
Reply to the comments by Reviewer #1: 
In this document, the review comments are in black, our responses are in blue. 
 
Reviewer #1 
The manuscript proposes a statistical method to reduce the uncertainty in flood hazard projections by 
integrating multiple SSP-RCP scenarios. The authors suggest that this approach can mitigate the 
limitations posed by a small number of ensemble members in future climate projections, particularly for 
flood discharge assessments. However, the novelty of the approach is overshadowed by methodological 
and conceptual issues: 
 
> Thank you very much for your constructive comments which are very helpful for improving the manuscript. 
We planned for modifying the manuscript, with additional background information and additional 
quantitative analysis, as summarized below. These are to be included in the revised version of the 
manuscript. 
 
1, The core methodology of integrating multiple SSP-RCP scenarios to increase ensemble size is not 
convincingly justified. The assumption that different SSP-RCP scenarios can be combined as if they were 
additional ensemble members is problematic due to the inherent differences between scenarios. SSP-
RCPs represent fundamentally different socio-economic pathways and climate forcing trajectories, 
influencing climate variables in distinct ways. The manuscript does not provide a robust theoretical or 
empirical basis to support this integration method. Although past studies (referred in this paper) indicate 
that uncertainty can be reduced by increasing ensemble size, they achieve this by using a wide range of 
initial conditions and climate model physics, grounded in physical principles rather than statistical 
manipulation. The findings in this paper may be contingent upon the specific GCM product used. 
 
> Thank you very much for appropriately understanding the main idea of our research and providing 
suggestions for improving our explanation. 
We begin by describing the assumptions of this study and the previous findings that support them in “[1] 
Strong relationship among temperature rise, hydrological cycle and flood occurrence”, and then explain 
how we determined that the uncertainty was reduced when the ensemble size was increased in “[2] 
Sources of uncertainties in climate model projections, and use of ensemble data to reduce uncertainties “. 
Then, we describe how we handled these uncertainties in “[3] Approach to handle uncertainties in this 
study”. 
 
[1] Strong relationship among temperature rise, hydrological cycle and flood occurrence 
This study assumed that similar future projections would be obtained for identical temperature increases. 
To test this assumption, we first verified that the same temperature increase produced similar changes in 
the hydrological cycle and flood occurrence across multiple SSP-RCP scenario combinations. Next, we 



examined whether the closer predictions (i.e., reduced uncertainty) observed with increasing ensemble 
sizes were driven by differences in initial values from the same GCMs (internal variability), or by larger 
differences arising from varying SSP-RCP combinations for the same temperature. 
The proposal that 'ensembles of different SSP-RCPs can be integrated at the same temperature rise' 
builds on the existing finding that 'identical radiative forcing produces similar temperature increases,' as 
well as on the assumption from previous studies that, ‘for the same temperature rise, similar changes in 
direct meteorological factors—such as precipitation, hydrology, and evaporation’—are expected. 
 
Despite the socioeconomic differences among various SSP-RCP scenarios, there is a strong correlation 
between surface temperature increases and the rise in accumulated greenhouse gas emissions, as well 
as the resulting downward radiative forcing since the industrial revolution (IPCC WGI Figure SPM.10, see 
Figure R1). Even in studies using the CMIP6 experiment, differences in RCP (i.e., radiative forcing) 
dominate when comparing various SSP-RCP scenarios. For example, (SSP370 where the atmospheric 
aerosol concentration settings differ from other scenarios) a strong correlation has been observed, with 
larger RCPs leading to greater changes in temperature and precipitation (see Figure 1 of Shiogama et al., 
2023, Nature Climate Change). Thus, it has been highlighted that the larger the RCP, or radiative forcing, 
the greater and the similar impact on temperature and precipitation changes, regardless of the SSP. 
 

 

Figure R1: Schematic diagram summarizing the existing finding on 'identical radiative forcing produces similar temperature 

increases. (Figure taken from “Figure SPM10 of IPCC AR6 WG1 Summary for Policymakers”; IPCC, 2021) 

 



 
Next, we want to highlight that several studies have shown that changes in average precipitation 
(Shiogama et al., 2013), heavy rainfall (Alexander et al., 2006), river floods (Hirabayashi et al., 2013; Figure 
R2), and the cryosphere (IPCC, 2019, SROCC) are highly correlated with temperature changes. Lehner 
et al (2020) described that “global mean precipitation projections remain almost identical between the 
different model generations”, and showed a strong correlation of precipitation with temperature increase 
in CMIP6. Various existing Integrated Assessment Models (IAMs) propose equations to estimate the 
damage caused by environmental impacts of global warming, based on the assumption that the same 
temperature increase will result in the same level of impact (damage). Consequently, numerous studies 
have linked changes caused by climate change to the rise in temperature since the Industrial Revolution. 
Building on these previous researches, this study assumes that ‘similar changes in river flooding could be 
expected with the same temperature increase’. 
 
 

 
Figure R2: Schematic diagram summarizing the existing finding on 'identical temperature rise produces 
similar flood exposure increases. (Figure taken from Hirabayashi et al. 2013, Nature Climate Change) 
 
[2] Sources of uncertainties in climate projections, and use of ensemble to reduce uncertainties  
Uncertainties in climate projections from GCMs arise from three main sources: 1) internal climate variability 
(initial values), 2) model uncertainty, and 3) uncertainty in future emission scenarios. Among these, 1) 
internal climate variability plays a significant role in reducing the uncertainty of projections at low warming 
levels (e.g. 1.5 degree or 2 degree warming), where the differences among scenarios are small due to the 
limited response of the climate system to near-term greenhouse gasses and other socioeconomic changes. 
This finding is supported by the analysis of output results from many climate models. For example, Hawkins 
and Sutton (2009) and Wu et al. (2024) demonstrate that at low warming levels, prediction uncertainty is 



primarily driven by internal climate variability. As shown in Lehner et al. (2020), the uncertainty due to 
internal climate variability becomes relatively smaller compared to other sources of uncertainty as 
projections extend further into the future (see Fig 2 of Lehner et al 2020).  
 
Regarding climate model uncertainty, it has been empirically confirmed that ensemble averages of model 
results computed across different institutions are closer to observations than models from any single 
institution (e.g., Gleckler et al, 2008; Sanderson and Knutti, 2012). Averaging multi-model outputs is 
expected to offset specific limitations of individual GCMs, such as challenges in representing complex 
processes and parameterizations, and to help achieve reasonable climate fields, as all climate models are 
designed to replicate the same Earth climate system in various aspects. Assessment of the impact of 
higher temperatures, such as those above 3°C, may not be reached by some GCMs or SSP-RCPs. 
Expanding the ensemble by incorporating SSP-RCP scenarios is expected to not only reduce uncertainty 
in internal variability but also increase the number of models capable of predicting higher temperature 
increases." 
 
[3] Approach to handle uncertainties in this study 
In this study, we propose the ensemble integration of results from different SSP-RCP scenarios, using the 
same climate model and assuming similar trends for the same temperature rise, can help reduce the 
uncertainty associated with internal climate variability, especially at relatively low temperature increases. 
It is also expected to contribute to reducing uncertainty at higher temperature projection to increase the 
number of models. As mentioned above, our idea is based on and supported by the previous findings on 
the relationship between the temperature rise and hydrological cycle changes, and on the source of 
uncertainties in climate projections.  
As the reviewer points out, properly citing the assumptions made and the previous studies that support 
those assumptions, explaining why different SSP-RCP experiments produce similar flood changes at the 
same temperature rise, and determining whether the reduction in uncertainty can be confirmed by 
increasing the number of ensemble experiments with the same model would help clarify the results. In the 
revised manuscript, we will more carefully explain these above-mentioned background hypotheses and 
will provide additional analysis focusing on the source of uncertainty (see response to Comment 2 below). 
 
2, While the manuscript aims to reduce uncertainty, it does not adequately address the propagation of 
uncertainties from various sources, and the uncertainty reduction is not clearly shown. Integrating different 
SSP-RCPs might introduce new uncertainties, and the manuscript lacks a comprehensive analysis of how 
these new uncertainties are quantified and managed. 
 
> Thank you very much for pointing out the limitations of the analysis of the original manuscript. In the 
original manuscript, we discussed that the potential source of uncertainty is likely due to climate internal 
variability, by visually showing a global map of the projected uncertainties among different SSP-RCP 



scenarios. As the reviewer pointed out, we realized that the quantitative analysis was not adequate. 
In the revised manuscript, we will include the description of uncertainty in future projections in the main 
text (as described in reply to above comment). In addition, we will add a quantitative analysis to determine 
the source of the uncertainties in future flood risk change projections, as shown below. 
 
[1] Use of heatmap plots to show the similarity and difference of two simulation 
To quantitatively evaluate the similarities and differences of estimated flood discharge change ratio 
between two simulations using different GCM input, we made a scatter heatmap plot as shown in Figure 
R3. Here, the flood discharge change ratio of one simulation is compared to another simulation at each 
grid. In the top panels of Figure R3, the flood discharge change ratios of the simulations with “Same SSP 
scenario, different ensemble runs” are compared (note: same model at 1.5°C warming). Thus, differences 
of two simulations are due to the climate internal variability. Then, in the bottom panel, we compared the 
flood discharge change ratio between the simulations with “different SSP scenarios, different ensemble 
runs”. Thus, the difference in the bottom panel is considered to be due to both “climate internal variability 
and scenario difference”. 
 

 
Figure R3: Scatter heatmap plot showing the similarities and differences of estimated flood discharge change ratio between 

two simulations using different SSP scenarios and different ensemble run input. 

 
[2] Quantitative evaluation of the similarity and difference between two simulations using metrics 
Then, we evaluated the difference and similarities of the two simulations by calculating Mean Absolute 
Error and Pearson Correlation Coefficient. These metrics are calculated for the three possible 



combinations of two simulations (i.e., three panels in top), and the mean and standard deviation of these 
metrics are listed in Table R1. We calculated the metrics for three different climate models (ACCESS-CM2, 
EC-Earth3, and IPSL-CM6A-LR) and at 1.5°C and 2.0°C warming levels. 
 
We found out that the Mean Absolute Errors are almost the same between “comparison of same SSP and 
different ensemble runs” and “comparison of different SSP and different ensemble runs”. This indicates 
that the uncertainties due to scenarios are almost negligible compared to the uncertainties due to climate 
internal variability, at least at 1.5°C and 2.0°C warming level. The results for Pearson Correlation 
Coefficient suggested the same pattern. These results support our idea of integrating different SSP 
simulations to increase ensemble size, given that the differences are mostly due to internal climate 
variability, even in different SSP simulations, when the warming level is the same. 
 
We also did the same analysis for the comparison of different warming levels under the same RCP scenario, 
and found that the difference due to the warming level is larger than the uncertainties due to climate internal 
variability, for all climate models. 
 
Table R1: Quantitative evaluation of similarities between ensembles. (mean ± standard deviation of MAE between 3SSP or 

3 ensemble) 

 
 
 
3, The manuscript claims that the proposed method reduces unbiased variance in 70% of land grid points. 
However, the validation of these claims is insufficient. There is a lack of independent verification using 
observed data or alternative high-resolution models. Without robust validation, the reliability and 
applicability of the proposed method remain questionable.  At the very least, historical or present climate 
states should be used for validation purposes, even if the main objective is uncertainty analysis. The large 

Pearson correlation coefficientMean Absolute Error (MAE)

ACCESS-CM2EC-Earth3IPSL-CM6A-LRACCESS-CM2EC-Earth3IPSL-CM6A-LR

0.52 ±0.030.58 ±0.110.50 ±0.180.18 ±0.010.15 ±0.020.15 ±0.03
SSP5-8.5, different ensemble 
runs, 1.5℃

0.49 ±0.020.61 ±0.100.50 ±0.190.19 ±0.000.14 ±0.020.15 ±0.03
different SSPs, different 
ensemble runs, 1.5℃

0.57 ±0.020.65 ±0.100.48 ±0.230.20 ±0.000.16 ±0.020.22 ±0.05
SSP5-8.5, different ensemble 
runs, 2.0℃

0.58 ±0.020.65 ±0.090.49 ±0.240.20 ±0.000.16 ±0.020.21 ±0.05
different SSPs, different 
ensemble runs, 2.0℃

0.49 ±0.040.60 ±0.070.40 ±0.210.22 ±0.010.17 ±0.020.22 ±0.03
SSP5-8.5, different ensemble 
runs, 1.5℃vs2.0℃

0.42 ±0.050.57 ±0.040.38 ±0.130.27 ±0.020.22 ±0.010.25 ±0.02
SSP5-8.5, different ensemble 
runs, 1.5℃vs3.0℃

Comparison setting 

Climate Model



uncertainties in the complex climate-discharge system might make the results meaningless, highlighting 
the need for validation. 
 
> We tried to keep the manuscript concise to focus on our main discussion, but as reviewer pointed out, 
minimum description of the status of validations in previous studies will be added in the revised manuscript. 
Please see the background information below. 
 
Firstly, verification of model output is not conducted here, because the aim of this study is to demonstrate 
a method to reduce variation (uncertainty) in projected floods at each location and/or in each river. The 
purpose is not to confirm the existence of a climate-change signal (globally or in a specific region) or to 
validate the simulation of flooding within the model framework used in this study. Secondly, the climate 
and river model frameworks for estimating future flood changes due to climate change have been widely 
discussed in various previous studies, particularly regarding their uncertainties and the robustness of future 
projections.  
 
[1] Validation of the global river model skill in previous studies 
For the CaMa-Flood model used in this study, consistency with historical river level, flow, and inundation 
area data has been demonstrated (Zhou et al., 2024). Additionally, uncertainty among models and 
scenarios for future projections has been examined (Hirabayashi et al., 2013; Hirabayashi, 2021; Kimura 
et al., 2023).  
 
[2] Evaluation of the future flood risk projection using global river models. 
We agree with the comment that estimating future changes in river discharge, particularly extremes, is a 
complex process. Nevertheless, previous studies have shown that future changes are, to some extent, 
highly consistent regardless of the GCM or climate scenario. For instance, under the same RCP (radiative 
forcing) scenario, flood change trends in CMIP5 and CMIP6 are very similar, even when different sets of 
climate models and SSP scenarios are used (Figure R4). Moreover, when the same set of GCMs is 
selected, the projected flood exposure for the same temperature increase is also shown to be similar, even 
between CMIP5 and CMIP6 with different SSP-RCP combinations (see Figure R5). 
 
In addition, a CMIP4 warming experiment which used a different future scenario (A1B) and assumptions, 
along with a relatively higher spatial resolution (about 100 km), also shows similar spatial distributions of 
future flood projections (Figure 6 of Hirabayashi et al., 2008, Hydrological Sciences Journal). Based on 
these previous studies, we assume that river discharge projections in GCMs exhibit greater consistency - 
significantly different from analyses of ordinary climate variables, such as local precipitation. This is 
because large river systems integrate information from upstream grid cells, meaning that changes in river 
floods are driven by relatively larger-scale changes in climate variables, including precipitation, 
temperature, evapotranspiration, and snow processes.  



 
Figure R4: Schematic diagram summarizing the existing finding on 'flood projection is similar between simulations under the 

same radiative forcing (RCPs) with different SSP assumptions (CMIP5 and CMIP6).’ Figure taken from Hirabayashi et al. 

2021, Scientific Reports. 

 

  
Figure R5: Schematic diagram summarizing the existing finding on ''identical temperature rise produces similar flood 

exposure increases.’ Figure taken from Hirabayashi et al. 2021, Scientific Reports. 

 
Against this background, we conclude that there are certain locations where the current model framework 
can robustly project future floods. We then analyzed the locations where predictions among GCMs do not 
agree and investigated whether increasing the number of ensembles could reduce the uncertainty in those 
projections. 
 
We will briefly summarize this information in the revised manuscript and clarify that this study focuses on 
analyzing uncertainty in future flood projection.  



4, Several key explanations in the manuscript are unclear or insufficiently detailed. For instance, the 
process of determining the similarity of flood hazard projections among different SSP-RCP scenarios is 
not described in enough detail to be reproducible. Specific queries include: How are the model boundary 
conditions and initial conditions determined? Is there consideration of evapotranspiration and infiltration? 
How is the river conveyance capacity estimated? Is there any downscaling method needed to solve the 
scale mismatch between the coarse resolution climate simulation and the fine resolution hydraulics 
needed? How about the bias correction in these climate model simulations? 
 
> We will explain the sources of uncertainties in climate model projections (see above, Answer 1) and the 
potential reasons of the similarity of flood hazard projections among different models/SSP-RCP scenarios 
(see above, Answer 3) in the revised text.  
 
Additionally, we will revise our manuscript to include the following clarification: 
“River streamflow is calculated by integrating GCM runoff with the river model. The runoff itself is calculated 
by the vertical water and energy balance within the GCM land surface process. The coarse spatial 
resolution of the GCM runoff is resampled to match the finer resolution topographic data. Bias correction 
and downscaling are performed simultaneously by calculating inundation depths using the Lookup Method 
of Kimura et al (2023), without applying explicit bias correction.” 
 
5, A typo in line 159, there is an extra). 
> Thanks for finding this. We will revise it. 
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