
NOx emissions in France in 2019-2021 as estimated by the high
spatial resolution assimilation of TROPOMI NO2 observations
Robin Plauchu 1, Audrey Fortems-Cheiney 1,*, Grégoire Broquet 1, Isabelle Pison 1, Antoine Berchet 1,
Elise Potier 1,*, Gaëlle Dufour 2, Adriana Coman 3, Dilek Savas 2, Guillaume Siour 3, and Henk Eskes 4

1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay,
F-91191 Gif-sur-Yvette, France
2Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
3Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
4Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
*Now in Science Partners, Quai de Jemmapes, 75010 Paris, France

Correspondence to: Robin Plauchu (robin.plauchu@lsce.ipsl.fr)

Abstract.

Since 2018, TROPOMI on-board Sentinel-5P provides unprecedented images of NO2 tropospheric columns at a relatively high

spatial resolution with a daily revisit. This study aims at assessing the potential of the TROPOMI-PAL data to estimate the

national to urban NOx emissions in France from 2019 to 2021, using the variational mode of the recent Community Inversion5

Framework coupled to the CHIMERE regional transport model at a spatial resolution of 10×10 km2. The seasonal to inter-

annual variations of the NOx French emissions are analyzed. A specific attention is paid to the current capability to quantify

strong anomalies in the NOx emissions at intra-annual scales such as the ones due to the COVID-19 pandemic, by using

TROPOMI NO2 observations.

At the annual scale, the inversions suggest a decrease of the average emissions over 2019-2021 of -3 % compared to the national10

budget from the Copernicus Atmosphere Monitoring Service regional inventory (CAMS-REG) for the year 2016, which is used

as a prior estimate of the national scale emissions for each year by the Bayesian inversion framework. This is lower than the

decrease of -14 % from 2016 to the average over 2019-2021 in the estimates of the French Technical Center for Air Pollution

and Climate Change (CITEPA). The lower decrease in the inversion results may be linked for a large part to the limited level

of constraint brought by the TROPOMI data, due to the observation coverage and the ratio between the current level of errors15

in the observation and the chemistry-transport model, and the NO2 signal from the French anthropogenic sources.

Focusing on local analysis and selecting the days during which the TROPOMI coverage is good over a specific local source,

we compute the reductions in the NOx anthropogenic emission estimates by the inversions from spring 2019 to spring 2020.

These reductions are particularly pronounced for the largest French urban areas with high emission levels (e.g., -26 % from

April 2019 to April 2020 in the Paris urban area), reflecting reductions in the intensity of vehicle traffic reported during the20

lockdown period. However, the system does not show large emission decreases for some of the largest cities in France (such as

Bordeaux, Nice and Toulouse), even though they were also impacted by the lockdown measures.

Despite the current limitations for the monitoring of emissions at the national scale, or for some of the largest cities in France,
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these results open positive perspectives regarding the ability to support the validation or improvement of inventories with

satellite observations, at least at the local level. This leads to discussions on the need for a stepwise improvement of the inversion25

configuration for a better extraction and extrapolation in space and time of the information from the satellite observations.
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1 Introduction

In Europe, nitrogen dioxide (NO2) is emitted mainly by road traffic, thermal power plants and industrial activities and produced

in the atmosphere by the oxidation of nitric oxide (NO), which is emitted by the same activities. NO2 is of great interest

due to its important role in many atmospheric processes with strong implications for air quality, health, climate change and30

ecosystems. It is one of the major air pollutants with adverse impact on health (Costa et al., 2014; EEA, 2020). Deposition of

nitrogen compounds like nitrates, for which NO2 is a precursor, leads to eutrophication of ecosystems (Stevens et al., 2018).

NO2 also indirectly affects the radiative forcing as a precursor of tropospheric ozone and particulate matter. NO2 is therefore

one of the regulated air quality pollutants. Nevertheless, despite ongoing improvements in the overall air quality, levels of air

pollutants above standards of the European Union (EU) are still measured across Europe and air pollution remains a major35

health concern for European citizens (EEA, 2023). For example, France was condemned in 2019 by the Court of Justice of the

EU (CJEU) for non-compliance with Directive 2008/50/EC relating to ambient air quality, and more specifically for exceeding

systematically and persistently concentration limit values (CLV, 40 µg.m−3 on annual average) for NO2, particularly in the

Ile-de-France area, close to traffic. According to Airparif (2022), the planned reductions in the emissions of nitrogen oxides

(NOx=NO+NO2) will still be insufficient by 2025 to respect the NO2 CLV, which should have been reached by January 2010.40

The society is thus faced with a major environmental challenge: the need to rapidly reduce NO2 concentrations to levels

that comply with the law (EU Directive 2016/2284) and do not impact human health or ecosystems and therefore to reduce

anthropogenic NOx emissions. An accurate account of NOx emissions in space and time is needed to assess the effectiveness of

policies aiming at reducing NOx emissions. However, the quantification of anthropogenic NOx emissions following a bottom-

up (BU) approach, based on the statistics of activity sectors and fuel consumption and relying on emission factors per activity45

type, suffers from relatively large uncertainties. For example, at national and annual scales, these uncertainties reach 50-200 %

depending on the activity sector in the European Monitoring and Evaluation Programme (EMEP) inventory (Kuenen and Dore,

2019) and these emission factors can be biased (e.g., with the Dieselgate, Brand (2016)). Schindlbacher et al. (2021) reported

uncertainty estimates for national total NOx emissions ranging from 5 % for Norway to 45 % for Ireland. In addition, the use of

proxies and typical temporal profiles inevitably introduces errors in the quantification of the spatio-temporal variability at high50

resolutions. In situ information could be used to analyze local emissions and their variations due to specific events or measures

(Guevara et al., 2023). Finally, the BU inventories are often delivered with a 2-year lag. The assessment of AQ (Air Quality)

policies (as mentioned above) would benefit from accurate emission inventories spatialized at a high resolution with a fast

update capability and integrating independent information could play a critical role for the AQ analysis and policies. The use

of atmospheric measurements to complement current BU approaches may then support the development of such inventories.55

Since the 2000s, NO2 atmospheric mixing ratios have been monitored around the world by space-borne instruments, such as

the Global Ozone Monitoring Experiment GOME (Burrows et al., 1999) and GOME-2 (Munro et al., 2016), the SCanning

Imaging Absorption spectroMeter for Atmospheric CHartographY SCIAMACHY (Burrows et al., 1995; Bovensmann et al.,

1999) and the Ozone Monitoring Instrument OMI (Levelt et al., 2018).

In this context, attempts have been made to develop so-called top-down (TD) methods, complementary to BU inventories, to60
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deduce NOx emissions from NO2 satellite data. These methods are based on the principle that atmospheric levels and variations

of NO2 reflect the convolution of the amplitude and variations of NOx emissions with the atmospheric chemistry and physics.

Through the statistical inverse modeling of the atmospheric chemistry and transport, one can derive estimates of the emissions

based on the concentration fields. However, strong non-linear relationships exist between NOx emissions and satellite NO2

tropospheric vertical column densities (TVCDs) (Lamsal et al., 2011; Vinken et al., 2014; Miyazaki et al., 2017; Elguindi65

et al., 2020) due to the complex chemistry affecting NOx in the atmosphere.

This complex atmospheric chemistry has been taken into account in various ways in more or less complex TD methods.

Mass–balance approaches have been performed at the global (Lamsal et al., 2011; Vinken et al., 2014) and regional (Visser

et al., 2019) scales, accounting for non-linear relationships between NOx emission changes and NO2 TVCDs via reactions

with hydroxyl radicals (OH) but with simple scaling factors. However, Stavrakou et al. (2013) have shown that other direct70

or indirect NOx sinks associated with other species (such as ozone O3 or the HO2 radical) could significantly influence NO2

concentrations in the atmosphere and therefore TD estimates. A more detailed account of the complex NOx chemistry should

thus support more accurate derivations of NOx emissions from NO2 satellite data. Therefore, more elaborated approaches

using chemistry transport models (CTM) with ensemble Kalman filter inverse modeling techniques or variational approaches,

have been used to infer NOx emissions at the global (Müller and Stavrakou, 2005; Miyazaki et al., 2017) or at the regional75

scale (van der A et al., 2008; Mijling and van der A, 2012; Mijling et al., 2013; Lin, 2012; Ding et al., 2017; Savas et al.,

2023). However, NOx inversions from satellite NO2 observations have resolution-dependent biases: coarse-resolution models

are known to bear negative biases in NO2 over large sources (Valin et al., 2011). It would be therefore essential to operate

at finer spatial resolutions. In addition, monitoring NOx emissions implies monitoring hotspots of emissions (large urban and

industrial areas or strong point sources), which concentrate much of the global emissions (57 % of the global population lives80

in urban areas as of 2022, Ritchie and Roser (2018)). Being able to monitor individually emission hotspots is required to assess

the emission reduction policies since the scales they target range from the regional scale (e.g., that of the EU) to the country

scale or even to that of smaller territory units e.g., cities. This requires in turn a high spatial and temporal resolution mapping

of NO2 concentrations.

Since 2017, the TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al. (2012)) on-board the Copernicus Sentinel-85

5 Precursor (S5P) monitors atmospheric NO2 with a high-resolution imaging (pixel size of about 5.6×3.6 km2 since August

2019), which should support the quantification of anthropogenic emissions at national to local scales. With a swath as wide as

approximately 2600 km on ground, the TROPOMI instrument also provides an unprecedented daily coverage. It theoretically

covers any point of the Earth 1 to 2 times a day. The need for surface solar irradiance, the cloud cover and the quality filtering

limit the number of pixels in numerous images locally (e.g., at high latitudes) but the possibility of having a follow-up week90

by week (even day by day) remains for large portions of the globe.

To fully exploit these TROPOMI satellite images, variational inversion systems seem particularly adapted since they allow for

solving high-dimensional problems (Elbern et al., 2000; Quélo et al., 2005; Pison et al., 2009; Henze et al., 2009; Cao et al.,

2022), typically addressing the emission fluxes at high spatial and temporal resolutions and assimilating a large number of data,

such as provided in TROPOMI images. The non-linearities of the chemistry of NOx can be dealt with in a variational inversion95
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framework driving a regional CTM using a manageable chemistry scheme to simulate NO2 concentrations and whose adjoint

code is available.

In this context, this study assesses the potential of the TROPOMI observations to inform about NOx emissions in France from

2019 to 2021 at national to urban scales. The primary target of the inversions and analysis are the anthropogenic emissions, i.e.,

mainly those due to the combustion of fossil and biofuels. The soil emissions (including the impact of agricultural practices),100

which represent a much smaller share of the total national emissions and which are more diffuse are assumed to be more

difficult to diagnose and are kept as a secondary target of the inversions.

We use the high-dimensional variational inversion drivers of the recent Community Inversion Framework (CIF, Berchet et al.

(2021)). The CIF drives a configuration of the CHIMERE regional CTM (Menut et al., 2013; Mailler et al., 2017) covering

France at 10×10 km2 spatial resolution, including a chemistry module taking into account the complex NOx chemistry in105

gas-phase and its non-linearities, and of its adjoint (Fortems-Cheiney et al., 2021). This relatively fine spatial resolution makes

it possible to focus on the French largest urban areas. The period 2019–2021 covers the phase of the COVID-19 crisis in

spring 2020 during which NO2 concentrations and NOx anthropogenic emissions are expected to have significantly dropped

over Europe (Bauwens et al., 2020; Menut et al., 2020; Diamond and Wood, 2020; Ordóñez et al., 2020; Petetin et al., 2020;

Barré et al., 2021; Gaubert et al., 2021; Deroubaix et al., 2021; Lee et al., 2021; Souri et al., 2021; Levelt et al., 2022; Guevara110

et al., 2021, 2022, 2023). In France, the population has been confined from March 17th to May 10th and all public spaces

deemed non-essential to daily life in the country have been shut down. Then, from May 11th to June 1st, lockdown restrictions

have progressively been lifted. The population has been confined again from October 30th to December 15th. The analysis of

the emissions from 2019–2021 should thus provide insights on the current capability to quantify strong anomalies in the NOx

emissions at intra-annual scales by using satellite NO2 observations.115

Our configuration of the CHIMERE CTM, the NO2 TROPOMI satellite observations, and the variational inversion framework

and set up are described in Section 2. Section 3 presents the results of our study, including comparisons between TROPOMI-

PAL NO2 TVCDs and their CHIMERE simulated equivalents and the analysis of the spatio-temporal variability of the French

NOx emissions. Our conclusions are given in Section 4.
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2 Data and method120

2.1 Prior estimates of the emission maps

The principle of the inversion is to correct a priori emission maps later on referred as “prior emissions”. In this study, the in-

version controls NO and NO2 emissions based on the Bayesian update of a prior estimate of these emissions. Therefore, there

is a need for independent maps of the NOx emissions to derive this prior estimate. There is also a need for estimates of the

anthropogenic emissions of 15 species (including non-methane volatile organic compounds NMVOCs, carbon monoxide CO,125

etc.) that are used in the chemistry scheme of the atmospheric chemistry transport model, even though they are not controlled

by the inversions (these emissions remain fixed during the inversion process, see Section 2.5).

Here, the prior estimates of NOx anthropogenic emissions are based on a combination of the Copernicus Atmosphere Monitor-

ing Service Regional (CAMS-REG) emission inventory (Kuenen et al., 2022) for the year 2016 and of the Inventaire National

Spatialisé (INS, Ministère de la transition écologique et solidaire (2012)) for the year 2012. Hereafter, the term anthropogenic130

emissions mainly correspond to emissions due to the combustion of fossil and biofuels, and it excludes the emissions due to

the soil fertilization by agriculture, such as the CAMS-REG and INS.

CAMS-REG is an inventory of the anthropogenic emissions of pollutants in Europe which is spatialized at a 0.05 ◦ longitude

× 0.1 ◦ latitude resolution. Annual and national budgets in this inventory are based on the officially reported emission data by

European countries to the Convention on Long-Range Transboundary Air Pollution and the EU National Emission Ceilings135

Directive. These budgets are then disaggregated based on proxies of the different sectors, separating point sources and areas

sources, described in Kuenen et al. (2022). Default profiles for typical emission height by source type (Kuenen et al., 2022),

which accounts for the average effective emission height (including plume rise), based on Bieser et al. (2011). Temporal dis-

aggregation is based on temporal profiles provided per sector with typical month to month, weekday to week-end and diurnal

variations (Ebel et al., 1997; Menut et al., 2012).140

The prior estimates of the anthropogenic emissions are completely derived from the CAMS-REG inventory outside France.

In France, it is derived from the annual budgets and the temporal and vertical profiles of the CAMS-REG inventory, but the

horizontal spatialization is based on the INS, i.e. using proxies at municipal scale from this inventory. The inventory product

used for the prior estimate of the emissions is therefore called “CAMS-REG/INS” in the following.

Following the GENEMIS recommendations (Kurtenbach et al., 2001; Aumont et al., 2003), the NOx anthropogenic emissions145

have been speciated as 90 % of NO, 9.2 % of NO2, and 0.8 % of nitrous acid (HONO) emissions.

The NO biogenic soil emissions are prescribed using simulations from the Model of Emissions of Gases and Aerosols from

Nature (MEGAN) model (Guenther et al., 2006), with a ~1×1 km2 spatial resolution, which, in principle, does not take the

impact of agricultural practices into account, even though it covers both natural and agricultural areas. Recent studies have

indeed shown that MEGAN significantly underestimates soil emissions in agricultural areas (Oikawa et al., 2015; Almaraz150

et al., 2018; Sha et al., 2021; Zhu et al., 2023). However, there are large uncertainties in the NOx emissions due to agriculture,

and in principle, there could be some overlapping between the agricultural and purely natural soil NOx emission estimates.

It explains why these emissions are not provided by the CAMS-REG inventory (Kuenen et al., 2022). Therefore, we do not
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include a specific agricultural soil NOx emissions component in our prior estimation of the NOx emissions.

Lightning NOx fluxes, whose impact on NO2 concentrations is very small in Europe even in summer (Menut et al., 2020), are155

not accounted for. Fire emissions are also ignored, as we assume that they only slightly contribute to the NOx total emissions.

These emission maps have been aggregated to the grid of CHIMERE for the years 2019 to 2021 (Section 2.2 and Figure 1).

2.2 Configuration of the CHIMERE CTM

We use the CHIMERE v2013 model to simulate fields of concentrations of gaseous chemical species in a domain that covers

France and its vicinity (11 ◦W-12 ◦E; 39.5 ◦N-54.5 ◦N, see Figure 1). The model horizontal grid is zoomed (Siour et al., 2013),160

with a 10 km resolution regular sub-grid in the center of the domain covering the full France and a 50 km resolution in the

corners of the domain (Figure 1). It corresponds to 166 (longitude) × 122 (latitude) horizontal grid cells. The model has 20

vertical layers, from the surface to 200 hPa, with 8 layers within the first two kilometers.

The model is driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) global meteorological fields

(Owens and Hewson, 2018). Both CHIMERE (Menut et al., 2013) and its adjoint code operate the MELCHIOR-2 chemical165

scheme, with more than 100 reactions (Lattuati, 1997; Derognat et al., 2003), including 24 for inorganic chemistry. Con-

sidering the NO2 short lifetime, we do not consider its import from outside the domain: its boundary conditions are set to

zero. Nevertheless, the lateral and top boundaries for other species such as ozone O3, nitric acid HNO3, peroxyacetyl nitrate

PAN, formaldehyde HCHO, participating to the NOx chemistry, are considered. Initial and boundary conditions when relevant

are specified using a nested run of CHIMERE (Siour et al., 2013) over a European domain (15.25 ◦W-35.75 ◦E; 31.75 ◦N-170

74.25 ◦N) with a spatial resolution of 0.5 ◦, using itself boundary and initial conditions from climatological values from the

LMDZ-INCA global model (Szopa et al., 2009).

The aerosol module of CHIMERE is not considered in the simulations and inversions, as the adjoint of this module is not

available (Fortems-Cheiney et al., 2021; Savas et al., 2023).

Figure 1. Domain of our CHIMERE configuration: 10 km resolution regular sub-grid in purple, 50 km resolution in green and yellow,

10×50 km2 resolution in blue.
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2.3 TROPOMI-PAL observations175

TROPOMI, launched onboard Sentinel 5 Precursor in October 2017, is in a near-polar sun-synchronous orbit (approximate

altitude of ~824 km) with an ascending node equatorial crossing at ~13h40 Mean Local Solar time. With an orbital cycle of 16

days, and 14 orbits a day, the satellite passes over the same geographical area every cycle of 227 orbits. With a swath as wide

as 108 ◦– approximately 2600 km on ground – TROPOMI provides daily coverage for NO2. Observations over our domain

span from around 9:30 am to 2:30 pm local time with data from 2 to 3 orbits per day, with the major coverage around noon180

(11:30 am to 1:30 pm).

An evaluation of the TROPOMI-v1.3 product with surface remote sensing observations had indicated a systematic low bias

of TROPOMI NO2 tropospheric vertical columns densities (TVCDs) of typically -23 % to -37 % in clean to slightly polluted

conditions and as high as -51 % over highly polluted areas (Verhoelst et al., 2021) compared to ground-based measurements.

This negative bias has been mainly attributed to a negative cloud height bias in the Fast Retrieval Scheme for Clouds from185

Oxygen absorption band (FRESCO) implementation (van Geffen et al., 2022b) and efforts have been made to correct it in the

TROPOMI-PAL product (Eskes et al., 2021).

Here, we use the PAL TROPOMI reprocessed data (Eskes et al., 2021), available from 2019 to the 11th of November, 2021.

We use a recent reprocessing of the TROPOMI data, called RPRO version 2.4, to cover the end of the year 2021. This latest

reprocessing uses a new higher-resolution directional Lambertian-equivalent reflectivity derived from TROPOMI observations190

(van Geffen et al., 2022a). Nevertheless, the last evaluation of the TROPOMI RPRO v2.4 product with surface remote sensing

observations still indicates significant biases of TROPOMI the NO2 TVCDs of typically +13 % over clean areas to -40 %

over highly polluted areas (Lambert et al., 2023). Part of theses biases could be explained by the relatively coarse horizontal

resolution of the global TM5-MP prior profiles (1 ◦×1 ◦) used in the retrieval process (which can be neglected when applying

the retrieval averaging kernels to the model) (Douros et al., 2023). However, these biases are also largely attributed to systematic195

errors in the retrieved cloud pressure, surface albedo used etc. (Boersma et al., 2016; Douros et al., 2023).

We select the data with a quality assurance (qa) value of 0.75 for both products, following the criteria of van Geffen et al.

(2022b). The latest version of the TROPOMI NO2 Algorithm Theoretical Basis Document (ATBD) is now for product version

2.6 (TROPOMI ATBD of the total and tropospheric NO2 data products, KNMI, S5P-KNMI-L2-0005-RP, issue 2.4.0, van

Geffen et al. (2022a)).200

2.4 Comparison between simulated and observed NO2 TVCDs

To make relevant comparisons between simulations and satellite observations, the averaging kernels (AKs), which are associ-

ated with each observed TVCD and representing the vertical sensitivity of the satellite retrieval (Eskes and Boersma, 2003) are

applied to the simulated concentration field. Due to the over-sampling resulting from the model’s horizontal resolution being

coarser than the TROPOMI data, we aggregate spatially and temporally the TROPOMI observations at the CHIMERE resolu-205

tion into so-called super-observations. Within a given grid cell and time step, the super-observation is the observation (TVCD

and AKs) which is the closest to the mean of the TROPOMI TVCDs. The error associated with each super-observation is also
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derived from the observation closest to the mean value and subsequently included into the total so-called “observation error”

(see Section 2.5). Our derivation of the error associated with each super-observation is thus conservative compared to other

studies (Boersma et al., 2016) where the super-observation uncertainty is reduced compared to that of individual observations.210

The reduction of uncertainty when combining several observations account for the fact that the retrieval errors include random

noise (in particular, instrumental noise) without spatial correlation, i.e. errors which are independent from one observation

to the other. However, as discussed above, the TROPOMI NO2 observations bear large systematic errors from the retrieval

process, which can exhibit significant spatial correlations. This explains our conservative attribution of observation errors to

the super-observations.215

The corresponding column of NO2 in CHIMERE is vertically interpolated (at TROPOMI’s super-observation location) on the

vertical levels of the super-observation retrieval, and vertically integrated with the AKs of the super-observation, to yield the

NO2 simulated TVCD to be compared to the super-observation TVCD, as illustrated in Figure 2a) and Figure 2b) for the month

of April 2020.

Figure 2. Averages of NO2 TVCDs by a) the TROPOMI-PAL data, b) the CHIMERE simulation using prior emissions from the CAMS-

REG/INS and MEGAN inventories, described in Section 2.1 and c) the CHIMERE simulation using the posterior emissions from the inversion,

for April 2020, in molec.cm−2. d) Ratio of the posterior and prior biases between NO2 TVCDs simulated with CHIMERE and the TROPOMI-

PAL observations. All ratios lower than 1, in green, demonstrate that posterior emission estimates improve the simulation compared to the

prior ones.

2.5 Variational inversion of NOx emissions220

The inversion of NOx emissions consists in correcting the prior estimate of the emissions (presented in Section 2.1) to improve

the fit between NO2 TROPOMI-PAL satellite data and their simulated equivalents, using a Bayesian variational inversion
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framework similar to that of Fortems-Cheiney et al. (2021).

Series of 7-day inversion windows – independent from each other – are run and then combined to provide a corrected (“pos-

terior”) estimate of NOx emissions over the whole period of analysis (2019-2021). For each inversion window, the posterior225

estimate of the emissions is found by iteratively minimizing the cost function J(x):

J(x) = (x−xb)TB−1(x−xb)+ (H(x)−y)TR−1(H(x)−y) (1)

where x, H, y, B, R are respectively the control vector, the observation operator, the satellite observations, the prior error

covariance matrix and the observation error covariance matrix. The control vector x gathers variables for the correction of the

surface NO and NO2 emissions, xb corresponding to the prior estimate of the control vector.230

Here the definition of x ensures that the inversion solves separately for the two main types of NO emissions: the anthropogenic

and the biogenic emissions (without any further sectorization or decomposition into more detailed emission components), and

for the anthropogenic NO2 emissions, at the 1-day and model grid-cell (i.e. 50 to 10 km) resolution temporally and horizontally,

and over three vertical levels for the anthropogenic emissions (accounting for the range of injection heights discriminating

between the anthropogenic sources). With such a control vector, the prior NO/NO2 anthropogenic emission ratio speciation235

from the GENEMIS recommendations (see Section 2.1) is not conserved the inversion, but the analysis focus on the NOx

emissions as the sum of the NO and NO2 emissions.

Furthermore, contrarily to Fortems-Cheiney et al. (2021), we implicitly aim to characterize the prior uncertainty in both the

anthropogenic and biogenic NOx emissions with log-normal distributions. This allows the inversion system to apply high

variations in NOx emissions while ensuring positivity, unlike the classic corrections of the emission with scaling factors with a240

Gaussian distribution of prior uncertainty. However, the uncertainty in the control vector must follow a Gaussian distribution,

as required by the use of Equation 1. Therefore, here, the control vector x is defined as the logarithm of the scaling factors

to be applied to the prior estimate of the emissions, and the posterior anthropogenic or biogenic emission estimate at a given

grid-cell of the model and for a given day fi is derived from the corresponding control parameter xi as fi = exp(xi).f
prior
i .

Our control vector x therefore contains:245

– the logarithm of the scaling coefficients for NO anthropogenic emissions at a 1-day temporal resolution, for the 166

(longitude) × 122 (latitude) horizontal grid cells of the model, and over three vertical bands of injection heights for

the emissions (from 0 to 25 m, from 25 to 1900 m, from 1900 to 12000 m); this is done essentially to reduce the

dimensionality of the problem along this axis as most emissions are concentrated in the first 2 layers. The corrections

applied are the same for all layers within a band,250

– the logarithm of the scaling coefficients for NO2 anthropogenic emissions at the same temporal and spatial resolutions

as for NO,

– the logarithm of the scaling coefficients for NO biogenic emissions at a 1-day temporal resolution, for the 166 (longitude)

× 122 (latitude) model grid cells at the surface level.
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NO and NO2 3D initial conditions (specified using a nested run of CHIMERE, as described in Section 2.2) are not controlled255

and are set once initially for all 7-day windows at 0:00 UTC on the first day of these windows. We therefore do not account

for the potential update of the concentrations during a previous 7-day window due to the inversions. They have a low impact

on the inversion since the first satellite observations over the domain are around noon while the NOx lifetime is short (on the

order of a few hours, Hakkarainen et al. (2024)).

The uncertainties in the observations y together with that in the observation operator H, and the uncertainties in the prior260

estimate of the control vector xb are assumed to have a Gaussian distribution. Therefore, they are fully characterized by error

covariance matrices.

The prior uncertainty is defined at the resolution of the control vector. Thus, the terms of the prior error covariance matrix

B reflect the uncertainties in the logarithm of the anthropogenic and biogenic emissions of NOx at 1-day and 50 to 10 km

resolution. This matrix is set block diagonal (see Equation 2), with a block corresponding to the anthropogenic emissions, and265

the other one corresponding to the biogenic emissions, assuming that there is no correlation between the respective uncertainties

in the prior estimates for these two types of emissions.

Another assumption is that at the 1-day and 50 to 10 km resolution, there is no spatial or temporal correlations in the prior

uncertainties in the anthropogenic emissions, due to the heterogeneity of these emissions. Therefore, the first block of B

corresponding to the logarithms of the anthropogenic emissions is set diagonal. Each diagonal element is set at (0.3)2: the270

range associated to this σ value in the log-space corresponds to a factor ranging between 74 %-135 % in the emission space at

1 day and pixel at model’s grid scale.

The second block of B corresponding to the biogenic fluxes accounts for space correlations in the uncertainties in these

emissions, which are assumed to be more homogeneous in space and time han the anthropogenic emissions, and to decrease

exponentially with distance. They are set with a λ0 = 30 km decorrelation length. On the diagonal, uncertainties are set to a275

value of (0.6)2. The range associated to this value σ in the log-space corresponds to a factor ranging between 55 %-182 % in

the emission space at the 1-day and model’s grid scale.

B=




σant
ii . . . 0
...

. . .
...

0 . . . σant
jj

 0

0


σbio
j+1,j+1 . . . νbiok,j+1

...
. . .

...

νbioj+1,k . . . σbio
kk




(2)

with ν of the form: νnm = σnσme
−∆x
λ0

280

H is the observation operator, linking the control variables in the log-space to the simulated equivalents of the super-observations.

It includes the exponential operator and scaling factor converting the maps of the logarithm of the coefficient for the emissions
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into emission maps at the spatial and temporal resolutions of CHIMERE, the atmospheric chemistry and transport model

CHIMERE itself, and the extraction of the TVCDs from CHIMERE where and when we have TROPOMI super-observations.

The uncertainties on the observations y and on the observation operator are characterized by the so-called observation error285

covariance matrix R, set-up here as a diagonal matrix based on the assumption that these errors are not correlated in space or

time when aggregated at the model 50 to 10 km and 1-hour resolution. The variance of the observation errors corresponding to

individual observations in the diagonal of R, is the quadratic sum of the error we have assigned to the TROPOMI-PAL super-

observations (see Section 2.4), and of an estimate of the errors from the observation operator. We assume that the observation

operator error is dominated by the chemistry-transport modeling errors and by the errors associated with the discrepancies290

between the spatial representativity of the super-observations and of the model corresponding column: it is set at 30 % of the

retrieval value. It was set at 20 % by Fortems-Cheiney et al. (2021) at a coarser resolution and is increased here to take into

account the mismatch between the shape and location of the real and simulated atmospheric patterns at our finer resolution (see

Section 2.4).

The minimum of the cost function J is searched for with the iterative M1QN3 limited-memory quasi-Newton minimization295

algorithm (Gilbert and Lemaréchal, 1989). At each iteration, the computation of the gradient of J relies on the adjoint of the

observation operator, and in particular on the adjoint of CHIMERE. In the results presented in Section 3, as a compromise

between computational time and the level of convergence of the iterative minimization of J in the inversions, the minimization

is considered to be satisfying when the norm of the gradient of J is reduced by 80 %.

The calculation of the uncertainty in the posterior estimates of emissions is challenging when using a variational inverse sys-300

tem (Kadygrov et al., 2015; Rayner et al., 2019; Fortems-Cheiney et al., 2021) and it is not done here. It would require a

large ensemble of time-consuming inversions (especially due to the handling of chemistry), to enable a proper sampling of the

uncertainties and thus a proper derivation of the of the statistics of uncertainty.
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3 Results

3.1 Seasonal and inter-annual estimates of NOx total French emissions305

3.1.1 Fit between TROPOMI-PAL super-observations and their simulated equivalents

Before analyzing the results in terms of emissions, we check the behavior of the inversion by comparing the performances of

the prior and posterior simulations in reproducing the spatial and temporal variations of the observations. As an illustration,

TROPOMI-PAL and the corresponding CHIMERE NO2 TVCDs are shown in 2a and Figure 2b, respectively, for April 2020.

The TROPOMI-PAL observations and their NO2 simulated equivalents present similar spatial patterns, with hotspots (TVCDs310

higher than 1×1016 molec.cm−2) over urban areas and low values over rural ones during the whole simulated period from

2019 to 2021 (illustrated in Figure 2a) and b) for one month in 2020). However, the prior simulation overestimates the NO2

TVCDs over urban areas in France compared to the observations. For example, for April 2020, the mean bias between the prior

simulation and TROPOMI is of about 4.2×1014, 2.0×1014 and 3.8×1014 molec.cm−2 over Paris, Lyon and Marseille (Figure

A1), respectively. The inversion brings the simulated TVCDs closer to the TROPOMI-PAL data over urban areas (Figure 2c):315

in this case, the mean bias and the mean RMS over the three cities are reduced by about 30 % and 12 % respectively.

As the CHIMERE prior simulation overestimates the NO2 TVCDs, the inversion brings the CHIMERE NO2 columns closer

to the TROPOMI-PAL data by reducing NOx emissions, mainly over dense urban areas (Ile-de-France, Lyon-Marseille axis,

London area, Benelux, Frankfurt, Po Valley, see Figure 3b). Over these areas, the relative corrections provided by the inversions

to the total (anthropogenic and biogenic) emissions can reach -70 % (Figure 3b).320

Figure 3. a) NOx total prior fluxes (anthropogenic emissions from CAMS-REG/INS and biogenic emissions from MEGAN, see Section 2.1

for details) and b) relative increments to the prior total emissions from the inversion in %, for April 2020.

3.1.2 Estimates of NOx French total emissions

This section focuses on the results from the NOx inversions in terms of comparisons between the total posterior NOx emissions

and the prior ones. The focus on total emissions is explained by the fact that the distinction between the signal from the biogenic

and anthropogenic emissions in the comparisons between the chemistry transport model and the satellite NO2 observations is

challenging in the inversion framework. Since both types of emissions are solved at the 1-day and model grid cell resolution,325
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the inversion system relies on the respective amplitude and spatial correlations in the prior uncertainties in the biogenic and

anthropogenic emissions (in B) to discriminate between the corrections to be applied to the prior estimates of the two types

of emissions. However, our configuration of B yield similar structures of spatial correlations for the two types of emissions.

Therefore, our confidence in the split between biogenic and anthropogenic emissions in the posterior emission estimates is low

whenever the two types of emissions have comparable levels according to the prior emission estimates.330

At the national scale, both the prior and the posterior emissions present a similar seasonal cycle in 2019-2021, with monthly

emissions higher than 72 kteqNO2 during winter and equal to or lower than 66 kteqNO2 during summer (Figure 4).

The mean French national budget for the years 2019 to 2021 from the posterior total emission estimates is about 850 kteqNO2,

which is lower than the total prior emissions estimated from the CAMS-REG/INS and MEGAN inventories (average of

875 kteqNO2, Figure 3, Table 1), with the largest reductions reaching about 8 % during fall and winter. This is expected as335

public policies have led to regular reductions in the anthropogenic emissions between 2016 (the year of our CAMS-REG/INS

inventory) to 2019-2021. The decrease in total NOx emissions is estimated at -13 % from 2016 to 2019 by the French Technical

Reference Center for Air Pollution and Climate Change (CITEPA report, we use the estimates for “out-of-scope” natural emis-

sions which are not reported to UNFCCC). According to the CITEPA, the reduction is driven by large reductions in emissions

from three major sectors: the energy sector (-28 %), the industry sector (-22 %), and the transport sector (-15 %) between 2016340

and 2019. However, the decrease found in this work is only about -3 % (Table 1). This can be explained by our configuration

with neither spatial nor temporal correlation in our B matrix, leading to null or very small correction of the prior emissions

from the inversions when the coverage of the country by TROPOMI super-observations is very sparse (Zheng et al., 2020).

In this case, the posterior emissions remain close to the prior emission estimate and therefore, at their 2016 level (see Section

3.2.3).345

The 2019-2021 inter-annual variability is smaller with our inversions (Table 1) than in the estimates from the CITEPA: the

annual budget of the French total NOx posterior emissions varies by less than 1 % from year-to-year, while the CITEPA es-

timates a decrease of about 13 % in 2020 compared to 2019, and an increase of about 3 % in 2021 compared to 2020 (Table

1). The similar annual total emissions in 2019 and 2020 nevertheless overlay different sub-annual variations. Higher emissions

— partly associated with higher TROPOMI NO2 tropospheric columns (not shown) — are estimated in January, in February,350

in June and in November 2020 compared to 2019 (Figure 4). These increases counterbalance the decrease of NOx emissions

in March/April 2020 (Figure 4, Figure 5) which could be both associated with the COVID-19 crisis and to meteorological

conditions with a warmer winter in 2020 than in 2019 (see Section 3.2.2).

When considering the split between biogenic and anthropogenic emissions from the inversions despite its lack of reliability,

the posterior biogenic emission estimates are close to the prior estimates derived from MEGAN (see Figures C1 and C2 in355

supplement): in particular they do not appear to be stronger in 2020 than in 2019. Therefore, the low decrease (-3 %) of the

posterior estimate of the national budget of the total NOx emission in 2020 can hardly be explained by an increase in the bio-

genic emissions which would compensate for the decrease of the anthropogenic emissions, even though the biogenic emissions

due to agriculture have been overlooked in our inversion set-up (see Section 2.1).
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Domain

or

region

Period

CAMS-REG/INS

+

MEGAN inventories

Posterior in 2019 Posterior in 2020 Posterior in 2021
Posterior

2020-2019

CITEPA

2020-2019

Posterior

2021-2020

CITEPA

2021-2020

kteqNO2 kteqNO2 [%] kteqNO2 [%] kteqNO2 [%] [%] [%] [%] [%]

France

Annual 875 853 -3 852 -3 845 -3 0 -13 -1 +3

Spring (MAM) 227 224 -1 222 -2 222 -2 -1 -21 0 +12

March 78 76 -3 74 -5 75 -4 -2 -12 +1 +5

April 77 76 -1 75 -4 74 -3 -2 -30 0 +23

May 73 72 -1 73 -1 72 -1 +2 -22 -2 +10

November 69 65 -6 67 -4 66 -4 +4 -19 -2 +14

Table 1. Prior and posterior NOx total emission budgets in kteqNO2 and their relative differences in % [100× (posterior−prior)/prior],

in France for different periods. Columns “Posterior yearn − yearn−1” and “CITEPA yearn − yearn−1” show the relative difference

between yearn and yearn−1 posterior fluxes and CITEPA in % [100× (Fyearn −Fyearn−1)/Fyearn−1 ].

Figure 4. Monthly NOx total emissions in France as estimated by the CAMS-REG/INS and MEGAN inventories (dotted lines) and by the

inversions for years 2019 (in green), 2020 (in orange) and 2021 (in pink), in kteqNO2.month−1. Grey shaded areas show the French

lockdown periods for the year 2020 and the purple shaded area shows the French lockdown period for the year 2021.

3.2 Impact of the COVID-19 lockdown in spring 2020360

The atmospheric lifetime of NO2 dictates that the high spatial resolution measurements from TROPOMI should readily capture

rapid week-to-week changes in near-surface emissions (Levelt et al., 2022) and should therefore make it possible to assess the

impact of the COVID-19 lockdown in spring 2020 on NOx French emissions. Following a usual diagnostic in the literature to

assess the change in air pollutant concentrations due to the COVID-19 policies, we characterize the impact of the first COVID-
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Figure 5. Monthly gridded relative differences between monthly averages of a) TROPOMI-PAL NO2 tropospheric columns, b) CHIMERE

prior tropospheric columns and c) CHIMERE posterior tropospheric columns estimated by the inversions from March/April 2019 to

March/April 2020, in % [100× (F2020 −F2019)/F2019)].

Figure 6. Monthly gridded relative differences between the monthly total (anthropogenic + biogenic) posterior emissions estimated by the

inversions from March/April 2019 to March/April 2020, for the months of March/April, using an urban and road land-use proxy (see Figure

C3), in % [100× (F2020 −F2019)/F2019].
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19 lockdown in France — occurring from March 17th to May 10th 2020 — in terms of changes from spring 2019 to spring365

2020. Our analysis relies on the spatial distribution of the main areas of anthropogenic activities to identify the locations where

the total NOx emissions should be dominated by anthropogenic emissions.

3.2.1 General impact on NO2 TROPOMI TVCDs

The TROPOMI NO2 TCVDs in March/April 2020 are first compared to 2019 at the national scale (Table 2). The TROPOMI

NO2 TCVDs decrease from 2019 to 2020 by -11 and -28 %, respectively in March/April over France. Similar decreases have370

been diagnosed in the measurements at surface stations over Europe with reductions in the average concentrations of NO2 of

about -25 % for at least 75 % of the 1308 European Air Quality e-Reporting database (AirBase) stations compared with the

average of the previous seven years (2013–2019) for the period March 18–May 18, 2020 (Deroubaix et al., 2021).

The population distribution is heterogeneous in France, with large rural areas (i.e., 75.7 % of the country area, according to

the French National Institute of Statistics and Economic Studies, 2020). We focus here on 8 urban areas which correspond to375

hotspots of NOx concentrations, and where, as a consequence, we expect a stronger signal due to changes in anthropogenic

activities (Figure A1): Paris, Lyon, Marseille, Lille, Bordeaux, Toulouse, Nice and Nantes.

The strength of the TROPOMI NO2 signal differs over these 8 French cities. Indeed, the absolute changes in NO2 TVCD in

March/April 2020 compared to March/April 2019 are higher for Paris, Lille, Lyon and Nantes (see Figure C5 in Supplemen-

tary materials) than for Bordeaux, Marseille, Nice and Toulouse (i.e., 1.×1015 molec.cm−2 or less). The population density380

difference between those cities could partly explain such variability (Table A1).

TROPOMI NO2 tropospheric columns in March/April 2020 are 26 to 38 % lower on average than in 2019 over the 8 urban

areas (Table 2). The relative changes from April 2019 to April 2020 range from -54 % for Paris to -27 % in Bordeaux (Table 2).

This relative change over Paris is consistent with the decrease of -52 % described by (Levelt et al., 2022) and with the decrease

of about -56 % estimated by the tropospheric NO2 columns measured by two UV-Visible Système d’Analyse par Observation385

Zénithale instruments (SAOZ, Pazmiño et al. (2021)).

The temporal variability of the changes from spring 2019 to spring 2020 also differs from one urban area to another. Excepted

for Bordeaux and Toulouse, the reductions of TVCDs are higher in April 2020 (Figure 6, Table 2) than in March 2020 (Figure

5, Table 2). This is consistent with the fact that the French population has been confined only from mid-March (i.e., on March

17th) versus the whole of April in 2020.390

3.2.2 Various factors contributing to the differences in concentrations from spring 2019 to spring 2020 beyond the

lockdown

The relative changes in the TROPOMI TVCDs from spring 2019 to spring 2020 are partly due to COVID-19 lockdowns but

they are also driven by the changes in the meteorological and atmospheric chemistry transport conditions (Menut et al., 2020;

Diamond and Wood, 2020; Petetin et al., 2020; Barré et al., 2021; Gaubert et al., 2021; Deroubaix et al., 2021).395

The differences from spring 2019 to spring 2020 in the simulated CHIMERE prior NO2 TVCDs (Figure 5) are mainly due to

changes in the meteorology and to a lesser extent to changes in the model boundary conditions and in the biogenic emissions
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Urban area

TROPOMI

TVCD

CHIMERE

prior

TVCD

CHIMERE

posterior

TVCD

Emissions

posterior

Mar Apr Mar Apr Mar Apr Mar Apr

France -11 -28 +7 -4 +2 -12 -2 -1

Bordeaux -34 -27 -14 +23 -15 +21 -3 -1

Lille -15 -35 +19 -10 +4 -28 -9 -11

Lyon -27 -43 +13 +18 +1 +1 -15 -13

Marseille -20 -27 -2 +46 -9 +19 -2 -7

Nantes +2 -45 +16 -2 +14 -7 -3 -3

Nice -28 -37 0 +7 -3 +2 0 -1

Paris -41 -54 -4 +42 -12 -9 -11 -26

Toulouse -41 -31 -23 -23 -22 -22 0 +1

Table 2. Changes in NO2 TROPOMI-PAL and CHIMERE tropospheric columns (in %) and changes in NOx total posterior emissions (in %),

between March/April 2019 and March/April 2020, for the 8 French urban areas displayed in Figure A1.

(Section 2.2), as the prior anthropogenic emissions are the same in 2019 and in 2020 (Section 2.1).

CHIMERE prior NO2 TVCDs are 23 % higher in March 2020 than in March 2019 in the Northern part of France, excepted for

the plume of Paris. These changes have thus a sign which is opposite to the changes expected from the COVID-19 lockdowns.400

This is in agreement with the analysis of Gaubert et al. (2021), who have shown that when considering only the effect of

meteorological variability, the level of NO2 concentrations would have been high during the 15 March–14 April 2020 period

compared to the average NO2 concentrations at the same period over the five previous years (2015–2019) in the north-western

part of France (i.e., Bretagne, Pays de la Loire, Normandie and Hauts-de-France regions, Figure 5).

CHIMERE prior NO2 TVCDs are 4 % lower in April 2020 than in April 2019 over almost the entire country (excepted above405

Paris and in the Rhone Valley). This is consistent with temperatures above seasonal values (by 3 ◦C over France, ranking as

the third warmest April on record) and to persistent anticyclonic conditions in April 2020 (MeteoFrance, 2022)).

CHIMERE posterior NO2 TCVDs are about 12 % lower in April 2020 than in April 2019 over almost the entire country (Figure

5, Table 2); a focus at the city scale shows a decrease of about 9 % over Paris between April 2020 and April 2019 whereas the

prior NO2 TCVDs increase by about 42 % (Table 2).410

Finally, the meteorological conditions also have an impact on the availability of the satellite observations. Due to the more

favorable meteorological conditions with less cloud coverage leading to an unusual clear sky period in April 2020 (Gaubert

et al., 2021; Deroubaix et al., 2021), there is a higher number of TROPOMI observations in April 2020 than in March 2020

and than in 2019, particularly over the northeastern part of France (Figure C4 in Supplementary materials), that may allow for

a better correction of the CHIMERE NO2 TCVDs for this particular period (Section 3.2.3).415
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3.2.3 Impact on NOx anthropogenic emissions from spring 2019 to spring 2020

At the French national scale, the total NOx emission estimates from the inversions present their largest decrease during the first

lockdown in March and April 2020 compared to 2019 (Figure 4). The emissions between May and September are similar in

2020 to 2019 (Figure 4), coinciding with the ease of restrictions. Nevertheless, the decrease of NOx emissions from March/April

2019 to March/April 2020, of about -2 % and -3 % respectively at the national scale, is relatively flatter than the estimations420

found in the literature. For example, the CITEPA estimates reductions of about -12 and -30 % (Table 1), respectively, from

March/April 2019 to March/April 2020 at the French national scale. Meteorology with a warmer winter can explain part of

the changes in emissions between 2019 and 2020 for business sectors such as the residential combustion (Barré et al., 2021;

Guevara et al., 2023).

We thus analyze the impact of the COVID-19 policies in terms of differences in retrieved anthropogenic emission estimates425

from the inversion, from spring 2019 to spring 2020. For this, we focus on urban areas, assuming that the emissions in these

pixels (see Figure A1 for the chosen locations) are almost entirely due to anthropogenic activities.

In our inversions, the changes are negative in 7 of the 8 chosen urban areas (Figure 6, Table 2), qualitatively consistent with

the reduction in the intensity of vehicle traffic (Guevara et al., 2021, 2022). The changes are also negative for urban areas

outside France in our domain (Table C4). The impact of the lockdown on NOx anthropogenic emissions is very different from430

one urban area to another. These differences between cities cannot be explained by different contributions of industry to NOx

emissions in or around these urban areas as INS data do not show major differences in terms of sectoral distribution between

the main French cities.

The highest reductions are seen in Paris with about -26 % in April 2020 compared to April 2019, followed by Lyon (-13 %),

and Lille (-11 %, Table 2). Several urban areas only present a very small drop of emissions in spring 2020 (Table 2, Figure 7)435

e.g. the French urban areas Bordeaux, Nice and Nantes. The Toulouse urban area even show a slight increase (+1 %) in April

2020 compared to April 2019 (Table 2, Figure 7).

These small changes of emissions over Bordeaux, Nice and Toulouse does not seem consistent with the drops in traffic activity

estimated by the Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement CEREMA

(CEREMA, 2023). A dedicated study might be necessary to understand in details the inter-urban variability and is not done440

here as up-to-date local inventories are not available for every city, particularly smaller ones.

The reductions in the NOx anthropogenic emissions from spring 2019 to spring 2020, while substantial, do not exhibit the

same magnitude as the reductions in TROPOMI-PAL NO2 TVCDs. This is expected because of the non-linearities between

NOx anthropogenic emissions and NO2 TVCDs but also, due to the limitations and assumptions of the inversion itself.

3.2.4 Exploring limitations in our analysis445

The discrepancy between the emission changes from 2019 to 2020 between the inversion results and independent estimates

from inventories (i.e., CITEPA, CEREMA) can be partly connected to our conservative characterization of the uncertainties in

the prior emission estimates, which ignores potential spatial and temporal correlations in the prior uncertainties in the anthro-
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pogenic emissions at the daily and 10 to 50 km resolution. Therefore, the direct information from the satellite observations is

not extrapolated by the inversion in space and time via correlations in the B matrix, and thus the departure of the inversion450

from the prior emission estimates is highly sensitive to the observation coverage and to their footprints in the emission field.

In this context, the corrections provided by the inversions to the prior emissions can be limited by the fact that the potential of

TROPOMI to provide information is hampered by the cloud coverage. When considering the annual to monthly budgets of the

emissions over all days (with and without observations), the amplitude of the corrections to the prior estimate of the emissions

driven by the satellite observations is artificially decreased by the lack of corrections during days when there is no satellite455

observations.

We quantify this effect by selecting days when we have at least one super-observations over the pixel of the 8 urban areas of

interest and extrapolating the retrieved emissions for this subset of days to the whole year, hereafter called “filtered emissions”.

The reductions in the NOx anthropogenic filtered emissions from spring 2019 to spring 2020 are almost always higher than

for the standard posterior emissions (e.g., -28 % and -24 % over Paris and over Lyon respectively for filtered emissions versus460

-26 % and -13 %, Table 3). These results with such a focus on days with the best coverage are in principle much closer to the

changes in emissions estimated by the CITEPA.

The corrections provided by the inversions to the prior emissions are also highly dependent on the errors associated with the

TROPOMI-PAL observations and with the CTM errors in R. We illustrate this effect by performing an inversion without model

errors in the covariance matrix R, giving more weight to the satellite data and considering the model as perfect. The posterior465

NOx emissions retrieved with this error set-up at the city scale show a higher reduction from spring 2019 to spring 2020 (Tables

3, B3), e.g., -31 % and -25 % over Paris and over Lyon when using all the available observations and -33 % and -42 % for

filtered emissions compared to -26 % and -13 % for the reference emissions.

Nevertheless, several urban areas still present a very small drop of emissions even when selecting days with observation and

considering the model as perfect to give more weight to the TROPOMI data. This is the case of the French urban areas Bor-470

deaux, Nice and Toulouse with reductions from spring 2019 to spring 2020 lower than 10 % (Table 3).

This may be explained by the strength of the TROPOMI signal over these cities (see Section 3.2.1).

Filtered cases are only indicative as this approach necessitates extrapolating from a notably small sample (days with observa-

tions, 16 and 19 days in average for the studied French cities in March and April 2020).

To gain in emission representativity, we suggest exploring a fine tuning of the correlation in B (with optionally additional475

information on NO2 concentrations like surface stations) to compensate when TROPOMI data availability is lower. Despite

our hypothesis made in Section 2.5 on anthropogenic fluxes, this might be necessary in addressing national-wide NOx emission

monitoring with a high local resolution.

20



Urban area

Standard

posterior

emissions

Filtered

posterior

emissions

Standard

posterior

emissions

R-perfect-model

Filtered

posterior

emissions

R-perfect-model

Mar Apr Mar Apr Mar Apr Mar Apr

Bordeaux -3 -1 -9 -2 -5 -4 -13 -7

Lille -9 -11 -16 -11 -10 -15 -17 -13

Lyon -15 -13 -24 -24 -15 -25 -22 -41

Marseille -2 -7 -5 -9 -2 -10 -5 -13

Nantes -3 -3 -2 -7 -5 -5 -6 -11

Nice 0 -1 -4 -3 -1 -4 -5 -7

Paris -11 -26 -15 -28 -13 -31 -15 -32

Toulouse 0 +1 -1 +1 -1 +1 -4 -1

Table 3. Changes in NOx CHIMERE total posterior emissions for the standard (in %) and with a simplified observation error set-up (in

%), R matrix without model error, see details in Section 3.2.3 from March/April 2019 to March/April 2020 considering different TROPOMI

coverage for the 8 French urban areas displayed in Figure A1.
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Figure 7. NOx anthropogenic emissions monthly budget relative differences between posterior and prior for the 8 French urban areas

displayed in Figure A1, from inversion results for years 2019 (in green), 2020 (in orange) and 2021 (in pink), in %. Grey shaded areas show

the French lockdowns periods for the year 2020 and the purple shaded area shows the French lockdown period for the year 2021.
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4 Conclusions

We performed a three-year variational inversion of NOx emissions from 2019 to 2021 in France at the high resolution of480

10×10 km2. The TROPOMI-PAL observations were assimilated within the inversion system CIF driving the regional CTM

CHIMERE with the MELCHIOR-2 chemical scheme.

The French budgets for the years 2019, 2020 and 2021 are about 850 kteqNO2. As expected from the implementation of

public policies leading to regular reductions in emissions, these national budgets from the inversions are lower than the CAMS-

REG/INS inventory for 2016, used as prior in our inversions. In particular, 2020 does not show a clear reduction in emission485

compared to 2019: 2020 emissions are higher compared to 2019 in January, February, June, and November. These increases

dampen the decline in NOx emissions in March/April 2020 compared to March/April 2019.

We focus on the changes in NO2 TROPOMI-PAL TVCDs and in NOx anthropogenic emissions in March and April 2020

compared to 2019, that are due to the lockdowns during the COVID-19 pandemic and to meteorological conditions, including

a milder winter (Barré et al., 2021; Guevara et al., 2023). Since inversions mainly detect changes in cities (hotspots), the main490

changes between March/April 2019 and March/April 2020 are observed at the city scale. However, the impacts of restrictions

can vary significantly between different urban areas. Among the 8 selected French urban areas, the relative changes between

April 2020 and April 2019 in the TROPOMI-PAL observations ranges from -54 % for Paris to -27 % in Bordeaux. The highest

reductions of NOx anthropogenic emissions, when we focus on days with observations, are seen in Paris with about -28 % in

April 2020 compared to April 2019, followed by Lyon (-24 %), and Lille (-11 %).495

Several urban areas such as Bordeaux, Nice, and Toulouse, only show a small decrease in emissions from spring 2019 to spring

2020, even when focusing on the results from the inversion over days with at least one super observation and even when more

weight is given to the TROPOMI data in the inversion process by assuming that the model is perfect. It may be due to weaker

TROPOMI signals over these cities, with NO2 TVCD changes in March/April 2020 compared to March/April 2019 being

smaller than those observed in Paris, Lyon, and Lille.500

The inversion results show significant decreases in the emissions from the largest cities in France from 2019 to 2020, but

this decrease remains lower than that documented in most studies on this topic and by independent inventories (i.e., CITEPA,

CEREMA). This can be partly connected to our conservative characterization of the prior emissions uncertainties, since we

ignore potential spatial and temporal correlations in the prior uncertainties in the anthropogenic emissions, so that the depar-

ture from the prior emission estimates in the inversion are highly sensitive to the observation coverage and emission footprints.505

The corrections provided by the inversions to the prior emissions can indeed be limited by the cloud coverage affecting the

TROPOMI observations, and by errors in the TROPOMI data and in the CTM. Notably, when TROPOMI observations are

unavailable, the correction of prior emissions in the unconstrained pixels through inversions is null, resulting in posterior emis-

sions remaining close to the prior ones. Hence, the aggregation of posterior emissions into monthly or yearly budgets leads to

a dampening of the signal provided by TROPOMI. In order to better emphasize the direct information from the satellite ob-510

servations, some of our analysis of the local urban emissions are focused on days with at least one observation in the targeted

pixels, yielding a characterization of the COVID-19 effects which is more consistent with the changes in emissions estimated
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by the CITEPA.

To explore the impact of the set-up of error covariance matrices, we considered inversions without error models in the covari-

ance matrix R, giving more weight to satellite data. In this case, the posterior NOx emissions at the city scale exhibit their515

highest reductions between spring 2020 and spring 2019 (e.g., -31 % and -25 % over Paris and over Lyon respectively, consid-

ering all days within the month. Assimilating the observations without accounting for the model errors may lead to over-fitting

and thus project these errors onto the emission estimates. However, the weight of R in our inversions may have to be re-assessed

with regards to the relatively conservative option that we use here to assign observation error to the super-observations. A finer

assessment would require a good knowledge of the share of retrieval errors between random noise without spatial correlations520

and more systematic errors with spatial correlations, as well as the typical length scales of such spatial correlations, which is

currently challenging to derive (Miyazaki et al., 2012; Boersma et al., 2016; Lambert et al., 2023).

In the absence of alternative information, like new measurements from benchmark cities, reconciling our results with the ex-

isting literature would prompt a re-evaluation of the observation errors in our inversion and a potential reassessment of our

model error definition. The information contained in TROPOMI TCVDs cannot be fully exploited in our inversion set-up to525

get constraints on diffuse emissions e.g. in French rural areas.

For improving diagnostics of monthly to annual emissions both at national scale for emission hotspots, addressing challenges

arising from satellite coverage gaps involves introducing horizontal, temporal, and sectoral correlations in the covariance ma-

trix B of the uncertainty in the gridded inventories with hourly variations that are used as prior estimate of the emissions by the

inversions. Such a characterization would support the extrapolation in space and time of the information obtained locally for530

some days from the satellite observation. However, obtaining such correlations at high-resolution poses a substantial challenge.

The usual correlation models based on assumptions of isotropy, homogeneity in space and time, and of decrease as a function

of distance and time should poorly match the actual derivation and structures of gridded inventories convolved with typical

temporal cycles at diurnal to seasonal scales, which is why a conservative configuration was used for the B matrix in this

study (Super et al., 2020). The challenge is exacerbated when tackling a period such as 2019-2021, with lock-down measures535

in response to the COVID-19 crisis highly impacting the emissions and thus the structures of uncertainties in the emission

inventories over large spatial scales but limited periods. Exploring corrections to parameters underlying inventories, such as

Fossil Fuel Data Assimilation System (FFDAS) for CO2, may actually support a cleaner extrapolation. Due to the current lack

of knowledge about the statistics of the uncertainties in the gridded inventories used for the inversions, a stepwise approach is

probably needed to tackle this general problem, including gradually some temporally varying spatial and temporal correlations540

in B and, in parallel, increasing efforts to diagnose these uncertainties. If achieved, these additions would assist the inversion

system in implementing nationwide emission adjustments.

Furthermore, the incorporation of a hypothetical geostationary satellite (such as Sentinel 4) in conjunction with ground-based

monitoring stations, could enhance the temporal resolution and enable the capture of daily NOx cycles, while also increasing

the sensitivity of the satellite data near the surface.545
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Code availability. The CHIMERE code is available here: www.lmd.polytechnique.fr/chimere/, (Menut et al., 2013; Mailler et al., 2017).

The CIF code is available here: http://community-inversion.eu/index.html (Berchet et al., 2021).

Data availability. The re-processed TROPOMI-PAL dataset is available on https://data-portal.s5p-pal.com (Eskes et al., 2021). The CAMS-

REG inventory (Kuenen et al., 2022) is available upon request from TNO (contact: Hugo Denier van der Gon, hugo.deniervandergon@tno.nl).

The CITEPA monthly budgets for France are available on https://www.citepa.org/fr/barometre/. The INS inventory is available on http:550

//emissions-air.developpement-durable.gouv.fr/indexMap.html.
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Appendix A: Metropolitan masks

The list of all 15 urban areas and their masks is displayed on the following figure. Each mask is made out of 10×10 km2 pixels.

Figure A1. Urban areas studied.
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Urban area

Area

[number of

10×10 km2 pixels]

Population density

[inhab.km−2]

EuroStat

Barcelona 1 723

Bordeaux 1 164

Frankfurt 1 633

Lille 1 455

London 6 1435

Lyon 1 580

Marseille 4 289

Milan 3 1591

Nantes 1 209

Nice 1 253

Paris 6 1025

Rotterdam 2 1092

Ruhr-Rhein-Süd 121 -

Toulouse 2 221

Turin 1 329

Table A1. Cities studied in the paper and their areas in pixels with their population density according to EuroStat (statistics for 2019).
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Appendix B: Additional tables

Domain

or

region

Period

CAMS-REG/INS

+

MEGAN inventories

Posterior in 2019 Posterior in 2020 Posterior in 2021
Posterior

2020-2019

Posterior

2021-2020

kteqNO2 kteqNO2 [%] kteqNO2 [%] kteqNO2 [%] [%] [%]

Paris

Annual 27 24 -11 23 -17 23 -15 -6 +2

Spring (MAM) 7 7 -7 6 -21 6 -14 -15 +9

March 3 2 -14 2 -24 2 -17 -11 +9

April 3 2 -6 2 -30 2 -17 -25 +19

May 2 2 -1 2 -7 2 -7 -7 +1

November 2 2 -21 2 -15 2 -18 +8 -4

Table B1. Prior and posterior NOx total emission budgets in kteqNO2 and their relative differences in % [100× (posterior−prior)/prior],

in Paris for different periods. Columns “Posterior yearn − yearn−1” show the relative difference between yearn and yearn−1 posterior

fluxes in % [100× (Fyearn −Fyearn−1)/Fyearn−1 ].
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Urban area

TROPOMI

TVCD

CHIMERE

prior

TVCD

CHIMERE

posterior

TVCD

Emissions

posterior

Mar Apr Mar Apr Mar Apr Mar Apr

Barcelona -42 -72 -13 -12 -20 -29 -4 -8

Bordeaux -34 -27 -14 +23 -15 +21 -3 -1

Frankfurt -54 +1 -18 +58 -25 +39 -7 -10

Lille -15 -35 +19 -10 +4 -28 -9 -11

London -7 -38 +4 +5 -3 -14 -5 -12

Lyon -27 -43 +13 +18 +1 +1 -15 -13

Marseille -20 -27 -2 +46 -9 +19 -2 -7

Milan -30 -21 +28 +2 -8 -13 -13 -2

Nantes +2 -45 +16 -2 +14 -7 -3 -3

Nice -28 -37 0 +7 -3 +2 0 -1

Paris -41 -54 -4 +42 -12 -9 -11 -26

Rotterdam -35 -17 -15 +39 -19 +12 -5 -6

Ruhr-Rhein-Süd -25 -9 -21 +42 -24 +8 -16 -26

Toulouse -41 -31 -23 -23 -22 -22 0 +1

Turin -33 -41 +17 -5 +1 -18 -1 -3

Table B2. Changes in NO2 TROPOMI-PAL and CHIMERE tropospheric columns (in %) and changes in NOx total posterior emissions (in

%), from March/April 2019 to March/April 2020 for the selection of urban areas displayed in Figure A1.
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Urban area

Standard

posterior

emissions

Filtered

posterior

emissions

Standard

posterior

emissions

R-perfect-model

Filtered

posterior

emissions

R-perfect-model

Mar Apr Mar Apr Mar Apr Mar Apr

Barcelona -4 -8 -7 -16 -6 -13 -10 -23

Bordeaux -3 -1 -9 -2 -5 -4 -13 -7

Frankfurt -7 -10 -12 -17 -11 -21 -20 -36

Lille -9 -11 -16 -11 -10 -15 -17 -13

London -5 -12 -3 -18 -5 -16 -2 -23

Lyon -15 -13 -24 -24 -15 -25 -22 -41

Marseille -2 -7 -5 -9 -2 -10 -5 -13

Milan -13 -2 -22 -11 -14 -4 -22 -14

Nantes -3 -3 -2 -7 -5 -5 -6 -11

Nice 0 -1 -4 -3 -1 -4 -5 -7

Paris -11 -26 -15 -28 -13 -31 -15 -32

Rotterdam -5 -6 -6 -10 -5 -9 -3 -12

Ruhr-Rhein-Süd -16 -26 -16 -26 -16 -31 -15 -31

Toulouse 0 +1 -1 +1 -1 +1 -4 -1

Turin -1 -3 -10 -4 +1 -6 -7 -8

Table B3. Changes in NOx CHIMERE total posterior emissions for the standard (in %) and with a simplified observation error set-up (in

%, R matrix without model error, see details in Section 3.2.3 from March/April 2019 to March/April 2020 considering different TROPOMI

coverage for the selection of urban areas displayed in Figure A1.
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Appendix C: Additional figures555

Figure C1. Monthly NOx anthropogenic emissions in France as estimated by the CAMS-REG/INS inventory in 2016 (in blue) and by the

inversions for years 2019 (in green), 2020 (in orange) and 2021 (in pink), in kteqNO2.month−1. Grey shaded areas show the French

lockdown periods for the year 2020 and the purple shaded area shows the French lockdown period for the year 2021.
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Figure C2. Monthly NOx biogenic emissions in France as estimated by the MEGAN inventory (dotted lines) and by the inversions for years

2019 (in green), 2020 (in orange) and 2021 (in pink), in kteqNO2.month−1. Grey shaded areas show the French lockdown periods for the

year 2020 and the purple shaded area shows the French lockdown period for the year 2021.
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Figure C3. Anthropogenic mask used over France using an urban and road land-use proxy.

Figure C4. Number of TROPOMI-PAL super-observations on the ARGFR domain in March/April 2019 and March/April 2020.
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Figure C5. Absolute TROPOMI NO2 TVCD difference between March/April 2019 and March/April 2020 in molec.cm−2 for the selection

of urban areas displayed in Figure A1.
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