2-1392	
E1 element, is illustrated in Fig. 13A.  The two other elements in Fig. C1, i.e., the P1-Q0 1393	
and Q1-Q0 elements, satisfy the solvability condition when used in the grids for our test 1394	
problems, Tests B and D*, but may not do so in other problems.  The P1-Q0 element also 1395	
has velocities on triangle vertices for a linear velocity distribution within the triangle 1396	
(P1), but pressure is constant within the two triangles that form a quadrilateral (Q0).  The 1397	
element Q1-Q0 has velocities located at quadrilateral vertices and pressure centered in 1398	
the quadrilateral, resulting in a bi-quadratic velocity distribution and a constant pressure 1399	
within the quadrilateral (Q0). 1400	

u,w - velocity P - pressure~

P1-E0 P1-Q0 Q1-Q0  1401	
Figure C1.  Three first-order 2D elements that may be used to satisfy the  1402	

solvability condition, (56), in Tests B and D*. 1403	
 1404	
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Fig. C2 shows the convergence of ice transport with grid resolution for Test B 1405	
calculations using these three elements.  The solutions are stable and they all converge to 1406	
the same value for the ice transport.  The pressure distribution is smooth in the P1-E0 1407	
case, but contains very small fluctuations near the surface in the P1-Q0 and Q1-Q0 cases 1408	
that tend to disappear as the resolution is increased.  The Q1-Q0 element is attractive 1409	
because of its simplicity but it has the potential for a pressure null space, resulting in 1410	
pressure checkerboarding (Elman et al., 2014, where the element is called Q1-P0).  As a 1411	
result, apparently it is only used in a stabilized form.  Here, however, the Q1-Q0 grid 1412	
satisfies the solvability condition in Test B and behaves well.  Overall, these results 1413	
confirm our expectation of stability for grids when they satisfy the solvability condition 1414	
as will be discussed in Appendix D.  The P1-E0 element is somewhat special because the 1415	
solvability condition (56) is satisfied individually along each vertical edge in grids that 1416	
are composed of this element, as opposed to being satisfied over the entire grid as in the 1417	
other two elements, as we discuss next. 1418	
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 1419	
Figure C2.  Convergence of Test B ice transport for grids using the three elements 1420	

from Fig. C1.  All discretizations are stable and converge to the same solution. 1421	
 1422	
C2  Proving that the P1-E0 Element Satisfies the Solvability Condition 1423	

The P1-E0 element from Fig. C1 is used in an example grid in Fig. C3.  Note that 1424	
the grid is composed of vertical columns subdivided into triangular elements.  To 1425	
demonstrate that the element meets the solvability condition (56) it is sufficient to 1426	
consider a single vertical edge extending from the bottom to the top.  Assuming there are 1427	

 m  edge segments in the vertical direction, there will be   m+1 discrete w  variables and  m  1428	

discrete   !P  variables, such that each   !P  variable is located between a pair of  w  variables.  1429	
Since the  w  variable at the bed is specified as a boundary condition, either directly as a 1430	
no-slip condition or in terms of the horizontal velocity component as part of a no-1431	
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penetration condition, there will be only  m  unknown  w  variables, and therefore  
nw = np  1432	

along each vertical grid edge, and hence over the entire grid, as desired.  In case 1433	
Lagrange multipliers are used, there will be   m+1 unknown discrete w  variables (since 1434	
now the basal vertical velocity  w  is also an unknown).  This is matched by  m  unknown 1435	

  !P  variables, supplemented by one  λz  or one Λ  unknown Lagrange multiplier variable, 1436	

depending on the type of boundary condition.  Thus, again the number of unknown 1437	
variables equals the number of equations along every vertical edge, thereby satisfying the 1438	
solvability condition whether Lagrange multipliers are used or not.  Importantly, this 1439	
means that this element can be used to satisfy the solvability condition irrespective of the 1440	
boundary conditions on quite arbitrary grids, as illustrated in Fig. C3.  These arguments 1441	
apply for other versions of the P1-E0 element as well, such as the second order version 1442	
P2-E1 in Fig. 13A or the 3D version in Fig. C4. 1443	

       

Bed

x
z

g

Ice Sheet

Vertical 
Column

P~

u, w
BCs on Bed
u, w,  (!x, !z, &)

P  Basis Function~

 1444	
 1445	

Figure C3.  An illustration of a 2D edge-based P1-E0 grid, composed of vertical columns 1446	

randomly subdivided into triangles.  Pressures are located on the vertical edges.   1447	

The triangulation and the configuration of the associated pressure basis functions  1448	

(shown in gray) is quite general, allowing for a flexible triangulation of the domain. 1449	
 1450	
C3  Two- and Three-Dimensional Meshes Based on the P1-E0 Element 1451	
  The P1-E0 element has been used on the simple test problem grids in Fig. B1 and 1452	
performs well.  Moreover, the element has great geometric generality so it may be used 1453	
for quite complicated grids, as in Fig. C3.  Generally, there are two triangles associated 1454	
with a pressure variable, one on each side of a vertical edge, except in situations as in Fig. 1455	
C3 where the ice sheet ends at a vertical face.  Even in this unusual situation there is no 1456	
problem since the pressure is simply associated with the single triangle on one side of the 1457	
vertical face. 1458	
 1459	
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The two-dimensional P1-E0 element has a relatively simple three-dimensional 1460	
counterpart, shown in Fig. C4.  The mesh again consists of vertical columns, this time 1461	
composed of hexahedra.  Each hexahedron is subdivided into six tetrahedra such that 1462	
each vertical edge is surrounded by from as few as four to as many as eight tetrahedra.  1463	
As in the two-dimensional case, velocity components are collocated at vertices, yielding a 1464	
piecewise-linear velocity distribution in each tetrahedral element, and pressures are 1465	
located in the middle of each vertical edge so that pressure is constant in the tetrahedra 1466	
surrounding that edge.  Lagrange multipliers, if used, are located at the vertices on the 1467	
basal surface, yielding a piecewise linear distribution on the basal triangular facet.  This 1468	
arrangement also satisfies the solvability condition (56) since pressures and vertical 1469	
velocities are again intermingled along a single line of vertical edges from top to bottom, 1470	
as in the 2D case.  Thus, the solvability argument used in the two-dimensional case 1471	
applies, confirming that the 3D version of the P1-P0 element also satisfies the solvability 1472	
condition. 1473	

Configuration A

X

Z

Y

Configuration B
 1474	

Figure C4.  Three-dimensional P1-E0 tetrahedral elements that generalize the 2D 1475	
P1-E0 element of Fig. C1.  Configurations A and B differ by having an internal  1476	

triangular face rotated, as indicated by the blue arrows.  Both configurations  1477	
satisfy the solvability condition. 1478	

 1479	
Fig. C4 shows two of the several possible configurations of a typical hexahedron, 1480	

including an exploded view of each configuration for clarity.  The two configurations 1481	
differ in having the internal face of the two forward-facing tetrahedra rotated, creating 1482	
two different forward facing tetrahedra.  The remaining six tetrahedra are undisturbed.  1483	
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Since edges must align when hexahedra (or tetrahedra) are connected, this demonstrates 1484	
that the three-dimensional mesh can be flexibly reconnected and rearranged, just as in the 1485	
two-dimensional case. 1486	
 1487	
Remark #3:  A closely related and perhaps simpler three-dimensional P1-E0 element is 1488	
one based on the P2-P1 prismatic tetrahedral element used in Leng et al. (2012).  A grid 1489	
of these elements is composed of vertical columns of triangular prisms, with triangular 1490	
faces at the top and bottom, which are then each subdivided into three tetrahedra.  As in 1491	
Fig. C4, pressures are located on the vertical prism edges. 1492	
 1493	

Meshes composed of P1-E0 elements have another useful property.  Since 1494	
pressure and vertical velocity variables alternate along vertical grid lines, the matrix-1495	

vector products   MWP p, MWP
T w  in (47), corresponding to   ∂

!P ∂z  and  ∂w ∂z  in the 1496	

vertical momentum and continuity equations, respectively, consist of simple decoupled 1497	
bi-diagonal one-dimensional difference equations along each vertical grid line for 1498	
determining pressure, as in (79), and the vertical velocity, as in (58).  This should be 1499	
particularly advantageous for parallelization. 1500	
 1501	

Just as the two-dimensional second-order P2-E1 element in Fig. 13A is a 1502	
generalization of the P1-E0 element, a three-dimensional second-order P2-E1 element 1503	
may be constructed as a generalization of the P1-E0 element illustrated in Fig. C4.  1504	
Velocities are to be located at the vertices and at midpoints of the tetrahedral edges, and 1505	
pressures are to be located halfway between the velocities on vertical edges, including the 1506	
imaginary vertical edges through the midpoints of the tetrahedral edges, in the same way 1507	
as in the 2D case in Fig. 13A.  The P2-E1 element, both 2D and 3D, also satisfies the 1508	
solvability condition since the arguments in Appendix C, §C2, apply here also because 1509	
pressures are again located midway between vertical velocities along all vertical edges. 1510	
 1511	
Appendix D: Proving the Stability of a Stokes Problem with an 1512	

Invertible Continuity Equation 1513	
 Here we show that a discretization of a Stokes problem is stable on a grid that 1514	
satisfies the solvability condition (56), or equivalently, one that is consistent with an 1515	
invertible continuity equation, i.e., (58).  This is because such a discretization is 1516	
equivalent to the formulation of an unconstrained problem, i.e., a problem without the use 1517	
of pressure as a Lagrange multiplier.  In fact, such a problem is also equivalent to an 1518	
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optimization problem, or more specifically, to a minimization problem.  To demonstrate 1519	
this, consider the full set of discrete Euler-Lagrange equations (47).  Recall that the 1520	

solvability condition implies the invertibility of  MWP , and therefore also the invertibility 1521	

of its transpose,  MWP
T , i.e., (59).  This means that we can solve for the pressure from the 1522	

vertical momentum equation, the second equation in (47), to obtain 1523	

 
  
p = −MWP

−1 MW u,w u( )( ) + FW( ) , (79) 1524	

where we would use  w u( )  from (58).  Using (79) to eliminate the pressure in the 1525	

horizontal momentum equation, we obtain 1526	

 
  
MU u,w u( )( )− MUP MWP

−1 MW u,w u( )( ) + FW( ) + FU = 0 .  (80) 1527	

This is a nonlinear set of equations for just the horizontal velocity  u , similar in this 1528	
respect to the standard Blatter-Pattyn formulation in that it is no longer a mixed or 1529	
saddle-point problem because pressure is absent.  As a result, although still a rather 1530	
complicated nonlinear problem, it should not suffer from the stability issues discussed in 1531	

§4.3.1.  Alternatively, using  w = w u( )  in the functional (46) eliminates the pressure term 1532	

because continuity is already satisfied, and one obtains a reduced functional, 1533	

 
   A u( ) =M u,w u( )( ) + uT FU + w u( )T

FW . (81) 1534	

This implies that  A u( )  is a positive-definite functional involving only the horizontal 1535	

velocity components because 
   M u,w u( )( )  is positive-definite (see §4.1), which means 1536	

that now the Stokes variational formulation represents an optimization, or more 1537	
specifically, a minimization problem.  It is therefore n a well-defined and stable problem 1538	
for the horizontal velocities (albeit numerically very expensive).  We conclude that the 1539	
solution of a Stokes model on a grid satisfying the solvability condition, or equivalently, 1540	
one that allows for an invertible discrete continuity equation is stable and well behaved. 1541	
 1542	

 Note that the arguments here and in §4 apply to arbitrary values of   
nu ,nw ,np , and 1543	

in particular, they apply in the case  
nu > nw = np  that is relevant to the “dual-grid” 1544	

approximation of §6.2.2.  As a result, we conclude that the dual-grid approximation is 1545	
also stable provided the solvability condition (56) holds on the coarse grid. 1546	
 1547	
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Remark #4:  Instead of the standard formulations of the Stokes problem that include the 1548	
pressure, such as (46) or (47), one could consider using the corresponding pressure-free 1549	
formulation, (80) or (81), to solve for  u , followed by (58) and (79) if one is interested in 1550	
the vertical velocity and pressure.  This corresponds to a discrete version of the pressure-1551	
free formulation attempted analytically by Dukowicz (2012).  However, this formulation 1552	
couples together large parts of the grid and produces a dense Hessian matrix when using 1553	
Newton-Raphson iteration, thus making the conventional numerical solution extremely 1554	
costly and therefore impractical, particularly for large problems. 1555	
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