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Overview

The paper builds a unified variational formulation for Stokes flow and the somewhat
misnamed Blatter-Pattyn model for ice flow. To get the trivia out of the way, I will call
this the Herterich-Blatter-Pattyn model from this point onwards. History may be written
by the winners, and Herterich clearly hasn’t been one of them, but the first instance of the
Herterich-Blatter-Pattyn model being formulated was (to my knowledge) the following
paper:

• Herterich, K. 1987. On the flow within the transition zone between ice sheet and
ice shelf, in Dynamics of the West Antarctic Ice Sheet. Proceedings of a workshop
held in Utrecht, May 6–8, 1985, pp.!185–202. D. Reidel, Dordrecht,

This predates the commonly used Blatter (1995) and Pattyn (2003) references by eight
and sixteen years, respectively. If we’re going to fall into the trap of naming things after
people, we probably owe it to ourselves to do that accurately. Not that I’ve been able to
convince anyone of this point so far.

Back to the present. It took me a bit of effort in stripping away detail and side notes
to understand that the primary advance of the paper is a numerical formulation in which
one can dynamically switch between the simpler Herterich-Blatter-Pattyn and the more
complete Stokes flow model. The latter applies to flows with arbitrary aspect ratios and
abrupt changes in boundary conditions, while the former requires a “shallow” flow.

At face value, such a “switchable” model makes a lot of sense, since ice sheet flow
is shallow in most places, but often contains boundary layers (at ice divides, ice stream
margins, grounding lines etc) where the Stokes equations must be solved. The present
paper uses the variational structure of both models to create a unified formulation, by re-
writing the Lagrangian for the Stokes equations so that it takes the form of the Herterich-
Blatter-Pattyn Lagrangian with a few extra terms retained. The unified formulation then
consists of introducing a flag that activates or deactivates these Stokes correction terms.
This is an intriguing idea and deserves to be published. I am not entirely convinced that
The Cryopshere is the right vehicle as there are a number of technical issues that deserve
more thorough scrutiny; Geoscientific Model Development would have seemed a more
appropriate journal in the EGU stable to use, but really I would have been inclined to
go with something like J. Comp. Phys..
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As far as I can tell, the modified Stokes Lagrangian does not alter the saddle point
strucutre of the Stokes flow problem (in the sense that the solution maximizes the mod-
ified Stokes functional with respect to p̃ and minimizes with respect to u). Still, the
modified Stokes Lagrangian is a fairly ugly object that obscures the natural symmetries
of the original Stokes flow Lagrangian and introduces a much larger null space to the
elliptic operator. For the usual Stokes flow Lagrangian, that null space consists of rigid
body rotations modulo any such motions that are precluded by the boundary conditions
(by way of restrictions on the space of admissible functions). In the modified Stokes
Lagrangian of the present paper, the vertical velocity w can be changed by adding an
arbitrary function of the vertical coordinate z only while leaving the elliptic part of the
Lagrangian uchanged; such functions of z are then penalized through the incompressibil-
ity constraint.

That ugliness appears to be an unavoidable part of a unified formulation. It does
however mean that you would probably not choose to use the modified Lagrangian for the
analysis of general Stokes flow problems, except to unify the Stokes and Herterich-Blatter-
Pattyn problem computationally. The paper can probably streamlined by focusing on
that aspect at the exclusion of some of the more peripheral commentary, and the title of
the paper could probably be made more informative.

In terms of pursuing that unification of Stokes and Herterich-Blatter-Pattyn models,
there are two significant issues that I can see:

1. While the variational formulation of the Stokes flow problem is a saddle point
problem, the same is not true of the Herterich-Blatter-Pattyn problem. The lat-
ter naturally wants to be solved as an unconstrained minimization problem, with
the incompressibilty condition solved a posteriori for the vertical velocity compo-
nent w. Enforcing incompressibility through a Lagrange multiplier as part of the
variational formulation leads to problems that occupy most of the technical ma-
terial in the paper: unlike the modified Stokes Lagrangian, the elliptic part of
the Herterich-Blatter-Pattyn Lagrangian does not contain w at all, which must in-
stead be solved for through the (hyperbolic) incompressibility condition alone — for
which the standard function spaces used in Stokes flow solvers are unsuitable. This
is perhaps unsurprising, as the standard function spaces used in finite elements are
problematic for hyperbolic equations, and discontinuous basis functions (as used
in discontinuous Galerkin methods) might be preferable for w in the Herterich-
Blatter-Pattyn problem; they might at least alleviate issues such as ∇·u = 0 being
an overdetermined problem if we assume that u is represented by P1 basis func-
tions, which work well for the force balance part of the Herterich-Blatter-Pattyn
problem.1

1By contrast, the “P1-E0” spaces advocated here go in a different direction: w is still represented
by piecewise linear, and therefore continuous, basis functions, but the incompressibility constraint is
weakened through the choice of a “coarser” basis function for the Lagrange multiplier that enforces
incompressibility, averaging over two adjacent elements.
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The main challenge identified in the paper (which motivates the choice of those
P1–E0 soaces, and the others discussed in sections 6,7 and appendix C) is to make
sure that the choice of basis functions for the “Blatter-Pattyn system” (that is,
the Blatter-Pattyn equations and the incompressibility condition) can also be used
for the modified Stokes system. Unfortunately, I think that there are some issues
with how this has been addressed in the paper, and I suspect that there is a mis-
understanding of what the inf-sup (“LBB”) condition really does. More on this
below.

2. More practically, I am not convinced that the method developed here will be
adopted widely. Consider this: unlike its depth-integrated variants developed by
Richard Hindmarsh, the Herterich-Blatter-Pattyn requires a three-dimensional do-
main to be resolved. This leads to a large number of computational degrees of
freedom. In fact, the only advantage relative to a Stokes flow model is that there
are fewer variables to be solved for in the same computational domain, as you can
solve for (u, v) using the elliptic solver, and the compute w and p a posteriori if
required. As far as I can tell, the Seroussi et al (2012, cited in the manuscript) tiling
method makes use of that. The method proposed here, of solving for (u, v, w, p)
using the same basis functions for both models without explicitly using the sim-
pler structure of the Herterich-Blatter-Pattyn model, seems to get rid of that last
advantage. Which begs the question, why bpther, given that the Stokes model is
preferable in terms of the physics it represents. Unfortunately, the last paragraph
of the conclusion puts paid to any hope that the paper might address whether the
new approach is actually going to be computationally competitive.

To follow up on the first point above, I am concerned that appendix D is misleading.
Apologies if this gets a little long below; I am not as much of an expert at this as I’d
like to be, so it took me a bit more explanation. My understanding of the inf-sup or
Ladyzhenskaya-Babus̆ka-Brezzi condition for Stokes flow problems is the following. Take
the Hessian matrix in (55) of the present paper

M =

(
A B
BT 0

)
(1)

and we have to solve Au + Bp = f , BTu = 0 where f is the relevant residual of the
Stokes equations. A is positive semi-definite, which makes the solution of this problem
(if it exists) equivalent to a saddle point: to find

(p,u) = arg max
q

min
v

(
1

2
vTAv − vTf + vBq

)
. (2)

The purely discrete inf-sup condition for the existence of a unique saddle point then
becomes that i) A is elliptic2 on the nullspace of BT, and that ii) B is of full rank.

2that is, vTAv > cvTv for some fixed c > 0 and any v that satisfies BTv = 0
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Appendix D does not address the ellipticity of the matrix A (which, for the Stokes flow
model, is not really an issue), but correctly identifies that B is of full rank if it can be
written as

BT =
(
MT

UP ,M
T
WP

)
(3)

and MWP is invertible. There is a bit of a sleight of hand here, as the text equates
invertibility with MWP being square (which is obviously a necessary but not a sufficient
condition). The text in appendix D actually doesn’t invoke saddle point theory directly,
but instead eliminates the pressure variable from the elliptic part of the problem using
a Schur complement. However, the “proof” in appendix most likely stands as a demon-
stration of solvability for the discretized problem, if we overlook the fact that a square
matrix MWP might still not be invertible.

Solvability is likely to be insufficient, however. As far as I understand (and I would
caution that I’ve only recently revived an interest in mixed finite element methods), sta-
bility of mixed finite element formulations is not the same as solvability of the discretized
problem. Spurious pressure oscillations occur in finite element solutions of the Stokes
equations using basis functions that do not satisfy the inf-sup conditions even though
(as far as I know) the discretized problem can remain solvable. The pressure oscillations
should then be indicative of a lack of convergence under mesh refinement, not of a lack
of solvability of the discrete problem.

If we set n = 1 for simplicity, then the discretized Stokes flow saddle point problem
becomes finding (uh, ph) ∈ Vh ×Qh

A(uh,vh) + b(vh, p̃h) = 〈vh, f〉 (4)

b(uh, qh) =0. (5)

for all (vh, qh) ∈ Vh×Qh, where Vh and Qh are finite-dimensional subspaces of V = {v ∈
[H1(Ω)]3 : v · n = 0 on ∂Ωb} and Q = L2(Ω), respectively, endowed with their usual
norms. In the weak form of the transformed Stokes problem, A : V × V 7→ R is the
elliptic operator

A(u,v) =

∫
Ω

µ (∇u : ∇v + (∇ · Pu)(∇ · Pv)) dΩ +

∫
Ωb

βu · v dΓ, (6)

Pv being the projection of a vector onto the x1x2-plane, P (v1, v2, v3) = (v1, v2, 0). b :
V ×Q 7→ R is the incompressibility constraint in weak form

b(v, q) =

∫
Ω

q∇ · u dΩ (7)

My understading is that, in order to ensure convergence of (uh, p̃h) to a weak solution of
the Stokes problem, we are looking for a family of subspaces (Vh, Qh) such that

||vh − v||+ ||qh − q|| < Ch(||v||+ ||q||) (8)
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where Ch → 0 as mesh size h→ 0, and that the inf-sup condition holds in the following
“infinite-dimensional” form: 1) A is uniformly elliptic on the kernel of b, A(v,v) > c ||v||2
for some fixed c > 0 and all v ∈ V such that b(v, q) = 0 for all q ∈ Q and 2)
infq∈Qh,q 6=0 supv∈Vh,v 6=0 b(vh, qh)/(||vh|| ||qh||) ≥ β where β is independent of res-
olution h.

If I omitted the last half-sentence and allowed β = βh to depend on resolution h
rather than enforcing a uniform bound, then condition 2) would simply be equivalent
to corresponding block matrix BT having full rank (that is, not having a non-trivial
nullspace.3 Again, as far as I understand, it is the uniformity of the inf-sup condition
under grid refinement that makes establishing stability of mixed finite element schemes
non-trivial (and more difficult than the dimensional counting argument at the heart of
appendix D).

Why is all of this relevant? Key to the proposed scheme is that I can find suitable
function spaces (Vh, Qh) that work equally well for the Stokes problem (for which I
have constructed the discussion above) and for the Herterich-Blatter-Pattyn problem
(for which the invertibility of MWP is an actual necessary condition for the solvability
of the discretized problem). My point is that invertibility of MWP and stability of the
resulting mixed problem for the Stokes equations are probably not the same thing, at
least in my understanding of the theory of saddle point problems. This affects pretty
much the entire discussion of finite element basis functions in the paper.4 My point about
choice of journals is relevant here: I think this should really be read by reviewers that
are expert at mixed finite element problems, rather than glaciological dabblers such as
myself.

I hope I have been clear to say that I may be wrong. If I am, the text of the paper
should be more explicit about the technical issues that I have raised; it’s currently fairly
vague in spelling out what the “LBB” (inf-sup) condition actually is, what it does, and
whether the basis functions described in sections 6–7 and appendix C satisfy the inf-sup
condition. (Also, if you’re going to introduce a concept like that, please spell out what
the acronym “LBB” stands for before using it, and maybe cite the original places where
it comes from.)

My other main points would be the following (partially elaborated under “specific
points”)

1. The notation in the paper is fairly idiosyncratic, which made it more time-consuming
for me to follow various pieces. There is a mix of standard subscript notation, a
very much nonstandard “round bracket around subscript means projection onto the
horizontal plane” variant to subscript notation, and the use of explicit component

3since I would otherwise have B(vh, qh) = 0 for all vh and some qh
4There is another issue in play here: the inf-sup condition provides sufficient conditions for a con-

vergence, but not necessary ones. You might also decide that you don’t care about convergence of the
discretized pressure solution p̃h, but only of uh, which may conceivably relax the conditions you need
to impose. I am not in a position to comment on that, however — you need a real expert reviewer.
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notation as in equations (7), (28) and (35) to write scalar quantities that should
really be denoted by contractions over subscripts. The paper makes enough assump-
tion about the reader’s level of mathematics that I would recommend streamlining
this as I don’t imagine much of an audience who will be helped rather than hindered
by the nonstandard notation. In particular, I would discourage the round bracket
notation in favour of a more standard projection operator: if P is the projection
onto the horizontal plane, P (v1, v2, v3) = (v1, v2, 0), then you can simply replace ai
by Pi(a) and retain summation over indices from 1 to 3. I say this even though the
author has used it previously: the use of nonstandard notation it may make the
paper harder to decipher for numerical analysts, who should really be encouraged
to delve deeper into the theory relevant to the paper.
The use of superscripts (s), (b1) and (b2) on surface normals is also redundant, as you
specify the parts of the domain boundary to which the stated boundary conditions
apply. Keep this as simple as possible, because it it certainly isn’t simple.

2. The paper is quite ungenerous to the prior literature. I can see the appeal of
referencing only your own paper (“DPL” in the present case) as the default reference
because you know its content extremely well, but many of the introductory concepts
in this manuscript have been developed in other places, which remain uncited. That
may put off other practicioners who should read this paper (and who might in fact
get some sort of notification, alerting them to your paper if you were to cite them!).
It’s also unhelpful to any reader who wants to make sense of the field: the may
conclude that, really, only DPL is relevant as a prior publication. In particular, I
see almost no reference to the extensive numerical analysis literature on Herterich-
Blatter-Pattyn and Stokes flow models in glaciology (except my ca. 2010 own effort
in that direction, which does get a citation somewhere).

3. The “Improved Blatter-Pattyn or BP+ Approximation” in section 6.2.1. I am
unconvinced that it makes sense to include this in the present paper, unles you want
to “patent” the idea for eternity. (Who knows, maybe someone will in future refer
this approximation by someone else’s name, the same fate that befell Herterich?)
The reason why I am unconvinced is that this material further breaks the flow of
the paper, without being robust. The supposedly improved approximation remains
an ad hoc, partial retention of higher order terms in the Stokes flow model, higher
order being in sense of the aspect ratio. There is no theoretical justification for
doing that, as a partial retention of higher order terms in a model comes with no
guarantee of a reduction in model error. In fact, it can make the model error worse.
We do see a reduction in model error for the “BP+” model (“HBP+” / “D”?) in the
single test that the “improved” model has been subjected to (ISMIP-HOM Test B,
figure 9 of the manuscript). However, that is not really a robust demonstration of
an “improved” model. It’s also unclear whether the supposedly improved model is
really competitive relative to solving the full Stokes model in terms of the tradeoff
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between accuracy and computational effort. (See my second major point above.)

Specific points

A number of specific points, some of which will replicate elements of what I’ve written
above.

• p3, line 81: “finite element grid” — “grid” might be seen to imply regularity.
“finite element basis functions”? I mean, closer scrutiny does indicate that the
basis functions used here are restricted to quite regular meshes, so perhaps the
terminology is not wrong here, but that required regularity actually needs to be
discussed somewhere.

• p3 line 84 “these two elements are so-named because they employ edge-based pres-
sures” — I actually found that confusing. The basis function for pressure is not
really defined on edges (since there are plenty of edges in the mesh that don’t have
a pressure defined on them). They are really P0 basis functions in which two ad-
jacent triangles of the triangulation are assigned the same pressure.
Also, to make it clear that you are inventing these basis functions, avoid the passive
voice here. “I have named these E0 to indicate that pressure is defined on select
element edges” or similar. It took me a while to realize that I would look in vain
for references to these elements in the literature.

• p 3 line 89 onwards “ A conventional ice sheet Stokes model discretized on such a
grid is numerically equivalent to an inherently stable positive-definite minimization
(i.e., optimization) problem, as demonstrated in Appendix D. This is in contrast
to the ubiquitous Stokes finite element practice of needing to use elements that
satisfy the “inf-sup” or “LBB” condition for stability (see Elman et al., 2014, and
the brief discussion in §4.3.1).” — This honestly confused me. If you’re saying
that current practice in solving the Stokes equations in ice sheet dynamics (“A
conventional ice sheet Stokes model”) is to use unconstrained optimization, then
please provide a reference. It’s very hard to do unconstrained optimization for
Stokes flow as you need divergence-free basis functions. If you mean that your new
approach is equivalent to constructing such a divergence-free basis, then say that
instead. However, you really also need to show that the reduction of the single
Newton iteration step to a problem for (u1, . . . , uN , w1, . . . , uN) only in appendix
D (taking the dimensionality argument for MWP at face value) really is equivalent
to a convergent solution (under mesh refinement) of the unconstrained Stokes op-
timization problem (that is, the problem in which the incompressibility constraint
is directly imposed on admissible u). I don’t think this is entirely trivial, see also
my discussion of the inf-sup criterion above. (Put this another way, for any set of
basis functions that allows the problem to be solved, I must be able in principle to
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eliminate the discretized pressure variable in favour of retaining on the nodal val-
ues of velocity, even if I would not choose to do the matrix manipulations involved.
By your logic, any such scheme should therefore be robust. Is that true?) I may
be mistaken about what you’re trying to say here, but it may therefore be worth
finding a different way of saying it.

• p 4 line 116. S = SB1 ∪ SB2?

• p 4 line 121–123. See above re: notation.

• eqs (8), (10, (11), (13)–(15). The superscripts on your unit normals seem to be
redundant. There is only one (outward-pointing) unit normal to each of these
parts of the boundary.

• p6, line 170 “the simplest representation” — I beg to differ. There is a standard
way of writing shear stress, as the traction Σi = σijnj minus the normal component
of traction niΣjnj, or

(δij − ninj)σjknk.

That is equation (71) in appendix A, and I think you’d be well advised to just use
that (standard) form. (The point about weak solutions is surely that you never need
to actually evaluate the shear stress itself from the stress tensor and the normal to
the surface; you just need to know the constitutive relation, which here is just

(δij − ninj)σjknk. = βui.

I think what the paper says isn’t wrong, but manipulations don’t seem they will
help the unwitting reader, who is just wrapping their head around the basic model
formulation. Especially at this point, where you haven’t motivated your use of the
bracketed indices at all yet, in terms of the mathematics you’re doing.

• p 6 line 174, “fi is a specified frictional sliding force vector.” — fi has the wrong
units for a force. It’s a traction, but why not just call it an interfacial shear stress?
τi would probably be a more common symbol.

• p 7 line 180 “. . . can easily be added”→ “. . . can esaily be added to equation (10)”?

• p 7 “(see DPL, 2010, for a fuller description of the variational principle applied to
ice sheet modeling)” — you should refer to
Chen, Q, M. Gunzburger and M. Perego. 2013. Well-posedness results for a nonlin-
ear Stokes problem arising in glaciology. SIAM J. Math. Anal., 45(5), 2710-2733.
This is probably the most comprehensive analysis of Stokes flows with sliding in
glaciology (and you’ll find the relevant functional there, too, naturally).
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• p 7 line 200 “. . . (see Schoof, 2010, in connection with the Blatter-Pattyn model)”
— I feel a little unfairly singled out here. There are earlier papers by Coling and
Rappaz (MSAN, 1999), Glowinski and Rappaz (2003), Chow et al 92004) Rappaz
and Reist (M3AS, 2005) that deserve an equal mention as having contributed to
the analysis of the Herterich-Blatter-Pattyn model

• p8 line 208 “ As in DPL (2010), arguments enclosed in square brackets, here ui , P ,
λi ,Λ , indicate those variables that are used in the variation of the functional.” —
this is an odd way of putting it. A functional is simply a mapping (or function) from
some vector space (or perhaps an affine space) into the real numbers. So why not
just say that you’re enclosing the arguments of the functional (which is a function
and therefore takes arguemnts like any other function!5) in square brackets.

• p 8 line 210 onwards. I don’t think this correct, or at least, it seems misleading.
In my understanding, there are two ways of imposing Dirichlet conditions: by La-
grange multiplier, or by restricting the space of admissible functions. The latter is
not the same as the kind of explicit substitution you’re doing here. If I take the
functional defined in equation (15) and I don’t separately impose the constraint
u ·n = 0 at §b on the arguments ui, then I don;t see that taking the first variation
of the functional will recover that constraint. If you impose the constraint u·n = 0,
then you do not need to make the substitution in equation (14) in the friction term
of the Stokes Lagrangian
The substitution here is again quite nonstandard, with little advance warning or
real motivation. I think you’re really trying to lay the groundwork for the modi-
fied Stokes variational principle later (by eliminating w where that’s going to be
necessary) but here is an awkward place to do it, unless you explain why you’re
eliminating w.

• p 8 line 218 “ Here we use zb as a shorthand notation for zb(x, y)’ — this is surely
redundant? Same on line 259.

• page 9 line 232 “. . . the specified values of velocity are then obtainable a posteriori
from (9) or (14)” — this is a strange way of putting it. What is a specified value?
One that is prescribed? I don’t think that’s what you mean. I think you mean
that the taking the first variation does not recover the boundary condition u ·n =
0, see previous point. However, you can’t impose that “a posteriori” since you
cannot solve the Euler-Lagrange equations for the functional in (15) without using
the Dirichlet condition on velocity. The standard way of putting this (I believe)
is to restrict the functional to the vector space of suitable smooth velocities (in
[W 1,1+1/n(Ω)]3) that satisfy the Dirichlet condition.

5Unless you insist that a function have to take arguments in Rn for some finite n.
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• page 9 line 254“. . . as is done in the Blatter-Pattyn approximation (see DPL,
2010).”— is the apropriate reference not one of Herterich (1987), Blatter (1995)
or Pattyn (2003(?

• page 10, line 265“The standard Stokes pressure P is some three orders of magnitude
larger than the transformed pressure P̃” — asymptotic analysis of the problem will
show that, more generally, the “Stokes correction” P̃ scales as O(ε) when there is
signfiicant sliding, where ε is aspect ratio, and of O(ε1+1/n) in the absence of sliding
(see the Schoof and Hindmarsh 2010 reference).

• page 12 line 296. It would be a good idea to explain the role of the flag parameters
ξ and ξ̂ earlier. I spent a page half guessing what they were.

• page 13, equation (32). As above, that is pretty ugly. I can’t tell if there is a less
confusing form, but might be worth trying.

• p 13 line 353 “The standard (or traditional) Blatter-Pattyn approximation (origi-
nally introduced by Blatter, 1995; Pattyn, 2003; later by DPL, 2010; Schoof and
Hewitt, 2013)” — as above, Herterich (1987) was the person who introduced this.
I don’t think the Schoof and Hewitt review paper did much more than describe
the theory, as oppposed to contributing to it. If I did anything here, then Schoof
and Hindmarsh (2010) provided the first self-consistent asymptotic analysis of the
model. If you want to list DPL for its description of the variatoinal formulation,
you probably ought to cite the numerical analysis papers I have listed above (Coling
and Rappaz, Glowinski and Rappaz, Chow et al, Rappaz and Reist; full citations
in my 2010 paper that is in the reference list), who previously dealt with the same
variational formulation.

• page 15 line 376 Remark # 1: seems like splitting hairs, especially as you wouldn’t
bother with this if you wrote down the weak form.

• page 15 line 419 “In summary, the extended Blatter-Pattyn model, (40)-(42), is
equivalent to the standard Blatter-Pattyn model, (36), for the horizontal veloci-
ties, u,v , except that it also includes two additional equations that determine the
pressure P ! and the vertical velocity w , which are usually ignored in the stan-
dard Blatter-Pattyn approximation when only the horizontal velocity is of interest.
Because of this, we distinguish between the Blatter- Pattyn model that solves for
just the two horizontal velocities (i.e., the standard Blatter- Pattyn approxima-
tion, (36)), and the Blatter-Pattyn system that solves for all the variables (i.e.,
the extended Blatter-Pattyn approximation, (40)-(42)).” — again, this seems like
splitting hairs. Anyone who needs to solve for temperature in an ice sheet (which
is a standard part of any ice sheet simulation code) has to solve for the vertical
velocity component, so I don’t think insisting on a difference between the Blatter-
Pattyn model and system is helpful. Solving for P̃ is not particularly relevant as we
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know P̃ = 0 for the Blatter-Pattyn model. For the sake of not going down rabbit
holes, I would omit this.

• p 17 line 437 “The use of the continuity equation to solve for the vertical velocity w
is a novel feature of the Blatter-Pattyn approximation since the continuity equation
is not normally used for this purpose.” — as per my previous comment, I don’t
think this is true or novel. The vertical velocity component is a pretty important
quantity to be able to compute in ice sheet codes.

• p 17 lie 439 onwards. The use of a depth-integrated mass conservation equation is a
boilerplate approach for thin film models, so a lengthy discussion without citation
seems unnecessary, especially as this doesn’t really lead anywhere in developing the
novel material in the paper.

• p 17 line 482 “Additional details about the grid and the associated discretiza-
tion. . . ” — I flagged this above (grid versus mesh), but again: I think it’s worth
pointing out somewhere that some of the basis functions developed here really do
require a regular mesh (grid?) rather than an unstructured triangulation. For the
P1-E0 basis functions, I have to be able to match every triangle with precisely one
neighbour, not leaving any neighbourless triangles. I don’t think that’s possible
with every fully unstructured mesh. (?)

• page 19 line 504. Italicize the variables u and w.

• page 21 line 526, “. . . or else they are “saddle point” problems since the Hessian
matrix M(u,w) is symmetric but indefinite, with both positive and negative eigen-
values. . . ” — you can be more definitive about this I think: the “saddle point”
terminology refers to the fact that there really is a saddle point, where you mimiize
the quadratuc form associated with the matrix with respect to the velocity variables
and maximize with respect to pressure.

• p 22 line 565 Please define the acronym “LBB” before using it.

• p 23 line 601 Taylor-Hood elements have gone from being an illustration of an
element that satisfies the inf-sup condition (line 569) to becoming the standard
reference for stable elements. Is it true in general that all elements that satisfy the
LBB condition for the Stokes problem will leave MT

WP non-invertible on dimensional
grounds alone? If so, that is important to point out here.

• Sections 5.1–5.3 You’re focusing on velocity solutions here. If there are stability
issues with your choice of basis functions, I’d expect these to show up in the pres-
sure solution. Can we see resultss for some of those? Obviously not relevant for
Herterich-Blatter-Pattyn, but for the transformed and original Stokes flow prob-
lems. Especially pressure along the bed would be useful, but also convergence or
lack thereof.
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• Figure 7: this is fine, but more convincing would be a grounding line, where you
have to worry about a normal stress constraint determining the grounding line lo-
cation (and that normal stress is in general not cryostatic as assumed by Herterich-
Blatter-Pattyn)
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