NO$_x$ emissions in France in 2019-2021 as estimated by the high spatial resolution assimilation of TROPOMI NO$_2$ observations

Robin Plauchu 1, Audrey Fortems-Cheiney 1,*, Grégoire Broquet 1, Isabelle Pison 1, Antoine Berchet 1, Elise Potier 1,**, Gaëlle Dufour 2, Adriana Coman 3, Dilek Savas 2, Guillaume Siour 3, and Henk Eskes 4

1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
2Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
3Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
4Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
*Now in Science Partners, Quai de Jemmapes, 75010 Paris, France
**Now in Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France

Correspondence to: Robin Plauchu (robin.plauchu@lsce.ipsl.fr)

Abstract.
Since 2018, TROPOMI on-board Sentinel-5P provides unprecedented images of NO$_2$ tropospheric columns at a relatively high spatial resolution with a daily revisit. This study aims at assessing the potential of the TROPOMI-PAL data to estimate the national to urban NO$_x$ emissions in France from 2019 to 2021, using the variational mode of the recent Community Inversion Framework coupled to the CHIMERE regional transport model at a spatial resolution of 10×10 km2. The seasonal to inter-annual variations of the NO$_x$ French emissions are analyzed. A specific attention is paid to the current capability to quantify strong anomalies in the NO$_x$ emissions at intra-annual scales such as the ones due to the COVID-19 pandemic, by using TROPOMI NO$_2$ observations.

The inversions lead to a decrease of the average emissions over 2019-2021 compared to 2016 of -3% at national scale, which is lower than the decrease of -14% between these years in the estimates of the French Technical Center for Air Pollution and Climate Change (CITEPA). This may be linked especially to the limited level of constraint brought by the TROPOMI data, due to the observation coverage and the ratio between the current level of errors in the observation and the chemistry-transport model, and the NO$_2$ signal from the French anthropogenic sources.

Focusing on local analysis and selecting the days during which the TROPOMI coverage is good over a specific local source, we compute the reductions in the NO$_x$ anthropogenic emission estimates by the inversions from spring 2019 to spring 2020. These reductions are particularly pronounced for the largest French urban areas (e.g., -26% from April 2019 to April 2020 in the Paris urban area), consistently with the reduction in the intensity of vehicle traffic reported during the lockdown period.
1 Introduction

Emitted mainly by road traffic, thermal power plants and industrial activities and produced in the atmosphere by the oxidation of nitric oxide (NO), which is emitted by the same activities, nitrogen dioxide (NO$_2$) is of great interest due to its important role in many atmospheric processes with strong implications for air quality, health, climate change and ecosystems. It is one of the major air pollutants with adverse impact on health (Costa et al., 2014; EEA, 2020). Deposition of nitrogen compounds like nitrates, for which NO$_2$ is a precursor, leads to eutrophication of ecosystems (Stevens et al., 2018). NO$_2$ also indirectly affects the radiative forcing as a precursor of tropospheric ozone and particulate matter. NO$_2$ is therefore one of the regulated air quality pollutants. Nevertheless, despite ongoing improvements in the overall air quality, levels of air pollutants above standards of the European Union (UE) are still measured across Europe and air pollution remains a major health concern for European citizens (EEA, 2023). For example, France was condemned in 2019 by the Court of Justice of the EU (CJEU) for non-compliance with Directive 2008/50/EC relating to ambient air quality, and more specifically for exceeding systematically and persistently concentration limit values (CLV, 40 µg.m$^{-3}$ on annual average) for NO$_2$, particularly in the Ile-de-France area, close to traffic. According to Airparif (2022), the planned reductions in the emissions of nitrogen oxides (NO$_x$=NO+NO$_2$) will still be insufficient by 2025 to respect the NO$_2$ CLV, which should have been reached with since January 2010. The society is thus faced with a major environmental challenge: the need to rapidly reduce NO$_2$ concentrations to levels that comply with the law (EU Directive 2016/2284) and do not impact human health or ecosystems and therefore to reduce anthropogenic NO$_x$ emissions. An accurate account of NO$_x$ emissions in space and time is needed to assess the effectiveness of policies aiming at reducing NO$_x$ emissions. However, the quantification of anthropogenic NO$_x$ emissions following a bottom-up (BU) approach, based on the statistics of activity sectors and fuel consumption and relying on emission factors per activity type, suffer from relatively large uncertainties. For example, at national and annual scales, these uncertainties reach 50-200% depending on the activity sector in the European Monitoring and Evaluation Programme (EMEP) inventory (Kuenen and Dore, 2019) and these emission factors can be biased (e.g., with the Dieselgate, Brand (2016)). In addition, the use of proxies and typical temporal profiles inevitably introduces errors in the quantification of the spatio-temporal variability at high resolutions. In situ information could be used to analyze local emissions and their variations due to specific events or measures (Guevara et al., 2023). Finally, the BU inventories are often delivered with a 2-year lag. The assessment of AQ (Air Quality) policies (as mentioned above) would benefit from accurate emission inventories spatialized at a high resolution with a fast update capability and integrating independent information could play a critical role for the AQ analysis and policies. The use of atmospheric measurements to complement current BU approaches may then support the development of such inventories. Since the 2000s, NO$_2$ atmospheric mixing ratios have been monitored around the world by space-borne instruments, such as the Global Ozone Monitoring Experiment GOME (Burrows et al., 1999) and GOME-2 (Munro et al., 2016), the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY SCIAMACHY (Burrows et al., 1995; Bovensmann et al., 1999) and the Ozone Monitoring Instrument OMI (Levelt et al., 2018).

In this context, attempts have been made to develop so-called top-down (TD) methods, complementary to BU inventories, to deduce NO$_x$ emissions from NO$_2$ satellite data. These methods are based on the principle that atmospheric levels and variations
of NO\textsubscript{2} reflect the convolution of the amplitude and variations of NO\textsubscript{x} emissions with the atmospheric chemistry and physics. Through the statistical inverse modeling of the atmospheric chemistry and transport, one can derive estimates of the emissions based on the concentration fields. However, strong non-linear relationships exist between NO\textsubscript{x} emissions and satellite NO\textsubscript{2} tropospheric vertical column densities (TVCDs) (Lamsal et al., 2011; Vinken et al., 2014; Miyazaki et al., 2017; Elguindi et al., 2020) due to the complex chemistry affecting NO\textsubscript{x} in the atmosphere.

This complex atmospheric chemistry has been taken into account in various ways in more or less complex TD methods. Mass–balance approaches have been performed at the global (Lamsal et al., 2011; Vinken et al., 2014) and regional (Visser et al., 2019) scales, accounting for non-linear relationships between NO\textsubscript{x} emission changes and NO\textsubscript{2} TVCDs via reactions with hydroxyl radicals (OH) but with simple scaling factors. However, Stavrakou et al. (2013) have shown that other direct or indirect NO\textsubscript{x} sinks associated with other species (such as ozone O\textsubscript{3} or the HO\textsubscript{2} radical) could significantly influence NO\textsubscript{2} concentrations in the atmosphere and therefore TD estimates. A more detailed account of the complex NO\textsubscript{x} chemistry should thus support more accurate derivations of NO\textsubscript{x} emissions from NO\textsubscript{2} satellite data. Therefore, more elaborated approaches using chemistry transport models (CTM) with ensemble Kalman filter inverse modeling techniques or variational approaches, have been used to infer NO\textsubscript{x} emissions at the global (Müller and Stavrakou, 2005; Miyazaki et al., 2017) or at the regional scale (van der A et al., 2008; Mijling and van der A, 2012; Mijling et al., 2013; Lin, 2012; Ding et al., 2017; Savas et al., 2023). However, NO\textsubscript{x} inversions from satellite NO\textsubscript{2} observations have resolution-dependent biases: coarse-resolution models are known to bear negative biases in NO\textsubscript{2} over large sources (Valin et al., 2011). It would be therefore essential to operate at finer spatial resolutions. In addition, monitoring NO\textsubscript{x} emissions implies monitoring hotspots of emissions (large urban and industrial areas or strong point sources), which concentrate much of the global emissions (57% of the global population lives in urban areas as of 2022, Ritchie and Roser (2018)). Being able to monitor individually emission hotspots is required to assess the emission reduction policies since the scales they target range from the regional scale (e.g., that of the EU) to the country scale or even to that of smaller territory units e.g., cities. This requires in turn a high spatial and temporal resolution mapping of NO\textsubscript{2} concentrations.

Since 2017, the TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al. (2012)) on-board the Copernicus Sentinel-5 Precursor (S5P) monitors atmospheric NO\textsubscript{2} with a high-resolution imaging (pixel size of about 5.6×3.6 km2 since August 2019), which should support the quantification of anthropogenic emissions at national to local scales. With a swath as wide as approximately 2600 km on ground, the TROPOMI instrument also provides an unprecedented daily coverage. It theoretically covers any point of the Earth 1 to 2 times a day. The need for surface solar irradiance, the cloud cover and the quality filtering limit the number of pixels in numerous images locally (e.g., at high latitudes) but the possibility of having a follow-up week by week (even day by day) remains for large portions of the globe.

To fully exploit these TROPOMI satellite images, variational inversion systems seem particularly adapted since they allow for solving high-dimensional problems (Elbern et al., 2000; Quélo et al., 2005; Pison et al., 2009; Henze et al., 2009; Cao et al., 2022), typically addressing the emission fluxes at high spatial and temporal resolutions and assimilating a large number of data, such as provided in TROPOMI images. The non-linearities of the chemistry of NO\textsubscript{x} can be dealt with in a variational inversion framework driving a regional CTM using a manageable chemistry scheme to simulate NO\textsubscript{2} concentrations and whose adjoint
In this context, this study assesses the potential of the TROPOMI observations to inform about NO\textsubscript{x} emissions in France from 2019 to 2021 at national to urban scales. We use the high-dimensional variational inversion drivers of the recent Community Inversion Framework (CIF, Berchet et al. (2021)). The CIF drives a configuration of the CHIMERE regional CTM (Menut et al., 2013; Mailler et al., 2017) covering France at 10×10 km2 spatial resolution, including a chemistry module taking into account the complex NO\textsubscript{x} chemistry in gas-phase and its non-linearities, and of its adjoint (Fortems-Cheiney et al., 2021). This relatively fine spatial resolution makes it possible to focus on the French largest urban areas. The period 2019–2021 covers the phase of the COVID-19 crisis in spring 2020 during which NO\textsubscript{2} concentrations and NO\textsubscript{x} anthropogenic emissions are expected to have significantly dropped over Europe (Bauwens et al., 2020; Menut et al., 2020; Diamond and Wood, 2020; Ordóñez et al., 2020; Petetin et al., 2020; Barré et al., 2021; Gaubert et al., 2021; Deroubaix et al., 2021; Lee et al., 2021; Souri et al., 2021; Levelt et al., 2022; Guevara et al., 2021, 2022, 2023). In France, the population has been confined from March 17th to May 10th and all public spaces deemed non-essential to daily life in the country have been shut down. Then, from May 11th to June 1st, lockdown restrictions have progressively been lifted. The population has been confined again from October 30th to December 15th. The analysis of the emissions from 2019–2021 should thus provide insights on the current capability to quantify strong anomalies in the NO\textsubscript{x} emissions at intra-annual scales by using satellite NO\textsubscript{2} observations.

Our configuration of the CHIMERE CTM, the NO\textsubscript{2} TROPOMI satellite observations, and the variational inversion framework and set up are described in Section 2. Section 3 presents the results of our study, including comparisons between TROPOMI-PAL NO\textsubscript{2} TVCDs and their CHIMERE simulated equivalents and the analysis of the spatio-temporal variability of the French NO\textsubscript{x} emissions. Our conclusions are given in Section 4.
2 Data and method

2.1 Prior estimates of the emission maps

The principle of the inversion is to correct *a priori* emission maps later on referred as “prior emissions”. The prior estimates of NO$_x$ emissions in this study are based on the CAMS-REG inventory (Kuenen et al., 2022) for the year 2016, and on the Inventaire National Spatialisé (INS) inventory for the year 2012 (Institut National de l’Environnement industriel et des RISques - INERIS -, Ministry of Ecological Transition, hosted at http://emissions-air.developpement-durable.gouv.fr/index.html). The CAMS-REG inventory provides anthropogenic emissions at a 0.05° longitude × 0.1° latitude resolution. Anthropogenic emissions for non-methane volatile organic compounds (NMVOCs) emissions from CAMS-REG are accounted for in our simulations, but are not controlled by the inversions (see Section 2.5).

Annual and national budgets are based on the officially reported emission data by European countries to the Convention on Long-Range Transboundary Air Pollution and the EU National Emission Ceilings Directive. These budgets are then disaggregated in space based on proxies of the different sectors. Temporal disaggregation is based on temporal profiles provided per sector with typical month to month, weekday to week-end and diurnal variations (Ebel et al., 1997; Menut et al., 2012). Spatial proxies for point sources and areas sources described in Kuenen et al. (2022) are used to spatialize the emissions.

CAMS-REG provides not only the gridded emissions but also default profiles for typical emission height by source type (Kuenen et al., 2022), which accounts for the average effective emission height (including plume rise), based on Bieser et al. (2011). The spatialization for France is based on proxies of the INS on a municipal scale while the spatialization for the other countries within our modeling domain is directly taken as that of CAMS-REG. The inventory is therefore called “CAMS-REG/INS” in the following.

The natural NO$_x$ emissions are prescribed using simulations from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) model (Guenther et al., 2006), with a ~1 × 1 km2 spatial resolution.

Lightning NO$_x$ fluxes, whose impact on NO$_x$ concentrations is very small in Europe even in summer (Menut et al., 2020), are not accounted for. Fire emissions are also ignored, as we assume that they only slightly contribute to the NO$_x$ total emissions.

These emission maps have been aggregated to the grid of CHIMERE for the years 2019 to 2021 (Section 2.2 and Figure 1).

2.2 Configuration of the CHIMERE CTM

We use the CHIMERE v2013 model to simulate fields of concentrations of gaseous chemical species in a domain that covers France and its vicinity (11°W-12°E; 39.5°N-54.5°N, see Figure 1). The model horizontal grid is zoomed (Siour et al., 2013), with a 10-km resolution regular sub-grid in the center of the domain covering the full France and a 50-km resolution in the corners of the domain (Figure 1). It corresponds to 166 (longitude) × 122 (latitude) horizontal grid cells. The model has 20 vertical layers, from the surface to 200 hPa, with 8 layers within the first two kilometers.

The model is driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) global meteorological fields (Owens and Hewson, 2018). Both CHIMERE (Menut et al., 2013) and its adjoint code operate the MELCHIOR-2 chemical scheme, with more than 100 reactions (Lattuati, 1997; Derognat et al., 2003), including 24 for inorganic chemistry. Con-
Considering the NO\textsubscript{2} short lifetime, we do not consider its import from outside the domain: its boundary conditions are set to zero. Nevertheless, the lateral and top boundaries for other species such as ozone O\textsubscript{3}, nitric acid HNO\textsubscript{3}, peroxyacetyl nitrate PAN, formaldehyde HCHO, participating to the NO\textsubscript{x} chemistry, are taken into account. Initial and boundary conditions when relevant are specified using a nested run of CHIMERE (Siour et al., 2013) over a European domain (15.25\textdegree W-35.75\textdegree E; 31.75\textdegree N-74.25\textdegree N) with a spatial resolution of 0.5\textdegree, using itself boundary and initial conditions from climatological values from the LMDZ-INCA global model (Szopa et al., 2009).

The aerosol module of CHIMERE is not considered in the simulations and inversions, as the adjoint of this module is not available (Fortems-Cheiney et al., 2021; Savas et al., 2023).

2.3 TROPOMI-PAL observations

TROPOMI, launched onboard Sentinel 5 Precursor in October 2017, is in a near-polar sun-synchronous orbit (approximate altitude of ~824 km) with an ascending node equatorial crossing at ~13h40 Mean Local Solar time. With an orbital cycle of 16 days, and 14 orbits a day, the satellite passes over the same geographical area every cycle of 227 orbits. With a swath as wide as 108\textdegree — approximately 2600 km on ground — TROPOMI provides daily coverage for NO\textsubscript{2}. Observations over our domain span from around 9:30 am to 2:30 pm local time with data from 2 to 3 orbits per day, with the major coverage around noon (11:30 am to 1:30 pm).

An evaluation of the TROPOMI-v1.3 product with surface remote sensing observations had indicated a systematic low bias of TROPOMI NO\textsubscript{2} tropospheric vertical columns densities (TVCDs) of typically -23\% to -37\% in clean to slightly polluted conditions and as high as -51\% over highly polluted areas (Verhoelst et al., 2021) compared to ground-based measurements. This negative bias has been mainly attributed to a negative cloud height bias in the Fast Retrieval Scheme for Clouds from Oxygen absorption band (FRESCO) implementation (van Geffen et al., 2022b) and efforts have been made to correct it in the TROPOMI-PAL product (Eskes et al., 2021).

Figure 1. Domain of our CHIMERE configuration: 10-km resolution regular sub-grid in purple, 50-km resolution in green and yellow, 10\times50 km resolution in blue.
Here, we use the PAL TROPOMI reprocessed data (Eskes et al., 2021), available from 2019 to the 11th of November, 2021. We use a recent reprocessing of the TROPOMI data, called RPRO version 2.4, to cover the end of the year 2021. This latest reprocessing uses a new higher-resolution directional Lambertian-equivalent reflectivity derived from TROPOMI observations (van Geffen et al., 2022a). Nevertheless, the last evaluation of the TROPOMI RPRO v2.4 product with surface remote sensing observations still indicates significant biases of TROPOMI the NO\textsubscript{2} TVCDs of typically +13% over clean areas to -40% over highly polluted areas (Lambert et al., 2023). Part of these biases could be explained by the relatively coarse horizontal resolution of the global TM5-MP prior profiles (1° × 1°) used in the retrieval process (which can be neglected when applying the retrieval averaging kernels to the model) (Douros et al., 2023). However, these biases are also largely attributed to systematic errors in the retrieved cloud pressure, surface albedo used etc. (Boersma et al., 2016; Douros et al., 2023).

We select the data with a quality assurance (qa) value of 0.75 for both products, following the criteria of van Geffen et al. (2022b). The latest version of the TROPOMI NO\textsubscript{2} Algorithm Theoretical Basis Document (ATBD) is now for product version 2.6 (TROPOMI ATBD of the total and tropospheric NO\textsubscript{2} data products, KNMI, S5P-KNMI-L2-0005-RP, issue 2.4.0, van Geffen et al. (2022a)).

2.4 Comparison between simulated and observed NO\textsubscript{2} TVCDs

To make relevant comparisons between simulations and satellite observations, the averaging kernels (AKs), which are associated with each observed TVCD and representing the vertical sensitivity of the satellite retrieval (Eskes and Boersma, 2003) are applied to the simulated concentration field. Due to the over-sampling resulting from the model’s horizontal resolution being coarser than the TROPOMI data, we aggregate spatially and temporally the TROPOMI observations at the CHIMERE resolution into so-called super-observations. Within a given grid cell and time step, the super-observation is the observation (TVCD and AKs) which is the closest to the mean of the TROPOMI TVCDs. The error associated with each super-observation is also derived from the observation closest to the mean value and subsequently included into the total so-called “observation error” (see Section 2.5). Our derivation of the error associated with each super-observation is thus conservative compared to other studies (Boersma et al., 2016) where the super-observation uncertainty is reduced compared to that of individual observations. The reduction of uncertainty when combining several observations account for the fact that the retrieval errors include random noise (in particular, instrumental noise) without spatial correlation, i.e. errors which are independent from one observation to the other. However, as discussed above, the TROPOMI NO\textsubscript{2} observations bear large systematic errors from the retrieval process, which can exhibit significant spatial correlations. This explains our conservative attribution of observation errors to the super-observations.

The corresponding column of NO\textsubscript{2} in CHIMERE is vertically interpolated (at TROPOMI’s super-observation location) on the vertical levels of the super-observation retrieval, and vertically integrated with the AKs of the super-observation, to yield the NO\textsubscript{2} simulated TVCD to be compared to the super-observation TVCD, as illustrated in Figure 2a) and Figure 2b) for the month of April 2020.
2.5 Variational inversion of NO\textsubscript{x} emissions

The inversion of NO\textsubscript{x} emissions consists in correcting the prior estimate of the emissions (presented in Section 2.1) to improve the fit between NO\textsubscript{2} TROPOMI-PAL satellite data and their simulated equivalents, using a Bayesian variational inversion framework similar to that of Fortems-Cheiney et al. (2021).

Series of 7-day inversion windows — independent from each other — are run and then combined to provide a corrected (“posterior”) estimate of NO\textsubscript{x} emissions over the whole period of analysis (2019-2021). For each inversion window, the posterior estimate of the emissions is found by iteratively minimizing the cost function \(J(x) \):

\[
J(x) = (x - x^b)^T B^{-1} (x - x^b) + (\mathcal{H}(x) - y)^T R^{-1} (\mathcal{H}(x) - y)
\]

where \(x, \mathcal{H}, y, B, R \) are respectively the control vector, the observation operator, the satellite observations, the prior error covariance matrix and the observation error covariance matrix. The control vector \(x \) gathers variables for the correction of the surface NO and NO\textsubscript{2} emissions, \(x^b \) corresponding to the prior estimate of the control vector. Contrarily to Fortems-Cheiney et al. (2021), we model the prior uncertainty in the NO\textsubscript{x} emissions with a log-normal distribution. This allows the inversion system to apply high variations in NO\textsubscript{x} emissions while ensuring positivity, unlike the classic corrections of the emission with scaling factors with a Gaussian distribution of prior uncertainty. We have introduced the random variable \(\psi \) following a normal
distribution, for each type of emission, such that:

\[
\begin{cases}
\psi \sim N(0, B) \\
\text{emissions}(\psi) = \exp(x) \cdot \text{emission prior}
\end{cases}
\]

(2)

Thus, our control vector \(x \) is defined as the ensemble of \(\psi \) for each type of emission (NO\(_2\), NO) in our inversion.

Our control vector \(x \) therefore contains:

- the logarithms of the scaling coefficients for NO and NO\(_2\) anthropogenic emissions at a 1-day temporal resolution, for the 166 (longitude) \(\times \) 122 (latitude) horizontal grid cells, and over three vertical bands of injection heights for the emissions (the first 2 layers from 0 to 25 m, layers 3 to 10 from about 25 to 1900 m and layers 11 to 20 from about 1900 to 12000 m); this is done essentially to reduce the dimensionality of the problem along this axis as most emissions are concentrated in the first 2 layers. The corrections applied are the same for all layers within a band.

- the logarithms of the scaling coefficients for NO natural emissions at a 1-day temporal resolution, for the 166 (longitude) \(\times \) 122 (latitude) grid cells at the surface level.

NO and NO\(_2\) 3D initial conditions (specified using a nested run of CHIMERE, as described in Section 2.2) are not controlled and are set once initially for all 7-day windows at 0:00 UTC on the first day of these windows. We therefore do not account for the potential update of the concentrations during a previous 7-day window due to the inversions. They have a low impact on the inversion since the first satellite observations over the domain are around noon while the NO\(_x\) lifetime is short (of the order of one day).

The uncertainties in the observations \(y \) together with that in the observation operator \(\mathcal{H} \), and the uncertainties in the prior estimate of the control vector \(x^b \) are assumed to have a Gaussian distribution. Here, the prior error covariance matrix \(B \) is block diagonal (see Equation 3). The first block corresponds to the logarithms of the anthropogenic fluxes factors. We assume that the uncertainties in the anthropogenic emissions are neither spatially nor temporally correlated due to the heterogeneity of these emissions and the block is therefore diagonal. Each diagonal element is set at \((0.3)^2\): this \(\sigma \) value in the log-space corresponds to a factor ranging between 74\%-135\% in the emission space at the 1-day and model’s grid scale. A second non-diagonal block is set for natural fluxes, accounting for space correlations in the uncertainties with a \(\lambda_0 = 30 \) km decorrelation length since these fluxes can be more spread and homogeneous in space than the anthropogenic emissions. On the diagonal, uncertainties are set to a value of \((0.6)^2\). This value \(\sigma \) in the log-space corresponds to a factor ranging between 55\%-182\% in the emission space at the 1-day and model’s grid scale.

\[
B = \begin{pmatrix}
\sigma_{ant}^{11} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{ant}^{jj}
\end{pmatrix}
0
\begin{pmatrix}
\sigma_{bio}^{11} & \ldots & \nu_{bio}^{1,j+1} \\
\vdots & \ddots & \vdots \\
\nu_{bio}^{j+1,k} & \ldots & \sigma_{bio}^{kk}
\end{pmatrix}
\]

(3)
with ν of the form:

$$\nu_{nm} = \sigma_n \sigma_m e^{-\Delta x \lambda_0}$$

\mathcal{H} is the observation operator, linking the control variables in the log-space to the simulated equivalents of the super-observations. It includes the exponential operator and scaling factor converting the maps of the logarithm of the coefficient for the emissions into emission maps at the spatial and temporal resolutions of CHIMERE, the atmospheric chemistry and transport model CHIMERE itself, and the extraction of the TVCDs from CHIMERE where and when we have TROPOMI super-observations.

The uncertainties on the observations y and on the observation operator are characterized by the so-called observation error covariance matrix R, set-up here as a diagonal matrix. The variance of the observation errors corresponding to individual observations in R, set-up here as a diagonal matrix, is the quadratic sum of the error we have assigned to the TROPOMI-PAL super-observations (see Section 2.4), and of an estimate of the errors from the observation operator. We assume that the observation operator error is dominated by the chemistry-transport modeling errors and by the errors associated with the discrepancies between the spatial representativity of the super-observations and of the model corresponding column: it is set at 30% of the retrieval value. It was set at 20% by Fortems-Cheiney et al. (2021) at a coarser resolution and is increased here to take into account the mismatch between the shape and location of the real and simulated atmospheric patterns at our finer resolution (see Section 2.4).

The minimum of the cost function J is searched for with the iterative M1QN3 limited-memory quasi-Newton minimization algorithm (Gilbert and Lemaréchal, 1989). At each iteration, the computation of the gradient of J relies on the adjoint of the observation operator, and in particular on the adjoint of CHIMERE. In the results presented in Section 3, as a compromise between computational time and the level of convergence of the iterative minimization of J in the inversions, the minimization is considered to be satisfying when the norm of the gradient of J is reduced by 80%.

The calculation of the uncertainty in the posterior estimates of emissions is challenging when using a variational inverse system (Kadygrov et al., 2015; Rayner et al., 2019; Fortems-Cheiney et al., 2021) and it is not done here. It would require a large ensemble of time-consuming inversions (especially due to the handling of chemistry), to enable a proper sampling of the uncertainties and thus a proper derivation of the of the statistics of uncertainty.
3 Results

3.1 Seasonal and inter-annual estimates of NO\textsubscript{x} total French emissions

3.1.1 Fit between TROPOMI-PAL super-observations and their simulated equivalents

Before analyzing the results in terms of emissions, we check the behavior of the inversion by comparing the performances of the prior and posterior simulations in reproducing the spatial and temporal variations of the observations. As an illustration, TROPOMI-PAL and the corresponding CHIMERE NO\textsubscript{2} TVCDs are shown in 2a and Figure 2b, respectively, for April 2020. The TROPOMI-PAL observations and their NO\textsubscript{2} simulated equivalents present similar spatial patterns, with hotspots (TVCDs higher than 1×10^{16} molec.cm-2) over urban areas and low values over rural ones during the whole simulated period from 2019 to 2021 (illustrated in Figure 2a) and b) for one month in 2020). However, the prior simulation overestimates the NO\textsubscript{2} TVCDs over urban areas in France compared to the observations. For example, for April 2020, the mean bias between the prior simulation and TROPOMI is of about 4.2×10^{14}, 2.0×10^{14} and 3.8×10^{14} molec.cm-2 over Paris, Lyon and Marseille (Figure A1), respectively. The inversion brings the simulated TVCDs closer to the TROPOMI-PAL data over urban areas (Figure 2c): in this case, the mean bias and the mean RMS over the three cities are reduced by about 30% and 12% respectively.

As the CHIMERE prior simulation overestimates the NO\textsubscript{2} TVCDs, the inversion brings the CHIMERE NO\textsubscript{2} columns closer to the TROPOMI-PAL data by reducing NO\textsubscript{x} emissions, mainly over dense urban areas (Ile-de-France, Lyon-Marseille axis, London area, Benelux, Frankfurt, Po Valley, see Figure 3b). Over these areas, the relative corrections provided by the inversions to the total (anthropogenic and natural) emissions can reach -70% (Figure 3b).

3.1.2 Estimates of NO\textsubscript{2} French total emissions

This section focuses on the results from the NO\textsubscript{x} inversions in terms of comparisons between the total (anthropogenic and natural) posterior NO\textsubscript{x} emissions and the prior ones. At the national scale, both the prior and the posterior emissions present a similar seasonal cycle in 2019-2021, with emissions higher than 72 kteqNO\textsubscript{2} during winter and emissions equal to or lower than 66 kteqNO\textsubscript{2} during summer (Figure 4). The mean French national budget for the years 2019 to 2021 from the posterior...
Table 1. Prior and posterior NO\textsubscript{x} total emission budgets in kteqNO\textsubscript{2} and their relative differences in % \([100(\text{posterior} - \text{prior})/\text{prior}]\), in France for different periods. Columns “Posterior year\textsubscript{n} – year\textsubscript{n-1}” and “CITEPA year\textsubscript{n} – year\textsubscript{n-1}” show the relative difference between year\textsubscript{n} and year\textsubscript{n-1} posterior fluxes and CITEPA in % \([100(F_{\text{year n}} - F_{\text{year n-1}})/F_{\text{year n-1}}]\).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kteqNO\textsubscript{2}</td>
<td>kteqNO\textsubscript{2} [%]</td>
<td>kteqNO\textsubscript{2}</td>
<td>kteqNO\textsubscript{2} [%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>France</td>
<td>Annual</td>
<td>875</td>
<td>853</td>
<td>-3</td>
<td>852</td>
<td>-3</td>
<td>845</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Spring (MAM)</td>
<td>227</td>
<td>224</td>
<td>-1</td>
<td>222</td>
<td>-2</td>
<td>222</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>78</td>
<td>76</td>
<td>-3</td>
<td>74</td>
<td>-5</td>
<td>75</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>77</td>
<td>76</td>
<td>-1</td>
<td>75</td>
<td>-4</td>
<td>74</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>73</td>
<td>72</td>
<td>-1</td>
<td>73</td>
<td>-1</td>
<td>72</td>
<td>-1</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>69</td>
<td>65</td>
<td>-6</td>
<td>67</td>
<td>-4</td>
<td>66</td>
<td>-4</td>
<td>+4</td>
</tr>
</tbody>
</table>

total emission estimates is about 850 kteqNO\textsubscript{2}, which is lower than the total prior emissions estimated from the CAMS-REG/INS and MEGAN inventories (average of 875 kteqNO\textsubscript{2}, Figure 3, Table 1), with the largest reductions reaching about 8% during fall and winter. This is expected as public policies have led to regular reductions in the anthropogenic emissions between 2016 (the year of our CAMS-REG/INS inventory) to 2019-2021. The decrease in total NO\textsubscript{x} emissions is estimated at -13% from 2016 to 2019 by the French Technical Reference Center for Air Pollution and Climate Change (CITEPA report, we use the estimates for “out-of-scope” natural emissions which are not reported to UNFCCC). According to the CITEPA, the reduction is driven by large reductions in emissions from three major sectors: the energy sector (-28%), the industry sector (-22%), and the transport sector (-15%) between 2016 and 2019. However, the decrease found in this work is only about -3% (Table 1). This can be explained by our configuration with no temporal correlation in our \textbf{B} matrix, leading to null or very small correction of the prior emissions from the inversions when the coverage of the country by TROPOMI super-observations is very sparse (Zheng et al., 2020). In this case, the posterior emissions remain close to the prior emission estimate and therefore, at their 2016 level (see Section 3.2.3).

The 2019-2021 inter-annual variability is smaller with our inversions (Table 1) than in the estimates from the CITEPA: the annual budget of the French total NO\textsubscript{x} posterior emissions varies by less than 1% from year-to-year, while the CITEPA estimates a decrease of about 13% in 2020 compared to 2019, and an increase of about 3% in 2021 compared to 2020 (Table 1). The similar annual total emissions in 2019 and 2020 nevertheless overlay different sub-annual variations. Higher emissions — partly associated with higher TROPOMI NO\textsubscript{2} tropospheric columns (not shown) — are estimated in January, in February, in June and in November 2020 compared to 2019 (Figure 4). These increases counterbalance the decrease of NO\textsubscript{x} emissions in March and April 2020 (Figure 4, Figure 5) which could be both associated with the COVID-19 crisis and to meteorological conditions with a warmer winter in 2020 than in 2019 (see Section 3.2.2).
3.2 Impact of the COVID-19 lockdown in spring 2020

The atmospheric lifetime of \(\text{NO}_2 \) dictates that the high spatial resolution measurements from TROPOMI should readily capture rapid week-to-week changes in near-surface emissions (Levelt et al., 2022) and should therefore make it possible to assess the impact of the COVID-19 lockdown in spring 2020 on \(\text{NO}_x \) French emissions. Following a usual diagnostic in the literature to assess the change in air pollutant concentrations due to the COVID-19 policies, we characterize the impact of the first COVID-19 lockdown in France — occurring from March 17\(^{th}\) to May 10\(^{th}\) 2020 — in terms of changes from spring 2019 to spring 2020.

3.2.1 General impact on \(\text{NO}_2 \) TROPOMI TVCDs

The TROPOMI \(\text{NO}_2 \) TVCDs in March and April 2020 are first compared to 2019 at the national scale (Table 2). The TROPOMI \(\text{NO}_2 \) TVCDs decrease from 2019 to 2020 by -11 and -28\%, respectively in March and April over France. Similar decreases have been diagnosed in the measurements at surface stations over Europe with reductions in the average concentrations of \(\text{NO}_2 \) of about -25\% for at least 75\% of the 1308 European Air Quality e-Reporting database (AirBase) stations compared with the average of the previous seven years (2013–2019) for the period March 18–May 18, 2020 (Deroubaix et al., 2021). The population distribution is heterogeneous in France, with large rural areas (i.e., 75.7\% of the country area, according to the French National Institute of Statistics and Economic Studies, 2020). We focus here on 8 urban areas which correspond to hotspots of \(\text{NO}_x \) concentrations, and where, as a consequence, we expect a stronger signal due to changes in anthropogenic activities (Figure A1): Paris, Lyon, Marseille, Lille, Bordeaux, Toulouse, Nice and Nantes. The population densities of these urban areas are given in Table A1. TROPOMI \(\text{NO}_2 \) tropospheric columns in March and April 2020 are 26 to 38\% lower on
Figure 5. Monthly gridded relative differences between monthly averages of a) TROPOMI-PAL NO₂ tropospheric columns, b) CHIMERE prior tropospheric columns and c) CHIMERE posterior tropospheric columns estimated by the inversions in 2020 and in 2019, for the months of March/April, in \% \[100(F_{2020} - F_{2019})/F_{2019}\].

Figure 6. Monthly gridded relative differences between the monthly total (anthropogenic + natural) posterior emissions estimated by the inversions from March/April 2019 to March/April 2020, for the months of March/April, using a urban and road land-use proxy (see Figure C1), in \% \[100(F_{2020} - F_{2019})/F_{2019}\].
average than in 2019 over the 8 urban areas (Table 2).

The relative changes from April 2019 to April 2020 range from -54% for Paris to -27% in Bordeaux (Table 2). This relative change over Paris is consistent with the decrease of -52% described by (Levelt et al., 2022) and with the decrease of about -56% estimated by the tropospheric NO$_2$ columns measured by two UV-Visible Système d’Analyse par Observation Zénithale instruments (SAOZ, Pazmiño et al. (2021)).

The temporal variability of the changes from spring 2019 to spring 2020 also differs from one urban area to another. Excepted for Bordeaux and Toulouse, the reductions of TVCDs are higher in April 2020 (Figure 6, Table 2) than in March 2020 (Figure 5, Table 2). This is consistent with the fact that the French population has been confined only from mid-March (i.e., on March 17th) versus the whole of April in 2020.

Various factors contributing to the differences in concentrations from spring 2019 to spring 2020 beyond the lockdown

The relative changes in the TROPOMI TVCDs from spring 2019 to spring 2020 are partly due to COVID-19 lockdowns but they are also driven by the changes in the meteorological and atmospheric chemistry transport conditions (Menut et al., 2020; Diamond and Wood, 2020; Petetin et al., 2020; Barré et al., 2021; Gaubert et al., 2021; Deroubaix et al., 2021).

The differences from spring 2019 to spring 2020 in the simulated CHIMERE prior NO$_2$ TVCDs (Figure 5) are mainly due to changes in the meteorology and to a lesser extent to changes in the model boundary conditions and in the biogenic emissions (Section 2.2), as the prior anthropogenic emissions are the same in 2019 and in 2020 (Section 2.1).
CHIMERE prior NO$_2$ TVCDs are 23% higher in March 2020 than in March 2019 in the Northern part of France, excepted for the plume of Paris. These changes have thus a sign which is opposite to the changes expected from the COVID-19 lockdowns. This is in agreement with the analysis of Gaubert et al. (2021), who have shown that when considering only the effect of meteorological variability, the level of NO$_2$ concentrations would have been high during the 15 March–14 April 2020 period compared to the average NO$_2$ concentrations at the same period over the five previous years (2015–2019) in the north-western part of France (i.e., Bretagne, Pays de la Loire, Normandie and Hauts-de-France regions, Figure 5).

CHIMERE prior NO$_2$ TVCDs are 4% lower in April 2020 than in April 2019 over almost the entire country (excepted above Paris and in the Rhone Valley). This is consistent with temperatures above seasonal values (by 3° C over France, ranking as the third warmest April on record) and to persistent anticyclonic conditions in April 2020 (MeteoFrance, 2022).

CHIMERE posterior NO$_2$ TCVDs are about 12% lower in April 2020 than in April 2019 over almost the entire country (Figure 5, Table 2); a focus at the city scale shows a decrease of about 9% over Paris between April 2020 and April 2019 whereas the prior NO$_2$ TCVDs increase by about 42% (Table 2).

Finally, the meteorological conditions also have an impact on the availability of the satellite observations. Due to the more favorable meteorological conditions with less cloud coverage leading to an unusual clear sky period in April 2020 (Gaubert et al., 2021; Deroubaix et al., 2021), there is a higher number of TROPOMI observations in April 2020 than in March 2020 and than in 2019, particularly over the northeastern part of France (Figure C2 in Supplementary materials), that may allow for a better correction of the CHIMERE NO$_2$ TCVDs for this particular period (Section 3.2.3).

3.2.3 Impact on NO$_x$ anthropogenic emissions from spring 2019 to spring 2020

At the French national scale, the total NO$_x$ emission estimates from the inversions present their largest decrease during the first lockdown in March and April 2020 compared to 2019 (Figure 4). The emissions between May and September are similar in 2020 to 2019 (Figure 4), coinciding with the ease of restrictions. Nevertheless, the decrease of NO$_x$ emissions from March and April 2019 to March and April 2020, of about -2% and -3% respectively at the national scale, is relatively flatter than the estimations found in the literature. For example, the CITEPA estimates reductions of about -12 and -30% (Table 1), respectively, from March and April 2019 to March and April 2020 at the French national scale. Meteorology with a warmer winter can explain part of the changes in emissions between 2019 and 2020 for business sectors such as the residential combustion (Barré et al., 2021; Guevara et al., 2023).

We thus analyze the impact of the COVID-19 policies in terms of differences in retrieved anthropogenic emission estimates from the inversion, from spring 2019 to spring 2020. For this, we focus on urban areas, assuming that the emissions in these pixels (see Figure A1 for the chosen locations) are almost entirely due to anthropogenic activities.

In our inversions, the changes are negative in 7 of the 8 chosen urban areas (Figure 6, Table 2), qualitatively consistent with the strong reduction in the intensity of vehicle traffic (Guevara et al., 2021, 2022). The changes are also negative for urban areas outside France in our domain (Table C2). The impact of the lockdown on NO$_x$ anthropogenic emissions is very different from one urban area to another. The highest reductions are seen in Paris with about -26% in April 2020 compared to April 2019, followed by Lyon (-13%), and Lille (-11%, Table 2). Several urban areas only present a very small drop of emissions in spring
2020 (Table 2, Figure 7) e.g., the French urban areas Bordeaux, Nice, and Nantes. The Toulouse urban area even showed a slight increase (+1%) in April 2020 compared to April 2019 (Table 2, Figure 7). The population density difference between those cities could explain part of such variability: Paris, Lyon, Lille, and Marseille have the highest population density in France (Table A1). A dedicated study might be necessary to understand in details the inter-urban variability and is not done here as up-to-date local inventories are not available for every city, particularly smaller ones.

The reductions in the NO\textsubscript{x} anthropogenic emissions from spring 2019 to spring 2020, while substantial, do not exhibit the same magnitude as the reductions in TROPOMI-PAL NO\textsubscript{2} TVCDs. This is expected because of the non-linearities between NO\textsubscript{x} anthropogenic emissions and NO\textsubscript{2} TVCDs but also, due to the limitations and assumptions of the inversion itself.

3.2.4 Exploring limitations in our analysis

The corrections provided by the inversions to the prior emissions can be limited by the fact that the potential of TROPOMI to provide information is hampered by the cloud coverage. As already mentioned in Section 3.1.2, the correction of the prior emissions from the inversions can be null or very small when TROPOMI observations are not available. In this case, the posterior emissions remain close to the prior. We quantify this effect by selecting days when we have at least one super-observations over the pixel of the 8 urban areas of interest and extrapolating the retrieved emissions for this subset of days to the whole year, hereafter called “filtered emissions”. The reductions in the NO\textsubscript{x} anthropogenic filtered emissions from spring 2019 to spring 2020 are almost always higher than for the standard posterior emissions (e.g., -28% and -24% over Paris and over Lyon respectively for filtered emissions versus -26% and -13%, Table 3). These results with such a focus on days with the best coverage are in principle much closer to the changes in emissions estimated by the CITEPA.

The corrections provided by the inversions to the prior emissions are also highly dependent on the errors associated with the TROPOMI-PAL observations and with the CTM errors in \(\mathbf{R} \). We illustrate this effect by performing an inversion without model errors in the covariance matrix \(\mathbf{R} \), giving more weight to the satellite data and considering the model as perfect. The posterior NO\textsubscript{x} emissions retrieved with this error set-up at the city scale show a higher reduction from spring 2019 to spring 2020 (Tables 3, B3), e.g., -31% and -25% over Paris and over Lyon when using all the available observation and -33% and -42% for filtered emissions compared to -26% and -13% for the reference emissions.

Filtered cases are only indicative as this approach necessitates extrapolating from a notably small sample (days with observations, 16 and 19 days in average for the studied French cities in March and April 2020).

To gain in emission representativity, we suggest exploring a fine tuning of the correlation in \(\mathbf{B} \) (with optionally additional information on NO\textsubscript{2} concentrations like surface stations) to compensate when TROPOMI data availability is lower. Despite our hypothesis made in Section 2.5 on anthropogenic fluxes, this might be necessary in addressing national-wide NO\textsubscript{x} emission monitoring with a high local resolution.
<table>
<thead>
<tr>
<th>Urban area</th>
<th>Standard posterior emissions</th>
<th>Filtered posterior emissions</th>
<th>Standard posterior emissions</th>
<th>Filtered posterior emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mar</td>
<td>Mar</td>
<td>Mar</td>
<td>Mar</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>-3</td>
<td>-1</td>
<td>-9</td>
<td>-2</td>
</tr>
<tr>
<td>Lille</td>
<td>-9</td>
<td>-11</td>
<td>-16</td>
<td>-11</td>
</tr>
<tr>
<td>Marseille</td>
<td>-2</td>
<td>-7</td>
<td>-5</td>
<td>-9</td>
</tr>
<tr>
<td>Nantes</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>Nice</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Toulouse</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Table 3. Changes in NO\textsubscript{x}, CHIMERE total posterior emissions for the standard (in %) and with a simplified observation error set-up (in %), R matrix without model error; see details in Section 3.2.3 from March/April 2019 to March/April 2020 taking into account different TROPOMI coverage for the 8 French urban areas displayed in Figure A1.
Figure 7. NO\(_x\) anthropogenic emissions monthly budget relative differences between posterior and prior for the 8 French urban areas displayed in Figure A1, from inversion results for years 2019 (in green), 2020 (in orange) and 2021 (in pink), in %. Grey shaded areas show the French lockdowns periods for the year 2020 and the purple shaded area shows the French lockdown period for the year 2021.
4 Conclusions

We performed a three-year variational inversion of NO\textsubscript{x} emissions from 2019 to 2021 in France at the high resolution of 10×10 km2. The TROPOMI-PAL observations were assimilated within the inversion system CIF driving the regional CTM CHIMERE with the MELCHIOR-2 chemical scheme.

The French budgets for the years 2019, 2020 and 2021 are about 800 kteqNO\textsubscript{2}. As expected from the implementation of public policies leading to regular reductions in emissions, these national budgets from the inversions are lower than the CAMS-REG/INS inventory for 2016, used as prior in our inversions. In particular, 2020 does not show a clear reduction in emission compared to 2019: 2020 emissions are higher compared to 2019 in January, February, June, and November. These increases dampen the decline in NO\textsubscript{x} emissions in March and April 2020 compared to 2019.

We focus on the changes in NO\textsubscript{2} TROPOMI-PAL TVCDs and in NO\textsubscript{x} anthropogenic emissions in March and April 2020 compared to 2019, that are due to the lockdowns during the COVID-19 pandemic and to meteorological conditions, including a milder winter (Barré et al., 2021; Guevara et al., 2023). Since inversions mainly detect changes in cities (hotspots), the main changes between March/April 2020 and 2019 are observed at the city scale. However, the impacts of restrictions can vary significantly between different urban areas. Among the 8 selected French urban areas, the relative changes between March/April 2020 and April 2019 in the TROPOMI-PAL observations ranges from -54% for Paris to -27% in Bordeaux. The highest reductions of NO\textsubscript{x} anthropogenic emissions are seen in Paris with about -26% in April 2020 compared to April 2019, followed by Lyon (-13%), and Lille (-11%).

The corrections provided by the inversions to the prior emissions can be limited by the cloud coverage affecting the TROPOMI observations, and by errors in the TROPOMI data and in the CTM. Notably, when TROPOMI observations are unavailable, the correction of prior emissions in the unconstrained pixels through inversions is null, resulting in posterior emissions remaining close to the prior ones. Hence, the aggregation of posterior emissions into monthly or yearly budgets leads to a dampening of the signal provided by TROPOMI. To optimize the signal capture, emphasis is placed on days with at least one observation in the targeted pixels, yielding a more accurate estimate of the COVID-19 delta (higher reduction of NO\textsubscript{x} anthropogenic emissions between spring 2019 and spring 2020).

To explore the impact of the set-up of error covariance matrices, we considered inversions without error models in the covariance matrix \(R \), giving more weight to satellite data. In this case, the posterior NO\textsubscript{x} emissions at the city scale exhibit their highest reductions between spring 2020 and spring 2019 (e.g., -31% and -25% over Paris and over Lyon respectively). Assimilating the observations without accounting for the model error may lead to over-fitting and thus project the models errors onto the emission estimates. However, the weight of \(R \) in our inversions may have to be re-assessed with regards to the relatively conservative option that we use here to assign observation error to the super-observations. A finer assessment would require a good knowledge of the share of retrieval errors between random noise without spatial correlations and more systematic errors with spatial correlations, as well as the typical length scales of such spatial correlations, which is currently challenging to derive (Miyazaki et al., 2012; Boersma et al., 2016; Lambert et al., 2023).

The emissions derived for cities are consistent with the existing literature but remain lower than most studies. In the absence of
alternative information, like new measurements from benchmark cities, reconciling these results would prompt a re-evaluation of the observation errors in our inversion and a potential reassessment of our model error definition. The information contained in TROPOMI TCVDs cannot be fully exploited in our inversion set-up to get constraints on diffuse emissions e.g. in French rural areas. For emission hot-spots, addressing challenges arising from satellite coverage gaps may involve introducing horizontal, temporal, and sectoral correlations, although obtaining such high-resolution correlations poses a substantial challenge. Exploring corrections to parameters underlying inventories, such as Fossil Fuel Data Assimilation System (FFDAS) for CO₂, may offer a cleaner extrapolation. If achieved, these additions would assist the inversion system in implementing nationwide emission adjustments. Furthermore, the incorporation of a hypothetical geostationary satellite (such as Sentinel 4) in conjunction with ground-based monitoring stations, could enhance the temporal resolution and enable the capture of daily NOₓ cycles, while also increasing the sensitivity of the satellite data near the surface.

Data availability. The re-processed TROPOMI-PAL dataset is available on https://data-portal.s5p-pal.com (Eskes et al., 2021).
Appendix A: Metropolitan masks

The list of all 15 urban areas and their masks is displayed on the following figure. Each mask is made out of 10×10 km2 pixels.

Figure A1. Urban areas studied.
<table>
<thead>
<tr>
<th>Urban area</th>
<th>Area [number of $10 \times 10 \text{ km}^2$ pixels]</th>
<th>Population density [inhab. km$^{-2}$]</th>
<th>EuroStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona</td>
<td>1</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Bordeaux</td>
<td>1</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Frankfurt</td>
<td>1</td>
<td>633</td>
<td></td>
</tr>
<tr>
<td>Lille</td>
<td>1</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>6</td>
<td>1435</td>
<td></td>
</tr>
<tr>
<td>Lyon</td>
<td>1</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Marseille</td>
<td>4</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Milan</td>
<td>3</td>
<td>1591</td>
<td></td>
</tr>
<tr>
<td>Nantes</td>
<td>1</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>Nice</td>
<td>1</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>6</td>
<td>1025</td>
<td></td>
</tr>
<tr>
<td>Rotterdam</td>
<td>2</td>
<td>1092</td>
<td></td>
</tr>
<tr>
<td>Ruhr-Rhein-Süd</td>
<td>121</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Toulouse</td>
<td>2</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Turin</td>
<td>1</td>
<td>329</td>
<td></td>
</tr>
</tbody>
</table>

Table A1. Cities studied in the paper and their areas in pixels with their population density according to EuroStat (statistics for 2019).
Appendix B: Additional tables

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kteqNO₂ kteqNO₂ [%]</td>
<td>kteqNO₂ [%]</td>
<td>kteqNO₂ [%]</td>
<td>kteqNO₂ [%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>Paris</td>
<td>Annual</td>
<td>27 24 -11 23 -17 23 -15 -6 - +2 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring (MAM)</td>
<td>7 7 -7 6 -21 6 -14 -15 - +9 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>3 2 -14 2 -24 2 -17 -11 - +9 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>3 2 -6 2 -30 2 -17 -25 - +19 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>2 2 -1 2 -7 2 -7 -7 - +1 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>2 2 -21 2 -15 2 -18 -8 - -4 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B1. Prior and posterior NO₂ total emission budgets in kteqNO₂ and their relative differences in % \(100(\text{posterior} - \text{prior})/\text{prior}\), in Paris for different periods. Columns “Posterior \(y_n - y_{n-1}\)” and “CITEPA \(y_n - y_{n-1}\)” show the relative difference between \(y_n\) and \(y_{n-1}\) posterior fluxes and CITEPA in % \(100(F_{y_n} - F_{y_{n-1}})/F_{y_{n-1}}\).
<table>
<thead>
<tr>
<th>Urban area</th>
<th>TROPOMI TVCD</th>
<th>CHIMERE prior TVCD</th>
<th>CHIMERE posterior TVCD</th>
<th>Emissions posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mar</td>
<td>Apr</td>
<td>Mar</td>
<td>Apr</td>
</tr>
<tr>
<td>Barcelona</td>
<td>-42</td>
<td>-72</td>
<td>-13</td>
<td>-12</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>-34</td>
<td>-27</td>
<td>-14</td>
<td>+23</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>-54</td>
<td>+1</td>
<td>-18</td>
<td>+58</td>
</tr>
<tr>
<td>Lille</td>
<td>-15</td>
<td>-35</td>
<td>+19</td>
<td>-10</td>
</tr>
<tr>
<td>London</td>
<td>-7</td>
<td>-38</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Lyon</td>
<td>-27</td>
<td>-43</td>
<td>+13</td>
<td>+18</td>
</tr>
<tr>
<td>Marseille</td>
<td>-20</td>
<td>-27</td>
<td>-2</td>
<td>+46</td>
</tr>
<tr>
<td>Milan</td>
<td>-30</td>
<td>-21</td>
<td>+28</td>
<td>+2</td>
</tr>
<tr>
<td>Nantes</td>
<td>+2</td>
<td>-45</td>
<td>+16</td>
<td>-2</td>
</tr>
<tr>
<td>Nice</td>
<td>-28</td>
<td>-37</td>
<td>0</td>
<td>+7</td>
</tr>
<tr>
<td>Paris</td>
<td>-41</td>
<td>-54</td>
<td>-4</td>
<td>+42</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>-35</td>
<td>-17</td>
<td>-15</td>
<td>+39</td>
</tr>
<tr>
<td>Ruhr-Rhein-Süd</td>
<td>-25</td>
<td>-9</td>
<td>-21</td>
<td>+42</td>
</tr>
<tr>
<td>Toulouse</td>
<td>-41</td>
<td>-31</td>
<td>-23</td>
<td>-22</td>
</tr>
<tr>
<td>Turin</td>
<td>-33</td>
<td>-41</td>
<td>+17</td>
<td>-5</td>
</tr>
</tbody>
</table>

Table B2. Changes in NO\textsubscript{2} TROPOMI-PAL and CHIMERE tropospheric columns (in %) and changes in NO\textsubscript{x} total posterior emissions (in %), between 2020 and 2019 for March/April for the selection of urban areas displayed in Figure A1.
<table>
<thead>
<tr>
<th>Urban area</th>
<th>Standard posterior emissions</th>
<th>Filtered posterior emissions</th>
<th>Standard posterior emissions</th>
<th>Filtered posterior emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mar</td>
<td>Mar</td>
<td>Mar</td>
<td>Mar</td>
</tr>
<tr>
<td>Barcelona</td>
<td>-4</td>
<td>-8</td>
<td>-7</td>
<td>-16</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>-3</td>
<td>-1</td>
<td>-9</td>
<td>-2</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>-7</td>
<td>-10</td>
<td>-12</td>
<td>-17</td>
</tr>
<tr>
<td>Lille</td>
<td>-9</td>
<td>-11</td>
<td>-16</td>
<td>-11</td>
</tr>
<tr>
<td>London</td>
<td>-5</td>
<td>-12</td>
<td>-3</td>
<td>-18</td>
</tr>
<tr>
<td>Marseille</td>
<td>-2</td>
<td>-7</td>
<td>-5</td>
<td>-9</td>
</tr>
<tr>
<td>Milan</td>
<td>-13</td>
<td>-2</td>
<td>-22</td>
<td>-11</td>
</tr>
<tr>
<td>Nantes</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>Nice</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>-5</td>
<td>-6</td>
<td>-6</td>
<td>-10</td>
</tr>
<tr>
<td>Ruhr-Rhein-Süd</td>
<td>-16</td>
<td>-26</td>
<td>-16</td>
<td>-26</td>
</tr>
<tr>
<td>Toulouse</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>Turin</td>
<td>-1</td>
<td>-3</td>
<td>-10</td>
<td>-4</td>
</tr>
</tbody>
</table>

Table B3. Changes in NO$_x$ CHIMERE total posterior emissions for the standard (in %) and with a simplified observation error set-up (in %, R matrix without model error; see details in Section 3.2.3 from March/April 2019 to March/April 2020 taking into account different TROPOMI coverage for the selection of urban areas displayed in Figure A1.
Appendix C: Additional figures

Figure C1. Anthropogenic mask used over France using an urban and road land-use proxy.

Figure C2. Number of TROPOMI-PAL super-observations on the ARGFR domain in March/April 2019 and 2020.
Author contributions. RP, AFC, GB, IP, AB, EP, GD, AC, DS, and GS conceptualized the study. GS produced the prior emissions map. HE produced the satellite data. RP and AFC carried out inversions and data analysis. All co-authors contributed to the design of the study and to writing the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This study has received funding from the French ANR project ARGONAUT under grant agreement No ANR-19-CE01-0007 and from the French PRIMEQUAL project LOCKAIR under grant agreement No 2162D0010. This work was also supported by the CNES (Centre National d’Etudes Spatiales), in the frame of the TOSCA ARGOS project. This work was granted access to the HPC resources of TGCC under the allocations A0100102201 and A0110102201 made by GENCI. Finally, we wish to thank J. Bruna (LSCE) and his team for computer support.
References

Mijling, B., van der A, R. J., and Zhang, Q.: Regional nitrogen oxides emission trends in East Asia observed from space, Atmospheric Chemistry and Physics, 13, 12 003–12 012, https://doi.org/10.5194/acp-13-12003-2013, 2013.

Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NO\textsubscript{x} emission estimates derived from an assimilation of OMI tropospheric NO\textsubscript{2} columns, Atmospheric Chemistry and Physics, 12, 2263–2288, https://doi.org/10.5194/acp-12-2263-2012, 2012.

