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Abstract. WildfFires are among the most influential disturbances affecting ecosystem structure and biogeochemical cycles 15 

in Siberia. Therefore, accurate fire modeling via dynamic global vegetation models is important for predicting greenhouse 

gas emissions and other burning biomass emissions to understand changes in biogeochemical cycles. In this study, we 

integrated the widely used SPread and InTensity of FIRE (SPITFIRE) fire module into the spatially explicit individual-based 

dynamic global vegetation model (SEIB-DGVM) to improve the accuracy of fire predictions and then simulated future fire 

regimes to better understand their impacts.  20 

The model is able to reproduce historical data well compared to the benchmark datasets. Based on the spatial validation, the 

results are as follows: Aboveground biomass (R²=0.847, RMSE=18.3 Mg ha⁻¹), burned fraction (R²=0.75, RMSE=0.01), 

burned area (R²=0.609, RMSE=690 ha), dry matter emission (R²=0.624, RMSE=0.01 kg DM m⁻²), CO₂ emissions 

(R²=0.705, RMSE=6.79 Tg). The model is able to reproduce historical data well compared to the benchmark datasets, based 

on the spatial validation, has the following results: AGB (R2=0.43, RMSE=21.9 Mg ha-1), burned fraction (R2=0.75, 25 

RMSE=0.01), burned area (R2=0.609, RMSE=690 ha), dry matter emission (R2=0.63, RMSE=0.01 Kg DM m-2), GFED4s 

CO2 emission (R2=0.608, RMSE=52.4 Tg), GBEI CO2 emission (R2=0.67, RMSE=69.5 Tg). Overall, the model is able to 

produce output with spatial distribution patterns similar to the benchmark dataset, with an average similarity of 70.7%. 

Furthermore, based on the comparison of mean values with the benchmark datasets, the model produces high accuracy, 

amounting to 99%. Spatially, the model is able to produce data with the same distribution pattern with a value of 61.8%. 30 

Numerically and on a long-term average, the model is able to produce values with very high accuracy of around 99% 

compared with the benchmark datasets. Under the Representative Concentration Pathways 8.5 climate scenario, we 

estimated that the CO2, CO, PM2.5, total particulate matter (TPM), and total particulate carbon (TPC) emissions in Siberia 

will continue to increase annually until 2100 by 0.0264 ± 0.01 % year-1 or individually by 214.4 ± 79.4, 17.16 ± 6.35, 2.8 ± 
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1.03, 2.1 ± 0.78, and 1.47 ± 0.54 Gg species year-1, respectively. We estimated that the CO2, CO, PM2.5, total particulate 35 

matter (TPM), and total particulate carbon (TPC) emissions in Siberia in 20-year historical period (2000-2020) will increase 

relatively by 189.66 ± 6.55, 15.18 ± 0.52, 2.47 ± 0.09, 1.87 ± 0.06, 1.30 ± 0.04 Tg species year-1, respectively in the 20-year 

future period (2081-2100) under the Representative Concentration Pathways 8.5. Under the same climate scenario and 

period comparison, we estimated that the number of trees burnt increased by 100 %, resulting in a 385.19 ± 40.4 g C m-2 

year-1 loss of net primary production (NPP). Under the same scenario and period, 185 trees ha-1 year-1 are estimated to be 40 

killed by wildfires, resulting in a 319.3 g C m-2 year-1 loss of net primary production (NPP). These findings show that Siberia 

faces an increasing frequency of extreme fire events due to changing climate conditions. Our study offers insights into future 

fire regimes and provides helpful information for development strategies for enhancing regional resilience and for mitigating  

the broader environmental consequences of heightened fire activity in Siberia. 

1 Introduction 45 

Fires are among the most significant disturbances affecting biogeochemical cycles, atmospheric chemistry, the carbon cycle, 

and ecosystem structure and function worldwide (Pickett et al., 1999). Wildfires are also the dominant climate-driven 

disturbance agent in boreal forests (Goldammer and Furyaev, 1996; Shorohova et al., 2011; De Groot et al., 2013), shaping 

major forest cover in Russia (Krylov et al., 2014) and rapidly increasing burned area and emission intensity in Canada and 

Alaska (Zheng et al., 2021). Fires influence vegetation dynamics by allowing plants to adapt to fire regimes, influencing 50 

vegetation productivity, litter, and fuel load (Cochrane, 2003; Bergeron et al., 2004; Whelan, 2009). The intensity and 

frequency of large-scale boreal forest fires are expected to increase in the future due to increased global temperatures, drier 

conditions, and longer fire seasons, which will cause more emissions from biomass burning (Flannigan et al., 2009; Gauthier 

et al., 2015) and human activity by using fire for land management (e.g. use of fire as a tool in the deforestation process)  

human activity (Schmoldt et al., 1999; Hantson et al., 2016)(Hantson et al., 2016; Archibald et al., 2013; Morton et al., 55 

2008). Globally, from 2000 to 2019, satellites detected a decrease in the burned area of grassland, while there was a slight 

increase in the area of forest fires in Russia (Zheng et al., 2021). Europe, France, Spain, Portugal, and Greece are already 

experiencing larger and more devastating fires (Carnicer et al., 2022). Not only large fires but also small fires have a 

significant impact: Areas burned by small fires contributed 35% to the total burnt area, from 345 Mha year-1 to 464 Mha 

year-1, and related carbon emissions increased from 1.9 Pg C year-1 to 2.5 Pg C year-1 from 2001-2010 (Randerson et al., 60 

2012). This finding is in line with current studies reporting that the global mean CO2 emission intensity has increased by 0.9 

± 0.9% (NS) year-1 from 2000 to 2019 (Zheng et al., 2021) and that the Fire Weather Index (FWI) reached levels above 30, 

corresponding to high, very high, and extreme levels of fire frequency, causing CO2 emissions to increase as well in Europe 

since 1980 (Carnicer et al., 2022). 

 65 
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Forest fires are important ecological factors that influence both the establishment and succession of vegetation (Abaimov and 

Sofronov, 1996). Climate-driven large fires are responsible for rapid changes in vegetation (Cleve and Viereck, 1981), soil 

properties (Pastor and Post, 1986; Pellegrini et al., 2021), biogeochemical cycling, microclimate, forest ecosystems (Crutzen 

and Goldammer, 1993), productivity, stability, and many other ecological properties (Melillo et al., 1993). Forest fires also 

indirectly affect vegetation dynamics by increasing CO2 levels in the atmosphere (Seiler and Crutzen, 1980; Nguyen and 70 

Wooster, 2020), as CO2 is one of the primary products of biomass combustion and is emitted in all phases of fire (ignition, 

flaming, glowing, pyrolysis, and extinction) (Andreae and Merlet, 2001), with the flaming phase leading to emissions 

(Lobert et al., 1991; Ward and Hardy, 1991). Thus, it is challenging to estimate CO2 emissions because they are generated in 

large quantities during biomass combustion and because of the different emission timelines produced during each 

combustion stage. Prolonged exposure to high CO2 concentrations has negative impacts on health (Jacobson et al., 2019) and 75 

Increasing atmospheric CO₂ concentrations alter the global carbon cycle by causing global warming  (Van Der Werf et al., 

2006, 2010, 2017; Neto et al., 2009; Kaiser et al., 2012; Lin et al., 2013), and the resulting global warming is expected to 

intensify extreme fire seasons, leading to further surges in carbon emissions that significantly contribute to the global burden 

of greenhouse gases (fire-climate feedbacks) (Bowman et al., 2009). This event also affect the agricultural sector positively 

and negatively depending on the region, environment, and crop typesagriculture (Kimball and Idso, 1983). Additionally, 80 

prolonged exposure to very high CO₂ concentrations at ground level has negative impacts on health  (Jacobson et al., 2019). 

Therefore, accurate modeling of future wildfires and their emissions is required to understand the associated risks. 

Boreal vegetation store between 17% of the world's carbon, yet encompasses almost 30% of all terrestrial carbon stocks 

(Kasischke, 2000; Gauthier et al., 2015), and two-thirds are located in Siberia, Russia (Shvidenko and Nilsson, 2003). In 

Siberia, burned biomass emissions approached 0.4 Gt C year-1 in 2021, three times the average value between 1997 and 2020 85 

according to GFED4s (Friedlingstein et al., 2020; Kharuk et al., 2022) also stated that the decadal frequency of wildfires 

tripled between 2001–2010 and 2011–2020. In Siberia, burned biomass emissions approached 0.4 Gt C year⁻¹ in 2021, three 

times the average value between 1997 and 2020, according to GFED4s (Friedlingstein et al., 2020). Kharuk et al., (2022) 

also stated that the decadal frequency of wildfires tripled between 2001–2010 and 2011–2020. Catastrophic boreal forest 

fires are expected to continue to increase in the future due to increased global temperature, drier conditions, and longer fi re 90 

seasons, and these fires will increase the severity and emissions produced from biomass burning (Flannigan et al., 2009). 

Burning vegetation is a major source of black carbon (BC), carbon monoxide (CO) (Forster, P. et al., 2018), and particulate 

matter (PM) (Reddington et al., 2016). According to records from the Copernicus Atmosphere Monitoring Service (CAMS), 

Russia experienced a drastic increase to 8 megatons (Mt) in PM2.5 emissions in 2021, which is 78% higher than the average 

level between 2004 and 2021 (4.5 Mt) (Romanov et al., 2022). Furthermore, an increase in atmospheric emissions negatively 95 

affects the climate by contributing to global warming and climate change increased emissions negatively affect the climate 

(Randerson et al., 2006; Westerling et al., 2006; Bowman et al., 2009) and affect weather systems by modulating solar 

radiation and cloud properties (Schultz et al., 2008). 
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Understanding how long-term climate change, fire regimes, and forest vegetation interact under multiple climate scenarios is 

critical for forecasting forest succession trends (Clark and Richard, 1996). Modeling of fire regimes using dynamic global 100 

vegetation models (DGVMs) is a key approach to analyzing these factors. However, including interactive fire disturbances in 

vegetation models is critical for accurately simulating vegetation dynamics (Thonicke et al., 2001). A well-structured 

process-based fire module can accurately assess fire activity, consumed biomass due to fire, and biomass burning emissions. 

The assessment of each fire-related variable is interconnected with another variable, so the module must be well constructed 

because the amount of consumed biomass during forest fires can vary significantly. Several factors affect burned biomass, 105 

such as spatial and temporal variations in burned area based on ignition factors, the quantity and quality of the fuels 

available, and vegetation or plant functional type (PFT); additionally, every PFT reacts differently to fire disturbance 

(Cramer et al., 2001; Ito, 2011). Since the first global fire models were integrated into dynamic global vegetation models 

(DGVMs) two decades ago, the variety and complexity of fire models have expanded (Hantson et al., 2016). The Fire 

Modeling Intercomparison Project (FireMIP) compared eleven current fire models by structure and simulation protocols, 110 

using a benchmarking system to evaluate the models (Rabin et al., 2017). The results indicate that models that explicitly 

distinguish ignition factors, such as lightning and human-caused “ignition events”, as well as physical properties and 

processes that determine fire spread and intensity by plant functional type (PFT), performed better. One such fire module is 

SPITFIRE (an upgrade of GlobFIRM) (Thonicke et al., 2010), which has been used in several DGVMs: LPJ-GUESS-

SPITFIRE, ORCHIDEE-SPITFIRE, JSBACH-SPITFIRE, and LPJ-LMfire. In this study, we integrated the SPITFIRE fire 115 

module into the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) to predict fire, 

vegetation, and burned biomass emission variables in Siberia in the future. We selected the SEIB-DGVM because of its 

high-quality biogeochemical model coupled with a three-dimensional representation of forest structure where individual 

trees compete for light and space (Sato et al., 2007). The SEIB-DGVM processes physical, physiological, and vegetation 

dynamics and was previously used for reconstructing the geographical distributions of fundamental plant productivity 120 

properties (Sato et al., 2020), evaluating the geographic and environmental heterogeneity of larch forests with a special focus 

on topography (Sato and Kobayashi, 2018), and assessing the impacts of global warming on Siberian larch forests and their 

interactions with vegetation dynamics and thermohydrology (Sato et al., 2016). The SEIB-DGVM accurately simulates 

forest ecology after typhoon disturbances (Wu et al., 2019), nonstructural carbohydrate dynamics (Ninomiya et al., 2023), 

and masting in a temperate forest (Végh and Kato, 2024).  125 

The original fire module of the SEIB-DGVM is Glob-FIRM (Thonicke et al., 2001), which has several limitations; for 

example, human-changed fire regimes and other land use impacts are not considered (Thonicke et al., 2001). In addition, 

GlobFIRM derives the burnt fractional area of a grid cell from the simulated length of the fire season and from the minimum 

annual fuel load; this method does not specify ignition sources and assumes a constant fire-induced mortality rate for each 

plant functional type (PFT) (Thonicke et al., 2010). To improve the fire simulations with the SEIB-DGVM, we replaced its 130 

fire module with the SPITFIRE model (Thonicke et al., 2010) by adding complete ignition equations (human and lightning 

effects, etc.). The module included a calculation mechanism for trace gas and aerosol emissions (Andreae and Merlet, 2001) 
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and was adjusted to produce monthly outputs for all variables in the SEIB-DGVM. These improvements allowed us to 

simulate fire activity and aboveground biomass dynamics and spatiotemporally assess the projected burned biomass and its 

emissions for the 21st century in Siberia under representative concentration pathways (RCPs). 135 

2 Methods 

2.1 Study sites 

Boreal forests represent the largest forest biome and one-third of global forest cover (De Groot et al., 2013) and play an 

important role in the atmosphere‒land interactions of the global climate system (Randerson et al., 2006; Bonan, 2008). 

Geographically, boreal forests are found in Canada, Alaska, and Siberia, of which Siberia has the largest forested area. 140 

Siberia is largely covered by deciduous needleleaf conifers (Figure 1), which consist mostly of the larch species Larix 

sibirica, L. decidua, and L. dahurica (Abaimov et al., 1998), which are categorized as pyrophytic species, meaning that they 

require periodic fires to persist on the landscape (Kharuk et al., 2011). The Siberian land cover has changed very little over 

the last century (Ivanov et al., 2022), and the boreal forest covers approximately >15 million km2, and contain a large 

amount of carbon that is comparable to the combined carbon storage in tropical and temperate forests (Dixon et al., 1994; 145 

Kasischke, 2000). 

The main external factors affecting Siberian boreal forests are fires and climate change (Goldammer and Furyaev, 1996; 

Shorohova et al., 2009). Climate change increased the frequency of forest fires, which in turn amplified the impacts of 

climate change locally. In the Arctic, a rapid warming trend has been observed, and the increase in temperature over the last 

20 years of the 20th century was 2 to 3 times higher than the global average, while in the first 20 years of the 21st century , it 150 

exceeded four times (Chylek et al., 2022). This enormous increase in temperature in Siberia, affecting the duration and speed 

of snowmelt and accelerates thawing of carbon-rich permafrost (Natali et al., 2019; Schuur et al., 2015; Nitzbon et al., 2020), 

which results in drier ground cover, an increased frequency of wildfires, longer fire seasons, and increased ignition sources 

(Kharuk et al., 2022). These changes may result in a new climate state in which heatwaves as well as the associated the 

occurrence of wildfires may become routine and more severe (Hantemirov et al., 2022; Landrum and Holland, 2020). 155 

Produced emissions from thawing permafrost and from wildfire are likely to feed into the global carbon cycle's feedback on 

climate change (Schuur et al., 2015), and triggering further warming trends globally (Schimel et al., 2001; Kharuk et al., 

2011; Krylov et al., 2014). 
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 160 

Figure 1. Study site (black rectangle: 60o-180oE and 45o-80oN). Green and brown color indicate the forest types in Siberia 

are provided from Global Land Cover dataset (GLC 2000): Northern Eurasia (Bartalev et al., 2003). Grey color indicate 

other vegetation types in the Siberian area provided by Database of Global Administrative Areas (GADM).  

 

 165 

2.2 Improved fire module principles 

We improved the SEIB-DGVM fire module by replacing the Glob-FIRM (Thonicke et al., 2001) with the SPITFIRE model 

(Thonicke et al., 2010). First, we added two new input variables for fire ignition: population and lightning data. Second, we 

incorporated the complete SPITFIRE equation (Thonicke et al., 2010), which included new variables, PFT parameters, and 

local parameters, and improved the output to be able to be produced on a monthly scale (Figure 2). The variable integration 170 

between the default and improved fire models requires several parameter-specific PFTs (Table 1). 

The default SEIB-DGVM model uses annual time steps for vegetation dynamics and disturbance, which we improved to 

monthly time step outputs. The fraction of individual trees killed by a fire depends on PFT fire resistance (M3, Table 1). All 

grass leaf biomass, all dead and living tree leaf biomass, half of the dead tree trunk biomass, and half of the litter pool are 

released into the atmosphere as CO2 during a fire, while the dead tree's residual biomass is converted into litter. In reaction to 175 

fire, all deciduous PFTs convert their phenology phase to dormancy, and if the stock resource of grass PFTs (gmassstock) 

does not meet the minimal value (50 g DM m−2) following fire, the deficit is supplemented from litter (Sato et al., 2007). 

Furthermore, related to the fire-vegetation relationships, for herbaceous PFTs, both below-ground and storage biomass are 

preserved after a wildfire and used for the recovery of above-ground biomass. During this recovery period, herbaceous PFTs 

work on producing above-ground biomass while reducing their storage biomass, thus increasing the allocation ratio to 180 

above-ground biomass in the post-fire phase. For woody PFTs, fire only gives the option for individual trees to either die or 

survive. The surviving trees only lose their foliage biomass. As the foliage is lost, fine root biomass becomes unnecessary, 

leading to its rapid loss due to its fast turnover rate. In the spring following a fire, surviving trees convert storage resources 

into foliage and fine root biomass. The new net primary production (NPP) from the newly formed foliage first prioritizes the 
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recovery of leaves and fine roots. Therefore, fires increase the allocation ratio to the foliage and fine roots in surviving 185 

woody plants. 

The basic equation of fire disturbance is the area burned, which we adjusted with the SPITFIRE equation (Thonicke et al., 

2010) by including the fire probability and area of the grid cell: 

𝐴𝑏 = 𝑃𝑏 × 𝐴 
(1) 

where Ab is the area burned in a grid cell per month (ha month-1), Pb is the product of the probability of fire per month at any 

point inside the grid cell (month-1) and A is the area of the grid cell (ha). Pb is the fire probability and is the product of the 190 

fuel load (litter + aboveground biomass) and its moisture factor. We used the same Pb mechanism as that of the default fire 

module, where if the fuel load satisfies the minimum fuel threshold (200 gC m–2), random fires can occur at any point 

location inside the grid cells. In this improvement, Pb was modified by considering the ignition event E(nig) (ha-1) by 

anthropogenic (human population density) and natural (lightning strikes) ignition possibilities, the fire danger index (FDI), 

and the mean fire area �̅�𝑓(ha). Thus, Equation 2 can be represented as follows: 195 

𝐴𝑏 = 𝐸(𝑛𝑖𝑔) × 𝐹𝐷𝐼 × �̅�𝑎𝑓 × 𝐴 
(2) 

Technically, the SEIB-DGVM simulation of each grid cell is carried out independently among the surrounding grid cell, so 

the fire cannot spread to other  gridother grid cell without those  grid cell meeting the ignition requirements (fuel load and 

fuel moisture).  

After all variables in the SPITFIRE fire module were integrated, we added the trace gas and aerosol emission calculation 

process to the model. Trace gas and aerosol emissions estimation is referred to the Fire Modeling Intercomparison Project 200 

(FireMIP) protocols (Li et al., 2019), the comprehensive study comparison of nine dynamic global vegetation models 

(DGVMs) and produced important estimation for long-term and large-scale fire emissions. By using FireMIP protocol 

reference, SEIB-DGVM SPITFIRE improved to output PFT-level fire emissions. 

Trace gas and aerosol emissions are the result of the total amount of burned biomass, the sum of dead and live fuel 

consumption as the result of surface fire and crown scorch. Trace gas emissions are estimated based on fire carbon 205 

emissions, vegetation characteristics from DGVMs, and fire emissions factors. Fire emissions of trace gas and aerosol for 

each species i and PFT j, Ei,j (g species m-2) are estimated based on Andreae and Merlet, (2001): 

𝐸𝑖,𝑗 = 𝐸𝐹𝑖,𝑗 ×
𝐶𝐸𝑗

𝐶
 (3) 

Where EFi,j (g species (kg dry matter (DM))-1) is PFT specific emission factor (g species (kg DM)-1), CEj is the combusted 

biomass of PFT j due to the fire (g C m-2), and C is the unit conversion factor from carbon to dry matter, 𝐶 = 0.5 ×

103𝑔𝐶(𝑘𝑔 𝐷𝑀)−1. The Emission factors (EF) used in this study are based on Andreae and Merlet, (2001), and the updated 210 

pyrogenic emissions species by various types of biomass burning (Andreae, 2019) (Table S2 in the Supplement). 

DGVMs generally simulate vegetation as a combination of PFTs in a given grid location to represent plant function at a 

global scale, instead of land cover types (Li et al., 2019). In this, we classified the PFTs with the land cover types (LCTs) to 

Formatted: Font: Not Italic, Complex Script Font: Italic
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integrate the emission factors of each LCTs for trace gas and aerosol emissions estimation process. The BoNE, BoNS, and 

BoBS PFTs are classified as Boreal Forest LCTs. Other PFTs have been integrated with LCTs but are not listed in Table 1, 215 

as this study only covers Boreal Forest. The integration of other PFTs includes TrBE and TrBR, which are classified as 

Tropical Forest; TeNE, TeBE, and TeBS, which are classified as Temperate Forest; and TeH and TrH, which are classified 

as Grassland/Savanna. SEIB-DGVM didn’t classify crop PFTs, so cropland LCTs will not be used.TrBE and TrBR are 

classified as Tropical Forest; TeNE, TeBE, and TeBS are classified as Temperate Forest; BoNE, BoNS, and BoBs are 

classified as Boreal Forest, and the last is Teh and TrH are classified as Grassland/ Savana, SEIB-DGVM didn’t classify 220 

crop PFTs so cropland LCTs will not be used. 

Further changes in the input and output of the new SEIB-DGVM SPITFIRE model are shown in Appendix A.1, while 

Appendix A.2 summarizes the improvement processes represented in this study, which can be classified into two groups: 

disturbance and biogeochemical dynamics. Appendix A.3 lists the symbols used in the model’s equations.  

After all the SPITFIRE variables were installed, we also conducted a verification process for all the variables. The 225 

verification process included assessing the new input data (lightning and population data), as well as all new variables, by 

testing their outputs and units. The module verification process is highly important for ensuring that the module produces the 

correct outputs but not for the wrong reasons (Rabin et al., 2017). Detailed information about the integration of the 

SPITFIRE module in the SEIB-DGVM, which includes the improvement and adjustment of all the variables and the main 

important variables, such as ignition events E(nig), fire danger index (FDI), mean fire area �̅�𝑓, fuel moisture content, rate of 230 

spread, fire fraction and intensity, fire damage to plants, and trace gas and aerosol emissions, is provided in the Supplemental 

File (2.2.1-2.2.7). 
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Figure 2. SEIB-DGVM SPITFIRE systems diagram. Describing the improvements (SPITFIRE), the interaction between the 235 

previous fire module (Glob-FIRM). All original SPITFIRE variables were integrated: ignition factor (lightning and 

population), PFT parameters, and other fire-related variables. In addition to the default annual output, the improved module 

had monthly outputs of all variables depending on the user needs. For the meaning of abbreviations, refer to the Appendix 

A.3. 
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Table 1. SEIB-DGVM SPITFIRE Plant Functional Type (PFT)-specific model parameter values and their attribution to land 240 

cover types (LCTs). This table was modified from Thonicke et al. (2010).  

 

PFTs Land 

Cover 

Types 

(LCTs) 

Fuel bulk 

density  

(kg m-3) 

Scorch height 

parameter 

Crown 

length 

paramet

er 

Bark thickness 

parameters 

Crown 

damage 

parameter 

Fire 

resistance 

  Pb Reference F Reference CL par1 par2 Reference R(CK) p M3 

BoNE 

Boreal 

Forest 

25 (Miller 

and 

Urban, 

1999; 

Hély et 

al., 2000) 

0.11 (Heĺy et 

al., 2003) 

1/3 0.02

92 

0.26

32 

(Reinhard

t et al., 

1997) 

1 3 0.12 

BoNS 22 (Keane et 

al., 1990) 

0.09

4 

(Dickinso

n and 

Johnson, 

2001) 

1/3 0.03

47 

0.10

86 

(Reinhard

t et al., 

1997) 

1 3 0.12 

BoBS 22 (Keane et 

al., 1990) 

0.09

4 

(Dickinso

n and 

Johnson, 

2001) 

1/3 0.03

47 

0.10

86 

(Reinhard

t et al., 

1997) 

1 3 0.12 

 

PFTs attributed to land cover types (LCTs) are needed to classify the fire emission factor (EF) (Table S2 in the Supplement) 

to estimate trace gas and aerosol emissions (Andreae and Merlet, 2001). 245 

2.3 Model calibration 

We calibrate the improved model by using all of the benchmark datasets (Table 3). The calibration process is done 

sequentially for all of the major variables, from burned fraction, burned area, dry matter, aboveground biomass, burned 

biomass emissions, and the forest ecology variables (Figure 3). The process is sequential because one variable is used for the 

calculation of another variable (such as burned fraction and burned area affecting aboveground biomass, forest structure, dry 250 

matter, and emissions).  One calibration process is performed with multiple iterations until the output variable has similar 

numerical values and spatial distribution to the benchmark data, and the process is repeated for other variables once the 

previous variable has been calibrated.  
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2.4 Model application 

The original SEIB-DGVM utilizes three computational time steps: a daily time step for all physical and physiological 255 

processes except for soil decomposition and tree growth, a monthly time step for soil decomposition and tree growth, and an 

annual time step for vegetation dynamics and fire disturbance (Sato et al., 2007). In this study, we improved the fire module  

to calculate natural and anthropogenic fire ignition factors (based on lightning flashes and population density) and adjusted  it 

to produce monthly outputs using temporal resolution statistical downscaling methods with user-defined weighted monthly 

parameters (Table 2). The annual average ignition factor variables (population density and lightning flash rate) were used 260 

consistently throughout all simulation phases. 

We ran the improved model (SEIB-DGVM SPITFIRE) and the default model (SEIB-DGVM GlobFIRM) under the same 

protocols to equally compare and assess their fire products (Figure S3 in the Supplement)*. Simulations were run in three 

phases (spin-up, historical and future) and the simulation was run with the fire mode on and fire mode off to compare and 

assess the vegetation products during fire, and also each phase was replicated 5 times to minimize bias due to random 265 

variables in the tree morality1. The model was run in three phases2: 1) a 1000-year spin-up phase to bring the soil and 

vegetation carbon pools into equilibrium with the climate using daily baseline CRU TS3.22 climate data, 2) a 156-year 

historical phase also using daily baseline CRU TS3.22 climate data and spin-up simulation results as inputs, and 3) a 95-year 

future phase using daily MirocAR5 base V23 RCP8.5, RCP6.0, RCP4.5, and RCP2.6 climate data and historical simulation 

results as inputs2 (Figure 3). The MirocAR5 Base V32 dataset is generated fromhas been bias-corrected with CRU TS3.22 270 

climate data, so the use ofusing these two datasets consecutively in spin-up, historical, and future simulations ensures the 

harmony of the input climate data. Five different types of RCP scenario climate data were used to determine the impact of 

fire and climate on forest structure and their interactions. 

In the previous SEIB-DGVM study, a 2000-year spin-up was needed to obtain the convergence amount of soil organic 

matter (Sato et al., 2010). However, we have conducted preliminary simulations with the same study area by setting the spin-275 

up years to 1000 years and 2000 years. We confirmed that the outputs of the 1000-year and 2000-year spin-up simulations 

were very similar; thus, the 1000-year spin-up was enough to reach carbon stock equilibrium. This parameter setting is also 

in line with the simulation settings in other SEIB-DGVM studies: Sato et al. (2007) performed a 1000-year spin-up and 

combined it with all of the simulation phases to extract general trends of postfire succession. Another study by Arakida et a l. 

(2021) also confirmed that a spin-up period of 100 years was sufficientenough for the equilibriumsaturation of the LAI, 280 

aboveground biomass, and GPP at all of the study sites in Siberia. 

In addition, we have verification stage3 SEIB-DGVM code modification are described in the section 2.2., and annual average 

ignition factor variables (population density and lightning flash rate) are used constantly throughout all phases to compare 

the improved fire regime module product with the default, previous fire module, and we run both models with the same 

protocols (Figure S3 in the Supplement)*. Simulations were run in three phases (spin-up, historical and future) and the 285 

simulation was run with the fire mode on and fire mode off to compare and assess the vegetation products during fire, and 
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also each phase was replicated 5 times to minimize bias due to random variables in the tree morality1. Verification stage is to 

ensure the new input data can be read, produced, and processed properly3, then we calibrate all of the major emission 

individually and sequentially with the benchmark dataset, because each variable affect other variables and to make sure the 

final output was comparable with the benchmark datasets4. to ensures that the new input data can be read, produced, and 290 

processed properly (Rabin et al., 2017). Then, we calibrate all of the major emissions individually and sequentially with the 

benchmark dataset because each variable affects other variables, and we need to ensure the final output is comparable with 

the benchmark datasets4. After verifying that the new module was incorporated seamlessly, we validated the model outputs 

(fire, vegetation and emissions variables) by using GFED4, GFED4s, ESA Biomass CCI and GBEI benchmark datasets5. To 

determine the impact of fire and climate on forest structure and their interactions, we ran the simulations with 5 climate 295 

scenarios (baseline, RCP8.5, RCP6.0, RCP4.5, and RCP2.6) using the same configuration as the fire-on simulation (Figure 

3). 
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Figure 3. Workflow of improving the SEIB-DGVM fire module 

 300 

 

Table 2. SEIB-DGVM SPITFIRE input data descriptions 

Model Input Product Variable 
Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 
Reference 
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Model Input Product Variable 
Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 
Reference 

Climatic data CRU TS3.22 

High-Resolution 

Gridded Data of 

Month-by-month 

Variation in 

Climate 

 

 

 

 

 

MirocAR5 

base daily V3 

(RCP8.5, 

RCP6.0, 

RCP4.5, and 

RCP2.6) 

 

Cloud cover, diurnal 

temperature range, frost 

day frequency, PET, 

precipitation, daily 

mean temperature, 

monthly average daily 

maximum and minimum 

temperature, vapor 

pressure, and wet day 

frequency 

 

Air temperature, soil 

temperature, 

fraction of cloud cover, 

precipitation, humidity, 

and wind velocity 

 

 

0.5 degree 

 

 

 

 

 

 

 

 

 

 

0.5 degree 

monthly 

 

 

 

 

 

 

 

 

 

 

daily 

1901–2013 

 

 

 

 

 

 

 

 

 

 

1850-2100 

(NCAS, 

2014) 

CO2  - Global atmospheric 

Carbon dioxide 

concentrations (CO2) 

- - 1850-2100 - 

Soil 

properties 

Global Soil 

Wetness Project 

2 

Soil moisture at 

saturation point, field 

capacity, matrix 

potential, wilting point, 

and albedo 

1 degree 

(360 x 180) 

time-fixed time-fixed www.iges.

org/gswp 

Ignition 

factors 

LIS/OTD High-

Resolution Full 

Climatology 

(HRFC) 

Lightning flash rate 2.5 arc-

minute 

Annual 2000-2020 (CIESIN, 

2018) 
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Model Input Product Variable 
Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 
Reference 

V2.3.2015 

 Gridded 

Population of the 

World (GPWv4) 

Population density 0.5 degree 

(720 x 360) 

Annual 2015 (Cecil and 

Daniel, 

2001) 

2.5 Model benchmarks 

A common method for validating the outputs of dynamic global vegetation models (DGVMs) is to use satellite-based 

product datasets. For instance, direct observations of global fire occurrence by satellite-borne sensors can detect active fires, 305 

fire radiative power, and burned areas, and these observations have been available since the 1990s (Mouillot et al., 2014). 

The Fire Modeling Intercomparison Project (FireMIP) also used the satellite-based product database as a benchmark to 

evaluate the model simulation (Rabin et al., 2017; Li et al., 2019). 

In the last few decades, several global biomass burning emission datasets based on burning area and fire radiative energy 

detection have been developed and used for many purposes, such as global climate and vegetation modeling, together with 310 

environmental, health, and security assessments (Ichoku et al., 2008; Mouillot et al., 2014). Although fire-related observation 

datasets are available and globally accessible, they have relatively large uncertainties and are poorly constrained, especial ly 

in models at the global and regional levels (Liousse et al., 2010; Petrenko et al., 2012, 2017; Bond et al., 2013; Zhang et al., 

2014; Pan et al., 2015; Pereira et al., 2016). 

Pan et al. (2020) reported that this uncertainty could be caused by various measurement and/or analysis processes, including 315 

the detection of fire or burned areas, retrieval of fire radiative power, emission factor information, biome type, burning stage, 

and fuel consumption estimation. The emission factor (EF) is considered an important factor for obtaining specific gaseous 

or particulate species of smoke emitted from burned dry matter in all major burned biomass (BB) emission datasets. Some 

EFs originate from laboratory experiments where fuel samples are burned in combustion chambers (Christian et al., 2003; 

Freeborn et al., 2008), whereas others originate from large-scale, open biomass burning and wildfire experiments. The 320 

combustion properties might differ greatly between these two categories; e.g., because of personnel security and other 

logistical considerations, some EF measurement locations are often not close enough to the biomass-burning source (Aurell 

et al., 2019). Another factor is the biome type, which affects the scaling factor of the emission coefficient for the FRP-based 

BB datasets (GFAS, FEER, and QFED). The emission factors of all BB datasets were assigned based on the type of biome, 

and most of the examined BB datasets had different definitions of major biome types, so uncertainty might be present at 325 

certain levels (Pan et al., 2020). 

We validated the improved SEIB-DGVM fire module products by using the burned area (GFED4) and burned fraction 

(GFED4s) datasets, corresponding to the model’s output. These datasets have higher resolutions than other burned area-

based datasets, and all of the uncertainty probabilities regarding the selected database described by Pan et al. (2020) were 
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adjusted with our model configurations. We used the emission factor (EF) from Andreae and Merlet (2001) with the latest 330 

update from Andreae (2019) and integrated the Plant Functional Types (PFTs) model with the land cover types (LCTs) used 

in the EF (Table 1 and Table S2 in the Supplement). 

Furthermore, fire models should be evaluated together with their associated vegetation models because the former might 

produce burned areas perfectly but incorrectly simulate aboveground biomass (AGB) patterns. Fire products depend on AGB 

availability, and fire also affects AGB availability and succession after forest fires. Thus, to ensure that the model conducted 335 

correct assessments, we evaluated the aboveground biomass variable using the ESA Biomass Climate Change Initiative 

dataset (Table 3). The AGB data from the ESA Biomass Climate Change Initiative (CCI) v.3 (2010,2017, and 2018) include 

high-quality data with a large resolution of 100 m × 100 m obtained from multiple remote sensing observations collected 

around the year 2010 (Santoro et al., 2021), making them suitable for validating our improved model product. 

Overall, we validated the model spatially and numerically at Siberian level and in smaller regions, to determine the 340 

performance of the model in many points of view (spatial, numeric, wide and small region). We classified Siberia into three 

regions: west region (60o-90oE and 45o-80oN), central region (90o-120oE and 45o-80oN), and east region (120o-180oE and 

45o-80oN) (Figure S12). 
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Table 3. Description of the observational datasets used for model evaluation 

Type Variable Unit Source 

Spatial 

resoluti

on 

Temporal 

resolution 

Temporal 

coverage 
Reference 

Fire Burned area Hectares Global Fire 

Emissions 

Database, Version 

4.0 (GFED4) 

0.25 

degree 

Monthly, 

Annual 

1996-2016 (Giglio et 

al., 2013) 

Burned 

fraction 

- Global Fire 

Emissions 

Database, Version 

4.1 (GFED4s) 

0.25 

degree 

Monthly, 

Annual 

1997-2016 (Giglio et 

al., 2013) 

Dry matter kg DM-1 m-2 

CO2 

emissions 

g CO2  year-

1 

CO2 

emissions 

g CO2  year-

1 

Global Biomass 

Burning Emissions 

Inventory (GBEI) 

1-degree Annual 2001-2020 Shiraishi et 

al., (2021) 

Vegetati

on 

Above-

ground 

biomass 

Mg 

hectares-1 

ESA Biomass 

Climate Change 

Initiative (Biomass 

CCI): Global 

datasets of forest 

above-ground 

biomass for the 

years 2010, 2017 

and 2018, v3 

100 m Annual 2010, 2017-

2018 

(Santoro 

and Cartus, 

2021) 

 345 
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3 Results 

3.1 Improved model validation 

3.1.1 Fire products 

We compared the annual average distribution patterns of burned fraction variable (1997-2016) in the SEIB-DGVM 

SPITFIRE and GFED4s data, and most patterns differed only in eastern Siberia (Figure 4, Figure S10). Compared to the 350 

burned fraction variable, burned area GFED4 has a smaller distribution pattern because it does not consider small fires 

(Figure S9.a). Comparison analysis of burned fraction variables between SEIB-DGVM SPITFIRE and GFED4s showed a 

linear relationship with a correlation coefficient of R=0.87 (R2=0.75) (Figure S11.a). Similar to the comparison with 

GFED4s, the comparison of SEIB-DGVM SPITFIRE output of burned area variables with GFED4 data (1996-2016) shows 

a linear relationship with a correlation coefficient of R=0.78 (R2=0.61) (Figure S11.b). Furthermore, in the three regions 355 

(west, central and east), the partial comparison of the burned fraction variable with GFED4s showed values of R2=0.68, 

R2=0.51, and R2=0.58 (Figure S13), while for the burned area variable showed values of R2=0.51, R2=0.54, and R2=0.506 

(Figure S14), respectively. The burned fraction correlated better because both the GFED4s and the model’s fire module 

considered small fires; many scattered fire data with values less than 0.1 and approximately 0.1 were found in both the 

model’s output and the GFED4s data. 360 

The fire products (burned fraction and burned area) in the improved model have the same spatial distribution because they 

are calculated based on one core variable (fire probability) (Eq. 1). However, the spatial distributions of GFED4s (burned 

fraction) and GFED4 (burned area) differ for two reasons: first, because GFED4 does not consider small fires (Giglio et al., 

2013) while GFED4s does, and second, because GFED4s use the modified burned fraction equation, which is able to 

calculate the exact fire fraction and fuel load (not uniformized) in a grid cell (Van Der Werf et al., 2017). 365 

Although the spatial distributions and patterns of the fire products (burned fraction and burned area) in the model and 

benchmark datasets (GFED4s and GFED4) data slightly differed, the model was able to produce annual mean value data that 

were similar to  both benchmark datasets. The mean average burned fraction during 1997-2016 was 0.0137 in the 

simulations, compared to the GFED4s, which recorded the same value of 0.0137 with an RMSE value of 7.2 x 10 -4. 

Furthermore, the mean average burned area of the model in 1996-2016 was 1428.5 ha grid-1 year-1,  compared to the GFED4 370 

burned area data, which closely recorded value of 1425.1 ha grid-1 year-1 by an RMSE value of 70.2 ha grid-1 year-1. In 

summary, the model was able to produce mean average data that precisely resembled observational data. 
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Figure 4. Spatial distribution comparison of annual averaged burned fraction variable (1997-2016) of SEIB-DGVM 

SPITFIRE and GFED4s 375 
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3.1.2 Aboveground biomass 

The improved model simulated similar aboveground biomass values to those of the benchmark data. In 2010, 2017, and 

2018, the simulations predicted 63.714 ± 64.89 Mg DM ha-1 year-1, 64.141 ± 65.54 Mg DM ha-1 year-1
, and 64.313 ± 65.61 

Mg DM ha-1 year-1, respectively, while the ESA Biomass CCI data showed 64.027 ± 56.95 Mg DM ha-1 year-1
, 64.548 ± 

54.69 Mg DM ha-1 year-1, and 65.05 ± 55.78 Mg DM ha-1 year-1, respectively, for the same years. The annual average AGB of 380 

the model in these years also showed the same increasing trend as that of the benchmark data, and the spatial distributions o f 

the AGB model under CRU TS3.22 climate data and ESA Biomass CCI also agreed, with values of 83%, 854%, and 854%, 

respectively (Figure S15 and Figure S16 in the Supplement). Furthermore, when viewed on a smaller regional scale, the 

model is able to project better values in the eastern, western, central and eastern central regions, with average values of 

R2=0.743, R2=0.6973, and R2=0,74.68, respectively (Figure S17). Although there was an annual average increase in the 385 

number of forest fires, there was a high variability trend in the model AGB values, indicating succession after forest fires and 

respond correctly to climate inputs variables based on each RCP scenario (Figure 9.d). 

3.1.3 Annual and seasonal fluctuations in burned dry matter 

The model’s dry matter data have a spatial distribution pattern similar to that of the model’s fire products (burned fraction 

and burned biomass), as calculated from the available fire and fuel load data (fire product derivatives). The annual average 390 

dry matter variability from the 1997–2016 model (under the baseline historical climate product [CRU TS.3.22]) and the 

GFED4s data agreed with 6.243%, similar to the agreement of the fire products (Figure S20). Spatial comparisons at the 

regional scale in the western, central and eastern regions of Siberia show lower values than the Siberian region as a whole, 

which has an agreement of 60.254%. 64.451%, and 58.8% (Figure S21). 

We also compared seasonal dry matter data to ensure that the monthly outputs of the SEIB-DGVM SPITFIRE model agree 395 

with the observations, as this difference influences seasonal aerosol emissions. Between 1997 and 2016, the GFED4s data 

exhibited high fluctuations/dynamics depending on the month and year, while the SEIB-DGVM SPITFIRE was not able to 

reproduce these dynamics or accurately predict the occurrence of extreme events (Figure S18a). For example, intense forest 

fires were recorded in 2003, 2012, and 2016. The monthly burned dry matter data for these years peaked in 2003 in May and 

in 2012 and 2016 in July (Figure S18.b-d). Severe wildfires in 2003 were due to low precipitation, as total precipitation 400 

reached only 36.0 mm in the Buryatia Republic and 45.7 mm in the Chita Oblast between August 2002 and May 2003 

(IFFN, 2003).  

While the 41-year average precipitation between August and May (1981-2022), in the Buryatia Republic was approximately 

332.23 mm, and in the Chita Oblast was approximately 119.45 mm. Thus, the low precipitation in 2003 was an anomaly 

outside of the annual average range. 405 

Furthermore, the improved model's monthly average burned dry matter in 2003, 2012, and 2016 was also lower compared to 

the GFED4s data. The burned dry matter values of the improved model were Furthermore, the monthly average burned dry 
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matter in 2003, 2012 and 2016 was also lower in the model data than in the GFED4s data; the burned dry matter values of 

the improved model were 58.64 ± 5.86 kg DM m-2, 59.41 ± 5.9 kg DM m-2, and 59.98 ± 5.99 kg DM m-2, while the 

benchmark data showed values of 122.36 kg DM m-2, 101.7 kg DM m-2, and 69.95 kg DM m-2, respectively.  410 

However, considering the entirewhole period fromof 1997- to 2016, not only during years with extreme fire events, but the 

model was also able to reproduce similar average values for multiple years and time-series data. When comparing the 

monthly averages during 1997-2016, the model data yielded a value of 58.94 ± 5.89 kg DM m-2, while the GFED4s data 

yielded 59.12 kg DM m-2. The model is not yet able to reproduce the exact value at a specific time of year or month because 

the model isit runs in a long-term phase and is not yet able to predict sudden natural and anthropogenic conditions (factors). 415 

Overall, the spatial distribution comparison of the monthly dry matter variables from GFED4s and SEIB-DGVM SPITFIRE 

for 20 years (1997-2016) revealed a correlation of 99% (Figure 5); therefore, the model was able to approximate the monthly 

averages. 

3.1.4 Carbon dioxide (CO2) and PM2.5 emissions 

Emissions from biomass burning contribute significantly to the global budget for residual gases and aerosols that affect the 420 

climate. It’s estimated that biomass burning contributed up to 50% of global CO and NOx emissions in the troposphere 

(Galanter et al., 2000), and the most emitted gas during biomass burning is CO2 (Ritchie et al., 2020). Since CO2 emissions 

are the primary emissions that contribute to climate change, it is critical to assess and monitor them continuously.   

In this study, out of 33 projected emissions (Table 4 and Table S6), we validated the CO 2 variable that able to represent all 

projected emissions because all estimated emissions are derived from the same burned dry matter variable, which differs 425 

only in the emission factor value of each gaseous emission. The highest annual average value of CO2 emissions from 1997 to 

2020 is from GFED4 data, followed by SEIB-DGVM SPITFIRE and then the GBEI product, with values of 105.64 ± 50.69 

× 1013 g CO2, 76.412 ± 0.87 × 1013 g CO2, and 62.4 ± 26.09 × 1013 g CO2, respectively (Table S3). The GFED4s and GBEI 

data have higher standard deviation values than does the SEIB-DGVM SPITFIRE data and appear to have a large difference.  

Spatially, the annual average CO2 emission model data were 61.3% (Figure 6.a) and 79.867% (Figure 6.b) correlated with 430 

the GFED4s and GBEI data, respectively. Furthermore, CO2 emissions of the model compared to the GFED4s in the three 

regions (west, central, and east) showed lower agreement than Siberia as a whole, at 5562.7%, 50.662.5%, and 5261.6%, 

respectively (Figure S29). Whereas,Whereas the comparison to GBEI data at the three regions, showed agreements of 

57.574.7%, 5577.6%, and 5864.3%, respectively (Figure S30). However, when comparing the mean of averaged CO2 

emissions all the years from 1997 to 2020 of SEIB-DGVM SPITFIRE, GFED4s, and GBEI, we found that they were similar: 435 

141.1 ± 11.5 Gg CO2 year-1, 157.2 ± 14.8 Gg CO2 year-1, and 148.7 ± 7.12 Gg CO2 year-1, respectively.In addition, spatial 

comparison of annual mean data over 95 years (2006-2100) from SEIB-DGVM SPITFIRE, GFED4s, and GBEI datasets 

reveals similar values of 141.1 ± 11.5 Gg CO2 year-1, 157.2 ± 14.8 Gg CO2 year-1, and 148.7 ± 7.12 Gg CO2 year-1, 

respectively 
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Our study area covers the Boreal Asia (BOAS) area and a small part of Central Asia (CEAS), differing from the GFED4 440 

basis region classification; therefore, we extracted these areas from the GFED4s data for comparison (Figure S22). A 

comparison of the GFED4s CO2 data between the BOAS area and the Siberian area showed that the two datasets had a 

similarity of 98.2% (Figure S26), confirming the accuracy of the GFED4s validation data. 

As all emission products are derived from fire products (dry matter variables), emission factors displayed spatial and value 

dynamics similar to those of the fire products (Figure S19, Figure S27, and Figure S430). When comparing the annual 445 

average dry matter emission data and CO2 emissions generated by the model, the results correlated perfectly (100%, Figure 

S31), indicating that the model runs well according to Equation (3) and the projected CO2 and other emissions have the same 

distribution patterns as the dry matter variable, because all of the emissions calculation are based on the dry emission 

variable. However, they differ in their values because each emission species has a different emission factor.  

We also compared the modelled PM2.5 emissions and their distribution patterns with the Copernicus Atmosphere Monitoring 450 

Service (CAMS) (Romanov et al., 2022) data in seven Russian territories (Amur Region, Buryatia Republic, Irkutsk Region, 

Khabarovsk Territory, Krasnoyarsk Territory, Transbaikal Territory, Yakutia (Sakha Republic)) during 20042010-2021. The 

improved model data and CAMS data both exhibited an increasing trend (Figure 7.a and Figure 2 in Romanov et al. (2022)) 

and a correlation of 85.8% (Figure 7.b). 
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Figure 5. (a) Monthly temporal variability averaged dry matter emission of GFED4s and SEIB-DGVM from 1997 to 2016. 455 

(b) Comparison of monthly averaged dry matter emissions of GFED4s and SEIB-DGVM from 1997 to 2016. Standard 

deviation obtained from each monthly data from 1997 to 2016. 

 

(a) (b) 
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Figure 6. Latitude average spatial comparison of simulated CO2 emissions of SEIB-DGVM SPITFIRE with GFED4s from 

1997 to 2016 (a) and GBEI from 2001 to 2020 (b) dataset. Standard deviation obtained from the annual CO2 emission data 460 

of each dataset.  

(a) (b) 
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Figure 7. (a) Temporal variation of projected PM2.5 emissions under several climate scenarios from 2000 to 2100. Standard 

deviation obtained from the annual PM2.5 emission value of each climate scenarios (RCP8.5, RCP6.0, RCP4.5, and RCP2.6). 

(b) Comparison of PM2.5 emissions from the SEIB-DGVM SPITFIRE model with the *trendline processed data from the 

Copernicus Atmosphere Monitoring Service in seven regions in Russia from 2004 2010 to 2021 (Romanov et al., 2022). 465 

(a) (b) 
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3.2 Burned fraction 

Improved model (SEIB-DGVM SPITFIRE) is able to produce burned fraction variables better than the default model (SEIB-

DGVM GlobFIRM). Based on the spatial comparison of the 1997-2016 average burned fraction variables GFED4s, SEIB-

DGVM SPITFIRE, and Default SEIB-DGVM, it is known that SEIB-DGVM SPITFIRE is able to produce data with a 

similarity of 75% with GFED4s data, while the default model is at 68% (Figure S5). 470 

The burned fraction variable in the improved model exhibited a spatial distribution pattern different from that in the defaul t 

model (Figure S4.ab). According to the improved model, the burned fraction data were distributed in the western, central, 

and southern areas (Figure S4.b). We compared the burned fraction variable with the lightning flash rate and population 

density data to confirm that the produced variable considered the new ignition factor. The burned fraction showed a 46% 

correlation with the lightning flash rate and a 6% correlation with population density between 2006 and 2100 (Figure S7.a 475 

and b). In general, the burned fraction under all the RCP scenarios exhibited an increasing trend from 2006 to 2100, with the 

highest value occurring under the RCP48.5 scenario. Under the RCP48.5 scenario, the lowest value was 0.01371, and the 

highest value was 0.014275, with an average value of 0.01398 (Figure S4.d). 

In contrast to the results produced from the improved model, the burned fraction data from the default model were spread 

throughout most of the area (Figure S4.a). From 2006 to 2100 under all RCP scenarios, the burned fraction in the default 480 

model also exhibited an increasing trend. Under the RCP48.5 scenario, the lowest value is 0.002996, and the highest value is 

0.00311324, with an average value of 0.00306 (Figure S4.c), which is well below the outputs of the improved model. 

3.3 Burned area 

The burned area of the improved model showed a similar spatial distribution pattern under all the RCP scenarios (Figure 

S6.a). The distribution pattern of the burned area variable was also similar to that of the burned fraction variable, as the 485 

burned area and burned fraction calculation processes are both based on fire probability (Eq. 1). Overall, under all the 

scenarios, the burned area exhibited the same increasing trend, with the RCP4.5 scenario reaching the highest value. Under 

the RCP4.5 scenario from 2006 to 2100, the burned area has an average value of 14571945.96 ha grid-1 year-1 and is 

projected to increase with values of 8079..74 to 83.87 x 105 hectares (Figure S6.b). Since the default model does not compute 

burned area, this variable could not be compared between the improved model and the default model. 490 

3.4 Burned biomass 

The improved model confirmed uniform spatial distribution patterns for the fire variables: burned fraction (Figure S4.b), 

burned area (Figure S6.a), and burned biomass (Figure 8.b). All of the improved module fire variables confirmed to be 

mutually integrated because the calculation process comes from the first fire variable (burned fraction). Compared to the 

improved model, the spatial distribution pattern of the burned biomass variable from the default model was wider and spread 495 

across the entire Siberia region (Figure 8.a). The spatial distribution pattern of burned fraction (S4.a-d) and burned biomass 
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(Figure 8.a) in the default model is different and exhibited a box-like pattern in the center of the map. The internal model 

calculation flow relationship between the burned fraction and burned biomass variables in both the default and improved 

models shows a positive linear correlation, indicating harmony between these variables. A higher burned fraction 

corresponds to a higher burned biomass. The default model (SEIB-DGVM GlobFIRM) has an R² value of 0.83, while the 500 

improved model (SEIB-DGVM SPITFIRE) demonstrates better integration, with an R² value of 0.93 (Figure S8.a and d). 

Moreover, the internal relationship between burned fraction and burned biomass variables in the default model (SEIB-

DGVM GlobFIRM) did not show the correct relationship (R2<0.01), where the higher the burned fraction, the higher the 

burned biomass (Figure S8.a). While the internal relationship between burned fraction and burned biomass variables in the 

improved model (SEIB-DGVM SPITFIRE) showed a positive linear correlation (R2=0.85) (Figure S8.d). 505 

Under all the RCP scenarios from 2006 to 2100, the burned biomass variable from the default model exhibited a decreasing 

trend (Figure 8.c). Under all RCP scenarios from 2006 to 2100, the burned biomass variable in both the default and 

improved models exhibited an increasing trend (Figure 8.c and d). This indicates correct integration between the burned 

fraction and burned area variables, and an appropriate response to the climate input data. Furthermore, under the RCP6.0 

climate scenario from 2000 to 2100, the burned biomass value in the default model increases from 50.4 to 60.6 kg DM m-2 510 

(Figure 8.dc), while in the improved model it increases from 53 to 73.98 kg DM m-2 (Figure 8.d). Under the RCP8.5 

scenario, from 2006 to 2100, the value decreased from 5.09 to 5.05 kg DM m -2, with an overall mean value of 5.07 kg DM 

m-2. Meanwhile, the burned fraction product from default model shows an increasing trend (Figure S4.c), this indicates a 

misalignment in the default model between the burned fraction and burned area variables. On the other hand, the burned 

fraction (Figure S4.d), burned area (Figure S6.b), and burned biomass (Figure 8.d) variables in the improved model all have 515 

an increasing trend, indicating harmony between the three variables. Burned biomass variable under the RCP8.5 scenario 

from 2006 to 2100, the lowest and highest values were 8.0 and 8.71 kg DM m-2, respectively, with an overall mean value of 

8.52 kg DM m-2. The twenty-year variations and their trends of dry matter emissions up to 2100 in the improved model 

(SEIB-DGVM SPITFIRE) are 55.90 ± 1.31 8.37 ± 0.07 (10.5 3.3%), 60.52 ± 1.12 8.46 ± 0.04 (11.4 0.7%), 64.43 ± 1.36 8.53 

± 0.06 (1.2.1 3%), 69.23 ± 1.37 8.52 ± 0.05 (13 -0.68%), 71.81 ± 0.94 8.57 ± 0.08 (1.3.5 07%) (Figure S32). 520 

(a) 

 

(b) 
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(c) 

 

(d) 

 

 

 

Figure 8. (a) Spatial distribution of annual averaged burned biomass of SEIB-DGVM GlobFIRM from 20006 to 2100. (b) 

Spatial distribution of annual averaged burned biomass of SEIB-DGVM SPITFIRE from 20006 to 2100. (c) Temporal 

variation of annual averaged burned biomass of SEIB-DGVM GlobFIRM from 20006 to 2100. (d) Temporal variation of 

annual averaged burned biomass of SEIB-DGVM SPITFIRE from 20006 to 2100.   

 525 
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3.5 Aboveground biomass 

The aboveground biomass calculations in the default model and improved model used the same estimation process because 

the trunk biomass in the SEIB-DGVM included coarse root biomass; therefore, only approximately 2/3 of the trunk biomass 

was classified as aboveground biomass (Sato et al., 2007). However, during the calibration of the aboveground biomass 530 

variable with the ESA Biomass CCI benchmark dataset, we adjusted the calculation impact of fire and its distribution pattern 

(based on natural and anthropogenic ignition factors) on the availability of aboveground biomass. 

According to the default model, the AGB distribution pattern appears to be the same as that of the fire variable, a box-like 

pattern still occurs on the map (Figure 9.a), and annual average aboveground biomass under the RCP 8.5 scenario show an 

increasing trend . (Figure 9.c).Under the RCP86.50 scenario, from 20060 to 2100, the AGB decreasedincreased from 535 

6963.72.5 to 68.9120.1 Mg DM ha-1, and the average value was 63.986.3 Mg DM ha-1 (Figure 9.c).. The aboveground 

biomass (AGB) variables in both the default and improved models exhibit an increasing trend and vary across RCP 

scenarios, with the highest values observed under RCP8.5 and the lowest under RCP2.6. This indicates that the models 

effectively read and process the RCP input climate data. 

 The AGB trend also differed between the RCP scenarios. Specifically, under the RCP8.5 and RCP2.6 scenarios, the AGB 540 

exhibited little change, while under the RCP6.0 and RCP4.5 scenarios, the AGB exhibited a downward trend (Figure 9.c). 

Under the RCP6.0 scenario, from 2006 to 2100, the AGB decreased from 69.5 to 68.9 Mg DM ha -1, and the average value 

was 63.9 Mg DM ha-1. 

Compared to the default model, the improved AGB model has a differencesbit difference in distribution patterns (Figure 

9.b).  and trends in annual average dynamics (Figure 9.d). The distribution pattern of AGB in the improved model is 545 

different, iIn the central Siberian region, in some locations that have high AGB has been reduced due to the impact of forest 

fires, so that the box-like pattern is no longer visible (Figure 9.b). The annual averagetemporal variation dynamics  of 

aboveground biomass in the improved model also shows a downwardan increasing trend due to the variable trend of fire 

(forest fires) which is projected to continue to increase (Figure S4.d)warming scenario of each RCP climate data input.  The 

AGB values under all RCP scenarios exhibited a decreasing trend from 2006 to 2100. TThe AGB under the RCP8.5 scenario 550 

from 2023 2000 to 2100 decreased increased from 69.1559.08 to 68.5126.7 Mg DM ha-1 (Figure 9.d), and the mean was 

62.7588.68 Mg DM ha-1. The twenty-year variations and their trends of aboveground biomass up to 2100 are 65.45 ± 1.19 

69.09 ± 0.168 (0.1310.8 %), 71.69 ± 2.90 69.04 ± 0.151 (11.8 -0.54%), 83.38 ± 3.61 68.88 ± 0.128 (13.7 -0.07%), 99.17 ± 

5.06 68.37 ± 0.226 (16.3 -0.76%), 117.92 ± 5.41 68.36 ± 0.189 (19.4 0.63%) (Figure S33). 
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Figure 9. (a) Spatial distribution of annual averaged aboveground biomass of SEIB-DGVM GlobFIRM from 20006 to 2100. 

(b) Spatial distribution of annual averaged aboveground biomass of SEIB-DGVM SPITFIRE from 20006 to 2100. (c) 

Temporal variation of aboveground biomass of SEIB-DGVM GlobFIRM from 20006 to 2100. (d) Temporal variation of 

aboveground biomass of SEIB-DGVM SPITFIRE from 2000 6 to 2100.   

 560 
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3.6 Forest ecological variables under fire-on and fire-off simulation 

We conducted complete simulations under fire-on and fire-off modes to compare and assess vegetation dynamics during 

forest fires. Assessing vegetation dynamics can be done by understanding the carbon pools in the certain region or globally, 565 

where carbon pools are easier to measure than carbon fluxes. In this study, the net primary production (NPP) is used as a 

reference variable because it is an important metric of the global carbon cycle (Running, 2022) and measures the rate of 

global plant growth. Based on the comparison of results between the fire-on and fire-off simulations, the NPP variable under 

all of the RCP scenarios shows a downward trend with some small fluctuations. We obtained the NPP lost variable due to 

wildfire from fire-on and fire-off simulations. The NPP lost variable under all RCP scenarios shows a increasing trend. 570 

Under the RCP8.5 scenario, an average NPP loss of 385.19 ± 40.4 319.3 ± 28.2 g C m-2 year-1 occurred during 19972000–

2100 (Figure S25.a). In addition to the NPP variable, the improved model (SEIB-DGVM SPITFIRE) can also simulate Net 

Biome Production (NBP). Under the same RCP8.5 scenario, the annual average NBP from 2000-2100 shows a positive value 

of 80.7307.7 ± 43 Tg C year-1 (Figure S25.b), with a continuous decreasing increasing trend. 

In relation to wildfires, assessing pre- and postfire tree density variables is critical for measuring the impact of fires. Under 575 

the RCP8.5 scenario, in the fire-on simulation from 1997 to 2100, it is projected that the tree density in Siberia was 2,128108 

tree ha-1. However, under the same RCP and time range in the fire-off simulation, the tree density was 2,391 363 tree ha-1. 

We also compared the tree density between the fire-on and fire-off simulations under all the RCP scenarios and found that 

the tree density increased in the fire-off simulations compared to that in the fire-on simulations. Under the RCP8.5 scenario, 

on average, 185 174 trees ha-1 year-1 died due to the fire (Figure S25.c). 580 

We also conducted a more detailed assessment of several forest structure variables, such as tree DBH, crown area, and tree 

height, from 2006 to 2100 under all the RCP scenarios. Under the RCP8.5 scenario, in the fire-on simulation, the results 

showed that tree DBH values varied from 0 to 0.964.7 m (average 0.96 m), tree height from 0 to 25.875.4 m (average 17 

24.2 m), and crown area from 0 to 6.615.1 m2 (average 4 5.7 m2). The average tree structure in the fire-off simulation was 

greater than that in the fire-on simulation, with average tree DBH, tree height, and crown area of 0.67 97 m, 17.224.1 m, and 585 

4.66.5 m2, respectively. The correlations between the tree structure variables under fire-on and fire-off simulation conditions 

were similar and highly correlated; the overall average correlation among the tree DBH, tree height, and crown area 

variables was 97 8% (Figure 10). Specifically, according to region classification, highest to the lowest value of tree height, 

tree DBH, and crown area value is in the central west region, then west centralregion, and east region. On average for 2081-

2100 under RCP8.5 in each region, the tree height, tree DBH, and crown area variables show values of 28.4321.5 ± 0.03 8 590 

m, 0.791.1 ± 0.001 004 m, 5.72 ± 0.008 01 m2 (central west region), 28.319.5 ± 0.908 m, 1.20.73 ± 0.0403 m, 7.84.17 ± 

0.083 m2 (west central region), and 18.630.2 ± 1.00.021 m, 0.651.2 ± 0.06009 m, 8.54.45 ± 0.2009 m2 (east region) (Figure 

S37, Figure S38, and Figure S39). Furthermore, we found an interesting pattern, the simulated tree allometry variables (tree 

height, tree DBH, and crown area) in eastern Siberia exhibit a greater range of values compared to those in central and 

western Siberiathe simulated tree height, tree DBH, and crown area variables in the west region and central region have a 595 
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decreasing trend, while in the eastern region the tree height, tree DBH and crown area variables are projected to increase 

from 2000 to 2100 (Figure S37, Figure S38, and Figure S39). Overall, all tree allometry variables in Siberia exhibit an 

increasing trend, and the differences between fire-on and fire-off simulations for all tree allometry variables are most 

pronounced in eastern Siberia. 

In addition, the relationship between the three variables (tree height, tree DBH, and crown area) in the west region and 600 

central region shows a linear trend where the higher the tree height, the greater the tree DBH and the wider the crown area 

(Figure 11. a and b). The east region shows an interesting pattern, different from other regions, where the relationship 

between the three variables is naturally randomthere is low tree (Figure 11.c). The western and central Siberia exhibit a 

greater range of tree height values compared to eastern Siberia (Figure 11.a and b). An interesting pattern was observed in 

western Siberia, where trees with high tree height and large DBH but low crown area were detected in some locations 605 

(Figure 11.a). 
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Figure 10. Annual average comparison of tree DBH, tree height and crown area variables in (a-c) fire-on and (d-f) fire-off  

simulations (19962006-2100). Each point represents one grid latitude average of each variable.  
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 615 

Figure 11. Relationships between simulated tree height, tree DBH, and crown area under fire-on simulation and RCP8.5 

scenario from 2000 to 2100 in: (a) West region, (b) Central region, and (c) East region of Siberia. 

 

3.7 Fire and AGB variable comparisons 

We performed internal comparisons of fire and AGB variables within the improved model to ensure that the model worked 620 

properly and that the variable calculation processes were interrelated. Eastern Siberia had low fire patterns (Figure S23), and 

when compared with the AGB, this area also had very low AGB. We extracted the AGB data in the marked area with 

coordinates of 130-142°E and 65-80°N and discovered that the average simulated aboveground biomass in the area was 

65.59 g C m-2 from 1997 to 2023, compared to 416.4 g C m-2 in the one-grid high-AGB areas. Furthermore, we assessed the 

fire danger index (FDI) variable in these low AGB areas and found that the mentioned region had a value of 0, indicating 625 

that it had a very low fire potential (Figure S24.a ). 

We also compared the fire variables (burned fraction, burned biomass) and AGB variables between the improved model and 

the default model. According to the default model, the correlation between the burned fraction and burned biomass was 0.83, 

the correlation between burned fraction and AGB was 0.82, and the correlation between burned biomass and the AGB was 

0.88 (Figure S8.a-c). According to the improved model, the correlation between the burned fraction and burned biomass was 630 

0.932, the correlation between burned fraction was negatively correlated with and the AGB was (0.96-0.88), and the cthere 

was also a negative correlation between the burned biomass and the AGB was 0.9 (-0.84; (Figure S8.d-f ). Overall, both the 

default and improved models are well integrated, with the improved model demonstrating superior integration compared to 

the default model.According to the default model, the correlation coefficient between the burned fraction and burned 

biomass was 0.009, that between the burned fraction and AGB was -0.76, and that between the burned biomass and AGB 635 

was 0.24 (Figure S8.a-c). 



36 

 

3.8 Future projection of burned biomass emissions 

Our model projects that from 2000 to 2100, some areas in Siberia will produce CO2 emissions of 1.20 to 8,239.411,000 

x10811 g CO2 year-1 (Figure 12). The distribution patterns of CO2 and other emissions are similar because all emissions are 

calculated based on the same variable dry matter emissions. Over the twenty-year period, we projected an increasing trend in 640 

CO2 emissions across the various RCP scenarios, which aligns with the projected increase in forest fires through 2100.  

The average from 2000 to 2100 shows that CO2 emissions are highest under the RCP6.0, RCP2.6, RCP4.5, and RCP8.5 

scenarios, with values of 885.8 ± 75.4, 877.82 ± 82.6, 871.4 ± 80.6, and 865.5 ± 69.6 Tg CO2, respectively. Specifically 

under the RCP6.0 scenario, the highest projected emissions are expected in the periods 2021-2040, 2041-2060, 2061-2080, 

and 2081-2100, with Siberia producing CO2 emissions of 769.24 ± 14.37, 830.52 ± 15.61, 877.93 ± 16.34, 940.46 ± 20.59, 645 

and 981.73 ± 12.61 Tg CO2, respectively (Figure 13).The average of 2000 to 2100 shows that CO2 emissions are highest 

under the RCP8.5, RCP6.0, RCP4.5, and RCP2.6 scenarios with values of 801.49 ± 6.11, 796.79 ± 6.70, 794.21 ± 5.15, and 

794.50 ± 5.29 respectively. Under the RCP8.5 climate scenario, it is projected that in 2021-2040, 2041-2060, 2061-2080, 

and 2081-2100, Siberia will produce CO2 emissions of 797.15 ± 4.54, 804.6 ± 6.12, 803.11 ± 5.07, and 808.23 ± 8.6, 

respectively (Figure 13).  650 

 

The highest gaseous species emissions were CO2, CO, PM2.5, TPM, and TPC, and all of them exhibited similar increasing 

trends from 200023 to 2100 under all RCP scenarios. Under the RCP6.0 8.5 scenario, these emissions are expected to 

increase by  2.58 ± 0.75, 0.21 ± 0.06, 0.03 ± 0.01, 0.02 ± 0.01, and 0.014 ± 0.006 214.4 ± 79.4, 17.16 ± 6.35, 2.8 ± 1.03, 2.1 

± 0.78, and 1.47 ± 0.54 TGg species year-1, respectively. The increasing trend of emissions production until 2100 is also in 655 

line with the FDI variable, which shows the same increasing trend (Figure S24.b). Overall, by 2100, under the RCP68.05 

scenario, the production of CO2, CO, PM2.5, TPM, and TPC emissions from forest biomass burning combustion are projected 

to reach 1,009.00 ± 75.44, 80.74 ± 6.04, 12.60 ± 0.91, 9.54 ± 0.69, and 6.61 ± 0.48 817.3 ± 79.4, 65.43 ± 6.35, 10.65 ± 1.03, 

8.07 ± 0.78, and 5.59 ± 0.54 Tg, respectively. The twenty-year averages of the CO2, CO, PM2.5, TPM, and TPC emission 

data under all the RCP scenarios are provided in Table 4, and the other twenty-eight emissions are provided in Table S6. 660 
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Figure 12. Spatial distribution of annual average projected CO2 emissions (1996-2100) under RCP8.5 scenario. 
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665 

 

Figure 13. Temporal variation of projected CO2 emissions from 2000 to 2100 under different RCPs scenarios. 
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Table 4. Twenty-year average (± 2 standard deviation) of projected emissions of CO2, CO, PM2.5, TPM, and TPC species 

from forest fires in Siberia (2023-2100). The emissions of the remaining 28 species are listed in Table S6 in the Supplement. 

Emissions Year 2000-2020 2021-2040 2041-2060 2061-2080 2081-2100 

Tg CO2 year-1 

Historical 

757.33 ± 

4.64768.7 ± 

7.4 n.a n.a n.a  n.a n.a  n.a n.a  n.a 

RCP8.5 

764.70 ± 

9.04798.3 ± 

6.1 

801.94 ± 

20.50801.4 ± 

4.6 

866.21 ± 

18.29808.8 ± 

6.1 

922.85 ± 

19.59807.1 ± 

5.2 

946.99 ± 

8.47812.3 ± 8.5 

RCP6.0 

769.24 ± 

14.87796.4 ± 

7.5 

830.52 ± 

16.01784.1 ± 

4.5 

877.93 ± 

16.77797.4 ± 

8.4 

940.46 ± 

21.12811.3 ± 

4.5 

981.73 ± 

12.93815.2 ± 8.3 

RCP4.5 

760.56 ± 

8.82792.9 ± 

3.7 

800.86 ± 

16.51790.7 ± 

4.1 

866.33 ± 

25.06798.6 ± 

6.5 

918.01 ± 

20.92803.2 ± 

6.0 

983.71 ± 

16.74804.7 ± 

5.09 

RCP2.6 

759.38 ± 

10.19795.8 ± 

4.1 

806.32 ± 

17.42791.1 ± 

5.4 

873.30 ± 

15.29790.4 ± 

4.6 

930.61 ± 

18.45805.7 ± 

6.4 

989.93 ± 

13.72807.8 ± 5.4 

Tg CO year-1 

Historical 

60.63 ± 

0.3761.53 ± 

0.592 n.a n.a n.a  n.a n.a  n.a n.a  n.a 

RCP8.5 

61.22 ± 

0.7263.91 ± 

0.490 

64.20 ± 

1.6464.18 ± 

0.368 

69.34 ± 

1.4664.75 ± 

0.496 

73.88 ± 

1.5764.61 ± 

0.41 

75.81 ± 

0.6865.03 ± 

0.686 

RCP6.0 

61.58 ± 

1.1963.75 ± 

0.605 

66.48 ± 

1.2862.77 ± 

0.366 

70.28 ± 

1.3463.84 ± 

0.677 

75.28 ± 

1.6964.94 ± 

0.36 

78.59 ± 

1.0465.26 ± 

0.671 

RCP4.5 

60.88 ± 

0.7163.47 ± 

0.304 

64.11 ± 

1.3263.30 ± 

0.335 

69.35 ± 

2.0163.93 ± 

0.523 

73.49 ± 

1.6864.30 ± 

0.48 

78.75 ± 

1.3464.42 ± 

0.408 
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Emissions Year 2000-2020 2021-2040 2041-2060 2061-2080 2081-2100 

RCP2.6 

60.79 ± 

0.8263.7 ± 

0.328 

64.55 ± 

1.3963.33 ± 

0.432 

69.91 ± 

1.2263.27 ± 

0.371 

74.50 ± 

1.4864.50 ± 

0.51 

79.24 ± 

1.1064.66 ± 

0.438 

Tg PM2.5 year-1 

Historical 

9.88 ± 

0.0610.02 ± 

0.096 n.a n.a n.a  n.a n.a  n.a n.a  n.a 

RCP8.5 

9.97 ± 

0.1210.41 ± 

0.079 

10.46 ± 

0.2710.45 ± 

0.060.1 

11.30 ± 

0.2410.54 ± 

0.08 

12.03 ± 

0.2610.52 ± 

0.068 

12.35 ± 

0.1110.59 ± 

0.0111 

RCP6.0 

10.03 ± 

0.1910.38 ± 

0.098 

10.83 ± 

0.2110.22 ± 

0.059.7 

11.45 ± 

0.2210.39 ± 

0.011 

12.26 ± 

0.2810.58 ± 

0.059 

12.80 ± 

0.1710.63 ± 

0.0109 

RCP4.5 

9.92 ± 

0.1110.34 ± 

0.049 

10.44 ± 

0.2210.31 ± 

0.054.7 

11.30 ± 

0.3310.41 ± 

0.085 

11.97 ± 

0.2710.47 ± 

0.079 

12.83 ± 

0.2210.49 ± 

0.066 

RCP2.6 

9.90 ± 

0.1310.37 ± 

0.053 

10.51 ± 

0.2310.31 ± 

0.070.5 

11.39 ± 

0.2010.30 ± 

0.06 

12.14 ± 

0.2410.50 ± 

0.084 

12.91 ± 

0.1810.53 ± 

0.071 

Tg TPM year-1 

Historical 

7.48 ± 

0.057.59 ± 

0.073 n.a n.a n.a  n.a n.a  n.a n.a  n.a 

RCP8.5 

7.55 ± 

0.097.88 ± 

0.060 

7.92 ± 0.207.91 

± 0.045.5 

8.56 ± 

0.187.98 ± 

0.061 

9.12 ± 

0.197.97 ± 

0.051 

9.35 ± 0.088.02 

± 0.084 

RCP6.0 

7.60 ± 

0.157.86 ± 

0.074 

8.20 ± 0.167.74 

± 0.045.3 

8.67 ± 

0.177.87 ± 

0.083 

9.29 ± 

0.218.01 ± 

0.044 

9.70 ± 0.138.05 

± 0.082 

RCP4.5 

7.51 ± 

0.097.83 ± 

0.037 

7.91 ± 0.167.81 

± 0.041.4 

8.56 ± 

0.257.88 ± 

0.064 

9.07 ± 

0.217.93 ± 

0.06 

9.72 ± 0.177.94 

± 0.050 
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Emissions Year 2000-2020 2021-2040 2041-2060 2061-2080 2081-2100 

RCP2.6 

7.50 ± 

0.107.86 ± 

0.040 

7.96 ± 0.177.81 

± 0.053.4 

8.63 ± 

0.157.80 ± 

0.045 

9.19 ± 

0.187.95 ± 

0.063 

9.78 ± 0.147.97 

± 0.054 

Tg TPC year-1 

Historical 

5.18 ± 

0.035.26 ± 

0.050 n.a n.a n.a  n.a n.a  n.a n.a  n.a 

RCP8.5 

5.23 ± 

0.065.46 ± 

0.041 

5.49 ± 0.145.48 

± 0.031.5 

5.93 ± 

0.135.53 ± 

0.042 

6.32 ± 

0.135.52 ± 

0.035 

6.48 ± 0.065.55 

± 0.058 

RCP6.0 

5.26 ± 

0.105.44 ± 

0.051 

5.68 ± 0.115.36 

± 0.031.4 

6.01 ± 

0.115.45 ± 

0.057 

6.44 ± 

0.145.55 ± 

0.031 

6.72 ± 0.095.57 

± 0.057 

RCP4.5 

5.20 ± 

0.065.42 ± 

0.026 

5.48 ± 0.115.41 

± 0.028.7 

5.93 ± 

0.175.46 ± 

0.044 

6.28 ± 

0.145.49 ± 

0.041 

6.73 ± 0.115.50 

± 0.034 

RCP2.6 

5.20 ± 

0.075.44 ± 

0.028 

5.52 ± 0.125.41 

± 0.037.0 

5.98 ± 

0.105.40 ± 

0.031 

6.37 ± 

0.135.51 ± 

0.044 

6.77 ± 0.095.52 

± 0.037 
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4 Discussion 

4.1 Feasibility of fire simulation 

According to the default module, the fires spread throughout almost all of Siberia (S4.a-d, 4.a-d) because the module 

considered only the fuel amount and  fuel moisture content of the littert. Thus, if the fuel load met the threshold requirement 

in any random grid, a fire appeared and could spread to other areas. Furthermore, the spatial distribution and trend of burned 680 

biomass under all of the RCP scenarios in the default fire module were not consistent with the burned fraction data. Areas 

with high burned fraction values should also have high burned biomass, and vice versa. 

However, in the improved module, the fires ignited only in areas that were covered in the lightning ignition and population 

ignition datasets based on the calculation of each ignition factor. This is confirmed by the comparison of the fire variable 

with the ignition factor variables, the comparison of the burned fraction variable with the lightning flash strikes variable 685 

shows a strong correlation of 0.68 (R2=0.45), and the comparison of the burned fraction variable with the population density 

variable shows a correlation of 0.24 (R2=0.06) (Figure S7). These relatively low correlation values are due to the fact that the 

presence of an ignition factor does not guarantee that a fire will start; the area needs to have sufficient dry litter to feed the 

fire. Apart from these variables in the improved model, other factors also influence fire occurrence and spread in real life,  

such as slope and solar aspect (Rothermell, 1972), but their inclusion at this point was not possible due to the limitations of 690 

the model. In addition, when comparing the fire and AGB distributions, the SEIBthe SEIB-DGVM SPITFIRE showed 

greater agreement than did the default fire module. 

However, differences remained between the spatial distribution patterns of the simulated fires and the GFED4s data in 

eastern Siberia. We believe that the main reason for the lack of simulated fires in eastern Siberia was the scarcity of available 

fuel and biomass for the ignition and spread of fires. We found that the AGB in these areas (130-142°E and 65-80°N; Figure 695 

S23) was very low, averaging 65.59 g C m-2. This value was far below the model minimum fuel load threshold requirement 

of 200 g C m-2 (Sato et al., 2007) for fire ignition or spread. All three benchmark datasets, the ESA Biomass CCI 

(aboveground biomass), GFED4 (burned area), and GFED4s (burned fraction), indicate that fire is present in this area, with 

ESA Biomass CCI showing an AGB of 2,309.67 g DM m-2. It is challenging to produce a model product that precisely 

predicts observations, as the simulations are highly dependent on the input data and dynamics, while the benchmark datasets 700 

were obtained from satellite image estimations that are able to capture natural conditions and events in real time. Even 

predictions based on satellite observations can differ significantly from field-based observations. For example, the 

International Forest Fire News (IFFN) Russian Federation reported that 2003 had extremely severe fires in Siberia based 

both on ground and aerial observation. However, the burnt area was determined to be 2,654,000 ha based on field 

observations and 17,406,900 ha based on satellite-derived observations (NOAA AVHRR) (IFFN, 2003; Siegert and Huang, 705 

2005). The difference between ground observation data and satellite-derived data is due to differences in the data collection 

time and continuity. Ground-based observations are carried out only for a short time due to technical difficulties, while 
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observations based on satellite data are carried out without any significant difficulties (IFFN, 2003). In this case, the SEIB-

DGVM SPITFIRE model reported a burned area of 78,030969,361785 ha, an estimation centered between the observational 

and satellite data.  710 

Overall, based on the fire variable outputs (burned fraction and burned area) from the improved model generated and 

validated with benchmark data, we project that Siberia will have an increasing trend until 2100 (Figure S4.d, Figure S6.b, 

and Figure 8.d). Yasunari et al., (2024) in a comprehensive assessment of the impacts of the Siberian wildfire using 

MIROC5 stated that there is high probability of increased Siberian wildfires in the future, and this estimate implies that 

worse air quality due to wildfires is predicted in the future, with frequent exceedances of air quality environmental standards 715 

(ES). 

Kasischke and Bruhwiler (2003) stated that the level of uncertainty in the burned area parameter for estimating fire 

emissions in the Russian boreal forest is ± 30% for satellite imagery, while the uncertainty of the parameter is -300% 

according to official government statistics, resulting in fires being largely underestimated. This difference in uncertainty was 

caused by the diverse parameters/equations used for estimation, the varying levels of detail of the analysis, and other factors, 720 

such as forest type, location, fuel load, fire type, and aboveground biomass density. Differences are also extrapolated when 

estimations for large areas are based on individual fires (Kasischke and Bruhwiler, 2003; Kukavskaya et al., 2013). 

Therefore, uncertainties will inevitably persist in model- or simulation-based research when comparing model- or 

simulation-based data with direct observations. 

4.2 Forest resilience under fire and climate change 725 

Terrestrial NPP is an essential element of the carbon cycle and global climate dynamics, as it directly affects the CO2 content 

of the atmosphere, resulting in delayed climatic changes (Running, 2022). If NPP decreases, the land's ability to absorb CO 2 

will decrease, causing atmospheric CO2 to increase faster and thereby contributing climate change (Running, 2022). Based 

on the comparison between fire-on and fire-off simulation, Uunder the RCP8.5 scenario, from 2000 to 2100 the NPP will 

decrease decrease by 38519.131 g C m-2± 40.4 g C m-2 (5.03 ± 1.5 g C year-1 m-2 year-1) due to wildfires until 2100. Satellite 730 

observations one year after boreal forest fires in Alaska and Canada recorded a 60–260 g C m-2 loss of NPP (Hicke et al., 

2003). In the coniferous forests of the western United States, postfire NPP loss was also recorded and ranged from 67 to 312 

g C m-2 year-1 (Sparks et al., 2018). These data indicate that the NPP simulation results of the SEIB-DGVM SPITFIRE 

model are also consistent with some observational data in different areas.  

NPP and NBP, both are significant elements of the global C cycle and are used as indicators of ecosystem function and are 735 

linked to biodiversity, biogeochemical cycling, ecosystem resilience, and other aspects of ecosystem services (Canadell et 

al., 2007; Richmond et al., 2007; Ito, 2011). However specifically, the mitigation ability of ecosystems is determined by net 

biome productivity (NBP) (Chapin et al., 2006; Fisher et al., 2014), anddan climate-driven large anomalies in NBP could 

impact the structure, composition, and function of terrestrial ecosystems (Frank et al., 2015). The twenty-year average NBP 

from 2000-2100 shows a carbon sink in Siberia with a decreasing increasing trend (Figure S34. rev 4). OverallOverall, from 740 
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2000 to 2100, RCP8.5 produces the lowest highest value, then RCP6.0, RCP4.52.6 and RCP24.65 with values of 304.61 ± 

11.77, 286.78 ± 10.64, 286.17 ± 10.99, and 274.95 ± 9.36136.39 ± 83.4, 79.05 ± 78.08, 82.46 ± 77.76, 94.51 ± 79.67, and 

83.24 ± 78.66 Tg C year-1, respectively (Table S4). The historical annual mean value of NBP in Siberia for 2000-2021 of 

136.39 ± 83.4 Tg C year-1 is also similar to the CLM4CN simulations (annual average 1981-2006) in Eurasia and Boreal and 

Arctic of 204 and 284 Tg C year-1, respectively (Kantzas et al., 2013). 745 

Under all of the climate scenario from 2021-2100 shows a declining trend (Figure S34), the standard deviation values greater 

than the NBP value itself (Table S4), which indicates that within the 20-year range there are areas that have negative values 

or indicate that the land becomes a carbon source (NBP<0) dominated by disturbance processes, such as wildfire (Figure 

S35). Under all climate scenarios from 2000 to 2100, we estimate that the net biome productivity (NBP) will continue to 

increase, indicating a continued flux of CO2 from the atmosphere to the land (Figure S34). The classification of NBP 750 

variables based on climate input data also shows the correct order, from the smallest under RCP2.6 to the largest under 

RCP8.5 (Figure S35). This is because climate factors, such as temperature and precipitation, have a positive impact on 

vegetation (Yuan et al., 2021). On average, from 2000 to 2100, under the RCP8.5 climate scenario, the NBP in Siberia is 

estimated at 301.3 ± 49.1 Tg C (equivalent to 3.01 ± 0.5 Tg C year-1). Other studies have similar estimation that the NBP 

across northern peatlands, including the Russian Far East (RFE) and West Siberian Lowlands (WSL), ranges from 10 to 220 755 

Tg C year-1 (Qiu et al., 2022). Additionally, we estimate that the heterotrophic respiration (HTR) in Siberia will continue to 

increase until 2100. On average under RCP8.5, from 2000 to 2100, the net biome productivity (NBP) value in Siberia is 

estimated at 4,002.7 ± 967.7 Tg C (equivalent to an increase of 40 ± 9.7 Tg C year -1) (Figure S36).This trend is also 

supported by the fire fraction data which continues to increase until 2100 (Figure S4.d). There is an interesting pattern in the 

NBP data in 2021-2040 which shows a drastic decrease compared to the average data of the previous years, this is because 760 

the model simulates Heterotrophic respiration (HTR) with high values from 2000 to 2040 (Figure S36).  We suggest that the 

high HTR values during those years were attributable to an elevated fuel load (Figure S40.a) followed by significant 

precipitation (Figure S40.b), which increased litter moisture content (Figure S41.a) and consequently accelerated the 

decomposition rates of litter and soil organic carbon.The twenty-year average HR data is highest in 2000-2020, then 2021-

2040, 2081-2100, 2061-2080 and 2041-2060 with values of 2532.49 ± 81.37, 2529.92 ± 96.78, 2518.42 ± 78.48, 2520.40 ± 765 

78.81, and 2529.43 ± 98.95 Tg C year-1, respectively (Table S5).  Increased of heterotrophic respiration, tree mortality and 

increased disturbance (drought and fire) contribute significantly to negative carbon fluxes from the ecosystem due to 

increased temperature and atmospheric CO2 (Sharma et al., 2023). Overall, SEIB-DGVM SPITFIRE simulates that until the 

end of the 21st century, there will continue to be a strengthening of the land carbon sink in Siberia under all RCP scenarios. 

Overall, SEIB-DGVM SPITFIRE simulates that until the end of the 21st century, there will continue to be a weakening of 770 

the land carbon sink in Siberia, this is also reinforced by the CESM2 model simulation which states the same globally. 

Negative NBP extremes become more frequent and saturated by the end of the 21st century, terrestrial ecosystems may lose 

their potential to absorb anthropogenic carbon and mitigate the effects of climate change (Sharma et al., 2023).Boreal forests 

(1135 Mha) consistently acted as an average carbon sink of 0.5 ± 0.1 Pg C year–1 over the two decades from 1990 to 2010. 
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Furthermore, Asian Russia had the largest boreal carbon sink, which showed no overall change despite increased emissions 775 

from wildfire disturbances (Pan et al., 2007). 

 

Boreal forest vegetation is naturally influenced by a variety of periodic disturbances, such as wildfires (Kasischke et al., 

1995), insect outbreaks, and windthrow. Wildfires and insect outbreaks are not necessarily independent, there is a likelihood 

of wildfires often increasing or decreasing after insect outbreaks (Meigs et al., 2015, 2016). However, wildfires are among 780 

the main disturbances that drive forest dynamics, shape forest composition and structure, and affect biomass and productivity 

(Burns and Honkala, 1990; Greene and Johnson, 1999). Circumpolar northern boreal forests and tundra are likely to continue 

to warm more than most other terrestrial biomes according to available data from models and observations (Chapin et al., 

2005; Foley, 2005; Meehl et al., 2007; Trenberth et al., 2007; Lee et al., 2021). Based on the observations and changes in 

regional attributes from 1950 to the present, it is projected that during 2071-2100, the WSB (West Siberia), ESB (East 785 

Siberia), and RFE (Russian Far East) will experience an increase in extreme temperatures with high confidence of more than 

7 °C for all seasons under the RCP8.5 scenario. Projected warming is most evident on the large continental Siberian Plateau, 

which has boreal and subboreal climates and biomes (i.e., taiga forests and tundra), during the winter season (Ozturk et al.,  

2017; IPCC, 2021). Such changes in climatic extreme scenarios and seasonality are also likely to have multiple effects, 

including extended but drier growing seasons, the occurrence of more intense convective storms leading to more lightning-790 

caused fires (Hessilt et al., 2021; Kharuk et al., 2022), and decreased forest productivity (Orangeville et al., 2018); 

additionally, longer, warmer, and drier summers may cause an increase in fire frequency and size in some areas of boreal 

forests (Krawchuk et al., 2009; Flannigan et al., 2016; Wotton et al., 2017). This finding is in line with our results, which 

show that the assessment of forest ecology variables indicates tree mortality due to fire and succession as well as postfire 

vegetation (Figure S25.c) and affects NPP dynamics in Siberia (Figure S25.a). 795 

Under the RCP24.65 scenario, the SEIB-DGVM estimated the average tree density to be 2,205 166 tree ha-1 between 1997 

200 and 2023 in Siberia. The tree density is greater in northeastern Siberia (1,197 tree ha -1) than in southern Siberia (Miesner 

et al., 2022). Our simulation resulted in higher tree densities than did the observations in northeastern Siberia, as we covered 

a larger area of forest at at 6060°-180°E and 45°-80°N. The number of trees is affected by the frequency of fires at a certain 

location. Additionally, the number of trees destroyed by wildfires depended upon the climate scenario used in the 800 

simulations but naturally increased with fire frequency and size. In all the RCP scenarios, the number of destroyed trees was 

greater than that in the base scenariohistorical simulation, and the number of destroyed trees increased annually, indicating 

that changes in climatic factors affected the surviving tree density. The projected increase in the number of trees destroyed 

annually is consistent with the modeled fire product data, which exhibit an increasing trend until 2100. The difference in tr ee 

mortality data between climate scenarios is because each climate scenario has a different projected temperature increase. In 805 

Siberia, under the RCP8.5 scenario, we simulate that the 2-meter surface temperature will increase by 4.67°C by 2100 

(Figure S42). This estimate aligns with the IPCC projections, which predict air temperature increases by 2100 ranging from 

0.3-1.7°C (average 1.0°C) under the RCP2.6 scenario, 1.1-2.6°C (average 1.8°C) under the RCP4.5 scenario, 1.4-3.1°C 
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(average 2.2°C) under the RCP6.0 scenario, and 2.6-4.8°C (average 3.7°C) under the RCP8.5 scenario (IPCC 2021).By 

2100, the air temperature will increase by range 0.3-1.7 (1.0) °C under the RCP2.6 scenario, 1.1-2.6 (1.8) °C under the 810 

RCP4.5 scenario, 1.4-3.1 (2.2) °C under the RCP6.0, and 2.6-4.8 (3.7) °C under the RCP8.5 scenarios (IPCC 2021).  

 

The DBH ranges of the trees in the fire-on and fire-off simulations were comparable to those in northeastern Siberia, where 

the DBH ranged up to 71,6 cm, the tree height up to 28,5 m, and the crown area averaged 4,77 m 2 (Miesner et al., 2022). As 

the average DBH variable was similar in the fire-on and fire-off simulations, trees with large DBHs are resistant to fire. This 815 

was also confirmed based on observational research in Yenisei Siberia, where trees with a DBH greater than 18.1 cm were 

the most resistant to further postfire succession (Bryukhanov et al., 2018).  

Specifically, based on the division of regions, we found an interesting pattern, that in Siberia the central eastern region has 

the highest value of allometry variables (tree height, tree DBH and crown area), then the west central region and lowest is 

the east west region (Figure S37, Figure S38, and Figure S39). An interesting pattern was observed in western Siberia, where 820 

trees with high height and large DBH but low crown area were detected in some locations (Figure 11.a).In addition, we also 

found that the allometry variables in the central and west regions are projected to have a decreasing trend from 2000 to 2100 , 

while the east region has an increasing trend (Figure S37, Figure S38, and Figure S39). Furthermore, the relationship 

between the three variables shows a positive linear relationship in the central and west regions, while in the east region it  is 

naturally randomly distributed (Figure 11).  We suggest that this is happenshappens because of the wildfire, the Siberian 825 

central region has the highest wildfire frequency followed by the west region, then the east region. The major Siberian Forest 

types are formed by larch (Larix sibirica, L. gmelinii, and L. cajanderi) and majority distributed in western and central 

Siberia (Figure 1, and Figure 1: (Kharuk et al., 2021)). Furthermore, larch is classified as pyrophytic species, that have 

adapted or evolved under conditions of periodic forest fires, they have adapted and gaining a competitive edge over non-fire 

adapted species in regenerating and growing in burned areas (Kharuk et al., 2021). The abundance of species and high 830 

frequency of wildfires in the Siberian central and western regions led to excellent larch succession and regeneration as 

evidenced by the high tree allometry variables and on the other hand the projected continuity of wildfires led to a downward 

trend. On the other hand, in the eastern region, very few wildfires are simulated, partly due to the low aboveground biomass 

available in some areas, which affects ignition and fire spread (Figure S23). However, due to the low frequency of wildfires, 

allometric variables are projected to have an increasing trend until 2100 in the Siberian east region.On the other hand, in the 835 

east region, very little wildfire is simulated, which is partly due to the low aboveground biomass available in some areas of  

the region: Figure S23), which leads to low variable allometry, however due to the low frequency of wildfires, variable 

allometry is projected to have an increasing trend until 2100 in the Siberian east region. The unique relationship between 

allometric variables, which are naturally distributed without a wide gap between grid plots (Figure 11.c), in the eastern 

region is also due to the area's low wildfire frequencyThe unique relationship between allometry variables that are randomly 840 

distributed naturally (Figure 11.c) in the east region is also because the area is simulated to have a low wildfire frequency. 

The forest in the Siberian east region appears to grow and spread naturally without having high impact from the wildfire. 
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While the majority tree species in Siberia: larch, regenerates extremely well on post-fire-mineralized soil, however on 

contrast, they regenerate very slowly over a ground floor covered in lichen and moss (where the soil's surface is tough for 

sapling roots to reach) (Kharuk et al., 2016). 845 

4.3 Spatial distribution and temporal variation in biomass burning emissions under climate change scenarios 

The spatiotemporal dynamics of the biomass burning emissions under all RCP scenarios had similar patterns and trends, but 

they had slightly different variations in dynamics because climate affects the frequency and distribution of fires. This is 

evidenced by all fire variables produced by the model, from burned fraction to burned biomass emissions. In the last 20 years 

of the projection (2080-2100), the highest values were obtained from simulations using climate inputs RCP2.6, RCP4.5, 850 

RCP6.0, and RCP8.5. This occurs because each RCP scenario exhibits varying radiative forcing, with RCP8.5 notably 

experiencing the highest temperature increase (Figure S42) and also projecting the highest precipitation levels (Figure 

S40.b). The fuel load variable follows a corresponding order reflective of RCP forcing levels, with RCP8.5 showing the 

highest and RCP2.6 the lowest (Figure S40.a). However, due to increased precipitation and temperature-induced snowmelt, 

the moisture content of litter fractions in RCP8.5 simulations attains the highest values, contrasting with the lowest values in 855 

RCP2.6. Consequently, available fuel loads may not ignite in areas with high moisture content, leading to projections of the 

highest burned biomass emissions in the last 20 years of RCP climate projections (2080-2100) for RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5, respectively. A comparison of the annual average values of projected CO2 emissions in 2100 with those in 1996 

reveals an interesting pattern, with some areas having lower emissions than in the previous year.  A decrease in fire 

emissions in subsequent years could be caused by the fact that there is less biomass available for burning since some of the 860 

biomass has been burnt during previous years. Also, it could indicate the occurrence of postfire vegetation succession in 

these areas (Figure 12). The difference in emission values between climate scenarios in the same year shows that 

temperature has an impact on vegetation succession and climate-sensitive emission production from wildfires (Gutierrez et 

al., 2021; Stocker et al., 2021). The simulation results confirmed that on the spatial distribution map of high-emissions areas, 

there was a reduction in future emissions due to vegetation succession. However, in the low-emission areas, the total 865 

emission extraction data also revealed lower emissions than those in the previous year under the different climate scenarios, 

which, based on the overall simulation of Siberia, experienced a continuous increase in forest fires until 2100. Thus, the 

model is able to simulate and integrate fire disturbance, forest dynamics or vegetation succession, and burned biomass 

emissions well. 

Over a 20-year average from 2080 to 2100, under RCP6.0 in Siberia, our simulation predicts that forest fires will emit CO2, 870 

CO, PM2.5, TPM, and TPC in amounts of 989.93 ± 13.72, 79.24 ± 1.10, 12.91 ± 0.18, 9.78 ± 0.14, and 6.77 ± 0.09 Tg, 

respectively (Table 4). By 2100, in Siberia, our simulation predicted that forest fires will produce CO2, CO, PM2.5, TPM, and 

TPC emissions, amounting to 822.7 ± 21.4, 65.8 ± 1.7, 10.7 ± 0.27, 8.12 ± 0.2, and 5.63 ± 0.14 Tg, respectively (Table 4). 

Spatially, the projections depict heterogeneous patterns of burned biomass emissions, with regions of high emissions 

intensity concentrated in areas of larch forest (Larix spp.), consistent with Figure 1 and our simulation results, where the fire 875 Formatted: Font: Italic, Complex Script Font: Italic
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and emission variables show high values in central to southern Siberia (Figure S4.b, Figure 8.b, and Figure S6.b). This is 

reinforced by field-based estimation data, that fires in this region result in high tree mortality 76%, Siberian larch forests 

experience greater aboveground carbon loss after fire than do North American forests, both in absolute and relative levels 

(Webb et al., 2024). We also visualized all the 33 graphs depicting projected burned biomass emissions, offering valuable 

insights into the future dynamics of the burned biomass emissions in Siberia. Across these graphs, we observe distinct 880 

temporal patterns, revealing trends in burned biomass emissions over time. Under the RCP8.5 to RCP2.6 scenarios, the 

twenty-year average comparison of overall burned biomass emissions data from 2080-2100, compared to data from 2000-

2020, shows projected increases of 23.87%, 27.63%, 29.34%, and 30.36%, respectively (Figure S43). The twenty-year 

dynamics are summarized in Table 4 and Table S6. Under the RCP8.5 to RCP2.6 scenarios, overall emissions by 2100 are 

projected to increase by 2.6 %, 1.9 %, 1.05 % and 1.04 % compared to 2000 emissions (Figure S40), and the twenty-year 885 

dynamics are summarized in Table 4 and Table S6. In addition, different climate scenarios predicted different emissions 

depending on the radiative forcing values used (from the highest to the lowest): The RCP8.5, RCP6.0, RCP4.0, and RCP2.6 

scenarios had average increases of 0.026% year-1, 0.019% year-1, 0.0105% year-1, and 0.0104% year-1, respectively, from 

2000 to 2100. Furthermore, each year, various climate scenarios predicted differing emissions based on the respective 

radiative forcing values (from lowest to highest). The RCP8.5, RCP6.0, RCP4.0, and RCP2.6 scenarios exhibited average 890 

annual increases of 0.295%, 0.354%, 0.358%, and 0.361% year-1, respectively, from 2000 to 2100. 

Our projection results are consistent with those of Riahi et al. (2011), in which the simulation result under the RCP8.5 

scenario (with a radiative forcing of 8.5 W m-2) produced the highest greenhouse gas emissions compared to those under the 

other RCP scenarios. Under the RCP4.5 scenario, radiative forcing stabilized until 2100 (Thomson et al., 2011), which is  

also consistent with our results, as emissions under the RCP4.5 scenario were more stable than those under the other RCP 895 

scenarios. Therefore, its indicated that the trend in fire emissions is consistent with the different scenario-dependent trends in 

radiative forcings. Overall, based on the RCPs climate scenario data used (MirocAR5), the emission scenario projected an 

increase in global mean surface temperature in the range of 1.0-3.7 (0.3~4.8) oC (IPCC, 2014), and currently ranges between 

1.5 and 6.0 oC by 2100 compared to 1850-1900 mean value (Lee et al., 2021). One of the impacts of rising global 

temperatures is the increased occurrence and severity of forest fires, which lead to a greater prevalence of wildfire 900 

(Schoennagel et al., 2017; Haider et al., 2019). The global land area burned by wildfires is expected to increase by 35% if the 

global temperature increases by 2 °C and precipitation patterns change (Pörtner et al., 2022). Extremely high temperatures 

increase temperature increase the frequency of severe droughts and proliferate wildfires in several regions, such as southern 

Europe, northern Eurasia, the USA, and Australia (IPCC, 2021). These frequent and severe wildfires will inevitably lead to 

an increase in the atmospheric concentration of biomass burning products (Marlon et al., 2008; Amiro et al., 2009; Tian et 905 

al., 2023). 

Forests in Siberia are very important to monitor and assess continuously because they have a significant impact on regional 

(short-term) and global (long-term) air quality and human health due to the large amounts of carbon emissions, smoke 

aerosols, and trace gases in the atmosphere. In addition to the observed amount of emissions, OC/EC emissions exceeded 3 
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times, and emissions of inorganic ions (SO4
2- and NH4

+) were found to be 5 times greater than the annual average wildfire 910 

emissions from August 2010 to August 2011 (Popovicheva et al., 2014). Increased Siberian wildfire aerosols would 

significantly degrade air quality, particularly in the surrounding and downwind regions of Siberia  (Yasunari et al., 2024).The 

emitted substances can be transported over long distances and affect air quality in other regions, including North America 

and Northeast China (Teakles et al., 2017; Johnson et al., 2021; Sun et al., 2023).  

Estimating future fire emissions and their impact on air quality is challenging due to model limitations and uncertainties in 915 

estimation methods, potential mixing of emissions in the atmosphere, climate radiative forcing factors, and emission 

transport (Winiger et al., 2017; Schacht et al., 2019). The SEIB-DGVM SPITFIRE was not able to reproduce the events in 

the validation data for the same year or month but simulated similar dynamic patterns and values. This difference occurs 

because the benchmark data obtained from satellite image data closely follow natural conditions, while the model 

accumulates uncertainties due to its long simulation period. The emission estimation method used in the model refers to the 920 

dry matter variable and the emission factor from Andreae and Merlet (2001) and Andreae (2019), where the emission factors 

are obtained from laboratory and small field experiments. Each species has specific characteristics that require different 

assessment methods, and the combustion characteristics can be very different from those of large-scale open biomass 

burning and wildfires. Kasischke and Bruhwiler (2003) reported that the level of uncertainty in the emission factor 

parameters for estimating emissions from fires in Russian boreal forests was ±20-50%, which agrees with the ±50% 925 

uncertainty level for major emissions presented by Andreae and Merlet (2001). However, in the SEIB-DGVM SPITFIRE, 

we also used the latest emission factor from Andreae (2019), which was developed for oxygenated volatile organic 

compounds and for HCN; this approach improved all assessment compound emissions significantly with more accurate 

measurements and has been widely used by various dynamic global vegetation models to estimate biomass burning 

emissions globally. Overall, the comparison between different climate RCP scenarios provides further insight into 930 

uncertainties and variability in the projections, offering valuable information for understanding the potential impacts of 

future burned biomass emissions on air quality, climate dynamics, and ecosystem health. Through this analysis, our study 

contributes to a better understanding of the drivers and implications of burned biomass emissions, informing policy decisions  

and management strategies aimed at mitigating their environmental and societal impacts. 

 935 

4.4 Model uncertainty 

 

Our study is a process of combining and improving the SEIB-DGVM model with the SPITFIRE fire module, each of which 

has different characteristics and some default variables, parameters, and inputs. The implementation of any complex model 

improvement inherently introduces uncertainty, stemming from various sources such as parameterization choices, model 940 

structure, new model input and the representation of complex biophysical processes. Specifically, in the context of the fire 

module enhancement, uncertainties may arise from the characterization of ignition sources, fire behavior, fuel dynamics, and 
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fire spread mechanisms. These uncertainties can significantly influence the accuracy and reliability of model projections, 

particularly in simulating the spatial and temporal patterns of fire occurrence, intensity, and impacts on vegetation dynamics 

and carbon cycling.  945 

Kasischke and Bruhwiler (2003), mentioned that in some cases, the data needed to generate input parameters for those 

equations are very well defined, whereas in others, they are based on a very limited set of the observations data. Thus, the 

input data selection and the parameter setting for those equations calculation is the source of the uncertainty, provided 

emission range (Table 5 in Kasischke and Bruhwiler, 2003). In more detail Kasischke and Bruhwiler (2003) stated that 

uncertainty can be classified into two groups. First, environmental characteristics (direct or indirect observations) including 950 

location, fire type, and aboveground/ground-layer biomass. Second, uncertainties from parameters that can be measured in 

individual biomass combustion processes, while the application on a large scale, time differences and climatic influences are 

very challenging, and the combustion process consists of several stages that emit different emissions for each stage.  

To mitigate model uncertainty, we have employed rigorous model verification, calibration, and evaluation procedures, 

comparing model outputs with several benchmark datasets (Table 3). The verification helps to ensure the new inputs 955 

(ignition factors) can be read, processed, and output properly. The process of calibrating all major variables with benchmark 

datasets is carried out sequentially and with several iterations, ensuring that the output of individual variables matches the 

benchmark dataset that is the target of validation. This validation process helps assess the model's ability to reproduce 

historical fire patterns and dynamics accurately.  

However, this does not close the uncertainty in the model we have developed, we still have limitations where the emission 960 

variable distribution pattern of emissions is strongly influenced by the pattern of the resulting fire, because the emission 

variable is calculated with the same dry matter emissions. This spatial distribution also affected other vegetation variables, 

due to the relationship calculation between fire and vegetation variables. This is a potential further study to adjust the fa ctors 

that affect the distribution of fire to be similar to the benchmark data. In addition, natural factors that affect the dynamics of 

significant fire disturbances at specific times are still not well simulated by our model. Inversely, our model also has the 965 

advantage of being able to simulate numerically averaged data in the long term very accurately, based on the results of 

numerical comparisons with benchmark data, the model is able to simulate with a value of 99%. 

5 Conclusions and recommendations 

We introduced the SPITFIRE fire module into the SEIB-DGVM and achieved a better representation of fire dynamics in 

Siberia between 1996 and 2100 by creating monthly outputs and producing several new outputs related to fires at a 0.5° 970 

spatial resolution, such as vegetation and burned biomass emission variables. Our modifications have led to a more realistic 

depiction of fire frequency, intensity, and extent, aligning the model outputs more closely with benchmark datasets. The 

major variables related to fire (vegetation, CO2 and PM2.5 emissions, burned area, burned fraction, aboveground biomass, and 

dry matter) all reached an agreement of 70.7 60% or greater with the observations. Additionally, the improved model 
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accurately simulated forest structure, increasing the agreement between the simulated and observed dataset patterns and 975 

further emphasizing the reliability of our model and its emission projections. Under the RCP2.6 8.5 scenario, we estimated 

that the CO2, CO, PM2.5, total particulate matter (TPM), and total particulate carbon (TPC) emissions in Siberia will continue 

to increase annually until 2100 by an average of 2.71 ± 0.87, 0.22 ± 0.07, 0.04 ± 0.01, 0.03 ± 0.01, and 0.02 ± 0.01 214.4 ± 

79.4, 17.16 ± 6.35, 2.8 ± 1.03, 2.1 ± 0.78, and 1.47 ± 0.54 TGg species year-1, respectively. Moreover, forest fires in Siberia 

in 2100 are projected to emit all five of these compounds under the RCP8.5 scenario, amounting to 1010.00 ± 82.64, 80.84 ± 980 

6.61, 13.17 ± 1.08, 9.97 ± 0.82, and 6.91 ± 0.57 817.3 ± 79.4, 65.43 ± 6.35, 10.65 ± 1.03, 8.07 ± 0.78, and 5.59 ± 0.54 Tg, 

respectively. 

Although our research has made significant steps, there are several limitations that require further research. Future studies  

should minimize the uncertainty of the simulations and achieve better fits with benchmark datasets on fire, vegetation, and 

emission products. Specific parameter settings need to also be developed to emphasize regional and seasonal differences. 985 

Continued improvement in the fire module and consideration of feedback loops will be crucial to continuously enhancing the 

accuracy of our models. Our work contributes to a more comprehensive understanding of the intricate interactions between 

fire dynamics, ecosystems, and climate, creating a new path for informed decision-making and broadening the field of 

biogeochemistry, global elemental cycles, and the importance of accurate vegetation dynamic modeling. 
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Appendix A 

A.1 Input and outputs of the SEIB-DGVM SPITFIRE 

A.1.1. Input 

1) Location: Latitude and altitude. 995 

2) Soil (fixed in time): Soil moisture at the saturation point, field capacity, matrix potential, wilting point, and albedo. 

3) Climatic data (daily): Air temperature, soil temperature, fraction of cloud cover, precipitation, humidity, and wind 

velocity. 

4) Atmospheric carbon dioxide (CO2) concentrations 

5) Fire ignition factors: population density (GPWv4) and lightning flash rate (LIS/OTD HRFC) 1000 

 

A.1.2. Output 

1) Carbon dynamics (daily–yearly): Terrestrial carbon pool (woody biomass, grass biomass, litter, and soil organic 

matter), CO2 absorption and emission rates. 

2) Water dynamics (daily): Soil moisture content (in three layers), interception rate, evaporation rate, transpiration 1005 

rate, interception rate, and runoff rate. 

3) Radiation (daily): Albedo from the terrestrial surface. 
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4) Properties of vegetation (daily–yearly): Vegetation type, dominant plant functional type, leaf area index, tree 

density, size distribution of trees, age distribution of trees, woody biomass for each tree, and grass biomass per unit 

area. 1010 

5) Disturbances (monthly–yearly): fire fraction, burned area, burned biomass, FDI, complete SPITFIRE variables, and 

33 types of burned biomass emissions. 

A.2 Processes in the SEIB-DGVM SPITFIRE and the approaches used to represent each process 

Process Approach References 

Disturbance Fire as an empirical function of fuel (litter and 

aboveground biomass), fuel moisture, and 

ignition factor (human- and lightning-caused) 

(Thonicke et al., 2001, 2010) 

Biogeochemical Trace gas emissions as an empirical function of 

the total amount of biomass burning and 

emission factor of each trace gas species 

(Andreae and Merlet, 2001) 

A.3 PFTs, Vvariables, parameters, and constants in the model’s equations 

Abbreviation Description Unit 

TrBE Tropical broad-leaved evergreen  - 

TrBR  Tropical broad-leaved raingreen  - 

TeNE  Temperate needle-leaved evergreen  - 

TeBE  Temperate broad-leaved evergreen  - 

TeBS  Temperate broad-leaved summergreen  - 

BoNE  Boreal needle-leaved evergreen  - 

BoNS  Boreal needle-leaved summergreen  - 

BoBS  Boreal broad-leaved summergreen  - 

TeH  Temperate herbaceous (C3 grass)  - 

TrH Tropical herbaceous (C4 grass) - 

M3 Probability of each PFTs survival after fire (varying 0.0–1.0) - 

𝑝𝑜𝑜𝑙 𝑤M3 The soil water content of each soil layerProbability of each PFTs 

survival after fire (varying 0.0–1.0) 

mm/day- 

𝐷𝑒𝑝𝑡ℎ𝑝𝑜𝑜𝑙 𝑤 Depth of each soil layerThe soil water content of each soil layer metermm/day 

𝑊𝑓𝑖𝐷𝑒𝑝𝑡ℎ Field capacityDepth of each soil layer m3 m-3meter 

Formatted Table

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted ...

Formatted ...

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt



53 

 

Abbreviation Description Unit 

Ab𝑊𝑓𝑖 Area burntField capacity ha/time unitm3 m-3 

AAb Grid cell areaArea burnt haha/time unit 

𝜌𝑏A Fuel bulk densityGrid cell area kg m-3ha 

FDI𝜌𝑏 Fire Danger Index (0.0–1.0)Fuel bulk density -kg m-3 

LBFDI Length to breadth ratio for woody and grass PFTsFire Danger 

Index (0.0–1.0) 

-- 

UforwardLB Forward wind speedLength to breadth ratio for woody and grass 

PFTs 

m/s- 

E(Nig)Uforward Expected number of fire ignition event (sum of population and 

lightning ignitions)Forward wind speed 

km2/time unitm/s 

E(Nih)E(Nig) Expected number of human-caused fire ignitionExpected number 

of fire ignition event (sum of population and lightning ignitions) 

km2/time 

unitkm2/time unit 

E(Nil)E(Nih) Expected number of lightning-caused fire ignitionExpected 

number of human-caused fire ignition 

km2/time 

unitkm2/time unit 

IpE(Nil) Ignition parameter: Define the power of lightning caused ignition 

(0.0–1.0)Expected number of lightning-caused fire ignition 

-km2/time unit 

𝜔𝑜Ip Relative moisture contentIgnition parameter: Define the power of 

lightning caused ignition (0.0–1.0) 

-- 

NI𝜔𝑜 Nesterov IndexRelative moisture content oC2- 

NBPNI Net Biome ProductionNesterov Index g C year-1oC2 

TmaxNBP Maximum temperatureNet Biome Production oCg C year-1 

TminTmax Minimum temperatureMaximum temperature oCoC 

TdewTmin Dew-point temperatureMinimum temperature oCoC 

meTdew Moisture extinctionDew-point temperature -oC 

𝛼𝑎𝑣me Drying parameters for 1-, 10- and 100-h fuel classesMoisture 

extinction 

oC-2- 

ROSf, surface𝛼𝑎𝑣 Forward rate of spread of surface fireDrying parameters for 1-, 10- 

and 100-h fuel classes 

m min-1oC-2 

ROSb, 

surfaceROSf, surface 

Backward rate of spread of a surface fireForward rate of spread of 

surface fire 

m min-1m min-1 

IRROSb, surface Reaction intensityBackward rate of spread of a surface fire kJ m-2 min-1m min-
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Abbreviation Description Unit 

1 

𝜉IR Propagating flux ratioReaction intensity -kJ m-2 min-1 

𝜙𝑤𝜉 Wind factorPropagating flux ratio -- 

Pb𝜙𝑤 Probability of fire per unit timeWind factor Time unit-1- 

𝜀Pb Effective heating numberProbability of fire per unit time -Time unit-1 

Qig𝜀 Heat of preignitionEffective heating number kJ kg-1- 

tfireQig Fire durationHeat of preignition minkJ kg-1 

Isurfacetfire Surface fire intensityFire duration kW m-1min 

SHIsurface Scorch HeightSurface fire intensity mkW m-1 

FSH PFT-parameter in crown scorch equationScorch Height -m 

CKF Fraction of crown scorchPFT-parameter in crown scorch equation -- 

THCK Tree heightFraction of crown scorch m- 

CLTH Crown length of woody PFTTree height mm 

PmCL Probability of postfire mortalityCrown length of woody PFT -m 

Pm(CK)Pm Probability of mortality as a result of crown scorchingProbability 

of postfire mortality 

-- 

Pm(𝜏)Pm(CK) Probability of mortality by cambial damageProbability of 

mortality as a result of crown scorching 

-- 

pPm(𝜏) Parameter for woody PFTs used in Pm(CK) equationProbability of 

mortality by cambial damage 

-- 

𝜏𝑙p Residence time of the fireParameter for woody PFTs used in 

Pm(CK) equation 

min- 

𝜏𝑐𝜏𝑙 Critical time for cambial damageResidence time of the fire minmin 

BT𝜏𝑐 Bark thicknessCritical time for cambial damage cmmin 

par1, par2BT Parameters for woody PFTs used in bark thickness 

calculationBark thickness 

-cm 

DBHpar1, par2 Diameter at breast heightParameters for woody PFTs used in bark 

thickness calculation 

m- 

Ei,jDBH Fire emissions of trace gas and aerosol species i and the PFT 

jDiameter at breast height 

g species m-2 s-1m 
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Abbreviation Description Unit 

EFi,jEi,j PFT-specific emission factorFire emissions of trace gas and 

aerosol species i and the PFT j 

g species (kg dry 

matter (DM))-1g 

species m-2 s-1 

CEjEFi,j Combusted biomass of PFT j due to the firePFT-specific emission 

factor 

g C m-2g species 

(kg dry matter 

(DM))-1 

CCEj Unit conversion factor from carbon to dry matterCombusted 

biomass of PFT j due to the fire 

g C (kg DM)-1g C 

m-2 

DTC Distance traveledUnit conversion factor from carbon to dry matter mg C (kg DM)-1 

UforwardDT Forward wind speedDistance traveled m min–1m 

Uforward Forward wind speed m min–1 

 1015 

Additional equations and variables of the implemented SPITFIRE module are referred to with adjustments to Thonicke et al. 

(2010) Table A1 and Appendix A-B, respectively. 

Code and data availability 

The spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) SPITFIRE code and data generated 

from this study (fire, vegetation, and 33 emission variables in Siberia) are available at 1020 

https://doi.org/10.5281/zenodo.8299732 

Supplement 

The supplement related to this article is available online at: https://egusphere.copernicus.org/preprints/2024/egusphere-2024-

105/egusphere-2024-105-supplement.pdf 

Author contributions 1025 

TK conceptualized of the project and experimental design with help from ND and HS. HN, LV, and TM contributed model 

cording and writing. developed the model code, and RN performed the model simulations and analyzed model output with 

validation data from TS and RH. RN prepared the paper with contributions from all co-authors. 
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