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Abstract. Flood forecasting systems play a key role in mitigating socio-economic damages caused by flooding events. The

majority of these systems rely on process-based hydrologic models (PBHM), which are used to predict future river runoff. To

enhance the forecast accuracy of these models, many operational flood forecasting systems implement error correction tech-

niques, which is particularly important if the underlying hydrologic model is underperforming. Especially, AutoRegressive

Integrated Moving Average (ARIMA) type models are frequently employed for this purpose. Despite their high popularity,5

numerous studies have pointed out potential shortcomings of these models, such as a decline in forecast accuracy with increas-

ing lead time. To overcome the limitations presented by conventional ARIMA models, we propose a novel forecast correction

technique based on a hindcast-forecast Long Short-Term Memory (LSTM) network. We showcase the effectiveness of the pro-

posed approach by rigorously comparing its capabilities to those of an ARIMA model, utilizing one underperforming PBHM

as a case study. Additionally, we test whether the LSTM benefits from the PBHM’s results or if a similar accuracy can be10

reached by employing a standalone LSTM. Our investigations show that the proposed LSTM model significantly improves the

PBHM’s forecasts. Compared to ARIMA, the LSTM achieves a higher forecast accuracy for longer lead times. In terms of

flood event runoff, the LSTM performs mostly on par with ARIMA in predicting the magnitude of the events. However, the

LSTM majorly outperforms ARIMA in accurately predicting the timing of the peak runoff. Furthermore, our results provide

no reliable evidence of whether the LSTM is able to extract information from the PBHM’s results, given the widely equal15

performance of the proposed and standalone LSTM models.

1 Introduction

Floods are among the most common and most destructive natural disasters around the world (Yaghmaei et al., 2020). Alongside

other mitigation measures, flood forecasting systems play a key role in increasing resilience to such events. In principle,

flood forecasting systems enable the prediction of future river runoff, empowering decision-makers and emergency forces to20
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implement effective early countermeasures in the case of flooding events. Examples of such flood forecasting systems are given

by Werner et al. (2009), Addor et al. (2011), Nester et al. (2016), Borsch et al. (2021), or Nevo et al. (2022).

To date, most operational flood forecasting systems are built around process-based hydrologic models (PBHM). These

models predict future river runoff by utilizing conceptual or more physically based approaches that depict the individual com-

ponents of the hydrologic cycle in the catchment. In recent years, many researchers have proposed solely data-driven models as25

an alternative to PBHMs. Particularly, models based on Long Short-Term Memory networks (LSTM, Hochreiter and Schmid-

huber, 1997) have gained recognition for their capabilities in accurately modeling river runoff. For example, Kratzert et al.

(2019) demonstrated that their LSTM model was able to outperform two PBHMs across multiple gauged but also ungauged

catchments. Although data-driven models have proven to be a viable alternative to PBHMs for modeling river runoff, they are

yet rarely applied as the core component in operational flood forecasting systems (Nevo et al., 2022).30

The primary task of PBHMs employed in operational flood forecasting systems is forecasting a sequence of future runoff

values. The length of this sequence is chosen based on the characteristics of the catchment and is referred to as the forecast

horizon. For the chosen forecast horizon, the PBHM derives the runoff forecasts based on meteorological quantities as well

as its current system state at the beginning of the forecast horizon, e.g., the state of the snow cover, the soil moisture, or

the available water below and above the surface (river runoff). A common practice in flood forecasting is to use real-time35

observations of these state variables, evaluate how the model was able to replicate them in the past and use this knowledge for

correcting the model’s forecasts. Considering the available literature, the most relevant correction strategies can be grouped as

follows: (I) State updating (Data Assimilation): The basic idea behind this concept is to use observational data to update parts

of the hydrologic model in real-time, allowing it to more accurately reflect the true state of the system. Commonly applied

methods for state updating in flood forecasting include variants of the Kalman Filter or Particle Filters (e.g., Weerts and40

El Serafy, 2006). (II) Error correction: These methods use observations of one or multiple state variables, mostly river runoff,

to correct the hydrologic model’s forecasts in a post-processing step. Especially, models belonging to the AutoRegressive

Integrated Moving Average (ARIMA) family are frequently employed for this purpose. However, despite their high popularity,

numerous studies have pointed out potential limitations of these models.

Firstly, ARIMA models often exhibit a decline in forecast accuracy with increasing lead time. For instance, Brath et al.45

(2002) demonstrated that the forecast accuracy of an adaptively updated ARIMA-type model degraded to match the accuracy

of the not-updated model after six time steps. A less significant performance decrease was observed for an ARIMA-type model

that was calibrated with a split-sample strategy. Similarly, Broersen and Weerts (2005) demonstrated that their employed

ARIMA-type models were able to significantly increase the prediction accuracy within the first day, while for further ahead

predictions only slight differences were found to forecasts corrected with the mean runoff over the last three weeks. Secondly,50

ARIMA models struggle to provide accurate forecasts for flood event runoff when the underlying hydrologic model fails to

give an adequate initial estimation, as for example shown by Liu et al. (2015). In their study, Liu et al. (2015) assessed the

predictive skills of an ARIMA-corrected PBHM for a total of four significant flood events. While their model demonstrated

a high forecast accuracy for events that were already captured well by the hydrologic model, it failed in one instance where
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this was not the case. Reasonable forecasts for this event could only be obtained in the consecutive forecast step, followed by55

a rapid decline in forecast accuracy.

Recently, researchers have explored the potential of neural networks, particularly Recurrent Neural Networks (RNN), to

enhance the results obtained from PBHMs, and the outcomes have been remarkably successful. For example, Rozos et al.

(2021) demonstrated that the predictive capability of an underperforming PBHM could be improved by employing both a

simple RNN and an LSTM, trained on meteorological data as well as the PBHM’s output. In a large-sample study, Konapala60

et al. (2020) tested various LSTM variants to enhance the prediction accuracy of a PBHM. They found that overall their hybrid

LSTM models that incorporated the results of the PBHM outperformed both the PBHM and in most instances also a standalone

LSTM. They also found that the highest improvements were achieved for catchments where the PBHM was underperforming.

A comparable study was also conducted by Frame et al. (2021). In their study, the authors showed that the runoff predictions

could be improved by LSTM models that incorporated the results of the PBHM. However, they also demonstrated that these65

models, in many instances, were outperformed by a standalone LSTM that did not incorporate information obtained by the

PBHM.

Given the promising findings of the aforementioned studies, we recognize the substantial potential of neural networks to

enhance the forecast accuracy of underperforming PBHMs employed in operational flood forecasting systems. Especially

in aspects where ARIMA correction methods previously demonstrated shortcomings, such as maintaining a high forecast70

accuracy for longer lead times, or accurately correcting poor flood event predictions, neural networks might yield more accurate

forecasts. To test this hypothesis, we propose a novel hindcast-forecast LSTM correction approach and compare its forecast

accuracy to that of a more conventional ARIMA model, using one underperforming PBHM as a case study. Specifically, the

selected PBHM has displayed weaknesses in predicting flood event runoff, i.e., the hydrograph’s rising and falling limbs as

well as the magnitude and timing of the maximum peak runoff. Besides comparing the efficiencies of ARIMA and the LSTM75

in correcting the PBHM’s forecasts, we also test an LSTM variant that does not incorporate information from the PBHM. This

investigation tests whether the LSTM can extract additional information from the PBHM’s results or if a similar accuracy can

be reached by replacing the underperforming PBHM with a standalone LSTM, a question raised by Frame et al. (2021). To

summarize, the main research questions addressed in this study can be stated as follows: (I) How does the LSTM approach

improve the overall quality of the forecasts, particularly for longer lead times? (II) How does the LSTM approach improve the80

forecast quality for flood events? (III) Does the inclusion of the PBHM’s results improve the predictive skills of the LSTM?

2 Study area and data

In this study, we investigated one medium-sized catchment located in the foothills of the Austrian Alps. The catchment drains

an area of about 78 km2 and features elevations from approximately 600 to 1600 meters above sea level. The catchment features

one gauging station operated by the Hydrographic Service of Styria (Austria). The mean annual runoff at the gauging station85

is approximately 1.0 m3s−1. Flood event runoff in this catchment is primarily driven by heavy precipitation events, with most
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Figure 1. (Bottom left) Location of the study catchment in Austria. (Right) Outline of the study catchment (black line) including the

gauging station (black and white diamond) and the main river network (blue lines). This figure was created using the following datasets:

Umweltbundesamt GmbH (2022) and Land Kärnten (2019).

events occurring at a sub-daily time scale. Fig. 1 provides an overview of the catchment’s geographic location, its boundaries,

the position of the gauging station, as well as the river network.

The here presented catchment was part of a broader study in which various catchments were modeled using a conceptual

rainfall-runoff model (Gegenleithner et al., 2024a). This particular catchment was selected for our investigation because the90

existing rainfall-runoff model failed to provide accurate runoff predictions. For the studied period (2011 - 2017), the existing

model merely achieved a Nash-Sutcliffe efficiency (NSE) of 0.43, a Kling-Gupta Efficiency (KGE) of 0.74, and a Percent

Bias (PBIAS) of -16.0. For a detailed explanation of these performance metrics, refer to Appendix A. Additionally, the PBHM

displayed significant shortcomings in capturing the flood event runoff characteristics, i.e., the rising and falling limbs of the

hydrographs as well as the timing and magnitude of the maximum peak runoffs.95

To develop our forecast models, we utilized the results of the PBHM at the gauge’s location (see Fig. 1), denoted as Qsim.

Additionally, we incorporated discharge measurements, henceforth referred to as Qobs. For the LSTM models exclusively,

we also included meteorological forcings as an input. Specifically, 1x1 km rasters of total precipitation and near-surface

temperature, obtained from the Integrated Nowcasting through Comprehensive Analysis system (INCA, Haiden et al., 2011),

were utilized. From the raster data, we extracted the catchment’s mean and maximum precipitation, designated as pmean and100
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Table 1. Statistics of the catchment’s runoff (gauge observation Qobs, PBHM simulation Qsim) and meteorological precipitation and tem-

perature forcings (pmean, pmax and tmean) comprising of their mean (µ), standard deviation (σ), maximum (max) and annual sum (Σ).

year

parameter statistic unit 2011 2012 2013 2014 2015 2016 2017

Qobs µ m3s−1 0.57 1.01 1.21 1.17 0.71 0.83 0.57

σ m3s−1 0.25 0.84 0.68 0.67 0.33 0.68 0.23

max m3s−1 9.61 25.20 15.00 7.27 5.85 17.90 9.21

Σ hm3 18.0 31.9 38.1 36.8 22.4 26.2 17.7

Qsim µ m3s−1 0.62 1.10 1.40 1.35 0.76 0.92 0.91

σ m3s−1 0.33 0.83 1.02 0.72 0.52 0.70 0.48

max m3s−1 4.20 8.94 11.40 7.68 4.50 6.43 4.61

Σ hm3 19.5 34.9 44.1 42.6 23.8 29.0 28.3

pmax max mm h−1 118 180 100 84.6 109 231 173

Σ mm 2159 2877 2777 2847 2198 3222 3076

pmean max mm h−1 29.2 69.7 45.8 33.5 38.6 61.6 69.3

Σ mm 871 1289 1284 1225 912 1188 1153

tmean µ ◦C 6.88 6.72 6.43 7.47 7.56 6.98 6.94

σ ◦C 7.97 8.72 8.21 6.72 7.90 7.59 8.27

pmax, along with its mean temperature tmean. Noteworthy, all processed datasets were available in 15-minute intervals. An

overview of the used data and its key statistics is provided in Table 1.

3 Methodology

3.1 Development of the forecast models

For conducting this study, we developed two forecast models, both of which integrated results obtained by the PBHM. The105

first model, ARIMA, relied on forecasting the errors between the simulated and observed runoffs. Subsequently, these errors

were used to correct the hydrologic model’s forecasts. The second model was based on a hindcast-forecast LSTM network. In

contrast to ARIMA, this model directly predicted the runoff by leveraging information on the observed and simulated runoff,

along with the meteorological forcings presented in Table 1. Henceforth, we will refer to this model as HLSTM-PBHM. In

addition to these models, we developed a variant of HLSTM-PBHM. This variant was implemented with the same architecture110

but without integrating the PBHM’s results as a feature. This model will be further referred to as the standalone LSTM or, in

short, HLSTM.
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Considering the nature of the catchment investigated, all forecast models were developed with a temporal resolution of 15

minutes and a 24-hour forecast horizon, equivalent to 96 consecutive forecast steps.

3.1.1 Model optimization: Time series cross-validation115

To optimize the hyperparameters of our ARIMA and LSTM models, we employed a blocked cross-validation strategy as

recommended by Bergmeir and Benítez (2012). We chose an expanding window setup, which allowed us to evaluate the model

performances on a multitude of previously unseen data by progressively expanding the data available for training, validation,

and testing. Especially in hydrologic modeling applications, where the data exhibit considerable variability (e.g., dry vs. wet

years), this strategy can boost the model’s generalization capabilities.120

We implemented our cross-validation strategy by initially dividing the available time series into equally sized folds, i.e.,

subsets of the data. Each fold consisted of a sample size of N = 34,903, approximately equivalent to one year’s worth of data.

This procedure resulted in seven folds corresponding to the years 2011 through 2017. Subsequently, we utilized these folds

to create a total of five cross-folds used for model training, validation, and testing. Following the expanding window strategy,

each cross-fold was extended by one fold compared to the previous one. Within each cross-fold, the last and second-to-last125

folds served as the testing and validation sets, while all preceding folds were used for model training.

For optimizing the models, we employed two loops. In the inner loop, the parameters of each model were optimized using

the training and validation sets of each cross-fold. Following the recommendations of Tashman (2000), the models underwent

retraining for each cross-fold. Subsequently, the models’ hyperparameters were tuned in the outer loop. Thereby the perfor-

mance of multiple candidate models was evaluated for the testing sets, and the one that maximized the tuner objective function130

was chosen for final deployment. For the objective function, we selected a combination of the NSE and KGE metrics. For a

detailed description of the employed objective function, refer to Appendix B. A visual representation of the here presented

methodology is provided in Fig. 2.

3.1.2 AutoRegressive Integrated Moving Average model

ARIMA-type models are widely used for predicting hydrometeorologic time series, such as precipitation or runoff (Brath135

et al., 2002; Broersen and Weerts, 2005; Liu et al., 2015; Khazaeiathar et al., 2022). ARIMA models are commonly denoted

as ARIMA(p,d,q), where p is the order of the autoregressive part, d is the differentiation order, and q represents the order of

the moving average component. In other words, the values of p and q indicate the number of previous values considered for

making the forecasts, and d specifies the number of differentiation operations applied to the original time series.

The ARIMA model presented here was developed by using the Python Statsmodels library (Seabold and Perktold, 2010).140

In the first step the model computed the errors between the gauge observations Qobs and the runoff obtained by the PBHM

Qsim in the past. Subsequently, ARIMA predicted the errors in the forecast period and used them to correct the forecasts of

the PBHM. A visual representation of this procedure is given in Fig. 3.

The here presented ARIMA model was optimized by employing an exhaustive search algorithm, representing the outer

loop described in Sect. 3.1.1. The parameters subjected to optimization along with their search space were chosen as follows:145
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Figure 2. Blocked cross-validation strategy with expanding window setup. The parameters of the models were fitted within the inner loop

while the hyperparameters were tuned in the outer loop, utilizing the validation fold of each of the five cross-folds.

p ∈ [1,20], q = p− 1, and d ∈ [1,2]. Contrary to other studies (e.g., Broersen and Weerts, 2005), the ARIMA model was not

retrained adaptively, i.e., in each forecast step. Instead, ARIMA’s model coefficients were determined by utilizing the entire

training time series of each cross-fold (see Sect. 3.1.1) and the resulting coefficients were used for the forecasts in the validation

and testing sets. In the case presented here, this approach resulted in superior model performances when compared to often

employed adaptive model optimization strategies. Noteworthy, similar findings were also presented by Brath et al. (2002).150

Following this procedure, the best-performing model was determined as ARIMA(14,1,13).

3.1.3 Hindcast-forecast Long Short-Term Memory network (HLSTM-PBHM & HLSTM)

Long Short-Term Memory Networks (Hochreiter and Schmidhuber, 1997) are a special form of Recurrent Neural Networks

(RNNs). They are specifically designed to address the common issue of vanishing gradients that are often encountered during

the training process of RNNs. RNNs process sequential data by maintaining hidden states H that retain information from pre-155

vious inputs, allowing them to capture temporal dependencies. In addition, LSTMs possess cell states C and incorporate three

gates - namely, the input gate for controlling incoming information to the cell state, the output gate for regulating information

passage to the hidden state, and the forget gate for determining the retention or clearance of stored information in the cell state.

The LSTM models presented in this study were developed using TensorFlow (Abadi et al., 2015) and the Keras framework

(Chollet et al., 2015). Both LSTM variants were implemented with a hindcast-forecast architecture, similar to the one presented160

by Nevo et al. (2022). This architecture involved coupling two distinct LSTM layers, one for the hindcast period and one
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Figure 3. ARIMA architecture. The optimized ARIMA(p,d,q) model utilized the errors between the PBHM’s results Qsim and the

observed runoff Qobs in the past e to forecast the errors in the forecast period ê. Consecutively, the forecasted errors were used to correct

Qsim in the forecast period. Noteworthy, h and f refer to the hindcast and forecast periods, respectively.

for the forecast period, respectively. The sequence-to-one hindcast LSTM learned patterns in the data of the past 24 hours.

Subsequently, the hindcast LSTM’s last hidden H0 and cell states C0 were extracted and handed to a fully connected layer.

The output of this layer was then used to initialize the first hidden H1 and cell states C1 of the sequence-to-sequence forecast

LSTM. Besides information on the hindcast period, that was given by the states of the hindcast LSTM, the forecast LSTM165

included additional features available in the forecast period. The sequential output of the forecast LSTM was then flattened and

passed through another fully connected layer to obtain the runoff forecasts for the next 24 hours. For this layer, we used the

Rectified Linear Unit (ReLU) as the activation function, which prevented negative runoff forecasts. To prevent data leakage, the

models’ input features were normalized based on statistics calculated from the first available year (2011). For the normalization,

we used min-max scaling for the runoff and precipitation data, while z-score standardization was used for the temperature. The170

model was trained using the Adam optimizer (Kingma and Ba, 2017) that minimized a combined objective function consisting

of the KGE and NSE metrics. For a detailed explanation of the employed loss function, refer to Appendix B.

The architecture presented in Fig. 4 was used to develop two model variants. The first variant, HLSTM-PBHM, included the

meteorological forcings given in Table 1. These forcings included the catchment’s mean and maximum precipitation and its

mean temperature in both the hindcast and forecast periods. Additionally, HLSTM-PBHM incorporated runoff observations in175

the hindcast period and the PBHM’s results in both the hindcast and forecast periods, respectively. The second model variant,

HLSTM, included similar features as HLSTM-PBHM. However, for this model variant, the results of the PBHM were not

included.

To optimize the models’ hyperparameters, we employed a random grid search tuner (O’Malley et al., 2019) as the outer loop

of the cross-validation strategy presented in Sect. 3.1.1. Auxiliary information on the parameters subjected to optimization as180

well as the models’ final hyperparameters can be found in Appendix C.
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Figure 4. LSTM architecture. The optimized LSTM models incorporated the meteorological quantities pmean, pmax, and tmean in both

the hindcast and forecast periods. Furthermore, the observed runoff Qobs was used as a feature for the hindcast LSTM. HLSTM-PBHM

exclusively incorporated results from the PBHM Qsim in both the hindcast and forecast periods. The hidden and cell states of the hindcast

LSTM (H0 and C0) were used to initialize the hidden and cell states of the forecast LSTM (H1 and C1). Noteworthy, h and f refer to the

hindcast and forecast periods, respectively.

3.2 Model performance evaluation

We utilized the five cross-folds (2013 through 2017) presented in Sect. 3.1.1 for evaluating the performances of our forecast

models. In alignment with the research questions addressed in this study, we conducted the following evaluations:

– How does the LSTM approach improve the overall quality of the forecasts, particularly for longer lead times? To answer185

this question, we first evaluated each model’s (ARIMA, HLSTM-PBHM, and HLSTM) annual performance, i.e., the

overall performance for each of the five previously unseen testing years. For this evaluation, we utilized three well-

established metrics in hydrology, namely the NSE, the KGE, and the PBIAS. For each metric, we computed the annual

average across the forecast horizon as well as the individual values corresponding to the forecast steps. Additionally,

we conducted a direct comparison between both correction models, namely ARIMA and HLSTM-PBHM. This was190

achieved by counting the number of superior model performances for each year and lead time step. More specifically,

we counted the number of times each model’s predictions were closer to the observed runoff values. By normalizing the

superior model performances with the number of predictions, we obtained a ratio that indicates how often each model

outperformed the other. Henceforth, we will refer to this ratio as the normalized win ratio. Besides the normalized win

ratio, we also investigated the overall stability of the forecasts. The forecast stability was gauged by monitoring the195

development of the absolute error (AE) and its variability across the entire forecast horizon. The variability was assessed

by evaluating the standard deviation of the forecast errors for each forecast step. In general, a model with a high forecast

stability is expected to display a relatively small standard deviation and an AE close to zero.

– How does the LSTM approach improve the forecast quality for flood events? This question was addressed by conducting

a detailed investigation of each model’s performance for the two largest flood events in each year. For each event, we200

included 12 hours before and after the maximum observed runoff into the evaluation. We then tested how well the models
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were able to capture the maximum peak runoff in both timing and magnitude. For this purpose, we computed the median

peak magnitude error as well as the median temporal offset across all forecasts in the evaluation window. Additionally,

we conducted a direct comparison between the ARIMA and HLSTM-PBHM correction models only considering the

largest runoff values in each year. For this evaluation, we utilized the largest 5 % of the annual runoff values. This direct205

comparison between the correction models was done analogously to the methodology presented in the previous point.

– Does the inclusion of the PBHM’s results improve the predictive skills of the LSTM? This critical question was ad-

dressed by comparing the proposed HLSTM-PBHM model to a variant that did not utilize information from the PBHM

(HLSTM). More specifically, we compared differences in the annual and peak performances of both models. Addition-

ally, we investigated the generalization capabilities of both model variants. To establish a baseline, we also evaluated the210

generalization capabilities of the ARIMA model. The generalization capability of each model was measured by comput-

ing the mean differences of the NSE, KGE, and PBIAS metrics obtained in the validation and testing years across all

cross-folds.

4 Results

4.1 Annual model performance215

4.1.1 Average performance and generalization capability

Evaluating the average annual model performances showed that all investigated model variants were able to enhance the

underperforming PBHM’s results. Each model’s annual NSE, KGE, and PBIAS metrics, averaged over the 24-hour forecast

horizon, are reported in Table 2.

The results revealed that the LSTM-based models excelled in terms of NSE and KGE. For instance, they were able to elevate220

the average NSE values of the PBHM from 0.19 to at least 0.87 in 2013. Even in the worst-performing year, 2017, the LSTM-

based models were able to elevate the average KGE and NSE values from 0.19 and -4.24 to well above 0.87 and 0.74. Contrary

to that, the forecasts obtained by ARIMA displayed a particularly low PBIAS error compared to the other model variants. We

found that this can be attributed to the fact that our ARIMA model performed exceptionally well for forecasts that followed a

clear trend or pattern. Noteworthy, in hydrologic modeling applications, this is the case for most forecasts throughout the year,225

i.e., in baseflow conditions. In these instances, our ARIMA model produced near-perfect forecasts, reflected in the close-to-

zero PBIAS values. The significant performance gap between the PBIAS and the NSE and KGE metrics, however, suggested

shortcomings of the forecasts obtained by ARIMA. The most straightforward way to identify these shortcomings was by

dissecting the individual components of the KGE efficiency metric. This metric consists of three components that measure the

linear correlation, the bias, and the variability between the simulated and observed runoffs. As expected, the KGE’s bias term230

for the ARIMA forecasts was close to perfect. Also, the variability term did not signal systematic shortcomings compared to the

LSTM results. However, regarding the linear correlation term, we found that the LSTM forecasts significantly outperformed
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Table 2. Average model performance comparison. Included are the annual averages of the KGE, NSE, and PBIAS metrics averaged across

the entire forecast horizon for all years used for evaluation. The best values per metric and year are highlighted in bold.

year PBHM ARIMA HLSTM-PBHM HLSTM

KGE NSE PBIAS KGE NSE PBIAS KGE NSE PBIAS KGE NSE PBIAS

2013 0.63 0.19 -10.68 0.84 0.69 -0.02 0.87 0.88 9.10 0.90 0.87 8.27

2014 0.74 0.49 -18.44 0.85 0.74 0.03 0.93 0.94 3.28 0.95 0.94 -4.54

2015 0.51 0.24 2.51 0.82 0.70 0.07 0.94 0.91 -1.79 0.82 0.83 -6.22

2016 0.74 0.51 -8.24 0.85 0.71 -0.02 0.86 0.86 5.31 0.88 0.88 -5.67

2017 0.19 -4.24 -57.66 0.56 0.02 -0.33 0.87 0.74 -8.06 0.87 0.80 2.68

those of ARIMA. According to Gupta et al. (2009), this term is influenced by the model’s ability to capture the peak timing as

well as the rising and falling limbs of the hydrographs.

To assess the forecast models’ generalization capabilities, we computed the absolute differences (∆) between the hydrologic235

metrics obtained in the validation and testing periods of each cross-fold, respectively. The resulting generalization errors are

presented in Table 3.

The presented results, in general, demonstrate satisfying generalization capabilities of all model variants. Especially ARIMA,

in most instances, performed exceptionally well in this regard. This was found to be particularly true for the PBIAS metric,

which comes as no surprise given the exceptional performance of ARIMA for this metric. Noteworthy, also for the KGE240

and NSE metrics, ARIMA in most instances demonstrated superior generalization capabilities compared to the LSTM-based

models. The only exception to this was found to be ARIMA’s performance in 2017, which was significantly worse compared to

the previous years. This in turn had a large impact on the generalization error, which resulted in 0.318 for the KGE and 0.768 for

the NSE, respectively. The reason for that was the poor performance of the PBHM in 2017, upon which ARIMA heavily relied

on. Interestingly, despite the PBHM’s poor performance in 2017, it did not compromise the generalization capabilities of the245

LSTM variant that incorporated the PBHM’s results. Even in this year, the HLSTM-PBHM model performed comparably well

to the standalone LSTM model, HLSTM. Also for all preceding evaluation years, our results did not reveal notable differences

in the generalization capabilities between the two LSTM variants.

4.1.2 Performance over lead time

Each model’s performance was assessed by monitoring the development of the NSE, KGE, and PBIAS metrics across the250

24-hour forecast horizon (96 consecutive time steps). The results of each evaluated year and metric are presented in Fig. 5.

As anticipated, both the ARIMA and LSTM models surpassed the PBHM’s results across all evaluated metrics and years.

ARIMA, in particular, demonstrated an exceptional performance in terms of PBIAS. Also in terms of NSE and KGE, ARIMA

showed an outstanding forecast accuracy for the first forecast steps. However, this accuracy showed to decline quickly with

increasing lead time. This fact became particularly evident in 2017 when ARIMA’s initial KGE dropped from 0.98 in the first255
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Table 3. Generalization errors between validation and testing years for the KGE, NSE, and PBIAS metrics. Given is the absolute difference

between the respective metrics. The best values per metric (i.e., the value closest to zero) and year are highlighted in bold.

year ARIMA (∆) HLSTM-PBHM (∆) HLSTM (∆)

KGE NSE PBIAS KGE NSE PBIAS KGE NSE PBIAS

2013 0.024 0.044 0.096 0.049 0.095 6.751 0.294 0.205 4.752

2014 0.001 0.036 0.165 0.004 0.028 4.333 0.015 0.022 4.805

2015 0.033 0.042 0.013 0.029 0.041 1.188 0.155 0.119 6.900

2016 0.040 0.021 0.076 0.109 0.072 4.346 0.086 0.045 5.044

2017 0.318 0.768 0.367 0.054 0.130 8.315 0.049 0.089 2.436

prediction step to 0.52 in the last. An even more significant performance decrease was observed for the NSE metric, where

ARIMA achieved a value of 0.97 in the first step but merely -0.10 in the last. Compared to the forecasts obtained by ARIMA,

the LSTM models generally displayed a lower accuracy in the first forecast steps. However, they were able to mostly sustain

their initial accuracy across the entire forecast horizon. Even in the worst-performing year, 2017, the LSTM models were able

to uphold at least a KGE of approximately 0.82 and an NSE of 0.64.260

The results presented in Fig. 5 demonstrate the superiority of the LSTM-based models in obtaining accurate forecasts for

longer lead times when judged by the NSE and KGE metrics. In terms of NSE, the LSTMs outperformed ARIMA after a

maximum of 16 lead time steps (4.00 hours) and 5 lead time steps (1.25 hours) on average. For the KGE, the required time

for the LSTMs to surpass ARIMA was generally higher. This outcome was no surprise given that the KGE metric includes a

direct measure for the bias, for which ARIMA demonstrated near-perfect prediction accuracy. The reason for that was already265

explained in Sect. 4.1.1.

The comparison of the results of both LSTM variants, HLSTM-PBHM and HLSTM, did not reveal substantial advantages

of one over the other. Both models outperformed each other in certain years and evaluation metrics. This implies that the

presented results do not offer clear evidence of whether the LSTM model benefited from the inclusion of the PBHM’s results

or not.270

4.1.3 ARIMA and HLSTM-PBHM comparison

To allow for a direct comparison between both correction models, ARIMA and HLSTM-PBHM, we evaluated the number of

superior forecasts obtained by both model variants, quantified by the normalized win ratio. For this evaluation we considered

the model variant with the lower absolute error (AE) to be superior to the other. Additionally, we evaluated the stability of the

forecasts obtained by both model variants. The forecast stability was gauged by monitoring the development of the AE and its275

variability across the forecast horizon. The variability of the forecasts was quantified by means of the standard deviation. The

results of this evaluation are presented in Fig. 6.
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Figure 5. Development of the KGE, NSE, and PBIAS metrics over the 24-hour (96 lead time steps) forecast horizon. The evaluations include

all developed model variants and all testing years.
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When solely considering the normalized win ratio, ARIMA showed to outperform HLSTM-PBHM more often than not.

Especially, in the first forecast step ARIMA yielded better results in a minimum of 75 % of the total forecasts in 2014 and

up to 91 % in 2016. Interestingly, even for longer lead times, ARIMA outperformed the LSTM in many instances throughout280

the year. Again, this can be attributed to the fact that ARIMA’s performance was near-perfect for forecasts that followed a

clear trend or pattern (see Sect. 4.1.1). Investigating the development of the mean absolute error suggested a widely equal

performance of the ARIMA and HLSTM-PBHM forecasts. Exceptions for this were found to be the years 2014 and 2016,

where HLSTM-PBHM achieved a more favourable mean error. Contrary to that, the forecasts obtained by ARIMA displayed

a much higher standard deviation, especially for longer lead times. This indicates that ARIMA in certain instances produced285

considerably worse forecasts compared to the LSTM. In this regard, HLSTM-PBHM surpassed ARIMA on average after four

forecast steps (1.00 hours).

4.2 Performance for elevated river runoff

4.2.1 Peak timing and magnitude

For assessing the performances of our forecast models at flood event runoff, we determined the models’ median peak magnitude290

and timing errors for the two largest events in each year. The magnitude error epeak quantifies the median offset between

the maximum observed and simulated peak runoff across the evaluation window in percent. Similarly, the timing error ∆t

measures the median temporal offset between the maximum observed and simulated peak runoff in number of time steps.

Positive magnitude errors indicate model overestimation, while negative values suggest an underestimation. As for the timing

errors, negative values indicate that the model predicted the maximum peak runoff earlier than observed, and positive values295

indicate the opposite. The results of this evaluation are presented in Table 4.

Upon initial inspection, the presented results highlight the deficiencies of the PBHM in capturing both the peak magni-

tude and its timing. Especially, the substantial timing errors suggest shortcomings of the model in adequately depicting the

characteristics of the hydrographs. In terms of magnitude error, the PBHM exhibited a median magnitude error of -44.7 %,

predominately underestimating the observed peak runoff. Interestingly, both ARIMA and the LSTMs showed only modest im-300

provements compared to the PBHM, with median errors of -38.5 %, -28.6 %, and -22.2 % for ARIMA, HLSTM-PBHM, and

HLSTM, respectively. Considering this, ARIMA was able to elevate the PBHM’s median magnitude error by approximately

6 %, HLSTM-PBHM by 16 %, and HLSTM by 22 %, respectively. Although, HLSTM was able to achieve the highest relative

improvement compared to the PBHM, its magnitude errors were still large.

In terms of timing errors, the ARIMA-corrected forecasts showed no improvement compared to the PBHM’s results. In305

fact, quite the opposite was observed. Whilst the PBHM achieved an absolute median timing error of 27 time steps, a value of

37 was achieved by ARIMA. Contrary to that, both LSTM variants were able to significantly reduce the timing errors in the

forecasts. More specifically, both LSTM variants achieved a median absolute timing error of two time steps, equivalent to 30

minutes.
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Figure 6. ARIMA and HLSTM-PBHM forecast comparison for all forecasts per year for the 24-hour forecast horizon (96 time steps). (Left)

Normalized win ratio (i.e, ratio of superior model forecasts). (Right) Propagation of the absolute error. Shown are the mean µ and the standard

deviation σ of the absolute errors. .

4.2.2 ARIMA and HLSTM-PBHM comparison for elevated river runoff310

Similar to the results presented in Sect. 4.1.3, Fig. 7 shows the normalized win ratio but only evaluated for the largest 5 % of

the annual runoff. Furthermore, the propagation of the absolute error and its variability are shown.

The presented results highlight the superiority of HLSTM-PBHM in improving the forecast accuracy at elevated river runoff,

particularly for longer lead times. This manifested in both the normalized win ratio (except for 2015) and also in the propagation

of the mean absolute error and its standard deviation. Except for 2015, the LSTM’s absolute error for longer lead times was315
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Table 4. Comparison of the median peak magnitude epeak (in percent) and timing errors ∆t (in number of time steps) for the two largest

flood events in each year. The smallest errors and offsets per event are highlighted in bold.

year event obs. peak runoff PBHM ARIMA HLSTM-PBHM HLSTM

(m3s−1) epeak (%) ∆t epeak (%) ∆t epeak (%) ∆t epeak (%) ∆t

2013 1st 15.00 -90.3 31 -75.3 47 -44.7 29 -16.2 0

2nd 10.02 +13.3 20 -3.5 19 -49.8 8 +17.4 3

2014 1st 7.27 +3.5 18 +2.1 18 -33.5 -1 -46.1 7

2nd 6.23 +23.3 16 +21.3 16 -20.0 -2 -37.6 2

2015 1st 5.85 -62.5 36 -46.9 36 -22.5 0 -15.9 -2

2nd 3.33 +4.7 49 +6.2 48 -9.8 2 -18.9 2

2016 1st 17.94 -73.6 26 -47.4 47 -23.8 2 +23.4 1

2nd 9.99 -39.4 -96 -33.9 -89 -67.5 4 -25.4 2

2017 1st 9.21 -49.9 25 -43.1 37 -56.4 63 -62.0 3

2nd 7.37 -63.1 28 -44.7 29 -16.2 0 -47.6 57

almost half of ARIMA’s errors. A similar trend was observed for the standard deviations. Noteworthy, also for elevated runoff,

ARIMA’s forecast accuracy was higher in the first time steps compared to HLSTM-PBHM. On average, the LSTM required

four forecast steps to surpass the results of ARIMA.

5 Discussion

In this study, we built upon the promising outcomes of prior research (see Rozos et al., 2021; Konapala et al., 2020; Frame320

et al., 2021) by exploring the potential of LSTMs for enhancing the forecast accuracy of PBHMs employed in operational

flood forecasting systems. For this purpose, we developed an LSTM model (HLSTM-PBHM) that was largely inspired by

the hindcast-forecast architecture presented by Nevo et al. (2022). This specific architecture was selected as it facilitates an

effective integration into operational forecasting systems. Specifically, the hindcast-forecast architecture allows for a clear sep-

aration between hindcast and forecast data, which comes with certain advantages. For example, this strategy would allow for325

distinguishing meteorological forecasts and analyses, potentially enabling the model to learn from their differences. Further-

more, with the here presented cross-validation strategy, we established a framework for a seamless continuous improvement

of the model as new observational data become available. To showcase the proposed model’s effectiveness, we rigorously

compared its forecasting capabilities to those of a more conventional ARIMA model, using one underperforming PBHM as a

case study. Particularly interesting was how the proposed LSTM model (HLSTM-PBHM) improved the forecast accuracy for330

longer lead times and flood event runoff, both being recognized weaknesses of ARIMA models.

When comparing the forecasts obtained by both correction models, ARIMA and HLSTM-PBHM, we observed that both

had their advantages and disadvantages. ARIMA generally showed a very high accuracy in the first forecast steps. However,
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Figure 7. ARIMA and HLSTM-PBHM forecast comparison for the largest 5 % of the annual runoff values for the 24-hour forecast horizon

(96 time steps). (Left) Normalized win ratio (i.e, ratio of superior model forecasts). (Right) Propagation of the absolute error. Shown are the

mean µ and the standard deviation σ of the absolute errors.

this initial accuracy showed to decline quickly with increasing lead time. These findings align with those presented in previous

studies such as Brath et al. (2002) or Broersen and Weerts (2005). In contrast, the LSTM model typically exhibited a larger335

error in the first steps but it was able to mostly sustain its initial accuracy across the forecast horizon. We also observed that for

longer lead times the LSTM yielded much more reliable forecasts. In most instances, it achieved a lower absolute error and also

displayed a lower variability in these errors. This was particularly evident in elevated runoff conditions. Interestingly, ARIMA
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performed exceptionally well in terms of PBIAS. The reason for that was found in ARIMA’s exceptionally high accuracy for

forecasts that followed a clear trend or pattern, which appears most often during base flow conditions.340

When considering the forecast skills at flood event runoff, the LSTM outperformed ARIMA. This was indicated by both

the KGE’s Gupta et al. (2009) correlation term and also the obtained errors at selected flood events. Although both the LSTM

and ARIMA models were not able to significantly improve the PBHM’s magnitude errors, the LSTM was able to significantly

reduce its timing errors. Contrary to that, ARIMA’s timing errors were even larger than those of the original PBHM. This

implies that ARIMA was not able to adequately transform the event hydrographs in instances where the underlying PBHM345

was not able to give an adequate initial estimation, a fact that was also reported by Liu et al. (2015). Overall we found that our

LSTM model outperformed ARIMA in all aspects we consider relevant for operational flood forecasting, i.e., a more accurate

representation of flood event runoff and more reliable forecasts for longer lead times.

Reflecting on the remarkable capabilities of LSTM models in predicting river runoff (e.g., Kratzert et al., 2019) inevitably

prompts the question of whether these advancements render PBHMs obsolete in operational flood forecasting. In a study,350

Frame et al. (2021) demonstrated that, in many instances, a standalone LSTM outperformed two hybrid LSTMs that included

the PBHMs results. In light of these findings, we critically scrutinized our approach by comparing its forecast skills to those

of an LSTM variant (HLSTM) that did not include the PBHM’s results. This investigation was conducted to test whether the

LSTM can fully replace the underperforming PBHM. For the here presented test case, we found no distinct evidence of whether

our LSTM benefited from including the PBHM’s forecasts or not. Both model variants yielded viable results occasionally355

outperforming each other in some of the years and metrics used for evaluation. The widely equal performance of both model

variants suggests that the decision of which strategy should be employed has to be made under careful consideration of the

forecasting system’s requirements.

Nevertheless, it is crucial to consider certain aspects when implementing solely data-driven models into operational fore-

casting systems: (I) Training on erroneous data: In the scenario presented, there are two primary sources of uncertainty. Firstly,360

the training data may carry systematic uncertainties, such as an underestimation of the rainfall intensity by the meteorological

model. Secondly, there is the possibility of erroneous gauging data (target data), which can for example result from translating

the measured river stage to runoff (e.g., McMahon and Peel, 2019). In instances of erroneous training data, data-driven models

might be adept at learning any systematic errors embedded in the data, presenting a viable alternative to PBHMs. Conversely,

in the case of erroneous gauging data, data-driven models may still yield seemingly usable results, having learned from these365

errors, while PBHMs struggle to adapt and may signal potential issues. (II) Out-of-sample predictions: In this study, we have

demonstrated that our data-driven models were able to achieve a higher generalization capability compared to the underper-

forming PBHM. However, this might not be true in instances where the underlying catchment processes are captured well by

the PBHM, particularly if limited data is available for training the LSTMs (e.g., Natel de Moura et al., 2022). (III) Limited

availability of system states: The information of system states in the catchment is limited when employing solely data-driven370

models. However, many operational forecasting systems rely on information of the system states, e.g., the snow cover, the

soil moisture, or spatially distributed information of the runoff in the catchment. Often these states function as an additional

decision criterion for the system’s operator or are required for the implementation of more complex forecasting chains.
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Although the here presented LSTM models already achieved a comparably high forecast accuracy, there a potential exists for

future enhancements. Firstly, the pre-processing phase can be intensified. Specifically, a more careful approach to feature engi-375

neering could increase the model’s quality by providing more relevant and informative features included in training. Secondly,

the target data (gauge runoff) can be diagnosed. For instance, adopting the probe technique presented by Lees et al. (2022)

could be used to identify behavioral anomalies in the LSTM cell states by comparing multiple catchments. Lastly, future work

could also focus on investigating a hybrid ARIMA-LSTM approach, potentially leveraging the individual strengths of each

model.380

6 Conclusions

In this study, we proposed a forecast correction method, based on a hindcast-forecast LSTM network (HLSTM-PBHM). The

efficacy of this proposed method was demonstrated by comparing its forecast accuracy to results obtained by a conventional

ARIMA model, utilizing one underperforming PBHM as a case study. Additionally, we compared both correction strategies to

a standalone LSTM that did not incorporate the PBHM’s results (HLSTM). The main findings of this study can be summarized385

as follows:

– Both correction methods (ARIMA and HLSTM-PBHM) were able to elevate the forecast accuracy of the exiting PBHM.

– ARIMA achieved a particularly high forecast accuracy in the first forecast steps. However, this initial accuracy showed

to decline quickly with increasing lead time. Contrary to that, the LSTM models exhibited a larger error in the first steps,

but they were able to mostly sustain their initial accuracy across the forecast horizon.390

– Both, ARIMA and HLSTM-PBHM, displayed shortcomings in accurately predicting the magnitude of the largest flood

events. However, in contrast to ARIMA, HLSTM-PBHM was able to accurately predict the timing of the maximum peak

runoff.

– We did not find strong evidence of whether the inclusion of the PBHM’s results benefited the accuracy of the LSTM.

Both models, the one that utilized the PBHM’s results and the one that did not, yielded comparably accurate forecasts.395

To summarize, in this study we demonstrated that LSTM models can pose a viable alternative to frequently employed

ARIMA correction models in operational flood forecasting systems, particularly if the underlying PBHM is underperforming.

Appendix A: Evaluation metrics

A1 Nash-Sutcliffe efficiency (NSE)

The Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) quantifies how well the model performs compared to a simple400

mean runoff benchmark. In its original form, the NSE can be written as:
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NSE = 1−
∑N

t=1(QObs,t−QSim,t)2∑N
t=1(QObs,t−QObs)2

(A1)

where QObs,t and QSim,t is the observed and predicted runoff, respectively. The NSE is bound between 1 and −∞, with 1

indicating perfect model predictions.

A2 Kling-Gupta Efficiency (KGE)405

The Kling-Gupta Efficiency (KGE) was proposed by Gupta et al. (2009). It is a combined efficiency metric that considers the

correlation, the bias, and the variability of the flow. In this study, we utilized the modified Kling-Gupta Efficiency (Kling et al.,

2012), which can be written as:

KGE = 1−
√

(r− 1)2 + (β− 1) + (γ− 1)2 (A2)

where r is the correlation term, β is the bias term given by the ratio of the mean of the simulated and observed runoff410

values µSim,t/µObs,t and γ is the variability term, which is computed from the standard deviations and the mean values as
σSim,t/µSim,t

σObs,t/µObs,t
. The KGE is bound between 1 and −∞, with 1 indicating perfect model predictions.

A3 Percent Bias (PBIAS)

The PBIAS is a measure that quantifies if the model tends to underpredict or overpredict the observed runoff. It can be written

as follows:415

PBIAS =
∑N

t=1(QObs,t−QSim,t)∑N
t=1 QObs,t

· 100 (A3)

where QObs,t and QSim,t is the observed and predicted runoff, respectively. The PBIAS can take both positive and negative

values, where positive values indicate that the model on average overpredicts the observations and vice versa. A PBIAS close

to zero indicates a widely unbiased model.

Appendix B: Loss function420

For tuning the hyperparameters, we selected a combined objective function fobj consisting of the NSE and KGE metrics. A

similar approach was presented by Nevo et al. (2022). The objective function was computed as follows:

fobj = 2−KGE−NSE (B1)
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Table C1. Hyperparameter search space and final parameter set for the LSTM models

Hyperparameter Search space HLSTM- HLSTM

Min. Max. PBHM

N. of LSTM units 24 96 96 46

Batch size* 4000 4000

Initial learning rate 1e-3 1e-2 0.0010 0.00223

Retrain epochs* 5 5

Dropout rate 0.01 0.5 0.370 0.418

*is kept constant to speed up model training

A similar combination of these metrics was also employed as the loss function used in training the models. To mitigate

potential issues arising from the unbounded lower limit of the NSE and KGE, both metrics were normalized such that their425

values fall between zero and one, as also suggested by Nossent and Bauwens (2012). To be compatible with the minimization

approach of the chosen optimizer, the values were also inverted, meaning that zero indicates a perfect fit by the model. The

resulting loss function can be written as:

Loss = 2−normKGE−normNSE (B2)

Appendix C: Auxiliary information for LSTM hyperparameter tuning430

Table C1 shows the LSTM hyperparameters subjected to optimization, their search space as well as their final values for both

model variants.

Code and data availability. The Python code and processed data presented in this study are stored on Zenodo (Gegenleithner et al., 2024b).

The published data was derived from the following datasets (I) Gauge runoff: The runoff was provided by the Hydrographic Service of

Styria. The data was validated by the provider. The time stamps were converted from GMT+1 to UTC by the authors. (II) Meteorological435

data: The meteorological data was provided by GeoSphere Austria. More specifically, 1x1 km rasters were provided from which we extracted

catchment averaged values. Those averaged values are included in the dataset. (III) Hydrologic modeling results: The hydrologic modeling

results were obtained from Gegenleithner et al. (2024a). The developed Python code is also available on GitHub.
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