Answer to Review #2
Dear Reviewer,

Thank you for the time you spent reviewing our article and for your constructive feedback.
We welcome your suggestion to expand our analysis to explore possible reasons for
regional and variable-based differences between models. In the first draft of our manuscript,
we limited ourselves to a descriptive analysis of the results due to concerns related to the
limited sample size of our test data and the lack of statistical significance of the results.
However, following valuable comments from the other reviewer, we have now expanded our
analysis to also include robust significant tests of all our metrics, for all regions and individual
grid points (Figure 1-6). We believe that these tests may contribute to strengthen the results
of our analysis and also help to clarify which of the patterns we identified are supported by
robust empirical evidence.

The testing approach we employ is based on clustered standard errors (Liang and Zeger
(1986), Arellano (1987), and Cameron and Miller (2015)), a classic econometric approach
specifically designed for observations correlated in time and space. The intuition behind the
use of clustered standard errors is that since many of our extreme data-points come from
adjacent grid points and from events close to each other in time the effective number of
degrees of freedom for our tests is much smaller than the total number of available paired
forecast differences. Thus, we account for this by inflating the standard errors, by introducing
a clustering parameter, which takes into account the clustered nature of our extremes in
space and time. Below, we provide an example figure (updated Figure 2) to illustrate our
changes. Black borders indicate here that the performance of the model at a given lead time
is statistically significantly different from IFS HRES, at the 5% significance level.
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Similarly, we performed significance testing with time-clustered standard errors also for
grid-pointwise comparisons, exemplified below in a new figure to be added to the manuscript
where we evaluate statistically significant differences between the IFS HRES and the best of
the machine learning models at each grid point. Here, we also make use of global false
discovering rates (Wilks 2016, Benjamini and Hochberg, 1995) to correct for multiple testing
and ensure robust statistical inference. As illustrated by Wilks (2016), this approach is also
robust for spatially correlated values. As in Figures 1-3, blue shades indicate that the
machine learning model is better than IFS HRES, whereas red shades indicate that IFS
HRES is better. Gray shades indicate a lack of statistically significant differences.
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Additionally, we plan to add corresponding figures showing the magnitude of the differences
between the models, see example figure below.
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Besides the above changes, we are planning to specifically address your concerns in a
number of additional ways, by thoroughly revising and expanding several sections of our
manuscript:

- Figures 1-3 are going to include about a page each of discussion of the results,
where we explore possible explanations for regional and lead-time based differences
in performance between the models. We identify, in particular, two key drivers for
these differences, namely: the 1) the presence of increased blurring for data-driven
models in relation to extreme weather forecasts, and 2) a meridional pattern in the
quality of data-driven forecasts, with the best performance closest to the Equator,
and the worst performance at high latitudes, in most cases. Besides figures 1-6 and
the magnitude figure exemplified above, we also find evidence of this behaviour in
the additional figure below (Figure R1), where we plot the relative difference in tail
RMSE (5% most extreme events) between the ML models and IFS HRES (y-axis) vs
latitude (x-axis) for 1-10 days ahead forecasts, as in previous figures. Despite the
presence of some noise, we can notice some recurrent convexity in the performance
of machine learning models, especially at shorter lead times, with clear spikes of
poor performance close to the Poles. We believe that this behaviour may be
ascribed to the use of area weighted loss functions, which place greater emphasis on
errors closer to the Equator rather than to the Poles in order to maximise the
performance in standard area-weighted performance metrics.
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Fig. R1: Relative difference in tail RMSE (y-axis) vs. latitude (x-axis) for cold (a), hot (b), and
windy extremes (c). The data points are computed based on the (a) 5% lowest 2m
temperatures, (b) 5% highest 2m temperatures, and (c) 5% highest 10m wind speeds,
respectively. Forecasts are shown for X1) 1 day, X2) 3 days, X3) 5 days, X4) 7 days, and X5)
10 days. Negative values of the relative difference indicate better performance than IFS
HRES, while positive values indicate worse performance than IFS HRES.

We are going to rewrite our description of Figures 5-6 to place greater focus on
statistically significant results, and also explore differences in performance between
different variables. We link these differences to the previously identified patterns, and
also explore alternative explanations for newly identified regional patterns (e.g. lack
of key input variables as a driver of subpar performance in continental areas among
data-driven models).



We are going to expand our description of Figures 7-10 to link the calibration results
to the rest of the analysis, and provide a more in depth evaluation of the tail reliability
of data-driven models in different regions. We now also provide several possible
justifications for the results we obtain.

Lastly, we are going to expand and partially rewrite the discussion and conclusion
section to place greater emphasis on statistically significant results. Wherever
possible, we also back up possible explanations for these results with findings from
previous literature.

Additionally, we will also expand our discussion to address the limitations of our
extreme metrics, emphasising that every metric has weaknesses, and that any
attempts to make overarching comparisons between models should account for a
range of different metrics simultaneously, as well as look at the performance of
the forecasting models for the whole distribution of the variables, and not just at
the tails. Specifically, QQ-plots and other reliability checks are key here, since
they could easily expose attempts to hedge extreme metrics such as the tail
RMSE. We will further add some figures related to this point to a new Appendix
B.

In summary, we believe our results may be ascribed to a number of different causes, which
we are also going to discuss in our manuscript:

1.

The overall worsened performance of data-driven models for extremes compared to
standard metrics of average performance is likely linked to the choice of loss
functions (Xu et al., 2024, Olivetti and Messori, 2024) and globally smoothed
multitask approaches which are explicitly designed to optimise those metrics rather
than extreme metrics.

The relative decline in performance of data-driven models at longer lead times is tied
to the phenomenon of blurring (Bonavita, 2024; Price et al., 2024), which appears to
be more prominent for extremes than for the overall distribution of the variables.
Other possible explanations for the decreased performance at longer lead times
include the use of multi-step approaches in training (e.g. Bi et al., 2023), which may
lead to compound errors in initial atmospheric states over time (Bonavita 2024), and
the use of only the most recent time steps as inputs for the models.

The observed regional pattern of better performance in the Tropics and worse
performance at higher latitudes is likely connected to the use of latitude-based area
weights (e.g. Lam et al., 2023, Chen et al., 2023), which optimise performance closer
to the Equator at the expense of performance at higher latitudes.

The weaker performance of data-driven models for windy extremes, and for
temperature extremes in some specific regions, may be tied to the lack of key input
variables such as snow coverage, precipitation and soil moisture.

The overall weaker performance of data-driven models for wind extremes compared
to temperature extremes may be related to the separate training of 10m u-and
v-wind, whose errors may be magnified when looking specifically at 10m windspeed.
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