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Summary:  This paper rewrites the standard glaciological (Glen law) Stokes model in a 
form which resembles a shallow approximation, the Blatter-Pattyn (BP) model.  This 
expresses the saddle-point structure of the Stokes problem in a form close to the 
unconstrained-optimization form of the BP model. The stability and finite element (FE) 
analysis of the new form is addressed, and new mixed FE pairs for vertically-extruded 
meshes are propsed.  Small-scale experiments are presented, and then prospective 
applications at larger scale are discussed.  The resulting essentially-theoretical paper is 
both frustrating and promising.  The manuscript's current form is notably inefficient, with 
1500 lines of text.  The presentation is likely to be hard to read for those who have not 
already done battle with BP equations and related technical matters.  Despite doing 
numerical experiments, the author provides no open-source code basis for further 
development by readers, a clear demerit in 2024.  The manuscript avoids the function-
space understanding of the Stokes and BP problems---this is the viewpoint from which 
these problems are known to be well-posed and by which they are solved by mainstream 
finite element libraries---but then it labors to build a fragmented substitute for this 
viewpoint.  Despite these flaws, the paper illuminates important matters.  It shows how 
the (transformed) Stokes equations are close to an "extended Blatter-Pattyn" (EBP) form, 
and thereby how the solvability conditions of the Stokes model work in practice over 
vertically-extruded meshes.  The EBP model has similar numerical and stability issues as 
the Stokes problem, which is actually clarifying because the numerical and FE character 
of the standard BP and Stokes models otherwise appear very different.  The inf-sup 
stability of the mixed Stokes problem is recognized here, when the mesh is extruded and 
when one simultaneously wants the EBP model to be solvable on the same mesh, as the 
requirement of unique solvability of the continuity (incompressibility) equation for the 
vertical velocity from the horizontal velocity.  A necessary condition for this to work is 
that the number of vertical velocity and pressure unknowns must be exactly the same, or 
rather that a particular matrix in the blockwise form of the discrete equations must be 
invertible. 
Recommendation:  A manuscript which made the same points in half the length, and 
which provided open source code in a widely-used language, facilitating further 
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development, would be an excellent paper.  Of course it is not realistic to expect re-
coding at that level.  However, significant revisions should be attempted.  A much-
shortened abstract is offered below, along with several other suggestions for trimming. 

	 An effort has been made to tighten and shorten the manuscript while preserving 
the content.  The line count has been reduced to 1340 while preserving most of the 
content.  Unfortunately, it is not possible to provide open source code in a widely used 
language because of the piecemeal way that the work was carried out using the 
Mathematica program, as pointed out in the paper. 

 
Specific Comments on Manuscript 
lines 9-35:  This long abstract could be halved without losing meaning, by removing the 

sales pitches and by other simple edits.  However, changes are also needed to clearly 

identify the models (systems) under consideration.  The following is a guess/suggestion 

for an abstract which meets these objectives.  It has 191 words vs 371 in the 

original:  """We introduce a novel transformation of the Stokes equations into a form that 

resembles the shallow Blatter-Pattyn (BP) equations.  The two forms only differ by a few 

additional terms, and the variational formulations differ only by a single term in each 

horizontal direction, but the BP form also lacks the vertical velocity in the second 

invariant of the strain rate tensor.  The transformed Stokes model has the same type of 

gravity forcing as the BP model, determined by the ice surface slope.  An apparently 

intermediate "extended Blatter-Pattyn" (EBP) form is identified, which is actually the 

same as the standard BP model although it retains a pressure variable.  The role played by 

the vertical velocity in the transformed Stokes and EBP forms, reflected in the block-wise 

structure of their discrete equations, motivates the construction of new finite element 

velocity/pressure pairs for vertically-extruded meshes.  With these new pairs, examples 

of which are demonstrated in 2D and 3D, the discrete continuity equation can be uniquely 

and stably inverted for the vertical velocity.  We describe how to incorporate the new 

forms into codes that adaptively switch between Stokes and BP models, where the latter 

would lose accuracy.""" 
I have rewritten the abstract using many of these suggestions.  Thank you. 
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line 41: "full" is unnecessary. 
Removed 
 
line 52-72:  The style of glaciology, used at unnecessary length in these lines, says some 

models are shallow and some are higher order.  It is more accurate to say all are shallow, 

and to not claim some are "higher-order" because the order depends on which scaling 

argument is use. 
I have used the term “shallow” only as part of the accepted names of some simple 
approximations.  The term “higher-order” is commonly applied to the Blatter-Pattyn and 
other more accurate approximations. 
 
line 99:  "THE LOWER BOUNDARY OF an ice sheet ...".  (A 3D ice sheet can't be 

divided the way the text says.) (1) 

Don’t quite understand what the problem is.  This is an idealized situation of course.  I 

will be glad to make whatever change is required. 

 

lines 103-105:  This "vertical line of sight" phrase appears here and later.  Surely one can 
just say: "We assume the glacier's geometry is described by an upper surface function 
z_s(x,y) and a lower surface function z_b(x,y)." 
This was intended to mean that there should not be various indentations so that various 

multiple upper and lower surfaces would exist along a vertical line.  Although unlikely, 

these could be handled but would complicate things considerably.  I have changed this to 

say that there should be just one upper and one lower surface. 

 

lines 105-106:  There is nothing about the rest of the paper, in my reading, that excludes 

the techniques being used for floating ice.  (Put f_i=0 in equation (11)?)  It is true that 

there must be sufficient drag--see the inequality in Schoof (2006)--*somewhere at the 

base* so that the velocity field is unique, but the techniques apply across grounding lines. 
I have modified the sentence to say that ice shelves can be handled. 
 
lines 112--126  Briefer notation is surely possible. 
I have simplified by removing superscripts on unit normal vectors.  Not sure what else 
can be done. 
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line 149:  "positive-definite" --> "nonnegative" 
Changed to “a positive quantity” 
 
line 178-180:  Whether or not the surface kinematical equations can be added "easily", 
the way this is said here is silly.  The whole paper assumes fixed ice geometry. 
Yes, fixed geometry is assumed.  What this says is that flux inflows or outflows are 
allowed through a fixed geometry (which may be a crude representation of melting or 
refreezing at the bed). 
 
lines 192-195:  I don't know what this means.  "There are some stress boundary 

conditions and it is easier for the author to think about them in the variational 

formulation."?  No need for this? 
This means that evaluating derivatives at boundaries is less accurate or more complicated 
because one-sided formulas have to be used due to the absence of information from 
across the boundary.  I have changed the wording to make this clearer. 
 
lines 197-200:  No need for this. 
I think this needs to be pointed out because most people use the weak formulation 
method and may not be familiar with the variational method. 
 
lines 204-209:  Is this option ever used later in the paper?  (Line 233 suggests not.)  If 

not, it can be removed and replaced with a simple declaration that the boundary 

conditions can be weakly imposed if desired. 
I have indeed used it but most computations were done using direct substitution, as stated 
on Line 233.  Of course, there is no difference in the results.  However, it is a useful 
option and some people may prefer it.  There are some consequences when Lagrange 
multipliers are used.  For example, the “solvability condition” must be modified (see Line 
626 in the originally submitted paper).  For this reason, I prefer to leave this section as is. 
 
lines 238-252:  This is a valuable observation, namely form (17) which shows ~P solves a 
trivialized problem.  If this observation is original, then great.  Otherwise cite it more 
clearly; did it appear in DPL 2010?  (The nearby citations to DPL do not refer to this 
main idea as far as I can tell.) 
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It is original but only insofar as it refers to the transformed pressure (  !P  not  P ) in the 
Blatter-Pattyn approximation.  It does not appear in DPL, 2010, since the new 
transformation was not invented yet. 
 
Figure 2:  This basic point is greatly appreciated:  The deviation from hydrostatic is 
relatively small.  However, in this and almost all figures, the fonts are too small!  (Also 
these figures are bad on a monochrome printer, but I suppose that train has left ...) 
Changing all figures would be difficult.  Should be OK for young eyes …. 
 
line 282:  I don't think (22) is actually used *here*. 
Yes, it is used in the strain rate tensor (6) and in the second invariant (7).  See (26) and 
(28). 
 
around line 282:  Warn the reader that "dummy variables" ("flag variables"?) are about to 

be used.  As the text is written, they are finally explained on the next page. 
Done 
 
lines 286 and onward:  I find "modified" really unpleasant here.  For (25) the tensor 
~\tau_ij is actually modified; it is not equal to the original.  But in (26) the tensor is 
merely rewritten; neither "modified" nor the tilde have the same meaning as they do in 
the equation above.  Similarly (27) and (28) are not "modified" but merely rewritten, as 
far as I can tell.  I therefore would not say "modified" or add a tilde; just write out the 
new form.  Equality means equality. 

I must disagree here.  Equations (26), (27), (28) are indeed modified because  ∂w ∂z  is 

replaced by  − ∂u ∂x +∂v ∂y( )  according to (22).  They may have the same numerical 

value at convergence but they are discretized differently, so they are “modified”.  It is 
also important to distinguish quantities in the transformed Stokes equations from the 
standard or traditional Stokes to avoid confusion. 
 
line 325: "implies the use of" --> "uses" 
Done 
 
lines 327-336:  This is a rambling paragraph that can be shortened to something like "As 
noted earlier we require the upper and lower surfaces of the glacier to be functions of the 
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horizontal coordinates x,y.  That is, as expected in glacier modeling, overhangs are not 
permitted." 
Thank you, this is better.  Text has been changed. 
 
line 344-348:  Repetitive.  Say *once* (earlier, presumably) that one could impose 

boundary conditions weakly, and that you won't do that. 
Shortened, but did mention can use Lagrange multipliers, if desired. 
 
line 360:  Help the reader by referencing/comparing (23). 
I have referenced (23) and (25) following (37). 
 
lines 361 and 404:  Separate these into 2 displays.  (Or better, just be more efficient.  Use 

vector notation?) 
I have done it this way in an effort to be more compact (long paper!)  I think it’s quite 
clear that I have combined equations and boundary condition.  Vector notation would not 
be good because the rest of the paper uses Cartesian tensors. 
 
lines 437-439:  This use of the continuity equation is completely mainstream in 

glaciology.  It applies in all shallow theories including BP.  (And the current manuscript 

illuminates it!)  Please say this some other way. 
This has been reworded. 
 
lines 459-460:  Again, deriving FE discretizations from variational principles is the 
normal way to do business.  Why "except"? 
My understanding is that the normal way to do FE business is by means of the weak 
formulation. 
 
ine 475:  There is no reason to use capital "U" here, and it is a source of confusion 
because capital U is used shortly in subscripts with a different meaning. 
I have changed U to V. 
 
line 495:  "u, w, AND M_{UP}, M_{WP}" 
Section 4.3:  This section needs editing most.  The main point of the entire paper is made 
in subsection 4.3.3, I believe.  Roughly-speaking the main point is that, for the 
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transformed Stokes or EBP equations, the block M_{WP} must be invertible, thus 
square, when an extruded mesh with z-aligned cells is used.  This point is buried after 
laborious and repetitive text.  The main point of the paper *does* require a block-wise 
presentation of the Newton step equations, so the text will necessarily be somewhat 
technical, but it doesn't have to bury the main idea.  There would seem to be no reason 
not to start a section with (47) and (48); the notation here is obvious.  In any case, this 
reader had to get 600 lines into the document before getting to the key lines (roughly 
starting at line 596), and only then have an "oh ... that is what he is trying to say ..." 
moment. 
lines 596-600:  The main point of the paper, right?  Which this reader appreciates!  The 
blockwise form of the EBP model is therefore the central object of the paper, and could 
be put much earlier and more prominently. 
Section 4.3 has been completely rewritten.  I believe it may now address these comments. 
 
lines 616-618:  I would not permit my undergrad linear algebra students to say what is 
said here.  The necessary condition is that *M_{WP} must be non-singular*, from which 
it *follows logically* that it must be square.  The text literally says that non-singularity is 
"in addition" to squareness, thereby asserting that square matrices are invertible!  (Line 
1521 is worse.)  Equation (56) could instead say "M_{WP} is non-singular"; one is 
allowed to put text in displayed LaTeX equations. 

I have been careless here.  In Section 4.3.2  it now says: “matrix  MWP
T  must be invertible 

and so it must be square and full rank.  Since in general  MWP
T  is an  

np × nw  matrix, for 

solvability this requires that  
np = nw ”. 

 
Section 5:  I think the paper would be improved by removing this section.  I understand 
that the transformed Stokes model is the same as the Stokes model, and the EBP model is 
the same as the BP model.  So recapitulating the ISMIP-HOM purpose, which is (I 
suppose) to examine how close BP results are to Stokes results, should not come out any 
differently here, and thus it is not worth doing.  Of course it is true that different 
numerical approaches generate different results in detail.  But what exactly should the 
reader know about this numerical comparison?  Can this be summarized in a sentence or 
two? 
I have shortened this section considerably, keeping the figures and only a minimum 
amount of text to describe them. 
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lines 778-780:  For efficiency I assume that BP is first used everywhere, then some 

criteria is applied, and then Stokes is used where the criteria applies.  But do you want to 

demonstrate that the Stokes calculation everywhere gives the nearly same criteria-

satisfying region? 
I think this is done visually in Fig. 8.  It is quite obvious that the Adaptive (AH) and 
Stokes (TS) calculations are quite close while the Blatter-Pattyn calculation is not very 
accurate in the details up through the column in the vicinity of the obstacle. 
 
line 785:  Is the "counterintuitive" aspect of this explained by noting that the effective 
viscosity is often actually largest in the top of the ice column, which implies the greatest 
longitudinal and bridging stress transmission up there?  I often find that visualizing the 
effective viscosity, in these shear-thinning flows, illuminates where stresses de-localize 
the problem. 
It is counterintuitive because I would have expected the Stokes calculation to be needed 
just in the vicinity of the obstacle and not far away at the top of the domain.  Your 
explanation is probably correct but it would need a more detailed analysis to verify than 
is justified in this paper. 
 
line 811-813:  It is not the personal computer etc. which stops an analysis of the cost 
savings, but rather the lack of a performance model for the solver.  This could be added, 
but it requires a bit of thinking. 
Yes, but a more realistic calculation on representative computer hardware would be able 
to provide believable information on cost savings. 
 
Subsection 6.2 and Section 7:  This seems like tedious overkill.  If a reader gets the main 
points of the paper then they can probably imagine lagging the Newton iteration and/or 
dual grids and/or higher order.  In any case, another 300 lines are burned before the 
summary.  If these are important enough then they could be a separate paper?  Otherwise 
most readers won't have the endurance; really I don't. 
In introducing the new transformation I stated that I wanted to bring out two of its 
applications (although there may be more): Adaptive switching and improved 
approximations that are more accurate than BP.  I think both are equally important.  
Breaking it up into two papers is possible but it would lose some continuity.  Honestly, I 
would not have the stamina to do that.  Readers can always skip over parts that don’t 
interest them. 
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Section 8 (Summary):  Too long. 
Substantially shortened. 
 
Appendix A-C:  On and on. 
Appendix D:  The manipulations shown in (79) and (80) are again very close to the main 
novel point of the paper.  I see no reason why they can't be written into a new and 
prominent form which makes subsubsection 4.3.3 into the central material. 
line 1521:  Again, please don't say that all square matrices are invertible.  (Literally the 
text says "the solvability condition [n_u=n_p] implies the invertibility of M_{WP}".  Just 
no.) 
Appendices A and D eliminated.  Material from Appendix D shortened and transferred to 
subsection 4.3.2.  Sloppiness re matrix invertibility has been corrected. 
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A Novel Transformation of the Ice Sheet Stokes 1	
Equations and Some of its Properties and Applications 2	

 3	
John K. Dukowicz 4	

Guest Scientist, Group T-3, Los Alamos National Laboratory, 5	
Los Alamos, New Mexico, 87545, USA 6	

Correspondence to: John K. Dukowicz (jn.dk@outlook.com) 7	
 8	
Abstract. We introduce a novel transformation of the Stokes equations into a form 9	
that closely resembles the shallow Blatter-Pattyn equations.  The two forms differ by only 10	
a few additional terms, while their variational formulations differ only by a single term in 11	
each horizontal direction.  Specifically, the variational formulation of the Blatter-Pattyn 12	
model drops the vertical velocity in the second invariant of the strain rate tensor.  Here 13	
we make use of the new transformation in two different ways.  First, we consider 14	
incorporating the transformed equations into a code that can be very easily converted 15	
from a Stokes to a Blatter-Pattyn model, and vice-versa, by switching these terms on or 16	
off.  This may be generalized so that the Stokes model is switched on adaptively only 17	
where the Blatter-Pattyn model loses accuracy.  Second, the key role played by the 18	
vertical velocity in the Blatter-Pattyn approximation motivates new approximations that 19	
improve on the Blatter-Pattyn model.  These applications require a grid that enables the 20	
discrete continuity equation to be invertible for the vertical velocity in terms of the 21	
horizontal velocity components.  Examples of such grids, such as the first order P1-E0 22	
grid and the second order P2-E1 grid are given in both 2D and 3D.  It should be noted, 23	
however, that the transformed Stokes model has the same type of gravity forcing as the 24	
Blatter-Pattyn model, determined by the ice surface slope, thereby forgoing some of the 25	
grid-generality of the traditional formulation of the Stokes model. 26	
 27	
1 Introduction 28	
 29	
Concern and uncertainty about the magnitude of sea level rise due to melting of the 30	
Greenland and Antarctic ice sheets have led to increased interest in improved ice sheet 31	
and glacier modeling.  The gold standard is a Stokes model (i.e., a model that solves the 32	
nonlinear, non-Newtonian Stokes system of equations for incompressible ice sheet 33	
dynamics) because it is applicable to all geometries and flow regimes.  However, the 34	
Stokes model is computationally demanding and expensive to solve.  It is a nonlinear, 35	
three-dimensional model involving four variables, namely, the three velocity components 36	
and pressure.  In addition, pressure is a Lagrange multiplier enforcing incompressibility 37	

John Dukowicz
Changes in response to Prof. Schoof in Blue.

John Dukowicz
Changes in response to Prof. Bueler in Red.
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and this creates a more difficult indefinite “saddle point” problem.  As a result, full-38	
Stokes models exist but are not commonly used in practice (examples are FELIX-S, Leng 39	
et al., 2012; Elmer/Ice, Gagliardini et al., 2013). 40	
 41	

Because of these difficulties there is much interest in simpler and cheaper 42	
approximate models.  There is a hierarchy of very simple models such as the shallow ice 43	
(SIA) and shallow-shelf (SSA) models, and there are also various more accurate higher-44	
order approximations.  These culminate in the Blatter-Pattyn (BP) approximation 45	
(Blatter, 1995; Pattyn, 2003), which is currently used in production code packages such 46	
as ISSM (Larour et al., 2012), MALI (Hoffman et al., 2018; Tezaur et al., 2015) and 47	
CISM (Lipscomb et al., 2019).  This approximation is based on the assumption of a small 48	
ice sheet aspect ratio, i.e.,    ε = H L≪1, where   H , L  are the vertical and horizontal 49	
length scales, and consequently it eliminates certain stress terms and implicitly assumes 50	
small basal slopes.  Both the Stokes and Blatter-Pattyn models are described in detail in 51	
Dukowicz et al. (2010), hereafter referred to as DPL (2010).  Although the Blatter-Pattyn 52	
model is reasonably accurate for large-scale motions, accuracy deteriorates for small 53	
horizontal scales, less than about five ice thicknesses in the ISMIP–HOM model 54	
intercomparison (Pattyn et al., 2008; Perego et al., 2012), or below a 1 km resolution as 55	
found in a detailed comparison with full Stokes calculations (Rückamp et al, 2022).  This 56	
can become particularly important for calculations involving details near the grounding 57	
line where the full accuracy of the Stokes model is needed (Nowicki and Wingham, 58	
2008).  Attempts to address the problem while avoiding the use of full Stokes solvers 59	
include variable grid resolution coupled with a Blatter-Pattyn solver (Hoffman et al., 60	
2018) and variable model complexity, where a Stokes solver is embedded locally in a 61	
lower order model (Seroussi et al., 2012).  Better approximations, more accurate than 62	
Blatter-Pattyn but cheaper than Stokes, are currently not available. 63	
 64	

The present paper introduces two innovations that may begin to address some of 65	
these issues.  The first is a novel transformation of the Stokes model, described in §3, 66	
which puts it into a form closely resembling the Blatter-Pattyn model and differing only 67	
by the presence of a few extra terms.  This allows a code to be switched over from Stokes 68	
to Blatter-Pattyn, and vice-versa, globally or locally, by the use of a single parameter that 69	
turns off these extra terms.  As a result, variable model complexity can be very simply 70	
implemented, as described in §6.1.  The second innovation is the introduction of new 71	
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finite element discretizations that decouple the discrete continuity equation and allow it to 72	
be solved for the vertical velocity in terms of the horizontal velocity components.  73	
Several elements used to construct such grids are described in Appendix C in both 2D 74	
and 3D, primarily the first order P1-E0 and second order P2-E1 elements (these two 75	
elements are novel and are so-named because they employ pressures located on vertical 76	
grid edges).  Within the framework of the transformed Stokes model these grids facilitate 77	
new approximations that improve on the Blatter-Pattyn approximation so that it is no 78	
longer strictly limited to a small ice sheet aspect ratio.  We describe two such 79	
approximations in §6.2.  There is another very significant benefit.  An ice sheet Stokes 80	
model is conventionally discretized as a constrained minimization problem requiring 81	
special “stable” finite elements for solution.  However, the same model on these new 82	
grids can be formulated as an inherently stable and numerically equivalent unconstrained 83	
minimization problem, as demonstrated in §4.3.2. 84	
 85	
2 The Standard Formulation of the Stokes Ice Sheet Model 86	
2.1 The Assumed Ice Sheet Configuration 87	
 88	
An ice sheet may be divided into two parts, a part in contact with the bed and a floating 89	
ice shelf located beyond the grounding line.  The Stokes ice sheet model is capable of 90	
describing the flow of an arbitrarily shaped ice sheet, including a floating ice shelf as 91	
illustrated in Fig. 1, given appropriate boundary conditions (e.g., Cheng et al., 2020).  92	
One limitation of the methods proposed here, in common with the Blatter-Pattyn model, 93	
will be that there should be just one upper and one basal surface, as is the case in Fig. 1.  94	
Here we will only consider a fully grounded ice sheet with periodic lateral boundary 95	
conditions, i.e., no ice shelf, although in general ice shelves can be handled. 96	

Ice Sheet
Basal Surface

Bed

x
z

g n (s)

Ice Shelf

 Oceann(b
)

n (b)

Vertical Ice
Face

Ocean Level

 97	
 98	
 Figure 1  A simplified illustration of the admissible ice sheet configuration. 99	
 100	
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	101	
Referring to Fig. 1, the entire surface of the ice sheet is denoted by  S .  An upper 102	

surface, labeled  SS  and specified by   ς s x, y, z( ) = z − zs x, y( ) = 0 , is exposed to the 103	
atmosphere and thus experiences stress-free boundary conditions.  The bottom or basal 104	
surface, denoted by  SB  and specified by   ς b x, y, z( ) = z − zb x, y( ) = 0 , is in contact with 105	

the bed.  The basal surface may be subdivided into two sections,   SB = SB1 ∪ SB2 , where 106	

  SB1 , specified by   z = zb1 x, y( ) , is the part where ice is frozen to the bed (a no-slip 107	

boundary condition), and   SB2 , specified by   z = zb2 x, y( ) , is where frictional sliding 108	

occurs.  We assume Cartesian coordinates such that   xi = x, y, z( )  are position coordinates 109	

with   z = 0  at the ocean surface, and the index   i ∈ x, y, z{ }  represents the three Cartesian 110	

indices.  Later we shall have occasion to introduce the restricted index   i( )∈ x, y{ }  to 111	
represent just the two horizontal indices.  Note that this is equivalent to applying a 112	
projection operator but is more compact, i.e., 

  
u i( ) = Pi u( ) = u,v,0( ) .  Unit normal vectors 113	

appropriate for the ice sheet configuration of Fig. 1 are given by 114	

 

  

ni = nx ,ny ,nz( ) = ∂ς s x, y, z( ) ∂xi

∂ς s x, y, z( ) ∂xi

=
−∂zs ∂x ,−∂zs ∂y ,1( )

1+ ∂zs ∂x( )2
+ ∂zs ∂y( )2

at surface SS ,

ni = nx ,ny ,nz( ) = −
∂ς b x, y, z( ) ∂xi

∂ς b x, y, z( ) ∂xi

=
∂zb ∂x ,∂zb ∂y ,−1( )

1+ ∂zb ∂x( )2
+ ∂zb ∂y( )2

at surface SB .

  (1) 115	

 116	
2.2 The Stokes Equations 117	
 118	
The Stokes model is a system of nonlinear partial differential equations and associated 119	
boundary conditions (Greve and Blatter, 2009; DPL, 2010).  In a Cartesian coordinate 120	
system the Stokes equations, the three momentum equations and the continuity equation, 121	
for the three velocity components   ui = u,v,w( )  and the pressure  P  are given by 122	

 
  

∂τ ij

∂x j

− ∂P
∂xi

+ ρgi = 0 , (2) 123	
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∂ui

∂xi

= 0 , (3) 124	

where ρ  is the density, and  gi  is the acceleration vector due to gravity, arbitrarily 125	

oriented in general but here taken to be in the negative z-direction,   gi = 0,0,−g( ) .  126	
Repeated indices imply summation (the Einstein notation).  The deviatoric stress tensor 127	
τ ij  is given by 128	

 
   
τ ij = 2µn

!ε ij , (4) 129	
where the strain rate tensor is 130	

 
   
!ε ij =

1
2

∂ui

∂x j

+
∂uj

∂xi

⎛

⎝
⎜

⎞

⎠
⎟ , (5) 131	

the nonlinear ice viscosity  µn  is a defined by 132	

 
   
µn =η0

!ε 2( )(1−n) 2n
, (6) 133	

and 
   
!ε 2 = !ε ij

!ε ij 2  is the second invariant of the strain rate tensor that may be written out 134	
in full as follows 135	

 
   

!ε 2 = 1
2

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 1

4
∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂z

+ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (7) 136	

Note that the second invariant is a positive quantity, i.e.,   !ε
2 ≥ 0 .  As usual, ice is assumed 137	

to obey Glen’s flow law, where  n  is the Glen’s law exponent (  n = 1  for a linear 138	
Newtonian fluid.  Typically   n = 3  in ice sheet modeling, resulting in a nonlinear non-139	
Newtonian fluid).  The coefficient  η0  is defined by   η0 = A−1/n / 2 , where  A  is an ice flow 140	
factor, here taken to be a constant but in general depending on temperature and other 141	
variables (see Schoof and Hewitt, 2013).  The three-dimensional Stokes system requires a 142	
set of boundary conditions at every bounding surface, each set being composed of three 143	
components.  Aside from the periodic lateral boundary conditions used in our test 144	
problems, the relevant boundary conditions are given as follows 145	

(1) Stress-free boundary conditions on surfaces  SS  not in contact with the bed, such 146	
as the upper surface  SS : 147	

   
τ ijn j − Pnt = 0 . (8) 148	
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(2) No-slip or frozen to the bed conditions on surface segment   SB1 : 149	
   ui = 0   (9) 150	

(3) Frictional tangential sliding conditions on surface segment   SB2  in two parts:   151	
(3a) A single condition enforcing tangential flow at the basal surface:  152	

   uini = 0 .  (10) 153	
(3b) Two conditions specifying the horizontal components of the tangential 154	

frictional stress force vector, as follows 155	
 

  
τ i( ) jn j −τ nn i( ) +τ i( )

S = 0 , (11) 156	

where  
τ n = niτ ijn j  is the normal component of the shear stress, and  τ i

S  is a specified 157	

interfacial shear stress, tangential to the bed 
  

niτ i
S = 0( ) .  The tangential shear stress or 158	

traction is obtained as in DPL (2010) by subtracting out the normal component from the 159	
shear stress.  However, the three components of the tangential shear stress are not 160	
independent because they already satisfy the tangency condition at the basal surface and 161	
therefore we retain only the horizontal components.  The interfacial shear stress  τ i

S  is 162	
potentially a complicated function of position and velocity (e.g., Schoof, 2010).   163	
However, here we assume only simple linear frictional sliding, 164	
  τ i

S = β x( ) ui , (12) 165	

where   β x( ) > 0  is a position-dependent drag law coefficient.  For simplicity we assume 166	
there is no melting or refreezing at the bed resulting in vertical inflows or outflows.  If 167	
needed, these can be easily added to (10) (Dukowicz et al., 2010; Heinlein et al., 2022). 168	
 169	
2.3 The Stokes Variational Principle 170	
 171	
A variational principle, if available, is usually the most compact way of representing a 172	
particular problem.  The Stokes model possesses a variational principle that is 173	
particularly useful for discretization purposes and for the specification of boundary 174	
conditions (see DPL, 2010, and Chen et al., 2013, for a fuller description of the 175	
variational principle applied to ice sheet modeling).  There are a number of significant 176	
advantages.  For example, all boundary conditions are conveniently incorporated in the 177	
variational formulation, all terms in the variational functional, including boundary 178	
condition terms, contain lower order derivatives than in the momentum equations, and the 179	
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resulting discretization automatically involves a symmetric matrix.  In discretizing the 180	
momentum equations, stress terms at boundaries involve derivatives that would normally 181	
have to be evaluated using less accurate one-sided approximations.  This problem does 182	
not arise in the variational formulation since all terms are evaluated in the interior.  183	
Finally, stress-free boundary conditions, as at the upper surface for example, need not be 184	
specified at all since they are automatically incorporated in the functional as natural 185	
boundary conditions.  In discrete applications, the variational method presented here is 186	
closely related to the Galerkin finite element method, a subset of the weak formulation 187	
method in which the test and trial functions are the same (see Schoof, 2010, and earlier 188	
references contained therein in connection with the Blatter-Pattyn model). 189	
 190	

The variational functional for the standard Stokes model may be written in two 191	
alternative forms: 192	
 (1) Basal boundary conditions imposed using Lagrange multipliers: 193	

 

    

A[ui , P,λi ,Λ]= dV
4n

n+1
η0
!ε 2( ) 1+n( ) 2n

− P
∂ui

∂xi

+ ρgw
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ dS λiuiSB1
∫ + dS Λuini +

1
2
β x( ) uiui

⎡

⎣
⎢

⎤

⎦
⎥SB 2

∫ ,
 (13) 194	

where  λi  and Λ  are Lagrange multipliers used to enforce the no-slip condition and 195	
frictional tangential sliding, respectively.  As in DPL (2010), arguments enclosed in 196	
square brackets, here   ui , P,λi ,Λ , indicates those functions that are subject to variation as 197	
arguments of the functional. 198	

(2) Basal boundary conditions imposed by direct substitution: 199	
In this case, the two conditions (9), (10) are used directly in the functional to specify all 200	
three velocity components  ui  in the first case, and the vertical velocity  w  in terms of the 201	
horizontal velocity components in the second case, along the entire basal boundary in 202	
both the volume and surface integrals in (13).  However, this can only be done in the 203	
discrete formulation of the functional since only then are boundary values of velocity 204	
accessible (except in the surface integral terms where they are always accessible).  In 205	
particular, the tangential flow condition (10) is used in the following form, 206	

 
  
w = −

u
i( )n i( )
nz

= u
i( )
∂zb

∂x
i( )

,  (14) 207	

to eliminate  w  on the basal boundary segment   SB2  of the variational functional, to obtain 208	
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A[ui , P]= dV
4n

n+1
η0
!ε 2( ) 1+n( ) 2n

− P
∂ui

∂xi

+ ρgw
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) + u

i( )n i( ) nz
b2( )( )2⎛

⎝⎜
⎞
⎠⎟SB 2

∫ .
 (15) 209	

It is important to emphasize again that boundary conditions (9) and (14) must also be 210	
applied in the volume integral part of the discretized functional (15) as part of direct 211	
substitution to replace velocity variables that lie on the basal boundary.  In the case of 212	
(14), horizontal velocity variables remain undisturbed while  w  is eliminated, thus 213	
implementing the tangential sliding boundary condition. 214	
 215	

As described in DPL (2010), a variational procedure yields the full set of Euler-216	
Lagrange equations and boundary conditions that specify the standard Stokes model, 217	
equivalent to (2)-(11).  In the case of (13), the system determines all the discrete variables 218	
specified on the mesh: the velocity components and the pressure,   ui , P , as well as the 219	
Lagrange multipliers,   λi ,Λ .  In the direct substitution case, (15), the numerical solution 220	
determines only the pressure  P  and those velocity variables  ui  that were not directly 221	
prescribed as boundary conditions in (9) or (14).  These prescribed (known) values of 222	
boundary velocities are then added a posteriori.  As a result, the direct substitution 223	
method is smaller and simpler, and therefore is the one primarily used in the paper. 224	
 225	
3. A Transformation of the Stokes Model  226	
3.1 Origin of the Transformation 227	
 228	
The transformation is motivated by the Blatter-Pattyn approximation.  Consider the 229	
vertical component of the momentum equation and the corresponding stress-free upper 230	
surface boundary condition in the Blatter-Pattyn approximation (from DPL, 2010, for 231	
example), which are given by 232	

 

  

∂
∂z

2µn

∂w
∂z

⎛
⎝⎜

⎞
⎠⎟
− ∂P
∂z

− ρg = 0,

2µn

∂w
∂z

− P
⎛
⎝⎜

⎞
⎠⎟

nz = 0 at z = zs x, y( ).
  (16) 233	

These equations may be rewritten in the form 234	
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∂
∂z

P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( )⎛
⎝⎜

⎞
⎠⎟
= 0,

P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( )⎛
⎝⎜

⎞
⎠⎟

nz = 0 at z = zs x, y( ),
 (17) 235	

suggesting a new variable   !P , to be called the transformed pressure, as follows 236	

 
   
!P = P − 2µn

∂w
∂z

+ ρg z − zs x, y( )( ),  (18) 237	

which simplifies system (17) to give 238	

 

   

∂ !P
∂z

= 0,

!P nz = 0 at z = zs x, y( ).
  (19) 239	

This is a complete one-dimensional partial differential system, that, when integrated from 240	
the top surface down yields  241	
    !P = 0 .  (20) 242	
Thus, the transformed pressure vanishes in the Blatter-Pattyn case.  The definition (18) 243	
forms the basis of the present transformation but we also use the continuity equation to 244	
eliminate  ∂w ∂z  as is done in the Blatter-Pattyn approximation (e.g., Pattyn, 2003).  245	
Therefore, the transformation consists of eliminating  P  and  ∂w ∂z  in the Stokes system 246	
(2), (4)-(11) (i.e., everywhere except in the continuity equation (3) itself) by means of 247	

 
   
P = !P − 2µn

∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρg zs − z( ) , (21) 248	

 
 

∂w
∂z

= − ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

. (22) 249	

 250	
The pressure P in the standard Stokes system is primarily a Lagrange multiplier 251	

enforcing incompressibility, but with a very large hydrostatic component.  The 252	
transformation eliminates the hydrostatic pressure from   !P , as illustrated in Fig. 2 where 253	
the two pressures are compared.  The transformed pressure   !P  is some three orders of 254	
magnitude smaller than the standard Stokes pressure  P  primarily because of the absence 255	
of hydrostatic pressure. 256	
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 257	
Figure 2.  Standard pressure  P  compared to the transformed pressure   !P  in Exp. B from 258	

the ISMIP–HOM model intercomparison (Pattyn et al., 2008) at L = 10 km.   259	
Note that  P  is in MPa while   !P  is in kPa. 260	

 261	
The transformed pressure   !P  is again a Lagrange multiplier enforcing 262	

incompressibility.  Alternatively, since    !P = 0  in the Blatter-Pattyn approximation, the 263	
transformed pressure may be written as   

!P = P − PBP , where 264	

 
  
PBP = −2µn

∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρg zs − z( )   265	

is the effective Blatter-Pattyn pressure (Tezaur et al., 2015).  As a result,   P = PBP + !P  and 266	
therefore   !P  is actually the “Stokes” correction to the Blatter-Pattyn pressure. 267	
 268	
3.2 The Transformed Stokes Equations 269	
 270	
Introducing (21), (22) into the Stokes system of equations (2)-(11) results in the 271	
following transformed Stokes system: 272	

 
   

∂ !τ ij

∂x j

− ξ̂ ∂ !P
∂xi

− ρg
∂zs

∂x
i( )
= 0 , (23) 273	

 
  
ξ̂
∂ui

∂xi

= 0 , (24) 274	

where quantities that are modified in the transformation are indicated by a tilde, e.g.,   !P .  275	
Here and in the following we will be using dummy variables  ξ , ξ̂  to indicate terms that 276	
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are absent in the Blatter-Blatter approximation, as explained below.  Corresponding to (4) 277	
the modified Stokes deviatoric stress tensor 

  
!τ ij  is given by 278	

 
   

!τ ij = 2 !µn
"!ε ij +

∂u
i( )

∂x
i( )
δ ij

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, (25) 279	

where  
δ ij  is the Kronecker delta, the modified strain rate tensor 

  
!"ε ij , corresponding to (5), 280	

is given by 281	

 

   

!"ε ij =

∂u
∂x

1
2

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

∂v
∂y

1
2

∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

1
2

∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

− ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (26) 282	

and, corresponding to (6), the modified viscosity, 283	

 
   
!µn =η0

"!ε 2( )(1−n) 2n
,  (27) 284	

is given in terms of the second invariant, 
   
!"ε 2 = !"ε ij

!"ε ij 2 , that in expanded form becomes 285	

 
   

!"ε 2 = ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂x

∂v
∂y

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

+ ξ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂v
∂z

+ ξ ∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (28) 286	

Since (28) differs from (7) only by the use of the continuity equation (22), the 287	
transformation will leave the second invariant   !"ε

2  and viscosity   !µn  unchanged, i.e., 288	

  !"ε
2 = !ε 2  and   !µn = µn , and the transformed second invariant remains positive, i.e.,   !"ε

2 ≥ 0 . 289	
 290	

The dummy variables  ξ , ξ̂  in (23)-(25) and (26)-(29) are used to identify terms 291	
that are neglected in the two types of the Blatter-Pattyn approximation discussed in §3.4.  292	
These are (a) the standard Blatter-Pattyn approximation,  ξ = 0, ξ̂ = 0 , as originally 293	
derived (Blatter, 1995; Pattyn, 2003; DPL, 2010), which solves for just the horizontal 294	
velocity components   u,v , and (b) the extended Blatter-Pattyn approximation, 295	

 ξ = 0, ξ̂ = 1 , described more fully later, that contains the standard approximation and also 296	
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contains additional equations that determine the vertical velocity  w  and the pressure   !P .  297	
Keeping all terms, i.e.,  ξ = 1, ξ̂ = 1 , specifies the full transformed Stokes model. 298	
 299	

Boundary conditions for the transformed equations, corresponding to (8)-(11), are 300	
given by 301	
BCs on  SS : 

   
!τ ijn j − ξ̂ !P ni = 0 , (29) 302	

BCs on   SB1 :   ui = 0 ,  (30) 303	
BCs on   SB2 :   uini = 0 , (31) 304	

 
   
!τ

i( ) j
n j − !τ nn i( ) + β x( )u i( ) = 0 ,  (32) 305	

where 
  
!τ n = ni

!τ ijn j  as before.  Equations (31), (32) constitute the three required boundary 306	
conditions for frictional sliding. 307	
 308	

The transformed system, (25)-(32), and the standard Stokes system, (2)-(11), yield 309	
exactly the same solution.  However, in common with the Blatter-Pattyn approximation, 310	
transformation (21) needs to use a gravity-oriented coordinate system because of the 311	
particular form of the gravitational forcing term, while the standard Stokes model does 312	
not have this restriction.  This is not a major limitation.  A somewhat more restrictive 313	
limitation is the appearance of   zs x, y( ) , an implicitly single valued function, to describe 314	
the vertical position of the upper surface of the ice sheet.  This means that care must be 315	
taken in case of reentrant upper surfaces (i.e., S-shaped in 2D) and sloping cliffs at the ice 316	
edge, a restriction not present in the standard Stokes model.  For simplicity, as noted 317	
before we assume that there is just one upper and one basal surface, i.e., as is usual in ice 318	
sheet modeling we do not permit overhangs. 319	
 320	
3.3 The Transformed Stokes Variational Principle 321	
 322	
It is easy to verify that the transformed Stokes system (23)-(32) results from the variation 323	
with respect to    ui , !P  of the following functional: 324	
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!A[ui , !P]= dV
4n

n+1
η0
"!ε 2( ) 1+n( ) 2n

− ξ̂ !P
∂ui

∂xi

+ ρgu
i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) + u

i( )n i( ) nz( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (33) 325	

where   !"ε
2  is the transformed second invariant from (28).  Basal boundary conditions are 326	

imposed by direct substitution, as in (15).  Alternatively, one could also impose boundary 327	
conditions using Lagrange multipliers as in (13), if desired. 328	
 329	
3.4 Two Blatter-Pattyn Approximations  330	
3.4.1 The Standard Blatter-Pattyn Approximation 331	
 332	
The standard (or traditional) Blatter-Pattyn approximation (originally introduced by 333	
Blatter, 1995; Pattyn, 2003; later by DPL, 2010; Schoof and Hewitt, 2013, and references 334	
therein) is obtained by setting  ξ = 0, ξ̂ = 0  in the transformed system.  This yields the 335	
following Blatter-Pattyn variational functional, 336	

 

    

ABP[u
i( )]= dV

4n
n+1

η0
!ε BP

2( ) 1+n( ) 2n
+ ρgu

i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) +ς u

i( )n i( ) nz( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (34) 337	

in terms of horizontal velocity components only, where the second invariant    !ε BP
2  follows 338	

from (28) with  ξ = 0 , 339	

 
   

!ε BP
2 = ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂x

∂v
∂y

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂u
∂z

2

+ ∂v
∂z

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (35) 340	

and therefore the Euler-Lagrange equations and boundary conditions become 341	

 

  

∂τ
i( ) j
BP

∂x j

− ρg
∂zs

∂x
i( )
= 0;

τ
i( ) j
BP nj + β x( ) u

i( ) +ζ u
j( )n j( ) nz( )n i( ) nz( ) = 0

on SB2 , τ
i( ) j
BP nj = 0 on SS , u

i( ) = 0 on SB1,

⎧
⎨
⎪

⎩⎪
  (36) 342	

where the Blatter-Pattyn stress tensor 
 
τ i( ) j

BP  is 343	
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τ
i( ) j
BP =η0

!ε BP
2( )(1−n) 2n

2 2 ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

∂u
∂z

∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟

2 ∂u
∂x

+ 2 ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

∂v
∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. (37) 344	

These last two equations correspond to (23) and (25) in the transformed Stokes system.  345	
There is a new dummy variable ζ  in (34) introduced to identify the basal boundary term 346	
normally dropped  ζ = 0( )  in the standard Blatter-Pattyn approximation but restored 347	

 ζ = 1( )  in Dukowicz et al. (2011) to better deal with arbitrary basal topography. 348	
 349	

The Blatter-Pattyn model is a well-behaved nonlinear approximate system for the 350	
horizontal velocity components   u,v  because in this case the variational formulation is a 351	
convex optimization problem whose solution minimizes the functional.  As noted in the 352	
Introduction, the Blatter-Pattyn approximation is widely used in practice as an 353	
economical and relatively accurate ice sheet model.  If desired, the vertical velocity 354	
component  w  may be computed a posteriori by means of the continuity equation. 355	
 356	
Remark #1 : The original formulation (e.g., Pattyn, 2003) approximates the normal unit 357	
vectors  ni  on the frictional part of the basal boundary   SB2  by making the small slope 358	
approximation.  However, this additional approximation is unnecessary since any 359	
computational savings are negligible (Dukowicz et al., 2011; Perego et al., 2012). 360	
 361	
3.4.2 The Extended Blatter-Pattyn Approximation 362	
 363	
A second form of the Blatter-Pattyn approximation is obtained from the transformed 364	
variational principle (33) by making the assumption, 365	

 
   

∂w
∂x
≪

∂u
∂z

, ∂w
∂y
≪

∂v
∂z

 , (38) 366	

and therefore neglecting    ∂w ∂x, ∂w ∂y  in the transformed second invariant   !"ε
2 , or 367	

equivalently, in the strain rate tensor 
  
!"ε ij  from (26), consistent with the original small 368	

aspect ratio approximation (Blatter, 1995; Pattyn, 2003; DPL, 2010; Schoof and 369	
Hindmarsh, 2008).  This corresponds to setting  ξ = 0, ξ̂ = 1  in the transformed Stokes 370	
model.  In other words, we neglect vertical velocity gradients but keep the pressure term.  371	
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This will be called the extended Blatter-Pattyn approximation (EBP) because, in contrast 372	
to the standard Blatter-Pattyn approximation, all the variables, i.e.,    u,v,w, !P , are retained.  373	
Notably, assumption (38) is equivalent to just setting   w = 0  in the second invariant   !"ε

2  in 374	
the full transformed Stokes model.  That is, the extended BP approximation is obtained 375	
by neglecting vertical velocities everywhere in (33) except where they occurs in the 376	
velocity divergence term.  This aspect of the transformed Stokes model will be exploited 377	
later to obtain approximations that improve on Blatter-Pattyn.  Thus, the extended 378	
Blatter-Pattyn functional is given by 379	

 

    

AEBP[ui , !P]= dV
4n

n+1
η0
"ε BP

2( ) 1+n( ) 2n
− !P

∂ui

∂xi

+ ρgu
i( )
∂zs

∂x
i( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫

+ 1
2

dS β x( ) u
i( )u i( ) +ς u

i( )n i( ) nz( )2⎛
⎝⎜

⎞
⎠⎟SB 2

∫ ,

 (39) 380	

and the Blatter-Pattyn second invariant    !ε BP
2  is given by (35).  Taking the variation of the 381	

functional, the system of extended Blatter-Pattyn Euler-Lagrange equations and their 382	
boundary conditions is given by 383	
  (1) Variation with respect to 

 
u i( )  yields the horizontal momentum equation: 384	

    

∂τ
i( ) j
BP

∂x j

− ∂ !P
∂x

i( )
− ρg

∂zs

∂x
i( )
= 0;

τ
i( ) j
BP nj − !P n

i( ) = 0 on SS , u
i( ) = 0 on SB1,

τ
i( ) j
BP nj + β x( ) u

i( ) +ζ u
k( )n k( ) nz( )n i( ) nz( ) = 0

on SB2 ,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (40) 385	

where  
 
τ i( ) j

BP  is given by (37).   386	
 (2) Variation with respect to  w  yields the vertical momentum equation:  387	

 
   

− ∂ !P
∂z

= 0; !P nz = 0 on SS , (41) 388	

 (3) Variation with respect to   !P  yields the continuity equation: 389	

  
  

∂w
∂z

+
∂u

i( )
∂x

i( )
= 0; w = 0 on SB1, or w = −u

i( )n i( ) nz on SB2.   (42) 390	

It is apparent that the vertical momentum equation system (41) is decoupled, yielding 391	
   !P = 0 , as was already shown in §3.1.  This eliminates pressure from the horizontal 392	
momentum equation (40), making it a decoupled equation for the horizontal velocities 393	
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u i( ) , identical to the standard Blatter-Pattyn system (36).  In addition, having obtained the 394	
horizontal velocities from (40), the continuity equation (42) may now be solved for the 395	
vertical velocity  w  (but see the comments regarding the discrete case that follow (43)). 396	
 397	

In summary, the extended Blatter-Pattyn model, (40)-(42), is equivalent to the 398	
standard Blatter-Pattyn model, (36), for the horizontal velocities,   u,v , except that it also 399	
includes two additional equations that determine the pressure   !P  and the vertical velocity 400	
 w  that are usually ignored in the standard Blatter-Pattyn approximation where only the 401	
horizontal velocity is calculated.  Because of this, we distinguish between the Blatter-402	
Pattyn model that solves for just the two horizontal velocities (i.e., the standard Blatter-403	
Pattyn approximation, (36)), and the Blatter-Pattyn system that solves for all the variables 404	
(i.e., the extended Blatter-Pattyn approximation, (40)-(42)).  Perhaps the main distinction 405	
between the two, which may be imporant in some applications, is that the Blatter-Pattyn 406	
system obtains the vertical velocity on the same grid as the horizontal velocities, while in 407	
the Blatter-Pattyn model the calculation of vertical velocity is completely decoupled and 408	
may be done on an unrelated grid.  These models must obtain the vertical velocity  w  409	
from the continuity equation (42) once horizontal velocities   u,v  are available.  In the 410	
continuous case this can be done using the Leibniz’s theorem, as follows 411	

 
  
w u,v( ) = wz=zb

−
∂u

i( )
∂x

i( )
zb

z

∫ d ′z = u
i( )
∂zb

∂x
i( )
−

∂u
i( )

∂x
i( )

zb

z

∫ d ′z = − ∂
∂x

i( )
u

i( )zb

z

∫ d ′z . (43) 412	

In the discrete case one may consider discretizing (43) directly.  However, later we 413	
consider special finite element grids where the continuity equation is stably solved for  w . 414	
 415	

So far we have only considered continuum properties of Stokes-type systems.  416	
However, a discrete finite element formulation may not be well behaved.  The solution of 417	
discretized Stokes models and Blatter-Pattyn approximations, and the solution for vertical 418	
velocity from the continuity equation will depend on the choices made for the grids and 419	
the finite elements that are to be used.  These issues will be discussed next. 420	
 421	
4. Finite Element Discretization 422	
4.1 Standard and Transformed Stokes Discretizations 423	
 424	
In practice, both traditional Stokes and Blatter-Pattyn models are discretized using finite 425	
element methods (e.g., Gagliardini et al., 2013; Perego et al., 2012).  We follow this 426	
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practice except that here the discretization originates from a variational principle.  This 427	
has a number of advantages (see §2.3 and DPL, 2010).  The following is a brief outline of 428	
the finite element discretization.  Additional details about the grid and the associated 429	
discretization are provided in Appendix B.  For simplicity, we confine ourselves to two 430	
dimensions with coordinates   x, z( )  and velocities   u,w( ) .  Generalization to three 431	
dimensions is possible (an example of a three-dimensional grid appropriate for our 432	
purpose is discussed in Appendix B).  Further, we discuss only the case of direct 433	
substitution for basal boundary conditions in the variational functional, i.e., (15) or (33).  434	
The remarks in this Section will apply to both the standard and transformed Stokes 435	
models; for example, the discrete pressure variable  p  may refer to either the standard 436	
pressure  P  or the transformed pressure   !P . 437	
 438	

Consider an arbitrary grid with a total of  
N = nu + nw + np  unknown discrete 439	

variables at appropriate nodal locations   1≤ i ≤ N , with  nu  horizontal velocity variables, 440	

 nw  vertical velocity variables, and  
np  pressure variables, so that 441	

   
V = V1,V2 ,!,VN{ }T

= u1,u2 ,!,unu
{ }, w1,w2 ,!,wnw

{ }, p1, p2 ,!, pnw
{ }{ }T

= u,w, p{ }T
 (44) 442	

is the vector of all the unknown discrete variables that are the degrees of freedom of the 443	
model.  If using Lagrange multipliers for basal boundary conditions then discrete 444	
variables corresponding to   λz ,Λ  must be added.  Variables are expanded in terms of 445	

shape functions   Ni
k x( )  associated with each nodal variable  i  in each element  k , so that 446	

  
V k x( ) = Vi Ni

k x( )
i
∑  is the spatial variation of all variables in element  k , summed over 447	

all variable nodes located in element  k .  Shape functions associated with a given node 448	
may differ depending on the variable (i.e.,   u,w,  or p ).  Substituting into the functional, 449	
(15) or (33), integrating and assembling the contributions of all elements, we obtain a 450	
discretized variational functional in terms of the nodal variable vectors   u,w, p , as follows 451	
 

   
A u,w, p( ) = A k u,w, p( )

k
∑ , (45) 452	

where    A
k u,w, p( )  is the local functional evaluated by integrating over element  k .  Since 453	

the term in the functional involving the product of pressure and divergence of velocity is 454	
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linear in pressure and velocity, and the term responsible for gravity forcing is linear in 455	
velocity, the functional (45) may be written in matrix form as follows 456	
 

   A u,w, p( ) =M u,w( ) + pT MUP
T u + MWP

T w( ) + uT FU + wT FW ,  (46) 457	

where the notation from (44) has been used, i.e., 
   
u = u1,u2 ,!,unu

{ }T
, etc.  Parentheses 458	

indicate a functional dependence on the indicated variables.  Comparison with (15) and 459	
(33) indicates that    M u,w( )  is a nonlinear positive-definite function of the velocity 460	

components   u,w ,  MUP
T , MWP

T  are constant  
np × nu  and  

np × nw  matrices, respectively, 461	

arising from the incompressibility constraint, and   FU , FW  are constant gravity forcing 462	
vectors, of dimension  nu  and  nw , respectively.  Note that   FU = 0, FW ≠ 0  specifies the 463	
standard Stokes model, and   FU ≠ 0, FW = 0  the transformed Stokes model.  The discrete 464	

functional    M u,w( )  differs but it remains positive-definite in both. 465	
 466	

Discrete variation of the functional corresponds to partial differentiation with 467	
respect to each of the discrete variables in  V .  Thus, the discrete Euler-Lagrange 468	
equations that correspond to the u-momentum, w-momentum, and continuity equations, 469	
respectively, are given by 470	

 

   

R u,w, p( ) =
RU u,w, p( )
RW u,w, p( )

RP u,w( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

MU u,w( ) + MUP p + FU

MW u,w( ) + MWP p + FW

MUP
T u + MWP

T w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 ,  (47) 471	

where   R u,w, p( )  is the residual vector with components    RU u,w, p( ) = ∂A ∂u , 472	

   RW u,w, p( ) = ∂A ∂w , and   RP u,w( )=  ∂A ∂p .  The functionals    MU u,w( ) = ∂M ∂u , 473	

   MW u,w( ) = ∂M ∂w  are nonlinear vectors of dimension  nu  and  nw , respectively.  474	

Altogether, (47) is a set of  N  equations for the  N  unknown discrete variables  Vi .  As 475	
explained previously, all boundary conditions are already included in functional (46), and 476	
therefore are also incorporated into the discrete Euler-Lagrange equations (47). 477	
 478	

Since the overall system (47) is nonlinear, it is typically solved using Newton-479	
Raphson iteration, expressed in matrix notation as follows 480	
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M uK ,wK( ) ΔV + R uK ,wK , pK( ) = 0 ,  (48) 481	

where  K  is the iteration index, 
   M u,v( ) = ∂2A V( ) ∂Vi ∂Vj  is a symmetric  N × N  482	

Hessian matrix, and  ΔV  is the column vector given by 483	

 
  
ΔV = Δu,Δw,Δp{ }T

= uK+1 − uK ,wK+1 − wK , pK+1 − pK{ }T
. 484	

Given  V K  from the previous iteration, (48) is a linear matrix equation that is solved at 485	
each iteration for the  N  new variables   V K+1 .  In view of (46) and (47), the Hessian 486	
matrix   M u,w( )  may be decomposed into several submatrices, as follows 487	

 

  

M u,w( ) =
MUU u,w( ) MUW u,w( ) MUP

MUW
T u,w( ) MWW u,w( ) MWP

MUP
T MWP

T 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (49) 488	

Submatrices    MUW u,w( ) = ∂2M ∂u∂w , etc., depend nonlinearly on   u,w .  Thus, 489	

  MUU u,w( ), MWW u,w( )  are square  nu × nu ,  nw × nw  symmetric matrices, respectively, 490	

while   MUW u,w( )  is a rectangular  nu × nw matrix since   nu , nw  may not be equal.  As noted 491	

earlier,  MWP
T  is an  

np × nw matrix and therefore not square unless  
np = nw . 492	

 493	
4.2 Blatter-Pattyn Discretizations 494	
 495	
For completeness, we express the Blatter-Pattyn approximations from §3.4 in matrix 496	
form, as follows 497	

(1) The standard Blatter-Pattyn model from §3.4.1 takes the simple form 498	
    R

BP u( ) =MU u,0( ) + FU = 0 ,  (50) 499	
whose Newton-Raphson iteration is given by 500	

   
M BP uK( )Δu + RBP uK( ) = 0 ,  (51) 501	

and therefore the Blatter-Pattyn Hessian matrix is given by   M
BP u( ) = MUU u,0( ) . 502	
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(2) The extended Blatter-Pattyn approximation from §3.4.2 becomes 503	

 

   

REBP u,w, p( ) =
MU u,0( ) + MUP p + FU

MWP p

MUP
T u + MWP

T w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 , (52) 504	

with the Newton-Raphson iteration given by 505	
 

  
M EBP uK( ) ΔV + REBP uK ,wK , pK( ) = 0 ,  (53) 506	

and the associated Hessian matrix is 507	

 

  

M EBP u( ) =
MUU u,0( ) 0 MUP

0 0 MWP

MUP
T MWP

T 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (54) 508	

 509	
4.3 Solvability Issues 510	
4.3.1 Solvability of Stokes and Blatter-Pattyn Models 511	
 512	
We now consider the solution of the three linear matrix problems (48), (51), (53) 513	
associated with the Stokes and the corresponding Blatter-Pattyn approximate models.  514	
While there are no issues in the continuous case, this is not so in the discrete case 515	
depending on the choice of the grid and the finite elements, as noted earlier.  The discrete 516	
system to be solved has the general form 517	

 
   
M u

p
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= A B

BT 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u
p

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= f

g
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (55)  518	

where    u = u,w{ }T
 in the linear case or   Δu,Δw{ }T

 in the nonlinear case, and similarly for 519	
the vector of pressures or pressure increments  p .  The form (55) is characteristic of 520	
Stokes-type problems, or more generally of constrained minimization problems using 521	
Lagrange multipliers.  In finite element terminology these are called “mixed” or “saddle 522	
point” problems, meaning that velocity components and the pressure occupy different 523	
finite element spaces, and that the solution of (55) is actually at the saddle point with 524	
respect to the velocity and pressure variables of the quadratic form associated with (55).  525	
The matrix  M  is symmetric but indefinite, with both positive and negative eigenvalues.  526	
As a result, the matrix inverse may not be bounded and may lack stability. 527	
 528	
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There are three cases to consider:   529	
(1) The standard Blatter-Pattyn model, (51).  In this case only the matrix  A  530	

exists, it is elliptic, and   B = BT = 0 .  As a result, the standard Blatter-Pattyn model is a 531	
well-behaved and stable unconstrained minimization problem.  The model (51) is self-532	
contained and is solved for  u  while the vertical velocity  w  is potentially available a 533	
posteriori from a separately obtained continuity equation. 534	

(2) The extended Blatter-Pattyn model, (53), (54).  The middle row of the Hessian 535	
(54) indicates that the solution for the pressure will be zero.  Using this in the top row of 536	
the Hessian, one obtains the standard Blatter-Pattyn system and therefore the same well-537	
behaved horizontal velocity  u  as above, with the result that the bottom row of the 538	
Hessian, the continuity equation, is the only way to obtain a solution for the vertical 539	
velocity  w .  However, this is possible only if matrix  MWP

T  is invertible, which at 540	
minimum requires a square matrix, i.e.,  

np = nw , and this depends on the finite element 541	
grid chosen for the discretization.  For example, the popular second-order Taylor-Hood 542	
(P2-P1) element with piecewise quadratic velocity and linear pressure (Hood and Taylor, 543	
1973) typically has 

  
np ≪ nw .  As a result, the linear system for  w  is greatly 544	

underdetermined and cannot be solved for  w .  In fact, this is a problem for all inf-sup 545	
stable elements with  

np ≠ nw , such as the Taylor-Hood element, for example. 546	
(3) The standard and transformed Stokes models, (48), (49).  These models 547	

require the use of pressure as a Lagrange multiplier to enforce incompressibility and 548	
therefore these are mixed or saddle point problems, as mentioned previously.  To avoid 549	
problems with the solution these finite elements must satisfy a certain condition, the 550	
Ladyzhenskaya–Babuška–Brezzi (LBB, or inf-sup) condition.  There is a very large 551	
literature on the subject, e.g., Boffi et al. (2008), Elman et al. (2014), Auricchio et al. 552	
(2017).  Both the standard and transformed Stokes models are subject to this problem and 553	
in general must use inf-sup stable finite elements.  Testing for stability is not trivial.  554	
However, collections of inf-sup stable elements for the Stokes equations may be found in 555	
many papers and books on mixed methods, e.g., Boffi et al. (2008).  The popular second-556	
order Taylor-Hood P2-P1 element (Hood and Taylor, 1973) is an example of an inf-sup 557	
stable element.  Some results involving this element are shown in Fig. 13 for Test B, one 558	
of the test problems described in Appendix A. 559	
 560	
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4.3.2 A Special Case: Invertible Continuity Equation 561	
 562	
In the continuous case, the Blatter-Pattyn approximation (§3.4.1) implies that vertical 563	
velocity  w  is obtainable from the continuity equation after having solved for the 564	
horizontal velocities   u,v .  As mentioned previously, this is possible to do in the 565	
continuum but not necessarily so in the discrete case.  The 2D discrete continuity 566	
equation from (47) or (52) is given by  567	
   MUP

T u + MWP
T w = 0 .  (56) 568	

For this to be solvable for w  in terms of the horizontal velocity, i.e.,  w u( ) , means that 569	

matrix  MWP
T  must be invertible and thus it must be square and full rank.  Since in general 570	

 MWP
T  is an  

np × nw  matrix, for solvability at minimum this requires that 571	

  
np = nw . (57) 572	

Assuming that we are dealing with reasonable discretizations, we shall presume for our 573	
discussion that matrix  MWP

T  is always full rank.  If Lagrange multipliers were to be used, 574	
this means that the number of unknown pressures  

np  would have to be augmented by the 575	

number of Lagrange multipliers so (57) would become  
np + λz + Λ = nw  (See Appendix 576	

B, §B2, for more details).  We shall refer to (57) (together with the assumption of full 577	
rank) as the solvability condition.  In Appendix B we present several grids and elements 578	
that satisfy this condition, including one variant in particular, the P1-E0 element, that will 579	
be used in most of the 2D test problems featured in this paper.  Thus, if the solvability 580	
condition is satisfied, the discrete continuity equation (56) may be inverted for the 581	
vertical velocity, to obtain 582	
  w u( ) = −MWP

−T MUP
T u ,  (58) 583	

where matrix  MWP
−T  is defined by 584	

   
  
MWP

−T = MWP
T( )−1

= MWP
−1( )T

. (59) 585	

Here wee have used the fact that if matrix  MWP
T  is invertible then so is its transpose  MWP .  586	

Note that (58) is one discrete form of equation (43).   587	
 588	

Invertibility of the continuity equation has several important applications.  First, it 589	
is a necessary requirement for the new Stokes approximations that are discussed in §6.2.  590	
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Since these approximations are based on approximating the vertical velocity in the 591	
transformed second invariant, (28), it is necessary to obtain the vertical velocity 592	
independently of solving the entire coupled Stokes problem.  Second, we noticed earlier 593	
that the extended Blatter-Pattyn model does not work with a Taylor-Hood P2-P1 grid 594	
because the solvability condition is not satisfied.  However, this model does work with a 595	
variant of the Taylor-Hood grid, the P2-E1 grid, illustrated in Fig. 13A, which does 596	
satisfy the solvability condition and this therefore allows for a successful calculation of 597	
the vertical velocity. 598	
 599	
 Perhaps the main reason for the importance of the solvability condition is that it 600	
implies that the Stokes variational principle, (15) or (33), may be transformed into and 601	
therefore that it is equivalent to an optimization or minimization problem.  Consider the 602	
discrete form of the variational functional given by (46).   Working with a grid that 603	
satisfies the solvability condition, we may substitute the vertical velocity given by (58) 604	
into the functional (46).  This immediately eliminates the term responsible for the 605	
continuity equation, including the pressure, and one obtains a functional in terms of 606	
horizontal velocity  u  only, as follows 607	

 
   A u( ) =M u,w u( )( ) + uT FU + w u( )T

FW . (60) 608	

Since the functional 
   M u,w u( )( )  is positive semi-definite, this is now an unconstrained 609	

minimization problem, entirely analogous to the standard Blatter-Pattyn problem of 610	
§3.4.1 except that here it represents the full Stokes problem for either the standard ( FW ) 611	
or the transformed ( FU ) formulation.  This result suggests that a conventional Stokes 612	
problem, when solved on a grid satisfying the solvability condition, is equivalent to an 613	
unconstrained minimization problem and therefore is well behaved.  This is because any 614	
problem will give the same answer whether formulated as (46) or (60) on a grid that 615	
satisfies the solvability condition. 616	
 617	

Note that functional (60) is actually the discrete version of a pressure-free 618	
formulation that was attempted analytically by Dukowicz (2012).  It is possible to 619	
consider solving problems in practice using the pressure-free formulation (60) instead of 620	
a standard saddle point formulation such as (46) or (47).  However, this produces a dense 621	
Hessian matrix that makes a solution using Newton-Raphson iteration very costly and 622	
therefore impractical, particularly for large problems. 623	
 624	
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5. Comparison of the Standard and Transformed Stokes Models 625	
 626	
The standard and transformed Stokes models are expected to converge to the same 627	
solution.  To verify that this is indeed the case we do a number of calculations for some 628	
2D test problems based on the ISMIP-HOM benchmark (Pattyn et al, 2008).  These tests 629	
are described in Appendix A where they are referred to as Test B and Test D*.  Test B 630	
involves no-slip boundary conditions on a sinusoidal bed, and Test D* evaluates sliding 631	
of the ice sheet along a flat bed in the presence of sinusoidal friction.  The tests are 632	
discretized using P1-E0 elements on a regular grid composed of  n  quadrilaterals in the 633	
 x -direction and  m  quadrilaterals in the  z -direction, illustrated in Fig. B1, with each 634	
quadrilateral divided into two triangles.  Results are presented for two domain lengths, 635	
 L = 5 km and 10 km, to test the aspect ratio range where the Blatter-Pattyn model begins 636	
to fail, and using a relatively coarse grid, i.e.,   m = n = 40 , except when we consider the 637	
convergence of the models with grid refinement in Fig. 3. 638	
 639	

Fig. 3 evaluates the convergence of the two Stokes models as a function of grid 640	
resolution  r , where  r  is the number of quadrilaterals in either direction. The models do 641	
converge to the same solution and convergence is second order as expected from the use 642	
of linear elements.  Interestingly, the transformed Stokes model displays considerably 643	
smaller error at all resolutions in Test B.  As a result, we observe that standard Stokes 644	
calculations are not fully converged even at the 40x40 resolution. 645	
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 646	
Figure 3.   Convergence of ice transport in Tests B and D* with grid refinement.  647	

Transformed Stokes (TS) plots are in blue and standard Stokes plots (SS) are in red. 648	
	649	

Fig. 4 shows the vertical profiles of the horizontal velocity  u  at outflow,  x = L .  650	
We plot results from the no-slip Test B problem and the two frictional sliding problems, 651	
Tests D and D*.  The Test D profile from the ISMIP-HOM benchmark is almost 652	
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vertically constant, indicating that the value for basal friction originally chosen is too 653	
small.  This is what motivated the change from Test D to Test D* in Appendix A. 654	
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 655	
Figure 4.  The u-velocity profile at location  x = L  as a function of height from the bed. 656	

 657	
Figs. 5 and 6 show the u-velocity at the ice sheet upper surface for Tests B and 658	

D*.  This is the benchmark used in ISMIP-HOM to compare the different ice sheet 659	
models.  Here we compare four cases: the standard Stokes model (SS), the transformed 660	
Stokes model (TS), the Blatter-Pattyn (BP) model, and for reference, a very high 661	
resolution full-Stokes Test B calculation “oga1” (SS-HR), available from the ISMIP-662	
HOM paper and also independently available in Gagliardini and Zwinger (2008).  The TS 663	
and the SS-HR plots lie on top of one another (they have been offset slightly for clarity), 664	
indicating that the TS model is already fully converged.  We again observe that the SS 665	
model is not yet converged in Test B, particularly at   L = 5  km.  As also seen in the 666	
ISMIP-HOM paper, the Blatter-Pattyn calculation (BP) shows large deviations from the 667	
Stokes results, especially so at   L = 5  km where the surface velocity is entirely out of 668	
phase with the Stokes results.  Test D* results in Fig. 6 for the SS and TS models are very 669	
similar (the SS plot has been slightly offset upward for visibility).  As expected, the error 670	
in the Blatter-Pattyn results is noticeable at   L = 10  km and very large at   L = 5  km. 671	
 672	
 Pressure results are not shown because, particularly in the transformed case, 673	
pressure has little or no physical significance.  However, pressures calculated on the P1-674	
E0 grid are particularly smooth and well behaved. 675	
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 676	
Figure 5.  Upper surface u-velocity,   u x, zs( )  - Test B, No-slip boundary conditions. 677	

 678	
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 679	
Figure 6.  Upper surface u-velocity,   u x, zs( )  - Test D*, Modified frictional sliding case. 680	
 681	
6. Applications of the Transformed Stokes Model 682	
6.1 Adaptive Switching between Stokes and Blatter-Pattyn Models 683	
 684	
One way of reducing the cost of a full Stokes calculation is to use it adaptively with a 685	
cheaper approximate model.  That is, one may use the cheaper model in those parts of a 686	
problem where it is accurate, and the more expensive full Stokes model where the 687	
approximate model loses accuracy.  One example of such an adaptive approach is the 688	
tiling method by Seroussi et al. (2012).  However, there are drawbacks to such methods, 689	
such as the difficulty of incorporating two or more presumably quite different models 690	
into a single model, and the additional complexity of a necessary transition zone to 691	
couple the disparate models. 692	
 693	

The transformed Stokes model used in such an adaptive role is attractive because 694	
it may be switched between the Stokes and Blatter-Pattyn cases simply by switching the 695	
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parameter  ξ ∈ 0,1{ }  between its two values.  For simplicity the extended Blatter-Pattyn 696	

approximation ( ξ = 0,ξ̂ = 1) is being used since both the Stokes and the Blatter-Pattyn 697	
parts of the code have the same number of discrete variables.  The extended Blatter-698	
Pattyn model requires the use of a grid that satisfies the solvability condition as explained 699	
in §4.3.  We therefore use the P1-E0 element.  However, it would be computationally 700	
cheaper to use the standard Blatter-Pattyn approximation ( ξ ,ξ̂ = 0 ) instead, solving only 701	
for the horizontal variables and coupling to the Stokes model with   p = 0  and   w = w u,v( )  702	
at the interface.  This, however, implies much more complicated programming. 703	
 704	

To demonstrate the idea of adaptive switching with a transformed Stokes model, 705	
we introduce a new test problem, Test O, described in Appendix A and illustrated in Fig. 706	
A1.  This consists of an inclined ice slab whose movement is obstructed by a thin 707	
obstacle protruding 20% of the ice depth up from the bed.  No-slip boundary conditions 708	
are applied along the bed and on the obstacle itself.  Because of the localized nature of 709	
the obstacle, the Blatter-Pattyn approximation conditions, (38), must fail near the obstacle 710	
and therefore the full Stokes model is needed for good accuracy, at least locally. 711	

BP: ξ = 0

Stokes: ξ = 1

 712	
Figure 7.   Mask function (white curve,  z = FM x( ) ) to indicate where the Stokes and BP 713	
models are activated in the 20% obstacle test problem.  The dark brown region delineates 714	

the region where   ∂w ∂x ≤ 0.1 ∂u ∂z  in a Blatter-Pattyn calculation. 715	
 716	
 To implement this, we first use a Blatter-Pattyn calculation to outline regions 717	
where   ∂w ∂x ≤ 0.1 ∂u ∂z , approximately localizing where the Blatter-Pattyn 718	
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approximation is valid.  This determines a mask function  z = FM x( ) , illustrated in Fig. 7 719	
by the white curves, that specifies where the two models must be used.  Defining the 720	
centroid of a triangular element by   xC , zC( ) , the code makes a selection in each element: 721	

 
  

zC ≤ FM xC( ) ⇒ Set ξ = 0, i.e., the Blatter-Pattyn region,

zC > FM xC( ) ⇒ Set ξ = 1, i.e., the Stokes region.
 722	

Somewhat counterintuitively, the Stokes region occupies the upper part of the domain in 723	
Fig. 7 and includes the obstacle, while the Blatter-Pattyn region occupies much of the 724	
bottom part of the domain.  A transition zone, e.g.,   0 ≤ ξ x, z( ) ≤1 , is possible but was not 725	
used in the present calculation. 726	
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 727	
Figure 8.   Comparing results for the Transformed Stokes (TS),  728	

the Adaptive-Hybrid (AH), and the Blatter-Pattyn (BP) models in Test O. 729	
 730	
 The Adaptive-Hybrid results are shown in Fig. 8, which shows curves of the 731	
horizontal velocity  u  at seven different vertical positions specified as a percentage of the 732	
distance between top and bottom, with  σ = 100%  at the top surface.  The top right panel 733	
shows the results for the adaptive-hybrid model (AH).  For comparison, the top left panel 734	
and the bottom panel show results for the Stokes (TS) and the Blatter-Pattyn (BP) 735	
calculations, respectively.  All calculations are at the 40x40 resolution.  The Adaptive-736	
Hybrid results are very similar to the full Stokes results, reproducing most features of the 737	



 

August 30, 2024 

29 

velocity profiles, including the velocity bump at the top surface, indicating that even the 738	
top surface feels the presence of the obstacle.  The Blatter-Pattyn results are much less 739	
accurate; they completely miss the details of the flow near the obstacle.  We also measure 740	
the RMS error in the u-velocity relative to the Stokes results.  The RMS error in the 741	
Blatter-Pattyn case is 0.493 m/a and 0.440 m/a in the Adaptive-Hybrid case, smaller in 742	
the Blatter-Pattyn case as expected, but the difference is not as large and striking as the 743	
visual difference in Fig. 8.  Nevertheless, the adaptive-hybrid method is successful 744	
judged by the Fig. 8 results alone.  Unfortunately, an estimate of the computational cost 745	
savings will have to wait a more realistic implementation. 746	
 747	
6.2. Two Stokes Approximations Beyond Blatter-Pattyn 748	
 749	
As shown in §3.4, simply setting  w = 0  in the second invariant   !"ε

2  in the transformed 750	
functional   !A  results in the standard Blatter-Pattyn approximation.  This suggests that 751	
approximating the vertical velocity  w  in the functional would be a good way to create 752	
approximations that improve on the Blatter-Pattyn approximation since   w = 0  already 753	
produces an excellent approximation.  We will look at two such methods in this Section 754	
although others are possible.  The first method, to be called the BP+ approximation, is 755	
implemented using a combination of Newton and Picard iterations such that at each 756	
Newton iteration the pressure-free variational functional is evaluated using a lagged 757	
vertical velocity  wK

 from the previous iteration.  The pressure is used in a subordinate 758	
role as a “test function” to obtain a decoupled invertible continuity equation to obtain 759	

 
w uK( ) .  Although this method improves on the accuracy of the Blatter-Pattyn 760	
approximation, its overall accuracy is limited because it uses only the horizontal 761	
momentum equation and neglects the vertical momentum equation.  The second method, 762	
to be called the Dual-Grid approximation, keeps the pressure and vertical velocity as in 763	
the transformed Stokes model but approximates it by discretizing the continuity equation 764	
on a coarser grid.  Since vertical velocity  w  is determined by inverting the continuity 765	
equation, this has the effect of approximating the vertical velocity while reducing the 766	
number of pressure and vertical velocity variables.  This preserves the structure of the 767	
Stokes model, while the degree of approximation is determined by the amount of 768	
coarsening of the continuity grid. 769	
 770	
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6.2.1 An Improved Blatter-Pattyn or BP+ Approximation 771	
 772	
To prepare, we introduce a pair of 2D variational quasi-functionals,     !APS1[u]  and 773	

    !APS 2[ !P] .  Noting that    !P = 0  in the Blatter-Pattyn approximation, we drop the pressure 774	
term from the transformed functional (33) and define a new pressure-free functional, 775	

 

    

!APS1[u]= dV
4n

n+1
η0
"!ε 2( ) 1+n( ) 2n

+ ρgu
∂zs

∂x
⎡

⎣
⎢

⎤

⎦
⎥V∫

+ 1
2

dS β x( ) u2 +ζ u nx nz( )2( )SB 2
∫ ,

 (61) 776	

where 777	

 
   
!"ε 2 = ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
4

∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

2

. (62) 778	

Since the continuity equation has been eliminated from (61), incompressibility is 779	
introduced separately by defining a second functional, 780	

 
    
!APS 2[ p]= dV p

∂u
∂x

+ ∂w
∂z

⎛
⎝⎜

⎞
⎠⎟V∫ . (63) 781	

Note that functional (61) is a function of   u,w  but variation is to be taken only with 782	
respect to  u , and similarly, functional (63) is a function of   u,w, p  but variation is taken 783	
only with respect to  p .  Direct substitution is used for boundary conditions, as before.  784	
Here we are effectively viewing the pressure  p  as a “test function” in the finite element 785	
sense.  This gives us great flexibility to create elements that satisfy the solvability 786	
condition (57) as desired.  In a triangulation, for example, pressures may be assigned to 787	
every two triangles, as in a P1-E0 grid, while others may be assigned to a single triangle 788	
so as to achieve an equal number of pressure and vertical velocity variables. 789	
 790	

The variation of     !APS1[u]  with respect to  u , results in a set of  nu  discrete Euler-791	
Lagrange equations, 792	

 
    
R̂U u,w( ) = ∂ !APS1 u,w( )

∂u
= MU u,w( ) + FU = 0 . (64) 793	

This may be recognized as the Blatter-Pattyn model, (50), when  w  is set to zero.  The 794	
discrete variation of     !APS 2[ p]  with respect to  p , results in the continuity equation, (56), 795	
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R̂P u,w( ) = ∂ !APS 2 u,w, p( )

∂p
= MUP

T u + MWP
T w = 0 . (65) 796	

These two systems are now combined to form the BP+ approximation, as follows 797	

 
  
R̂ u,w( ) = R̂U u,w( ), R̂P u,w( )⎡⎣ ⎤⎦

T
= 0 .  (66) 798	

This is a single system of  
nu + np  equations to determine the  nu + nw  discrete variables 799	

  u,w , implying that (66) is viable only on grids satisfying the solvability condition, 800	

 
np = nw .  Just as in the standard Blatter-Pattyn approximation in §3.4.1, the vertical 801	
momentum equation is missing, but instead of neglecting  w , the vertical velocity is now 802	
consistently obtained from the continuity equation. 803	
 804	
 The continuum version of the discrete Euler-Lagrange system (64), (65) may be 805	
written as follows 806	

 

   

∂
∂x

4 !µ ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂z
!µ ∂u

∂z
+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
− ρg

∂zs

∂x
= 0,

∂u
∂x

+ ∂w
∂z

= 0,

  (67) 807	

whose the boundary conditions are 808	

 

   

4 !µ ∂u
∂x

nx + !µ
∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

nz = 0 on SS , u = w = 0 on SB1,

4 !µ ∂u
∂x

nx + !µ
∂u
∂z

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

nz + β x( ) u +ζ u nx nz( )2( ) = 0,

w = −u nx nz ,

⎫

⎬
⎪

⎭
⎪

on SB2 ,
  (68) 809	

where 
   
!µ =η0

"!ε 2( )(1−n) 2n
 and the second invariant   !"ε

2  is given by (62).  Remarkably, a 810	
model exactly equivalent to (67), i.e., the BP+ approximation, was introduced by 811	
Herterich (1987) to study the transition zone between an ice sheet and an ice shelf1.  This 812	
predates the less accurate, widely used Blatter-Pattyn model by some eight years.  813	
Unfortunately, this anticipatory work seems to have faded into obscurity. 814	
 815	

There are two ways of solving the BP+ system (66), as follows 816	

																																																								
1 Reference pointed out to me by C. Schoof. 
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 (1) BP+, Quasi-variational, Newton iteration version: 817	
Although a single variational principle does not exist in this case, it is still 818	

possible to make use of Newton-Raphson iteration to obtain second order convergence.  819	
To do this, we treat (66) as a single multidimensional nonlinear system and solve it using 820	
Newton-Raphson iteration, as follows 821	

 

  

MUU uK ,wK( ) MUW uK ,wK( )
MUP

T MWP
T

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Δu
Δw

⎡

⎣
⎢

⎤

⎦
⎥ +

R̂U uK ,wK( )
R̂P uK ,wK( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0 , (69) 822	

where   MUU u,w( ) = ∂R̂U u,w( ) ∂u  and   MUW u,w( ) = ∂R̂U u,w( ) ∂w  are the same 823	
matrices as appear in (49).  Convergence is rapid (quadratic) once in the basin of 824	
attraction but each step is more expensive than the Picard iteration described next.  825	
 826	
(2) BP+, Newton/Picard iteration version: 827	

A single step of the Newton-Raphson system (69) may be written as follows 828	

 
  

MUU uK ,wK( )Δu + MUW uK ,wK( )Δw+ R̂U uK ,wK( ) = 0,

MUP
T uK+1 + MWP

T wK+1 = 0.
 (70) 829	

If we lag the vertical velocity, i.e.,   w
K+1 = wK ⇒Δw = 0  in the first equation, we obtain a 830	

Picard iteration algorithm as follows 831	

 

  

Starting from K = 0, choose an initial guess, u0 ≠ 0,w u0( ),
Solve:  

MUU uK ,wK( )Δu + R̂U uK ,wK( ) = 0,

uK+1 = uK + Δu,

wK+1 = w uK+1( ) = −MWP
−T MUP

T uK+1,

K = K +1,
Repeat until convergence.

 (71) 832	

Each step of this iteration is inexpensive since it is equivalent to a step of the standard 833	
Blatter-Pattyn model, (36).  On the other hand, Picard iterations typically converge only 834	
linearly.  It remains to be seen which version is preferable in practice. 835	
 836	

Both BP+ versions converge to the same solution.  Fig. 9 compares the upper 837	
surface u-velocity from the improved Blatter-Pattyn (BP+) approximation to the standard 838	
Blatter-Pattyn approximation and to a reference exact Stokes calculation.  The RMS u-839	
Error of the BP+ approximation relative to the exact Stokes case is shown in Fig. 12.  The 840	
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BP+ approximation is noticeably more accurate than the BP approximation, particularly 841	
in the   L = 5  km case where the Blatter-Pattyn solution bears no resemblance to the 842	
correct solution while the BP+ approximation shows excellent accuracy.  This is 843	
confirmed by the RMS u-Error results in Fig. 12 where BP+ is two to three times as 844	
accurate as BP. 845	
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 846	
Figure 9.   Comparing Approximations. Test B, Upper surface u-velocity. 847	

TS-Ref: Transformed Stokes; BP: Blatter-Pattyn; BP+: Improved Blatter-Pattyn. 848	
Resolution: 24x24. 849	

 850	
 These two versions depend on an invertible continuity equation to obtain 851	

 w = w u( ) .  However, vertical velocity  w  may already be available for the purpose of 852	
temperature advection in production code packages that either incorporate or are based on 853	
the Blatter-Pattyn approximation.  Thus, the BP+ approximation, and particularly the 854	
Newton/Picard version, may be attractive for use in such codes since they improve the 855	
accuracy of the basic Blatter-Pattyn model, as seen in Fig. 9, at little additional cost. 856	
 857	
6.2.2 A “Dual-Grid” Transformed Stokes Approximation 858	
 859	
Here we take a different approach and approximate the continuity equation in the 860	
transformed Stokes model, which indirectly approximates  w .  Thus, the continuity 861	
equation is discretized on a grid coarser than the one used for the momentum equations, 862	
and then interpolate the vertical velocity to appropriate locations on the finer grid.  This 863	
reduces the number of unknown variables in the problem, making it cheaper to solve but 864	
hopefully without much loss of accuracy.  As described in Appendix A, our test problem 865	
grids are logically rectangular, divided into  n  cells horizontally and  m  cells vertically.  866	
The coarse grid is constructed by dividing the fine grid into  s  equal segments in each 867	
direction.  This assumes that the integers  n  and  m  are each divisible by  s , such that 868	
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there are   nm / s2  coarse cells in total, with each coarse cell containing   s2  fine cells.  The 869	
primary grid (i.e., the fine grid) was chosen to have   n = m = 24 , resulting in a reference 870	
 24× 24  fine grid, so as to maximize the number of different coarse grids that may be 871	
used for this test.  Coarse grids were constructed using   s = 2,3,4,6 , and this resulted in 872	
fine/coarse grid combinations labeled by  24×12, 24×8, 24× 6, 24× 4 , respectively.  873	
Similar to a P1-E0 fine grid, coarse grid vertical velocities  w  are located at vertices and 874	
pressures at vertical edges.  Fig. 10 illustrates the case of a single coarse and four fine 875	
quadrilateral cells for a grid fragment with   n = m = 2  and   s = 1.  For the Test B problem, 876	
using direct substitution for basal boundary conditions, there will be  nm  u-variables and 877	

  nm s2  w- and p-variables each, for a total of 
  
nm 1+ 2 s2( )  unknown variables, 878	

considerably fewer than the   3nm  variables in the full resolution (i.e., fine grid) case, 879	
depending on the value of  s .  The coarse grid terms in the functional that are affected, 880	

  
!P ∂u ∂x + ∂w ∂z( )  and  ∂w ∂x , are computed using coarse grid variables and 881	

interpolated to the fine grid.  We will consider two versions depending on how the coarse 882	
grid terms are calculated and distributed on the fine grid. 883	
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~
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 884	
 885	

Figure 10.   A Sample of a Coarse/Fine P1-E0 Grid for the Dual-Grid Approximation. 886	
Resolution:   n = m = 2, s = 1.  Coarse grid is in red, fine grid in black. 887	

 888	
(1) Approximation A, Bilinear interpolation: 889	
 Referring to Fig. 10, the four velocities at the vertices of the coarse grid 890	
quadrilateral, i.e.,   u1,u3,u7 ,u9  and   w1,w2 ,w3,w4 , are used to obtain   u,w  at the remaining 891	
five vertices of the fine grid by means of bilinear interpolation.  Thus, the five velocities 892	

  u2 ,u4 ,u5,u6 ,u8  are obtained in terms of vertex velocities   u1,u3,u7 ,u9 , and similarly for the 893	
 w  velocities.  The resulting complete set of fine grid variables, interpolated from coarse 894	
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grid variables, are used calculate the divergence  D = ∂u ∂x + ∂w ∂z( )  and the quantity 895	

 ∂w ∂x  in each of the eight triangular elements    t1,t2 ,!,t8  of the fine grid.  Coarse grid 896	
pressures    

!P1, !P2  are associated with the coarse grid triangles   T1,T2 .  The products    
!P1 D  in 897	

elements   t1,t2 ,t3,t5  and    
!P2 D  in elements   t4 ,t6 ,t7 ,t8  are then accumulated over the entire 898	

grid to obtain   
!P ∂u ∂x + ∂w ∂z( )  for use in the transformed functional   !A .  Similarly, the 899	

quantity  ∂w ∂x  is computed in the fine grid elements from coarse grid variables for use 900	
in the second invariant   !"ε

2 . 901	
 902	
(2) Approximation B, Linear interpolation: 903	
 In this version, the three velocities at the vertices of the two coarse grid triangles 904	

  T1  and   T2 , i.e.,   u1,u3,u7  and   w1,w2 ,w3  in   T1 , and   u7 ,u3,u9  and   w3,w2 ,w4  in   T2 , 905	

approximate the divergence  D = ∂u ∂x + ∂w ∂z( )  and the quantity  ∂w ∂x  as constant 906	

values in the two coarse triangles.  The constant quantities    
!P1 D ,    

!P2 D  are then 907	
accumulated over the entire grid.  The constant quantity  ∂w ∂x  in each coarse triangle is 908	
then distributed to each of the eight fine grid elements    t1,t2 ,!,t8  depending on whether 909	
the centroid of the fine triangular element is in   T1  or   T2 .  As in the previous case, this is 910	

then used in the second invariant   !"ε
2  when evaluating the transformed functional   !A . 911	

 912	
 While the number and type of unknown variables is the same in the two versions, 913	
they differ considerably in accuracy, as is seen in Figs. 11 and 12.  Fig. 11 compares the 914	
upper surface u-velocity in both version, Approximations A and B, for the four coarse 915	
grid combinations and the reference 24x24 fine grid calculation.  Fig. 12 compares the 916	
overall accuracy the same way by means of the RMS u-Error.  As might be expected, the 917	
accuracy of Approx. A is better than the accuracy of Approx. B, particularly in the case 918	
when   L = 10  km.  Both versions are more accurate than the Blatter-Pattyn and BP+ 919	
approximations, except at the lowest 24x4 resolution when only the Approx. A version 920	
retains that distinction. 921	
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Figure 11.   Comparing Approximations A and B.  Test B.  Upper surface u-velocity. 923	
TS-Ref: Reference Stokes 24x24; Fine/Coarse resolutions (r x R):  24xR, R=12, 8, 6, 4. 924	

 925	
 In summary, the dual-grid approximation improves on the Blatter-Pattyn 926	
approximation in both versions and at all resolutions, as seen in Fig. 12.  Compared to the 927	
BP+ approximations, here the vertical momentum equation is retained, although in 928	
approximated form.  In fact, here the solution procedure is very similar to that of the 929	
unapproximated Stokes model except that the dimensions of the pressure and the vertical 930	
velocity variables are reduced. 931	
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 932	
Figure 12.   Comparing RMS u-Error in Different Approximations, Test B, 933	

Resolutions (r x R):  Approx. BP, BP+:  24x24; Approx. A, B:  24xR, R=12, 8, 6, 4. 934	
 935	
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7. Second-Order Discretizations 936	
 937	
So far we have been using first-order elements, primarily P1-E0.  However, in current 938	
practice Stokes models are more often based on second-order elements such as the 939	
popular Taylor-Hood P2-P1 element (Leng et al., 2012; Gagliardini et al., 2013).  In 2D 940	
the P2-P1 element, illustrated in Fig. 13A, has velocities on element vertices and edge 941	
midpoints and pressures on element vertices, resulting in a quadratic velocity and linear 942	
pressure distributions.  The element satisfies the conventional inf-sup stability condition 943	
(e.g., Elman et al., 2014) but not the solvability condition (57).  For example, in Test B 944	
with direct substitution for basal boundary conditions, the number of vertical velocity 945	
variables is   nw = 4nm , much larger than the number of pressure variables, 

  
np = n m+1( ) . 946	

 947	
 Stokes models work well with a Taylor-Hood grid, as illustrated in Fig. 13, where 948	
both P2-P1 and P1-E0 models converge to a common Test B solution, but models that 949	
require the solvability condition (57) will not work on a P2-P1 grid, as is the case with 950	
the extended Blatter-Pattyn approximation.   However, a second-order element can be 951	
constructed that is consistent with an invertible continuity equation.  This is called the 952	
P2-E1 element and it is illustrated in Fig. 13A.  It is second-order for velocities and linear 953	
for pressure, just like the P2-P1 element, but the pressure is edge-based, as in the P1-E0 954	
element.  Pressure is located midway between the velocities on the vertical cell edges, 955	
including an “imaginary” vertical edge joining the velocities in the middle of the vertical 956	
column.  Since pressures are collinear with vertical velocities along vertical grid edges, as 957	
in the P1-E0 element, the same analysis in Appendix B demonstrates that this element 958	
also satisfies the solvability condition (57).  As explained in Appendix B, this grid should 959	
be constructed using vertical columns of quadrilaterals.  A 3D analog exists as explained 960	
in Appendix B. 961	
 962	
 Fig. 13B shows the approximate error of the ice transport as a function of grid 963	
refinement for the second-order P2-P1 and P2-E1 grids in transformed Stokes Test B 964	
calculations, together with similar results for the first-order P1-E0 grid from Fig. 3, for 965	
comparison.  We note that both second order models show approximately the same error 966	
at resolution   r = 16  as the first order P1-E0 model at resolution   r = 40 , and similarly for 967	
coarser resolutions such as   r = 8  and   r = 20 , respectively.  However, it is safe to say that 968	
these second-order calculations are considerably more expensive than the first-order 969	
calculations at comparable resolution or accuracy. 970	
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 971	
Figure 13.   Comparing second-order discretizations based on the P2-P1 and P2-E1 972	
elements from panel A to first-order discretizations using the P1-E0 element running Test 973	
B with L=10 km.  Only transformed Stokes calculations are compared; standard Stokes 974	
results behave similarly.  Panel B compares the convergence and accuracy of the various 975	
schemes with increasing resolution, while panels C, D compare the horizontal velocities 976	
at medium and maximum resolutions. 977	
 978	
 Panels C, D in Fig. 13 compare the u-velocities from several Test B calculations 979	
using the two second-order models in comparison with first-order P1-E0 model results 980	
from Fig. 3.  Each panel shows results from the upper surface ( σ = 100% ) in solid lines 981	
and results from a surface a quarter of the way up from the bottom ( σ = 25% ) in dashed 982	
lines.  Panel C shows results from medium resolution calculations (  r = 8, 20  in the 983	
second-order and first-order calculations, respectively) and panel D shows the 984	
corresponding results from the higher resolution calculations (  r = 16,40 ).  At these 985	
resolutions the accuracy of the first- and second-order calculations is very similar so for 986	
clarity the second-order results are displaced horizontally from the first-order results by 987	
0.05 nondimensional units.  The P2-E1 results in magenta are displaced to the left and the 988	
P2-P1 results in blue are displaced to the right.  In general, models satisfying the 989	
solvability condition, namely the P1-E0 and P2-E1 models, are better behaved than the 990	
P2-P1 model.  This is possibly related to the well-known “weak” mass conservation of 991	
the Taylor-Hood element.  This problem is greatly improved by “enriching” the pressure 992	
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space with constant pressures in each triangular element (Boffi et al., 2012).  In the 2D 993	
Test B problem this increases the number of pressure variables from 

  
np = n m+1( )  in the 994	

basic Taylor-Hood element to   n 3m+1( ) , much closer to the   4nm  needed to satisfy the 995	
solvability condition.  On the other hand, the pressure in the P2-E1 case is highly 996	
oscillatory but well behaved in the P2-P1 case.  However, this is not at all concerning 997	
since the transformed pressure, a Lagrange multiplier, has no physical significance. 998	
 999	
8. A Summary and Discussion 1000	
 1001	
In summary, this paper presents two innovations in ice sheet modeling.  The first involves 1002	
a transformation of the ice sheet Stokes equations into a form that differs from the 1003	
approximate Blatter-Pattyn system by a small number of terms.  In particular, the 1004	
variational formulations differ only by the absence of terms involving the vertical 1005	
velocity  w  in the second invariant of the strain rate tensor in the Blatter-Pattyn system. 1006	
 1007	
 We focus on two applications of the new transformation.  The first is that these 1008	
extra terms in the transformed Stokes equations may be “switched” on or off to convert 1009	
the code from a full-Stokes model to a Blatter-Pattyn model, if desired.  Ice sheet flow is 1010	
generally shallow but often contains limited areas where Stokes equations must be 1011	
solved.  Thus, the switch from Blatter-Pattyn to Stokes may be done locally and 1012	
adaptively only where the extra accuracy is required. 1013	
 1014	
 The fact that neglecting the vertical velocity in only one localized place creates 1015	
the Blatter-Pattyn approximation suggests that approximating the vertical velocity instead 1016	
will create improved approximations.  We present two such approximations.  The first 1017	
approximation, called the BP+ approximation, solves the pressure-free horizontal 1018	
momentum equation with the vertical velocity obtained from the continuity equation.  1019	
Remarkably, this approximation turns out to be the same as a model originally proposed 1020	
by Herterich (1987).  An intriguing idea would be to replace the BP with the BP+ 1021	
approximation in the adaptive switching method.  The second approximation simply 1022	
approximates the vertical velocity by discretizing the continuity equation on a coarser 1023	
grid than the rest of the model. 1024	
 1025	
 The second innovation involves the introduction and use of finite element 1026	
discretizations that feature a decoupled invertible continuity equation permitting the 1027	
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numerical solution for the vertical velocity in terms of the horizontal velocity 1028	
components, i.e.,   w = w u,v( ) .  Some examples of such grids for use in 2D and 3D are 1029	
given in Appendix B.  An important example is the P1-E0 grid that is used in most of the 1030	
test problems in this paper.  However, one can alternatively obtain   w = w u,v( )  by other 1031	
means, as for example by discretizing (43).  For example, this is done in MALI (Hoffman 1032	
et al., 2018), a code based on the Blatter-Pattyn approximation, to obtain the vertical 1033	
velocity  w  for the advection of ice temperature (Mauro Perego, private communication). 1034	
 1035	

Finally, no cost comparisons have been presented because the present calculations 1036	
are only proof of concept, made on a personal computer using the program Mathematica.  1037	
This is not at all representative of the computer hardware or the methods used in practical 1038	
ice sheet modeling.  Furthermore, no effort was made to optimize the calculations or to 1039	
take advantage of parallelization.  As a result, cost comparisons would be inaccurate and 1040	
possibly misleading. 1041	
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Appendix A: Test Problems 1179	
 1180	
We will use three 2D test problems to demonstrate the new methods.  The geometrical 1181	
configuration of the three problem grids is illustrated in Fig. A1.  The first problem, Test 1182	
B, is actually Exp. B from the ISMIP-HOM benchmark suite (Pattyn et al., 2008); it 1183	
features a no-slip condition (infinite friction) on a sinusoidal basal surface.  The second 1184	
problem, Test D*, incorporating sinusoidal friction along a uniformly sloped plane basal 1185	
surface, is a replacement with modified parameters for Exp. D from the benchmark suite 1186	
since ice flow in Exp. D is nearly vertically uniform (see Fig. 4), more characteristic of a 1187	
shallow-shelf approximation, and this is rectified by increased basal friction. 1188	
 1189	

A third problem, Test O (for “Obstacle”) is introduced to the illustrate adaptive 1190	
switching discussed in §6.1.  Test O has a unique feature, namely, a thin no-slip obstacle, 1191	
located at   x = 4 km  and extending vertically   200 m  from the bed (20 % of the ice sheet 1192	
thickness), as illustrated in Fig. A1, which forces the ice flow near the obstacle to adjust 1193	
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abruptly.  Because of the no-slip boundary conditions along the obstacle surface, a 1194	
triangular element in the lee of the obstacle, with one vertical edge and one edge along 1195	
the bed, would have all zero vertex velocities.  This implies zero stress and therefore a 1196	
local singularity in ice viscosity.  To avoid this, all elements at the back of the obstacle 1197	
are “reversed” as compared to the ones at the front of the obstacle, as shown in Fig. A1. 1198	

 1199	
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 1200	
Figure A1.  Test problem grids.  For clarity, a coarse 5x5 configuration is shown. 1201	

 1202	
All tests feature a sloping flat upper surface, given by   zs x( ) = −x Tan θ( ) , where 1203	

 θ = 0.5°  for Tests B and O, and  θ = 0.3°  for Test D* (this differs from the  0.1°  slope in 1204	
Test D), with a free-stress upper boundary condition in all cases.  The sinusoidal bottom 1205	
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surface elevation for Test B is specified by   zb x( ) = zs x( )− H0 + H1 Sin ω x( ) , where the 1206	

depth   H0 = 1000 m ,   H1 = 500 m ,   ω = 2π L , and  L  is the perturbation wavelength, 1207	
which is also the domain length.  The bottom surface elevation in Tests D* and O is 1208	

  zb x( ) = zs x( )− H0 , parallel to the upper surface.  The length  L  in the ISMIP-HOM suite 1209	
ranges from   5 km  to   160 km , but here we consider only the two cases at the high end of 1210	
the aspect ratio   H0 L  range, namely,   L = 5 km  and   L = 10 km , where the inaccuracy of 1211	
the Blatter-Pattyn approximation becomes noticeable.  In all cases the lateral boundary 1212	
conditions are periodic.  The spatially varying friction coefficient for Test D* is given by 1213	

  β x( ) = β0 + β1 Sin ω x( ) , where  β0 = β1 = 104
  Pa a m−1

 (these are an order of magnitude 1214	
higher than in Test D).   The physical parameters are the same as in ISMIP-HOM, 1215	
namely, ice-flow parameter   A = 10−16 Pa−3a−1 , ice density   ρ = 910 kg m−3 , and 1216	
gravitational constant   g = 9.81 ms2 .  In general, units are MKS, except where time is 1217	
given per annum, convertible to per second by the factor   3.1557 ×107 s a−1 . 1218	
 1219	
Appendix B: Grids Satisfying the Solvability Condition 1220	
B1  An Invertible Continuity Equation 1221	
 1222	
As discussed in §4, the invertibility of the discrete continuity equation requires special 1223	
grids that satisfy the solvability condition.  Here we discuss several such grids and their 1224	
properties.  Fig. B1 shows three 2D elements on triangles or quadrilaterals that satisfy the 1225	
solvability condition (57) in certain circumstances.  The P1-E0 element is quite general, 1226	
as demonstrated in §B2.  It has velocities located at triangle vertices, resulting in a linear 1227	
velocity distribution within each triangle (P1), and pressure located on the vertical edge 1228	
of each triangle, providing a constant pressure over the two triangles that share that edge 1229	
(E0).  A second order version of this element, the P2-E1 element, is shown in Fig. 13A.  1230	
The other two elements, the P1-Q0 and Q1-Q0 elements, satisfy the solvability condition 1231	
when used in Tests B and D* but may not do so in other problems.  The P1-Q0 element 1232	
also has velocities on triangle vertices for a linear velocity distribution within each 1233	
triangle (P1) but the pressure is constant within the quadrilateral (Q0) formed by the two 1234	
adjoining triangles.  The Q1-Q0 element has velocities located at quadrilateral vertices 1235	
and pressure centered in the quadrilateral, resulting in a bi-quadratic velocity distribution 1236	
(Q1) and a constant pressure within the quadrilateral (Q0). 1237	
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u,w - velocity P - pressure~

P1-E0 P1-Q0 Q1-Q0  1238	
Figure B1.   Three first-order 2D elements that may be used to satisfy the  1239	

solvability condition, (57), in Tests B and D*. 1240	
 1241	

The solutions are stable, as expected, and they all converge with the same value 1242	
for ice transport.  The pressure distribution is smooth in the P1-E0 case, but contains 1243	
small fluctuations near the upper surface in the P1-Q0 and Q1-Q0 cases that tend to 1244	
disappear as resolution is increased.  The Q1-Q0 element is unstable in conventional 1245	
applications because it contains a checkerboard pressure null space and is only used in a 1246	
stabilized form (see Elman et al., 2014, where the element is called Q1-P0).  Here, 1247	
however, the Q1-Q0 grid does behave well, presumably because it satisfies the solvability 1248	
condition.  Overall, this confirms our expectation of stability when the solvability 1249	
condition is satisfied.  As we discuss next, the P1-E0 element is special because the 1250	
solvability condition is satisfied along each vertical edge, as opposed to being satisfied 1251	
over the entire grid as in the other two elements. 1252	
 1253	
B2  The Solvability Condition in the P1-E0 Element 1254	

Fig. B2 illustrates the P1-E0 element used in a representative grid.  We assume 1255	
that the grid is composed of vertical columns subdivided into triangular elements.  1256	
Consider a single vertical edge from bottom to the top.  Assuming there are  m  edge 1257	
segments in the vertical direction, there will be   m+1 discrete w  variables and  m  discrete 1258	
  !P  variables since each   !P  variable is located between a pair of  w  variables.  However, 1259	
since the  w  variable at the bed is specified as a boundary condition, either directly as a 1260	
no-slip condition or as part of a no-penetration condition, there will be only  m  unknown 1261	
 w  variables.  As a result we have  

nw = np  along each vertical grid edge, and therefore 1262	
over the entire grid, satisfying the solvability condition.  In case Lagrange multipliers are 1263	
used, there will be   m+1 unknown discrete w  variables (since now the basal vertical 1264	
velocity  w  is also an unknown).  However, this is matched by  m  unknown   !P  variables, 1265	
supplemented by one  λz  or one Λ  unknown Lagrange multiplier variable, depending on 1266	
the type of boundary condition.  Thus, again the number of unknown variables equals the 1267	
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number of equations along every vertical edge, thereby satisfying the solvability 1268	
condition whether Lagrange multipliers are used or not.  This means that the P1-E0 1269	
element can be used to satisfy the solvability condition irrespective of the boundary 1270	
conditions on quite arbitrary grids, as illustrated in Fig. B2.  These arguments apply for 1271	
other versions of the P1-E0 element as well, such as the second order version P2-E1 in 1272	
Fig. 13A or the 3D version in Fig. B3. 1273	
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 1274	
 1275	

Figure B2.  An illustration of a 2D edge-based P1-E0 grid, composed of vertical columns 1276	
randomly subdivided into triangles.  Pressures are located on the vertical edges.   1277	

The triangulation and the configuration of the associated pressure basis functions  1278	
(shown in gray) is quite general, allowing for a flexible triangulation of the domain. 1279	

 1280	
B3  Two- and Three-Dimensional Meshes Based on the P1-E0 Element 1281	
  The P1-E0 element has been used on the test problem grids in Fig. A1 and 1282	
performs well.  Moreover, the element has great geometric generality, as in Fig. B2, so it 1283	
may be used for quite complicated grids.  Generally, there are two triangles associated 1284	
with a pressure variable, one on each side of a vertical edge, except in situations where 1285	
the ice sheet ends at a vertical face, as in Fig. B2.  However, there is no problem since the 1286	
pressure is simply associated with the single triangle on one side of the vertical face. 1287	
 1288	

Meshes composed of P1-E0 elements have another useful property.  Since 1289	
pressure and vertical velocity variables alternate along vertical grid lines, the matrix-1290	
vector products   MWP p, MWP

T w  in (47), corresponding to   ∂ !P ∂z  and  ∂w ∂z  in the 1291	
vertical momentum and continuity equations, respectively, consist of simple decoupled 1292	
bi-diagonal one-dimensional difference equations along each vertical grid line for 1293	
determining pressure and vertical velocity.  This should be particularly advantageous for 1294	
parallelization. 1295	
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 1296	
The two-dimensional P1-E0 element has a relatively simple three-dimensional 1297	

counterpart, shown in Fig. B3.  The mesh again consists of vertical columns, this time 1298	
composed of hexahedra.  Each hexahedron is subdivided into six tetrahedra such that 1299	
each vertical edge is surrounded by as few as four to as many as eight tetrahedra.  As in 1300	
the 2D case, velocity components are collocated at vertices, yielding a piecewise-linear 1301	
velocity distribution in each tetrahedral element, and pressures are located in the middle 1302	
of each vertical edge so that pressure is constant in the tetrahedra that surround that edge.  1303	
Lagrange multipliers, if used, are located at the vertices on the basal surface, yielding a 1304	
piecewise linear distribution on the basal triangular facet.  Since pressures and vertical 1305	
velocities are again intermingled along a single line of vertical edges from top to bottom, 1306	
we see that this satisfies the solvability condition (57) since the argument used in the 2D 1307	
case applies here also. 1308	

Configuration A

X

Z

Y

Configuration B
 1309	

Figure B3.   Three-dimensional P1-E0 tetrahedral elements that generalize the 2D 1310	
P1-E0 element of Fig. C1.  Configurations A and B differ by having an internal  1311	

triangular face rotated, as indicated by the blue arrows.  Both configurations  1312	
satisfy the solvability condition. 1313	

 1314	
Fig. B3 shows two of the several possible configurations of a typical hexahedron, 1315	

including an exploded view of each configuration for clarity.  The two configurations 1316	
differ in having the internal face of the two forward-facing tetrahedra rotated, creating 1317	
two different forward facing tetrahedra.  The remaining six tetrahedra are undisturbed.  1318	
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Since edges must align when hexahedra (or tetrahedra) are connected, this showa that the 1319	
3D mesh can be flexibly reconnected and rearranged, just as in the 2D case of Fig. B2. 1320	
 1321	
Remark #2 :  A closely related but perhaps even simpler three-dimensional P1-E0 1322	
element is one based on the P2-P1 prismatic tetrahedral element that is used in Leng et al. 1323	
(2012).  A grid of these elements is composed of vertical columns of triangular prisms, 1324	
with triangular faces at the top and bottom, which are then each subdivided into three 1325	
tetrahedra.  As in Fig. B3, pressures are located on the vertical prism edges so this again 1326	
satisfies the solvability condition. 1327	
 1328	

Just as the 2D second-order P2-E1 element in Fig. 13A is a generalization of the 1329	
P1-E0 element, a 3D second-order P2-E1 element may be constructed as a generalization 1330	
of the P1-E0 element illustrated in Fig. B3.  Velocities would be located at the vertices 1331	
and at midpoints of the tetrahedral edges, and pressures halfway between the velocities 1332	
on vertical edges, including the imaginary vertical edges through the midpoints of the 1333	
tetrahedral edges, in the same way as in the 2D case in Fig. 13A.  The P2-E1 element in 1334	
both 2D and 3D would also satisfy the solvability condition since the arguments in §B2 1335	
apply here as well because pressures are again located midway between vertical 1336	
velocities along all vertical edges. 1337	


