A NOVEL TRANSFORMATION OF THE ICE SHEET STOKES EQUATIONS AND SOME OF
ITS PROPERTIES AND APPLICATIONS

by J. Dukowicz

Re-review by Christian Schoof, University of British Columbia

Higher level comments

This paper has improved in readability from the original submission. There do remain
a number of significant issues to be addressed. I have to say that this is the first time
I've found myself reviewing the “response to reviewers” as much as the revised paper, so
don’t take the points I make lightly.

Before I get started, let me say this: decisions on manuscripts are obviously up to the
editor, but there are two issues without which I won’t be endorsing publication of this
paper.

The first is adequate citation of prior literature. My general comment about the
manuscript being ungenerous to the prior literature resulted in the following line in the
response to reviewers
I am happy to add additional or more appropriate references. Any sugggestions?
but several pages later, when I actually list the relevant references, you say
I'm reluctant to add a lot of extra references
Most scientists find out sooner or later that it’s easier in the review process to follow
the path of least resistance when being asked to cite additional papers. If those are the
reviewer’s papers, you have a point in questioning their motives, but if they are third
party papers and you try to avoid referencing them, you risk appearing as though you'd
rather not acknowledge them. In the present manuscript, that unwillingness seems to
focus on relevant literature on variational formulations that predates the early 2010s.
That is, coincidentally, when Dukowicz, Price and Lipscomb (“DPL 2010”) was first
published, which you are using as the standard reference for variational formulations.
The relevant citations are (and this is simply the most important subset!) J. Colinge and
J. Rappaz, A strongly nonlinear problem arising in glaciology, Math. Model. Numer.
Anal. 33 (1999) 395-406.

R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a
non-Newtonian fluid flow model in glaciology, Math. Model. Numer. Anal. 37 (2003)
175-186.

J. Rappaz and A. Reist, Mathematical and numerical analysis of a three-dimensional
fluid flow model in glaciology, Math. Model. Mech. Appl. Sci. 15 (2005) 37-52.

The obvious place for these is line 334 just before eq (34). This is first and foremost a
matter of respect. If that is too many papers, leave out Glowinski and Rappaz.

The second is the naming of the “BP+ model”. As you point out, Herterich’s (1987)



model differs from Blatter-Pattyn. (“Needless to say, I will not be changing the name
of the Blatter- Pattyn model.”) But the Herterich model is what you now want to call
“BP+", even though Herterich developed it nearly forty years ago, the best part of a
decade before Blatter. It was *not* developed from the BP model, which is precisely
what calling it the "BP+” model would suggest to future generations. The person who
actually came up with it deserves a little more respect.

I have two main scientific points, some of which are repeated in greater detail in the
line-by-line comments (which I wrote prior to this summary)

1. The inf-sup condition: Your response to reviewers states
I have eliminated Appendix D and rewritten Section 4 to bypass the difficult issue
of the inf-sup condition. The inf-sup condition is relevant only so as to point out
that the standard and transformed Stokes models are subject to it and that one must
use one of the many inf-sup-stable elements available in the literature in the dis-
cretization.
I hope I have made it clear that the inf-sup condition does not apply to problems
using elements satisfying the “solvability condition” because they are no longer con-
strained problems since incompressibility is built-in when using w = (u, v)
This is deeply problematic as a rationale for not addressing the inf-sup condiiton.
For one thing, you do not state ambiguously that you regard the ability to formulae
the problem as an unconstrained minimzation problem as a reason for not address-
ing whether your novel finite elements satisfy the inf-sup condition. But worse is
that the argument given above is incorrect.
First of all, Stokes flow problems of the type discussed here are always equivalent
to an unconstrained minimzation problems. See Chen et al 2013 for the continuum
case. This reamins true for the discretized version so long as the discrete ”diver-
gence” operator given by BT in equiation (55) has a non-trivial right nullspace,
meaning there are vectors u # 0 such that BTu = 0. Being able to find such vec-
tors does not require the solvability condition (57) to hold, or even the usual inf-sup
condition to hold (more on this shortly), but the existence of such a nullspace is
assured for any set of basis functions satisfying the inf-sup condition. When the
nullspace exists, the unconstrained minimization problem is over that nullspace. I
have written out additional detail on this in thespecific comments on lines 611 and
617.).
Second, there is no reason why the equivalence with an unconstrained minimiza-
tion problem should get around having to address whether your new basis functions
satisfy the inf-sup condition. First, let me state a subtely to the inf-sup condition,
which I touched on in my previous review: I can impose the inf-sup condition
at a particular discretization level, sot hat the inf-sup bound (usually “f) exists
for that disretization level, and hence my discretized problem is equivalent to a
finite-dimensional unconstrained minimization, but that doesn’t mean that I will
get correct solutions.



For the partial differential equations, I have to make sure that the inf-sup (usually
“B) does not depend on the discretization level, usually expressed in terms of the
maximum element size h. This ensures that as you take finer and finer meshes, the
discretized solution converges to a solution of the continuum problem, while you
have no such assurance if § = ), depends on h and 8, — 0 as h — 0 (so long as
your unconstrained finite element basis can adequately approximate all functions
of interest in the limit A — 0, see below).

If you instead treat your discretization as defining a divergence free basis spanning
a finite-dimensional subspace (the right nullspace of BT) over which you do un-
constrained optimization, then nature of the problem remains the same: you have
to show that solutions converge to the continuum solution as A — 0. It is only
the way that you cast the problem that changes: instead of showing your basis
functions satisfy the inf-sup condition with a £ indepndent of A, you now need to
determine whether you new, divergence-free basis functions (which are a subset of
standard piecewise linear or quadratic bases) can still approximate all functions in
the admissible space

V ={ve [WHY"Q)?: divo = 0andv = 00ndQy,, v-n = 00on I, },

arbitrarily well in the limit A — 0. That is not trivial; if it was, it’s unclear anyone
would ever have bothered with the inf-sup condition because it’s much easier to
find finite element functions for which there is an h-dependent ), for which you
have equivalence to a finite-dimensional unconstrained minimizatoin problem but
no guarantee of convergence as h — 0, than it is to find basis functions for which
B is independent of mesh size. See the line-by-line comment for line 617.

This brings me back to: you talk about the inf-sup condition, but you still do not
explicitly address the question of whether your novel finite element basis functions
satisfy the inf-sup condition, and if they don’t, exactly why that should not mat-
ter. See above re the unconstrained minization idea being a red herring. There
are furhter specific notes related to this in the comments on line 544-617. I also
note that your off-hand comment on line 1006 suggests that at least some of the
finite element bases that you are constructing don’t satisfy the inf-sup condition,
so this isn’t a flippant point to make, and you should at least point out there that
the P2-E1 space is therefore likely not to satisfy the inf-sup condition, but your
numerics give you hope that perhaps the solution in general does converge for the
velocity field, if not the pressure field. (By “in general”, I mean )

. The Herterich (“BP+") model. I flagged in my original review that this is an ad
hoc model for which there is no theoretical justification in terms of asymptotic
error estimates; it just turns out to work well for the test cases you have run. Your
response to reviewers says I doubt that it’s necessary to have a full scale analysis
when introducing a new approximation. For example, the Blatter- Pattyn model did



not have a scale analysis for 15 years until Schoof and Hindmarsh (2010).

I read that to say it is unreasonable and unnecessary to expect a scaling analysis,
and that this would somehow be difficult, and that you do not wish to discuss the
issue. Let me do the scaling analysis for you, in that case; you will need to discuss
this when introducing the model 6.2.1 (where the section heading claims Herterich
to be an improved Blatter-Pattyn model).

The Herterich model as you state it in equations (67)—(68) can be derived from the
following form of the Stokes model, with terms selectively removed:
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at z = z,, and appropriate basal boundary conditions that I won’t write out in
detail.

Assume for simplicity that eta is constant; the shear-thinning power law fluid case
of Glen’s law is only superficially different. If I take the full Stokes model instead
and apply a standard ”shallow ice” scaling, I obtain (see e.g. section 3.6 of Schoof
and Hindmarsh (2010), although the original references would be Fowler and Larson



(1978), Morland and Johnson (1980) and Hutter (1983))
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where the asterisks denote scaled variables, and red colour marks the terms that
are not retained in the Herterich model. It should be apparent that the Herterich
model retains some of the O(€?) (the dw*/dz* term in the definition of 77, and the
full slope term in the shear stress boundary condition. It retains by no means all
O(€?) terms, so there is no reason why the Herterich model should be any better
in this parametric limit (with respect to sliding) than the BP model, which also
selectiely omits O(€?) terms and therefore has an O(e?) error.

We can conversely turn to the limit of fast sliding. Using the appropriate scaling
for that case (e.g. Schoof and Hindmarsh (2010) section 3.4, although the original



source for this goes back to MacAyeal (1989) and beyond)
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where the variables with double asterisks denotes dimensionless variables that have
been rescaled from the shallow ice case. Once more, the Herterich model retains
some of the O(e?) terms, but not all, and will again only be accurate to an O(€?)
error, the same as the Blatter-Pattyn model.

We can also look at the intermediate sliding regime (Schoof and Hindmarsh (2010),
section 2.1, formally with lambda = 1), in which case
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Same story. The Herterich model selectively retains O(e?) terms and offers no
improvement in terms of asymptotic error over the Blatter-Pattyn model.

That should settle the case — if you want a single model with a better asymptotic
error (that is, size of error in the limit of € — 0 than Blatter-Pattyn, you really have
to retain all O(e?) terms. In order to do that regardless of sliding regime, it should
be clear you actually have to retain all terms of the full Stokes model (since the
smallest term contained in all the scaled versions of the Stokes flow model above
is O(€?), there is really nothing that you can omit if you want a model accurate to
O(€?)).

The fact that the Herterich model performs better than BP in specific tests you
have computed is really not much of a guide to anything in general: if you had a
general result predicting a smaller error, then something like figure 9 would be a
welcome illustration. In the absence of a much more general investigation of model
error, the smaller error here might as well be fortuitious and specific to some aspect
of test B. (I would also note that figure 5 shows resutls for a fairly large epsilon, so
we are not looking an approximation based on small aspect ratio: an aspect ratio
of 1:5 really cannot be treated as small in general, as finite depth effects typically
appear for aspect ratios around 1 : (27))

Line-by-line comments

e eq (11): there is still no need for the brackets around the (i) subscripts. In fact, by
putting them into equation, you actually need to add the statement that 7°n; = 0
since (11) is mute about the value of its z-component. If you write instead that

S
Tz’ = TijTLj — TpN;

you automatically ensure that Tisni = Tjninj — T,nin; = T, — 7, = 0. That also
tidies up your notation.

e line 188 "references contained therein in connection with the Blatter-Pattyn model”
— No, not enough. See start of this re-review

e line 203: ”"However, this can only be done in the discrete formulation of the func-
tional since only then are boundary values of velocity accessible (although they are
always accessible in the surface integral terms).” This either not true or misleading,



depending on what you mean by ”accessible”. Infinite-dimensional variational for-
mulations of pde problems impose homogenous Dirichlet conditions by restricting
the function space on which the problem is posed, rather than using Lagrange mut-
lipliers. In the present case, no need to get technical about that function space, but
simply delete this statement and state that the minimization problem needs to be
restricted first arguments of the functional A that satisfy the Dirichlet conditions

eq (15) The (b2) superscript on the second line is undefined and doesn’t want to
be there. Also, this is needlessly complicated: the form of the surface integral is

exactly the same as
1
/ = Buu,;dS,
o5, 2

but more complicated. And it’s not like you've replaced ug in the rest of the formula
yet, so why make it more complicated in the boundary term. (This is different from
(33), where the substitution makes more sense.)

eq (17) seems redundant. If you cannot see follows from (16) and (18), you're going
to struggle mightily with the rest of this paper.

eq (26) Again, write in standard subscript form?
line 287 "remains positive” — "remains non-negative”

line 289 "The dummy variables...” — I don’t think this is the usual meaning of
”dummy variables” (like the variable with respect to which you integrate in a
definite integral). They are indicator terms, taking values of 1 or 0. Same in line
344.

eq (29) — this is a bit misleading; your earlier text (line 289, ” The dummy variables
¢, in (23)-(25) and (26)-(29) are used to identify terms that are neglected in the
two types of the Blatter-Pattyn approximation discussed in §3.4”) indicates that
all I need to do in order to obtain Blatter-Pattyn is to set & = & = 0.

Remark #1 — this isn’t about ”computational savings”, is it? The small slope
approximation is what makes Blatter-Pattyn valid in the first place, and the error
in replacing the normal by its small slope approximation is the same order as the
error in the Blatter-Pattyn model in the first place. Besides — and you might want
to spell this out clearly — the difference between the two amounts to replacing

B(x) by B(x)\/1+ (0b/0x)?.

line 405 and elsewhere throughout the paper. Since you're focused on finite el-
ements, I really think that "mesh” rather than ”grid” would be the right choice
here, since ”grid” is usually taken to imply a greater degree of regularity than a
mesh. Plus, "mesh” would seem to be standard parlance in finite elements. (Your
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response to reviewers suggested at one point that you had replaced “grid”, but that
certainly doesn’t seem to have been done consistently)

line 425 7 We follow this practice except that here the discretization originates from
a variational principle. This has a number of advantages (see §2.3 and DPL, 2010).”
— I expect 1T complained about this in the original submission, but in any case,
this is likely a mischaracterization. Any finite element discretization that is based
on the standard weak form of the Stokes equations will have the properties listed
in section 2.3: boundary equations formulated in terms of surface integrals (rather
than inaccurate one-sided expressions), and a symmetric stiffness matrix. That
remains true regardless of whether I am alert enough to recognize (or bother to
say out loud, for that matter) that the weak form is the Frechet derivative of the
functional being minimized or not. If my discretization does something different,
then I am likely not using standard finite elements. I don’t see that there is much
of a grey zone on this — if you know of an example of a paper using finite elements
in a way that does not lead to a discretization with the stated properties, be
sure to explicitly identify that paper, and where in that paper I might be able
to find evidence of a non-standard finite element formulation (I'd be interested!).
Otherwise omit this passage, unless you wish to reiterate the statement about
the "extended Blatter-Pattyn model” solving for w and the dynamically rather
redundant reduced pressure P.

line 455 ”in matrix form”: misleading as M hasn’t been cast in matrix form

line 459 ” M(u,w) is a nonlinear positive-definite function of the velocity” — this
is an odd thing to say as I don’t think I can have a nontrivial linear positive-
definite function, unless it’s defined on some bounded set of values (u,w). To wit,
if M(u,w) > 0 and M was linear, then it would follow that M(—u, —w) < 0 by
linearity, no? Do you mean ”convex”?

line 466 " Discrete variation of the functional corresponds to partial differentiation
with respect to each of the discrete variables in V.” Partial differentiation of ... the
discretized functional? It’s unclear who the audience is, but probably best to be
specific.

equation (48) It’s probably a bad idea to use the same letter M for the dissipation
potential part of the discretized functional A, and for the Hermitian matrix of
the discretized functional, at the same time, even if one M is in calligraphic and
the other is not. Also note that the Cryosphere has some rather inflexible (and
unimaginative) rules around renderinng matrices and vectors in bold face, in in
upright and the other in italicized font. Be prepared fo a bunch of fun at the
copyediting stage.



e line 519 onewards "The form (55) is characteristic of Stokes-type problems, or
more generally of constrained minimization problems using Lagrange multipliers.
In finite element terminology these are called “mixed” or “saddle point” problems,
meaning that velocity components and the pressure occupy different finite element
spaces, and that the solution of (55) is actually at the saddle point with respect to
the velocity and pressure variables of the quadratic form associated with (55). The
matrix M is symmetric but indefinite, with both positive and negative eigenvalues.
As a result, the matrix inverse may not be bounded and may lack stability” There
are a number of things that are problematic here. The first is the statement that
the generic form of defines a saddle point problem. That is not true unless you add
that A has to be at least positive semi-definite. The next is the statement that
"these are called mixed or saddle point problems, meaning that velocity components
and the pressure occupy different finite element spaces.” That is not the meaning
of a saddle point problem. A saddle point problem corresponds to a problem of
minimizing with respect to one variable (velocity) and maximizing with respect to
another (pressure). You also can’t say that the matrix inverse may not be bounded
(if the inverse of a matrix exists, it is bounded!) — the point you're presumably
getting at without spelling it out is this: implicit in the discretization is that you
are looking at a family of discretizations of progressively of different resolutions
resolution (parameterized by maximum element size, call it h, combined with a
non-zero lower bound on internal element angles), and you want the corresponding
family of saddle points to have a unique limit as h — 0. The statement obout the
bound on the inverse of M (and this is what the inf-sup condition guarantees, in
my understanding) is that M ! remains bounded as h — 0. No?

e line 530 ”In this case only the matrix A exists, it is elliptic” — two things: i) you
seem to be saying that A only exists in this case and ii) "elliptic” is a term you
haven’t defined up to now, I think. Symmetric positive-definite?

e also line 530 ”As a result, the standard Blatter-Pattyn model is a well-behaved
and stable unconstrained minimization problem” — this is an unfortunate choice
of words, since you've just told the reader that B = BT = 0, in which case M is
manifestly not invertible; it seems like you have to state that you’re not actually
solving (55) but only the reduced version Au = f, for which the statement in
question is true.

e line 544 “In fact, this is a problem for all inf-sup stable elements with n, # n,
, such as the Taylor-Hood element, for example” two things i) you have not de-
fined what you mean by ”inf-sup stable elements” and ii) the second half of the
sentence about Taylor Hood elements is redundent. You could say “is a problem
for all inf-sup stable elements with n, # n,”. Comment on whether n, # n,, is a
prerequisite for an element pair to be inf-sup stable (which I think is true); the last
sentence grammatically leaves open the possibility that you could have n, = n,,.
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If that is the case, comment on the implications for your choice of basis functions,
which do have n, = n,,. Are they necessarily not inf-sup stable? This requires an
explicit comment, not a response that says “I don’t want to address this issue”.
See discussion re unconstrained minimization being a red herring, unless you can
show that your divergence-free basis functions are dense in the underlying function
space.

In terms of sequencing the three items (1) Blatter-Pattyn (2) extended Blatter-
Pattyn and (3) Stokes / transformed Stokes, it would actually be preferable to
reverse the current order since that would mean introducing inf-sup conditions
before you talk about them for extended Blatter-Pattyn

e Line 564 “As mentioned previously, this is possible to do in the continuum but not
necessarily so in the discrete case” — I don’t think you’'ve explained that this is
“not necessarily possible” to do in the discrete case, unless you mean the discussion
around equation (56) that is about to follow. To avoid confusion and leave the
reader scurrying for where this was explained previously, especially as you've just
referenced section 3.4.1, and there is no mention of not being able to compute w
there, and even the discussion starting on line 396 also doesn’t actually say that
you cannot compute w in the discrete case. In fact, I expect that those running
Blatter-Pattyn ice sheet models would beg to differ with the statement that you
cannot compute w from the continuity equation, since they will naturally choose a
scheme that finds w by simple quadrature. This seems more of an issue with the
extended Blatter-Pattyn model of section 3.4.2, where you are forcing yourself to
use the same mesh as for (u,v), no?

e line 552 “Both the standard and transformed Stokes models are subject to this
problem an in general must use inf-sup stable finite elements. Testing for stability is
not trivial. However, collections of inf-sup stable elements for the Stokes equations
may be found in many papers and books on mixed methods, e.g., Boffi et al.
(2008).” and later line 594 “However, this model does work with a variant of the
Taylor-Hood grid, the P2-E1 grid, illustrated in Fig. 13A, which does satisfy the
solvability condition and this therefore allows for a successful calculation of the
vertical velocity.” — I think I raised this point in my original review, but I still
don’t see it being addressed here: are the new finite element basis functions like
P2-E1 and P1-E0 inf-sup stable, or are you arguing (see comments immediately
below) that this is somehow no longer relevant when you the solvability condiiton
for the incompressibility condition is satisfied? Otherwise the discussion of the inf
sup condition is still left dangling in thin air here. If you're referring to the many
papers and books because you won’t be addressing the issue here, at least say so
explicitly. See also comment on line 544.

e line 575 “n, + A, + A = n,,” should presumably be “n, 4+ ny, +ny =n,”?

11



e line 599 “Perhaps the main reason for the importance of the solvability condition

is that it implies that the Stokes variational principle, (15) or (33), may be trans-
formed into and therefore that it is equivalent to an optimization or minimization
problem.” — this is at best misleading, but most likely just wrong. Finding sta-
tionary points of (15) and (33), and in fact the solution of all Stokes flow problems
subject to suitable boundary conditions, is always equivalent to a convex minimza-
tion problem, but that minimization is over an awkward vector space of Sobolev
space of divergence free functions. I should: awkward in terms of finding suitable
basis functions when discretizing in practice, but not particularly awkward in terms
of the abstract analysis of the problem.
For the present set of boundary conditions and choice of rheology, the relevant func-
tion space is V = {v € [W+/"(Q)]3 : dive = 0andv = 0on 9y, v-n = 0on Iy, },
and the cited Chen et al (2013) paper would be an appropriate reference for this
fact. For the transformed Stokes flow problem, the transformed minimization would
also seem to be pretty straightforward, since, if I restrict myself to the same Sobolev
space as Chen et al, I obtain a restriction of A to velocities only in the form

4
J(u,v,w) = / ﬂolélﬂ/" + pgVzs - (u,v,0)dV + Bl(u, v, w, )|2dF
v n+ Sh,

and J is convex, so any stationary point of J is automatically a minimizer. If you
are actually trying to say that you're trying to determine whether the *discretized*
variational problem still corresponds to a minimization problem, that is a different
matter, but then you can’t refer to (15) or (33), which are formulated for general
velocity fields.

e line 611 “This result suggests that a conventional Stokes problem, when solved
on a grid satisfying the solvability condition, is equivalent to an unconstrained
minimization problem and therefore is well behaved.” As per the above, this risks
sounding like you are unfamiliar with standard results in the field, and I would not
put this statement into a paper.

Even if you don’t mind giving that appearance, it would still be a bad idea to
leave the statement as is, because it could be read to suggest that basis functions
that don’t satisfy (57) don’t correspond to a minimization problem. That would
be wrong.

The conventional Stokes flow problem remains equivalent to an unconstrainted
minimzation problem even after discretization. That unconstrained minimization
is however over the left nullspace of the matrix B in (55) — that is, over all vectors
u such that BTu = 0. In general, you don’t want to have to figure out what that
nullspace is: as you later point out, the basis vectors for that nullspace are no
longer sparse when expressed in terms of nodal values of the mesh, so your linear
algebra ends up non-sparse and therefore intractable for large problems. Instead,
you continue to impose the need for your solution to lie in that nullspace through
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the Lagrange multipier p, but that doesn’t negate the fact that the problem is
equivalent to an unconstrained minimization problem..

For the discretized problem on a given, fixed mesh, the only condition for this
statement to be true is that the left nullspace of B must be non-trivial, and for that
to be true, you generally require the matrix to be taller than wide (n, + n, + n, >
np). You definitely don’t need n,, = n,, though n,, = n, will do. (The solvability
condition (57) conveniently ensures that the nullspace in question has dimension
n,+mn, and can be written in the form given on line 620, but that is far from the only
form of nullspace you could construct. In general, if n, < n,, for an inf-sup stable
basis you have to use more than a basis for (u,v) to construct a divergence-free
basis for (u, v, w), but that is not in principle a problem)

line 617 “if a divergence free basis exists” is a misleading way to make this state-
ment. For the original continuum problem, the divergence free basis exists without
a doubt. (Again, Chen et al 2013 are the correct reference for the particular prob-
lem you have in mind). My suspicion is that the book you are referencing has in
mind a divergence free basis that is dense in the underlying function space, in the
sense that it can approximate any element of V = {v € [WH/?(Q)]? : dive =
Oandv = 00on 0, v-n = 00n0,} to arbitrary accuracy simply by imposing a
suitably small maximum edge length.
That is not something that you have demonstrated. You seem to be alluding to
the equivalence to an unconstrained minimization problem as evidence that the
problem you’re solving ”is well behaved”, without saying what you mean by that,
precisely. Based on the text in your response to reviewers (though not the text
here!) I assume you arguing that you don’t need to worry whether your basis
functions actually satisfy the inf-sup condition because you can show that your dis-
cretized problem is equivalent to an unconstrained finite-dimensional minimzation
problem.
If so, that is not: all that the equivalence with an unconstrained minimization
problem that you’ve discussed (which applies to the discretized problem) ensures
case is that the discretized problem is solvable, for any given mesh. It does not
guarantee that the solutions for a family of discretized problems will converge to
the solution of the continuum problem in the limit of element size h in the mesh
going to zero.
More formally, let the function space spanned by your basis function be V}, for a
given mesh with maximum element edge length hA. The thing you need to prove
is that your diverge free finite element basis functions can adequately approximate
any possible solution in the limit of small A, that is

Jof |lv—val] < Cullll
where (), — 0 as h — 0. In the absence of the divergence constraint BTu = 0,
that behaviour is well established for all sorts of polynomial basis functions, but
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is no longer guaranteed to hold if you restrict yourself to a linear subspace of of
such polynomial basis functions. How you might prove the same behaviour for your
divergence free subspace is beyond my pay grade, but you can’t just skip past this
issue. That would make a mockery of a lot of work by some very smart people in
numerical analysis.

line 633 “These tests are described in Appendix A” — I checked the appendix as
well as Pattyn et al (2008), and it’s unclear to me how the ”true” solution relative
to which the error is computed in figure 3. And in the same vein, if there is a true
solution, you should plot that in figure 4.

line 702 “It would be computationally cheaper to use the standard Blatter-Pattyn
approximation (£, £ = 0 ) instead, solving only for the horizontal variables and
coupling to the Stokes model with p = 0 and w = w(u, v) at the interface but this,
however, implies much more complicated programming.” — see main comment re
response to reviewers. That response argues (correctly, in my view) that Blatter-
Pattyn is cheaper than a Stokes flow model. Which is understandable given that
it has fewer degrees of freedom to solve for. The extended Blatter-Pattyn model
on the other hand is constructed to have exactly the same number of degrees of
freedom as the Stokes flow model, and it is *not* obvious that it will be much
cheaper to solve than the Stokes flow model (transformed or otherwise). Please
provide evidence (ideally here!) that it remains sufficiently cheaper to solve than
the Stokes flow model to warrant doing this. As per my main comment, using the
extended Blatter-Pattyn model will clearly incur a potentially significant model er-
ror relative to a Stokes flow solver, so it is important to know whether the reduction
in computational cost is worth the increased error.

line 725 “Somewhat counterintuitively, the Stokes region occupies the upper part
of the domain in Fig. 7 and includes the obstacle, while the Blatter-Pattyn region
occupies much of the bottom part of the domain” — I am not sure this is coun-
terintiuitive in view of the no-penetration boundary condition combined with the
moderate angle: basically, your boundary condition ensures that dw/dx is small
along the bed, while there is no reason why du/dz would be. I am however not
convinced that this test goes far enough: really, you should also compute the Stokes
solution across the domain to see

line 757 “The first method, to be called the BP+ approximation” and later line 773
“An Improved Blatter-Pattyn or BP+ Approximation” line 812 “Remarkably, this
same model, i.e., the BP4 approximation, was introduced by Herterich (1987)”
line 1029 “Remarkably, the BP+ approximation is actually the same as a model
originally proposed by Herterich (1987).” etc ... Given that Herterich predates
either Blatter or Pattyn, and given that "BP+" suggests that this is somehow a
development of Blatter and Pattyn, this really needs to be ”Herterich’s improved
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Blatter-Pattyn Approximation” or better just the ”Herterich model”. Definitely not
"BP+", thereby giving further credit to Blatter and Pattyn while further consigning
the person who actually invented this to a footnote? Let’s have some respect.

line 839 “Both BP+ versions converge to the same solution” — this confuses
“model” (a set of equations” with “solution algorithm”. These are not two dif-
ferent “BP+ versions”, they are different solution algorithms

line 868 “logically rectangular” — what does that mean? Producing the same graph
as a rectangular grid? Define before using ...

line 1007 “On the other hand, the pressure in the P2-E1 case is highly oscillatory
but well behaved in the P2-P1 case. However, this is not at all concerning since
the transformed pressure, a Lagrange multiplier, has no physical significance” —
so I think you've just demonstrated that your P2-E1 element most likely does not
satisfy the inf-sup condition, and you’re effectively left hoping that the lack of
convergence in the limit of small element size only affects the pressure, but not the
velocity. Comment?

line 1011 Summary and Discussion — reading this, all is fine and dandy? Nothing
that you would flag as an open question or necessary areas of future research where
things need to be developed further, followed up on, etc? Any weaknesses? No?

Appendix B This is a follow up on a comment from my first review, the response
to which was that you thought the P1-E0 element is quite flexible and can be
used with quite general triangulations. The trianglulations you require are not
“quite general”. By construction, your mesh cannot be unstructured as you require
elements to be stackable to make columns. You should comment on that as it
negates one of the usual advantages of finite elements, which is to permit adaptive
meshing. For instance, at grounding lines, ice stream shear margins etc, you may
want to have high resolution *near the bed* around a transition in sliding behaviour,
but not extend that resolution throughout a column. Moreover, if you are required
to keep the interior angles of elements from becoming excessively small, your mesh
also makes it somewhat difficult to have variable vertical triangle edge lengths —
adjacent columns need to have similar triangle numbers and triangle edge lengths.
This needs to be flagged somewhere.
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