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Abstract. Global hydrological models are one of the key tools that can help meet the needs of stakeholders and policy makers

when water management strategies and policies are developed. The primary objective of this paper is therefore to establish a

first of its kind, truly global hyper-resolution hydrological model that spans a multiple-decade period (1985 - 2019). To achieve

this, two key limitations are addressed, namely the lack of high resolution meteorological data and insufficient representation

of lateral movement of snow and ice. Thus, a novel meteorological downscaling procedure that better incorporates fine-scale5

topographic climate drivers is incorporated, and a snow module capable of lateral movement of frozen water resembling

glaciers, avalanches and wind movement is included. We compare this global 30 arc-seconds version of PCR-GLOBWB to

previously published 5 arc-minutes and 30 arc-minutes versions by evaluating simulated river discharge, snow cover, soil

moisture, land surface evaporation, and total water storage against observations. We show that hyper-resolution provides a

more accurate simulation of river discharge, in particular for smaller catchments. We highlight that although global hyper-10

resolution modelling is possible with current computational resources and that hyper-resolution modelling results in more

realistic representations of the hydrological cycle. However, our results also suggest that global hydrological modelling still

needs to incorporate land cover heterogeneity and relevant hydrological processes at the sub kilometre scale to provide more

accurate estimates of soil moisture and evaporation fluxes.

1 Introduction15

Water is a vital and crosscutting element needed to achieve a number of sustainable development goals (Vörösmarty et al.,

2015; Alcamo, 2019). Accurately simulating, predicting and forecasting the distribution, abundance, and shortage of water is

therefore a crucial challenge for the hydrological community. By providing information on water resources, global hydrological

models are one of the key tools that can help meet the needs of stakeholders and policy makers when water management

strategies and policies are developed (Bierkens, 2015; Bierkens et al., 2015; Wood et al., 2011). Despite their usefulness, an20

ongoing critique is that the resolution of these models is unable to provide relevant information at scales at which adaptation

strategies are implemented by stakeholders (Wada et al., 2017). In response to this criticism, there has been an effort to increase
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the spatial resolution of current state-of-the-art global hydrological models and this push towards hyper-resolution hydrological

models has previously been described as one of hydrology’s "grand challenges" (Bierkens et al., 2015).

The drive to develop hyper-resolution models is based on the assumption that increased resolution will realise benefits25

coarse resolution counterparts can not. Hyper-resolution global hydrological models are expected to better capture the relevant

physical processes that govern the distribution and quantity of global water resources and, therefore, provide a more detailed

and accurate view of the hydrological cycle (Bierkens et al., 2015; Wood et al., 2011; Beven and Cloke, 2012). An improved

and more detailed understanding of the global hydrological cycle can provide a number of important benefits to the broader

scientific community and society. From scientific point of view, hyper-resolution hydrological models can facilitate progress30

and innovation in the fields of water quality, sediment transport, floods and drought risk by providing, much needed, detailed

information on the movement of water in soils, rivers, lakes and ponds (Bierkens et al., 2015). Hyper-resolution hydrological

models also promise benefits that will aid society as a whole, for instance high resolution hydrological data can provide

stakeholders and policy makers with information on scales that are more logical and actionable (Bierkens et al., 2015; Wood

et al., 2011; Beven et al., 2015).35

To date, there has been noticeable progress towards a truly global hyper-resolution hydrological model; however, given

the complexity of such an undertaking and the associated computational burden, hyper-resolution models have, so far, been

confined to continental scale applications (e.g, Beven et al., 2015; Hoch et al., 2023; O’Neill et al., 2021; Vergopolan et al.,

2021; Chaney et al., 2021). For example, the ParFlow model has been used to simulate groundwater and surface water for the

contiguous United States at a spatial resolution of approximately 1 km (Yang et al., 2023). Also, for the contiguous United40

States, Aerts et al. (2022) analyzed how increasing the resolution from 3 km to 200 m in wflow_sbm affects predictions of river

discharge. There has also been an attempt to model the European continent at the 1km resolution; Hoch et al. (2023) presents a

1 km version of PCR-GLOBWB which was used to simulate hydrological states and fluxes over a multi-decadal period. These

studies have provided much needed headway towards truly global hyper-resolution modelling; but they have also brought to

the fore a number of challenges that need to be overcome first.45

Challenges surrounding global hyper-resolution models are related to epistemic uncertainties in input data and whether, or

not, models at these finer resolutions can effectively capture and reproduce processes that govern water dynamics (Hoch et al.,

2023; Aerts et al., 2022; Yang et al., 2023). Previous studies on continental scale hyper-resolution models have raised the

question of whether an increased resolution actually results in a more accurate representation of the water cycle; there is mixed

support for this notion. For example, when modelling at spatial resolutions approaching 1 km and comparing their accuracy to50

more coarse-scale counterparts, river discharge is more accurately simulated in some locations, while other locations show a re-

duced accuracy (Hoch et al., 2023; Aerts et al., 2022). Furthermore, there are discrepancies between how different components

of the water cycle respond to an increase in the model resolution. Hoch et al. (2023) experienced that, as resolution increases,

the fidelity of soil moisture and total evaporation as simulated with the global hydrological model decreases, even though river

discharge shows an increase in accuracy when moving to finer resolutions (Hoch et al., 2023). How ever valuable the identifi-55

cation of such an inconsistency may be, perhaps more importantly, it provides for an opportunity to further understand how and

why the different components of the water cycle respond to an increase in model resolution. Increases in model resolution have
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also highlighted the need for the inclusion of fine-scale processes that are neglected at coarser resolutions. For example, Hoch

et al. (2023) reports that in the absence of processes that represent the transport of frozen water through glaciers, avalanches

and wind lead to unrealistic accumulations of frozen water accumulating in snow towers. Despite these challenges, continental60

scale hydrological models have shown that it is possible to accurately simulate at least some components of the hydrological

cycle at resolutions approaching ≈1 km (Hoch et al., 2023; Yang et al., 2023), albeit not yet at the global scale.

One source of uncertainty is the mismatch between model resolution and that of meteorological data used as forcing (Hoch

et al., 2023). The lack of meteorological data at the appropriate resolution is a major limitation for both coarse- and fine-scale

models (Wilby et al., 2000; Benedict et al., 2019; Hoch et al., 2023; Yang et al., 2023; Döll et al., 2016; Müller Schmied65

et al., 2014). Available reanalysis products are created at a much coarser resolution than global hydrological models and fail

to represent sub-grid climate dynamics that are important in defining local hydrological patterns. As a result, downscaling

climate forcing becomes necessary for global hyper-resolution hydrological models and their accuracy is heavily dependent

on how such downscaled products reflect reality. To date, the production of global climate models at resolutions discussed

here is constrained by technical limitations around the storage of the large volumes of output data and computational resources70

required to complete such simulations (Schär et al., 2020; Karger et al., 2017). However, recently 1 km meteorological data

have become available in the form of climatologies as in the case of WordClim (Fick and Hijmans, 2017) and CHELSA

(Karger et al., 2017; Brun et al., 2022), which could feasibly be used to downscale coarse daily meteorological forcing data

from reanalyses to the required hyper-resolution.

Given these considerations, there is a need to assess the feasibility of a truly global hyper-resolution hydrological model75

that relies on improved spatial representation of meteorological data and fine-scale hydrological processes. The primary ob-

jective of this paper is therefore to establish a first of its kind, truly global hyper-resolution hydrological model that spans a

multiple-decade period (1985 – 2019); thereby extending the scope of current hyper-resolution hydrological models beyond

the continental scale (Hoch et al., 2023). In this novel implementation of PCR-GLOBWB, a new downscaling procedure that

better incorporates fine-scale topographic climate drivers are included. In addition, this implementation incorporates a snow80

module capable of lateral movement of frozen water resembling glaciers, which is pertinent at higher resolutions. We compare

this global 30 arc-seconds simulation to previously published 5 arc-minutes and 30 arc-minutes versions of PCR-GLOBWB

by evaluating simulated river discharge, snow cover, soil moisture, land surface evaporation, and groundwater storage against

observation. We focus on how the model represents the hydrological cycle across scales and aim to highlight where we need

to focus future efforts to improve hyper-resolution hydrological modelling.85

2 Methods

2.1 30 arc-seconds PCR-GLOBWB Setup and Parametrization

PCR-GLOBWB (PCR - Global Water Balance) is a global hydrological and water resources model that estimates global water

stores at various resolutions. It considers both natural and human-induced factors when estimating global water stores and

fluxes. The 30 arc-seconds PCR-GLOBWB implementation presented here is built upon a schematization that has previously90
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been applied to continental Europe (Hoch et al., 2023), in such the model presented here largely follows that presented by

Hoch et al. (2023), but with a significant increase in spatial expansion so that it now represents the entire globe.

The model parameterization and inputs used in the 30 arc-seconds implementation represent high resolution hydrological

processes where possible and in the following sections, we provide a summary of these. For extensive details on the setup

of the 30 arc-seconds PCR-GLOBWB implementation, we refer the reader to the original European implementation by Hoch95

et al. (2023).

Land surface: soil, and cover, and topography

Soil information at the 30 arc-seconds resolution was derived from the SoilGrids250 dataset (Hengl et al., 2017), which is orig-

inally available at the 0.002 degree resolution. General soil attributes from SoilGrids250 were transformed into soil hydraulic100

properties, such as water holding capacity, field capacity, wilting point using the pedotransfer functions from Balland and Arp

(2005). These properties were derived at the 0.002 arc-degree and upscaled to 30 arc-seconds, by averaging and using cell area

as weights. For land cover parameterization the Global Land Cover Characteristics (GLCC) database version 2.0 (Loveland

et al., 2000), with the land cover classification following Olson (1994a, b) and the parameter sets from Hagemann et al. (1999)

and Hagemann (2002) were used. In addition, the map of Global Food Security Support Analysis Data (GFSAD) version 1.0105

(Teluguntla et al., 2016) was used to define irrigation areas at the 30 arc-seconds resolution. GLCC and GFSAD data are

available at 30 arc-seconds resolution and thus one dominant land cover type was used for the 30 arc-seconds resolution. This

is differs the 30 arc-minute and 5 arc-minute versions of PCR-GLOBWB, where each grid cell was divided into fractional

constituents for four land cover types consisting of tall natural vegetation, short natural vegetation, non-paddy-irrigated crops,

and paddy-irrigated crops (i.e. wet rice). The state-of-the-art Multi-Error-Removed Improved-Terrain Hydro digital elevation110

model (MERIT Hydro DEM; Yamazaki et al. (2019)) that is available at 3 arc-seconds resolution was used to derive topogra-

phy related information. The 3 arc-seconds MERIT Hydro DEM was upscaled to the 30 arc-seconds, by averaging and using

cell area as weights. It is important to note that various sub-grid variability parameters, such as runoff-infiltration partition-

ing, interflow, groundwater recharge, and capillary rise, as well as evaporation processes (van Beek and Bierkens, 2008; van

Beek, 2008; Hagemann and Gates, 2003; Todini, 1996) was derived at the 3 arc-seconds resolution and upscaled to the 30115

arc-seconds, 5 arc-minutes and 30 arc-minutes resolution.

Surface water routing: lakes, reservoirs and drainage/river network

Lakes and reservoirs information was taken from the Global Lakes and Wetlands Database (GLWD) of Lehner and Döll (2004)

and the Global Reservoir and Dam Database (GRanD) of Lehner et al. (2011). The drainage network were adopted from the120

HydroSHEDS product (Lehner et al., 2008).

In brief, the model setup used here differs from the previous PCR-GLOBWB versions as follows: (i) the parallelisation

approach used by the model is updated, (ii) a novel method of downscaling coarse-scale meteorological forcing to the required

30 arc-seconds resolution is incorporated, (iii) the model now allows for lateral transport of snow and ice at high elevations,

and (iv) and an offline spin-up strategy is implemented. Together, these four changes to the model allowed us to complete a 30125
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arc-seconds PCR-GLOBWB simulation with a global extent by overcoming the computational hurdle whilst still maintaining

enough similarity to the previously published versions so that model outputs can be compared and evaluated in a pragmatic

way.

2.1.1 Climate Forcing Downscaling Procedure

Previously published 5 arc-minutes and 30 arc-seconds versions of PCR-GLOBWB relied on a lapse rate-centric approach130

to downscale meteorological forcing to the appropriate spatial resolution (Hoch et al., 2023; Sutanudjaja et al., 2011, 2018).

In contrast, the current implementation relied on an alternative approach by making use of high resolution climatologies

(Karger et al., 2017). The new downscaling methodology involved bilinearly interpolating the coarse-scale meteorological

forcing data to the 30 arc-seconds resolution, followed by the calculation of monthly climatologies from the interpolated

fields. Interpolated climatologies were then compared to monthly high resolution reference CHELSA climatologies (1981 -135

2010; Karger et al. 2017 and Brun et al. 2022) to produce a set of Julian day-of-year correction factors that incorporated high

resolution topographic information (Fig. 1). The high resolution climatologies represent the years 1981 to 2010; as such, the

correction factors were calculated for this time period.

Downscaling Temperature

As a first step, the coarse-scale daily temperature data (1981 - 2010) was interpolated to the 30 arc-seconds resolution using a140

bilinear interpolation (Tasd). Thereafter, the interpolated values were used to calculate monthly climatologies (TasM ) for the

years 1981 - 2010 (Eq. 1); where N is the total number of years, M is the month and i is the day of month.

TasM =
1

N

N∑
j=m

Tasdmi
(1)

The interpolated monthly climatologies were then compared to the high resolution CHELSA reference climatologies (Taschelsa,M ),

using Equation 2, to obtain a set of monthly correction factors (CFTas,M ).145

CFTas,M = Taschelsa,M −TasM (2)

Then, to obtain a correction factor for each Julian day of the year (CFTas,doy), where doy is day of year, we employed a linear

interpolation on CFTas,M .
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Figure 1. Procedure for downscaling meteorological forcing input date based on high resolution climatologies.
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Downscaling Evaporation

Downscaling evaporation follows the same procedure as described above for temperature; where coarse scale daily data (1981150

- 2010) was interpolated to the 30 arc-seconds resolution using a bilinear interpolation (ETref,d) and monthly climatologies

(ETref,M ) calculated for 1981 - 2010 (Eq. 3). Thereafter, interpolated monthly climatologies were then compared to the

high resolution reference CHELSA climatologies (ETchelsa,M ) using equation 4 to obtain a set of monthly correction factors

(CFETref,M
). The final set of correction factors for each Julian day of the year (CFET,doy) was obtained through the linear

interpolation of CFETrefM
. The use of a multiplicative correction factor here was in order to handle variance conservation and155

to ascertain strictly positive values.

ETref,M =
1

N

N∑
j=m

ETref,dmi (3)

CFETref,M
= ETchelsa,M/ETref,M (4)

Downscaling Precipitation

As a first step, coarse-scale daily data (1981 - 2010) was interpolated to the 30 arc-seconds resolution using a bilinear interpo-160

lation (Tpd). For the precipitation downscaling, an additional step was necessary to correct for drizzle days. Drizzle days are

erroneous by-products from interpolating precipitation, which result in very light precipitation where precipitation should be

zero. To account for this and remove excess precipitation, we calculated which proportion of days in each month of the year

are dry days (dryDays) and set that proportion of bottom values in the interpolated precipitation product to 0 (Eq. 5).

Tpd =

Tpd if Tpd percentile rank is > than dryDays

0 if Tpd percentile rank is < than dryDays
(5)165

Thereafter, the interpolated values were used to calculate climatologies (TpM ) from 1981 - 2010 (Eq. 6). The interpolated

monthly climatologies were then compared to the high resolution reference climatologies (Tpchelsa,M ) using equation 7 to

obtain a set of monthly correction factors (CFTpM
).

TpM =
1

N

N∑
j=m

Tpdmi
(6)

CFTpM
= Tpchelsa,M/TpM (7)170

Then, to get a correction factor for each Julian day of the year (CFTp,doy) we employed a linear interpolation on CFTpM
.

Again, as with evaporation, the use of a multiplicative correction factor here was in order to handle variance conservation and

to ensure that precipitation is positive.
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2.1.2 Snow and Ice transport to mimic glaciers, avalanches and wind transport

A limitation of PCR-GLOBWB highlighted by Hoch et al. (2023) relates to how the model handles snow and ice at high175

elevations. Downscaled temperatures are rarely above freezing point at higher elevations, and given that snowmelt is calculated

using the degree day model, this results in unrealistic accumulations of frozen water. In reality excess snow and ice would be

transported downslope by glaciers, avalanches and wind; however, these processes are not captured in the previous versions of

PCR-GLOBWB. To solve this, we included a mechanism that allows lateral movement of frozen water to mimic the lateral and

downslope transport of snow and ice by glaciers, avalanches and wind. The snow and ice distribution component implemented180

here largely follows that described by Frey and Holzmann (2015). If the snow water equivalent exceeds a threshold of (Hv =

0.625 m), lateral transport is activated. When transport is activated, the excess (i.e. transportable) volume of frozen water in a

donor cell, snowd, is calculated from Equation 8 and is then distributed to neighbouring down slope acceptor cells as a function

of slope steepness (Eq. 9). A similar approach has previously been implemented in the community water model (Burek et al.,

2020).185

snowD =max(SWE−Hv,0) ∗ cellArea (8)

snowA =
snowD ∗ tan(slope)

90

NacceptorCells
(9)

2.1.3 Spin-up strategy

Traditionally, to get an initial estimate of the water storage and fluxes, PCR-GLOBWB requires a mandatory spin-up period,

during which the model is simulated for the first time step repetitively until the hydrological storage values (e.g., unsaturated190

and saturated zone) have converged to long-term steady states. However, when considering the computational resources re-

quired for a global 30 arc-seconds simulation, this approach becomes unfeasible, as times to reach equilibrium values would

be very large, which is especially true for states that evolve slowly (i.e., groundwater storage). To overcome this obstacle, a

three-phase spin-up process is implemented in the 30 arc-seconds schematization. In the first phase, PCR-GLOBWB is run

for a three-year period to obtain a representative annual groundwater recharge rate (Gwrech). Groundwater storage is then195

calculated in the same way as is done by the complete model using Equation 10 for 1 000 iterations, starting with a values of

1x− 10 where the base flow is driven by the response time of the groundwater aquifer (j). In the third and final phase, the

model is run for an additional period of at least 5 years with the precalculated groundwater storage values as initial conditions

to obtain the final set of initial conditions.

GWstor,i =GWstor,i−1 +GWrechi − [j×GWstor × (
GWstor,i−1

GWstor

)1] (10)200
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2.1.4 Parallelisation Approach

Maintaining pragmatic and feasible simulation times is a significant challenge when considering hyper-resolution simulations.

A simple yet effective parallelisation technique used in previous PCR-GLOBWB implementation is to spatially partition the

modelling domain into independent hydrological units and assign separate processors to each unit, which are then completed

concurrently. In the previous 5 arc-minutes PCR-GLOBWB, 53 independent spatial hydrological units were completed in205

parallel (Fig. 2a). This is possible because each basin’s outlet ends up in a reservoir, endorheic lake, or ocean. This approach was

followed in the current 30 arc-seconds implementation, where the modelling domain is split into 215 independent hydrological

units, which can be completed in parallel (Fig 2b). However, at 30 arc-seconds, for some of the larger basins in the domain, this

approach still leads to extremely long simulation times if not subdivided further - predominantly because of computationally

expensive calculations associated with surface water routing. For basins exceeding an 800 000 km2 threshold, a hierarchical210

method of parallelisation was therefor used. This threshold was selected to balance efficient input/output operations and the

number of point operations done by an individual processor. First, the basin is divided according to stream order so that each

subbasin is smaller than the 800 000 km2 threshold. The upper reaches of the basin are completed first and then followed by

the next downstream subbasin until the last subbasin has all the necessary information (Fig 2c).
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Figure 2. (a) Spatial domains used for parallelisation in the previously published 5 arc-minutes PCR-GLOBWB version and (b) the domains

used for the parallelisation approach used in this 30 arc-seconds PCR-GLOBWB; which (c) requires additional dividing and hierarchical

parallelisation for basins exceeding 800 000 km2 (which are displayed in grey in (b)). Using the Amazon as an example, the hierarchical

parallelisation involves simulating the upper sub-basins (Sub Run 1) first, followed by the intermediate sub-basins (Sub Run 2), and finally

the penultimate sub-basin (Sub Run 3).
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2.2 Global 30 arc-seconds PCR-GLOBWB simulation and evaluation215

2.2.1 Simulation

The global 30 arc-seconds parameterization described above was simulated for a multi-decadel period (1985-2019) and forced

with downscaled 30 arc-minutes W5E5 temperature, precipitation, and reference potential evaporation (Lange et al., 2021).

The reference potential evaporation was calculated from the Penman-Monteith formulation, following the FAO guidelines

(Allen and Food and Agriculture Organization of the United Nations, 1998), using the python package pyEt (Vremec and220

Collenteur, 2021); input data for the calculation of the reference potential evaporation was also taken from W5E5. The initial

conditions for this simulation were calculated following the three part spin-up approach described above. As the first phase,

PCR-GLOBWB was run from 1979 - 1981 with hydrological states set at an initial of 0.001 m of water and 1981 was taken

as the representative groundwater recharge year to calculate groundwater storage offline. The model was then put through an

additional spin-up period of 6 years (1979 - 1985) to get stable estimates of the other fluxes and storages. For final production,225

the initial conditions were used to run PCR-GLOBWB from 1985 - 2019. All simulations in this paper were run on Snellius,

the Dutch National supercomputer. We note that no calibration was performed for any of the simulations reported in this study.

To assess how capable this 30 arc-seconds PCR-GLOBWB is at reproducing the global hydrological cycle compared to

coarser versions, two additional simulations were performed; one at the 5 arc-minutes and the other at the 30 arc-minutes. The

same forcing and, where applicable, the same model settings were used. A spin-up period of 40 years was used. For a more230

thorough explanation of these two models, we refer the reader to the original publications for the 30 arc-minutes (van Beek,

2008; van Beek and Bierkens, 2008; Van Beek et al., 2011) and 5 arc-minutes variants of PCR-GLOBWB (Sutanudjaja et al.,

2018). All three models were simulated for the same time period, 1985 - 2019, and used the same meteorological forcing;

however, key differences between the models versions are highlighted in Table 1.

Table 1. Table of key differences between the 30 arc-minutes, 5 arc-minutes and 30 arc-seconds PCR-GLOBWB implementations.

30 arc-minutes 5 arc-minutes 30 arc-seconds

Downscaling Procedure No Lapse-Rate Climatologies

Land cover sub-grid variability Yes Yes No

Lateral Snow Transport No No Yes

Parallelisation No Basin Level Basin and sub-basin level

2.2.2 Evaluation235

To provide a more comprehensive evaluation of the global simulations, multiple hydrological variables were used for evalu-

ation, namely total water storage, total evaporation, soil moisture, snow cover, and river discharge. To compare simulations

of different resolution to one another and observation data in a fair way, we opted to evaluate the simulations at scales that

matched those of the observational data. In doing so, it allowed for an assessment of the simulated values, regardless of simu-
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lation resolution, whilst still allowing for comparisons between scales.240

Global Water Balance and Total Water Storage

As a first comparisons between the different resolutions, we also calculated the global water balance and its respective compo-

nents. In order to determine to what degree the models are able to partition water into different components of the water cycle,

the global water budgets (Eq. 11) were calculated for 1985 - 2019.245

P = E+Q+∆S (11)

where, P: Precipitation, E: Evaporation, R: Runoff, ∆S: delta storage.

This allowed us to compare mean annual fluxes of precipitation, evaporation, runoff and change in storage for the different

resolutions. In addition, runoff/precipitation and evaporation/precipitation ratios were calculated for simulations at the three

different resolutions.250

Monthly simulated total water storage was evaluated against JPL TELLUS GRACE/GRACE-FO data for 2002 - 2019 (Kornfeld

et al., 2019). Given the large difference in spatial resolution between the GRACE data and the simulated data, this evaluation

was conducted at the basin level. GRACE data used here are at the 30 arc-minutes resolution, which is close to the Mascon

solution provided in Kornfeld et al. (2019), however the original resolution of GRACE is 3 arc-degrees. Therefore we aimed

to produce a global map of basins so that each basin contains at least 4 grid cells at the original 3 arc-degree (i.e., the footprint255

of the original 3 arc-degree GRACE observations). Basin outlines were obtained from HydroBasins (Lehner and Grill, 2013),

aggregation level 3, and all basins smaller than 400 000 km2 were merged to neighbour basins exceeding 400 000 km2. Basins

that could not be merged, such as small islands, were removed. For each basin, the relative root mean sum of squares (RRMSE;

Eq. 12 and Spearman’s rank correlation coefficient; Eq. 13) were calculated, as an indication of how well the model was able

to reproduce the temporal patterns and magnitude of total water storage anomalies respectively.260

RRMSE =
RMSE(obs,sim)

σ(obs)
(12)

where RMSE: Root mean square error between observations (obs) and simulations (sim) and σ(obs): is the standard deviation

of the observations.

ρ= 1− 6
∑

d2i
n(n2 − 1)

(13)

where ρ: Spearman’s rank correlation coefficient, di: difference between the two ranks of each observation, and n: number of265

observations.

Total Evaporation and Soil Moisture
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Total evaporation and soil moisture were evaluated against station based observation data. Soil moisture data was obtained

from the International Soil Moisture Network (Dorigo et al., 2021). In cases where multiple soil moisture measurements were270

present within a single day, the daily mean was calculated and used for evaluation. In addition, to ensure a good match between

the modelled soil moisture depths and the observations, only data that coincided with the depth of the first soil layer were used.

To match the location of observation stations with the appropriate grid cells, we located the nearest grid cell relative to the

coordinates of the observation station.Observed total evaporation was obtained from the FLUXNET data set (Pastorello et al.,

2020). As with soil moisture, the observed values were matched to the simulated data by locating the nearest grid cell.275

The Kling-Gupta Efficiency (KGE; Eq. 14) was used to assess the accuracy of the simulated variables and for both total

evaporation and soil moisture, evaluation was restricted to stations with at least 1 095 days of observation data. KGE values

range from -∞ to 1.0, with values greater -0.41 implying that the model is a better predictor than the mean of the data (Knoben

et al., 2019).

KGE = 1−
√
(ρ− 1)2 +(α− 1)2 +(β− 1)2 (14)280

In addition, we analysed how the different components of the KGE score differed between resolutions. Correlation coefficients

(ρ) provide an overview of how well the model reproduces temporal changes in the observed data, bias ratio (β) indicates

differences between the means of the simulated and observed values, and variability ratio (α) indicates how well the model

replicates the variability of the observed data. A perfect KGE score is 1, which arises when all components of the score ρ, α

and β equal 1 (i.e, the observed and modelled values are identical). It is important to note that for both observed evaporation285

and soil moisture are not uniformly represented across the modelling domain. Observations are denser over North America and

the European continent compared to the rest of the world (Fig A1 & Fig. A2).

Snow Cover

To establish to what degree the simulations were able to reproduce snow dynamics, we evaluated daily snow cover at the 30290

arc-seconds resolution, using the MODIS daily snow cover product as observation data (Nagler et al., 2021). For this, simulated

snow water equivalent was converted into snow cover, where values greater than zeros were classified as having snow present

and assigned a value of one, while values equal to zero were classified as having no snow and assigned a value of zero. Given

the mismatch in spatial resolution between the observation data (30 arc-seconds) and the 5 and 30 arc-minutes simulations, the

5 arc-minutes and 30 arc-minutes simulated snow cover were re-gridded to the 30 arc-seconds resolution using the nearest-295

neighbour algorithm. As an estimate of accuracy, we calculated the false alarm rate (FAR; Eq. 15), probability of detection

(POD; Eq. 16), success ratio (SR; Eq. 17) and brier score (Eq. 18). POD (perfect score = 1) indicates the probability of the

observed snow events to be correctly forecasted; whereas, FAR (perfect score = 0) indicates which fractions of the simulated

snow events incorrectly simulated the presence of snow when there was no snow in observed data. The SR (perfect score =

1) gives information on the fraction of the observed snow events were correctly forecasted. The brier score (perfect score =300

0) was calculated for an overall assessment of the magnitude of error. These scores could conceivably be calculated for each
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grid cell over the entire domain; however this would then include large regions that never experience snow and ultimately

skew validation scores. Therefore, we limited the validation to regions that actually experience snowfall in reality. To do this

objectively, we created a mask where snowfall was present in the simulation or the MODIS observation data and constrained

the validation within the mask.305

FAR =
false alarms

correct negatives+ false alarms
(15)

POD =
hits

hits+misses
(16)

success ratio =
hits

hits+ false alarms
(17)

brier score =
1

N

N∑
t=1

(simt − obst)
2 (18)

where simt: is the presence or absence of snow cover in the simulation, obst: is the presence or absence of snow cover in the310

observed data for time step t.

River Discharge

River discharge from the Global Runoff Data Center (GRDC) was used to evaluate river discharge simulated by PCR-

GLOBWB for the three resolutions. The stations used for evaluation met the following criteria (i) 1 095 days of daily data315

were available and (ii) the catchment area was greater than 5 km2. Also, to make sure that the observations locations were

coupled to the right tributary, we selected the relevant grid cell by matching the catchment area reported in GRDC with that

of the catchment area used in the model. The grid cell within a 5 km window of the station coordinate which had a catch-

ment area closest to that reported by GRDC was selected as the representative point. To enable comparisons between different

resolutions, stations were selected based on the catchment area of the of 30 arc-seconds modelling domain. As the evaluation320

statistic, we calculated the KGE (Eq. 14) and used the value of -0.41 as the boundary value to determine whether the model

improves upon the mean variable benchmark. A perfect KGE score is 1.0, and values greater that -0.41 indicate that the model

is a better predictor that using the variable mean value (Knoben et al., 2019).

In addition, to obtain information on how the 30 arc-seconds simulation compared in relation to the 5 arc-minute and

30 arc-minute counterparts, we calculated the KGE skill score (Eq. 19). This allows for inference on whether a simulation325

improved compared to a benchmark simulation (Towner et al., 2019). Here we assessed how the 30 arc-seconds simulations

potentially improved upon the 30 arc-minutes and 5 arc-minutes simulations as benchmarks; where a positive value indicates
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an improvement, and a negative value indicates a regression. To facilitate visualisation and a more intuitive comparison, the

bounded variant of the KGE was used so that evaluation scores range from -1 to 1 (Hallouin, 2021). In addition, this bounded

variant was used to explore its relationship between elevation and catchment area; elevation was obtained from the digital330

elevation model within PCR-GLOBWB, and catchment area as reported in the GRDC database.

KGEss =
KGEa −KGEref

1−KGEref
(19)

3 Results

3.1 Increased resolution: computational load and insights

Increased model resolution is associated with significant increases in computational load and storage requirements (Table335

2). Without parallelisation a global 5 arc-minutes and 30 arc-seconds would be impractical, with simulation times taking

months. However, with the inclusion of a previously implemented basin level (Sutanudjaja et al., 2018) and the sub-basin level

parallelisation scheme developed in this study, simulation times are now in the orders of days (≈ 2.5 days) for the 5 arc-minutes

resolution and weeks (≈ 17 days) for the 30 arc-seconds resolution. We also find that, unsurprisingly, storage requirements

increases rapidly with increased spatial resolution. For instance, writing a single variable to disk at the daily frequency results340

in a 2 000 fold increase in storage requirements when moving from 30 arc-minutes to 30 arc-seconds (Table 2). Storing all

possible variables will equate to 365 Gb for the 30 arc-minutes while the 30 arc-seconds resolution storage requirements

approach the petabyte scale.

Table 2. Overview on the computational and storage requirements for a multi-decadel (1985 - 2019) global PCR-GLOBWB simulation at

different resolutions 30 arc-minutes, 5 arc-minutes and 30 arc-seconds resolutions. Simulations were run on the Dutch National Supercom-

puter - Snellius.

Resolution Serial Simulation Time (hrs) Parallel Simulation Time (hrs) Storage (GB; min - max) max CPU cores

30 arc-minute 43 not applicable 3.3 - 365 1

5 arc-minute 2 465 66 182 - 20 748 1 696

30 arc-seconds 39 245 401 8 200 - 934 800 6 528

Increased model resolution does, however, provide a unique and improved representation of the hydrological cycle (Fig. 3).

For instance, compared to the 5 arc-minutes and 30 arc-seconds resolution, the 30 arc-seconds resolution better resolves spatial345

patterns in soil saturation related to elevation and land cover type. In the 30 arc-seconds simulation, variations in soil saturation

degree related to drainage networks become visible. When comparing the resolutions over the Himalayas, the 30 arc-second

simulation represents a continuous field and does not display the footprint of the original coarse scale meteorological forcing

as is present in the 5 arc-minute and 30 arc-minute resolutions (Fig. 3). In addition, when shifting focus towards the Taihang
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mountains in mainland China, the difference between the arid Gobi towards the west and humid forests towards the east is350

most evident in the 30 arc-second simulation (Fig. 3).
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Figure 3. Mean (1985 - 2019) upper soil saturation (-) simulated by PCR-GLOBWB at the 30 arc-seconds resolution. Zoomed insets show

how the highlighted regions differ between the 30 arc-seconds, 5 arc-minutes and 30 arc-minutes resolution PCR-GLOBWB simulations.
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3.2 Global Water Balance and Total water storage

To evaluate the impact of increasing the spatial resolution on the representation of the global water cycle, we compared the

long-term averages in the global water balance components. In terms of absolute values, the 30 arc-minute and 5 arc minutes

resolutions have comparable long term averages for the components of the water balance (Table 3); differences are attributable355

to variation in the total land area being simulated. In contrast, the 30 arc-seconds resolution shows higher precipitation and

evaporation and lower runoff (Table 3).

To allow for easier comparison, we focus on relative differences. For the 30 arc-minutes and 5 arc-minutes the results are

comparable; however, when considering the 30 arc-seconds simulation, the relative evaporation rates are significantly higher

and runoff significantly lower compared to the other two simulations (Table 3). As resolution increases, there is a decrease360

in the relative amount of precipitated water that accumulates as runoff, which is due to the increase in the relative rates of

evaporation (Fig. 4).

Table 3. Global water balance components km3year−1 for 1985 - 2019 for a 30 arc-minutes, 5 arc-minutes, and 30 arc-seconds simulated

by PCR-GLOBWB. Values in parenthesis indicate the relative amounts in relation to precipitation as a percentage.

Simulation Precipitation Evaporation Runoff Storage

30 arc-minutes 112 140 64 091 (57%) 47 089 (42%) 960

5 arc-minutes 112 159 63 277 (56%) 49 223 (44%) -341

30 arc-seconds 121 798 84 275 (69%) 39 605 (33%) -2 082

Spatial patterns in the models ability to reproduce total water storage anomalies are similar in the fact that for all three reso-

lutions continental arid and high elevation regions are less well represented in comparison to low laying temperate, more mesic

continental regions and islands (Fig. 5a). Overall, we find that, in terms of temporal dynamics, the 5 arc-minutes resolution best365

resembles the GRACE data, followed by the 30 arc-seconds and 30 arc-minutes resolution (Fig. 5b). Regarding the magnitudes

of errors, the 5 arc-minutes resolution best resembles the GRACE data, followed by the 30 arc-minutes and 30 arc-seconds

resolution (Fig. 5c).

18



Figure 4. Mean annual mean (a) Runoff/Precipitation and (b) Evaporation/Precipitation ratios for a 30 arc-minutes, 5 arc-minutes, and 30

arc-seconds simulated by PCR-GLOBWB from 1985 - 2019.
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Figure 5. (a) Spatial variation of of spearman correlation and RRMSE for simulated total Water Storage validated against GRACE data, from

2002 - 2019, for basin which areas exceed 400 000 km2. Empirical distribution functions for (b) spearman correlations and (c) RRMSE.
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3.3 Soil Moisture and Total Evaporation

The cumulative frequency curves of KGE of simulated soil moisture are largely indistinguishable between the 30 arc-minutes,370

5 arc-minutes and 30 arc-seconds resolutions. Of the 1 676 stations used for validation (Fig. A1), 50% display a KGE greater

than -0.41 (Fig. 6a) - this is true for all three simulations. Yet, when considering the different components of KGE, differences

between model resolutions are evident. As resolution increases the correlation increases (Fig. 6b) and variability decreases

(Fig. 6d); yet this is offset by a increase in bias (Fig. 6c). In contrast, total evaporation displays significant differences between

the 30 arc-seconds simulation in comparison to the 5 arc-minutes and 30 arc-minutes simulation; whereas evaporation for the375

30 arc-minutes and 5 arc-minutes are similar. Only 85% of the 143 stations (Fig. A2) display a KGE greater than -0.41 for the

30 arc-seconds resolution; whereas, almost all of the stations in the 30 and 5 arc-minutes simulation exceeded this threshold

(Fig. 6e). This difference is attributable to an overestimation of the mean bias (Fig. 6g) and variance (Fig. 6h) of the simulated

evaporation compared to observations.

Figure 6. Top: Soil Moisture (a) KGE and associated constituents of KGE: (b) correlation, (c) beta, (d) alpha from the ISMN. Bottom: Total

Evaporation (e) KGE and associated constituents of KGE: (f) correlation, (g) beta, (h) alpha from FLUXNET. Values greater than -0.41 (red

line) indicate the value at which stations improves upon the mean flow benchmark (Knoben et al., 2019).
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3.4 Snow Cover380

The inclusion of the lateral movement of frozen water, representative of movement by glaciers, avalanches or wind, resulted in

a more accurate accumulation and redistribution of frozen water at high elevation and prevented the erroneous accumulation of

frozen water into snow towers. When evaluated against observed snow cover, all three the resolutions tended to overestimate

the frequency of snow cover. The 30 arc-minutes simulation displays the highest false alarm rate and shows an increased

tendency to simulate snow on occasions where there is no snow present (Fig 7a). As resolution increases, the false alarm rate385

decreases, so that the simulations of 30 arc-seconds display the lowest false alarm rate (Fig 7a). The success rate follows the

inverse pattern of the false alarm rate, where increasing resolution results in decreased success rates (Fig 7b). With a highest

probability of detection, the 5 arc-minutes simulation shows the best ability to correctly simulate occasions where snow is

present, followed by the 30 arc-seconds and 30 arc-minutes simulation (Fig 7c). As an overall assessment of the resolutions

to correctly simulate the presence and absence of snow, the brier score reveals that the 30 arc-second resolutions are the most390

accurate, followed by the 5 arc-minutes and 30 arc-minutes resolutions (Fig. 7 d).

The global distributions in the brier score reveals the performance varies substantially depending on location (Fig. 8). For all

three resolutions, the models show the poorest performance in arid regions and regions of high elevation and complex topog-

raphy. In terms of differences between resolutions, the performance increase with resolution is highest for higher elevations.

However, for drier regions the performance degrades (Fig. 8).395

Figure 7. (a) False alarm rate, (b) success rate, (c) probability of detection and (d) brier score for daily snow cover for a 30 arc-minutes, 5

arc-minutes and 30 arc-seconds global PCR-GLOBWB simulation from 1985 - 2019.
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Figure 8. Brier score of simulated snow cover (-) simulated by PCR-GLOBWB at 30 arc-seconds resolution. Zoomed insets compare how

the highlighted regions differ between the 30 arc-seconds, 5 arc-minutes and 30 arc-minutes resolution PCR-GLOBWB simulations.
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3.5 River Discharge

Simulated river discharge more closely resembles the observations in the 30 arc-seconds resolution with close to 80% of the 7

086 stations showing skillful discharge simulations when compared to the 5 arc-minutes (70%) and the 30 arc-minutes (30%,

Fig. 9a). The improvement in the 30 arc-second simulations is mainly brought about by increases in the correlation values and

reductions in the bias and variance errors (Fig. 9b,c,d). The 30 arc-seconds simulation improves upon the 30 arc-minutes and 5400

arc-minutes simulation in the majority of locations and this improvement is more pronounced for smaller catchments compared

to larger catchments (Fig. 10a,b). The increase in performance related to resolution increase is applicable to all elevations and

basins sizes, however the magnitude of performance increase is greatest for basins that are characterised by high elevations

(Fig. 10c) and small catchment areas (Fig. 10d).

Figure 9. (a) KGE, (b) correlation component, (c) beta component, (d) alpha component calculated for daily river discharge from a 30 arc-

minutes, 5 arc-minutes and 30 arc-seconds global PCR-GLOBWB simulation from 1985 - 2019. Values greater than -0.41 (red line) indicate

the value at which stations improves upon the mean flow benchmark (Knoben et al., 2019).
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Figure 10. Spatial distribution of improvements in KGE skill score calculated for river discharge simulated using PCR-GLOBWB at the 30

arc-minutes, 5 arc-minutes and 30 arc-seconds resolution. (a) 30 arc-seconds vs 30 arc-minutes (b) 30 arc-seconds vs 5 arc-minutes. KGE

cumulative distribution plots for catchments binned according to elevation (c) and catchment area (d).
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4 Discussion405

4.1 Computational and Storage demands

We show here that truly global hyper-resolution modelling is indeed possible with today’s computational resources. However,

long simulation times and excessive storage requirements for such simulations will hinder the reproducibility and accessibility

for the wider hydrological community. Future attempts should consider how newer technologies may serve to reduce simu-

lation times. For instance, relying on graphical processing units for computations has been shown to reduce simulation times410

(Freitas et al., 2022). Another opportunity lies in being able to enhance the parallelisation strategies used in global hydrological

models. The simulations presented here employ a common method of parallelisation, termed ’embarrassingly parallel’, where

the modelling domain is subset into independent units (in this case basins) which are executed in parallel over multiple pro-

cesses. Adopting alternative methods of parallelisation may further improve simulation times and a promising candidate called

’asynchronous many tasks’ (AMT) may be especially useful to the hydrological community (de Jong et al., 2022). The use of415

an AMT based framework could not only improve simulation times but also reduce the ever increasing workload associated

with post simulation data management. As an illustrative example, the simulation presented here produced ∼46 000 files spread

across 645 folders, where as an AMT based simulation could result in as little as 72 files output files for the same simulation.

An important motivation for the development of global hyper-resolution models is that they should be used in climate change

studies (Wada et al., 2017); yet the storage and computational requirements for such an endeavor are still a limiting factor. To420

illustrate, here we evaluate four variables at a daily and one variable at the monthly frequency, which requires approximately

27 terabytes of storage. To obtain a more comprehensive view on the hydrological cycle, it would be preferable to have daily

frequency data for more of the available model outputs. When considering all possible model outputs (114 variables) - this

would yield a storage load of approximately one petabyte for a 35-year simulation. Extending this approach for a multi-

model future simulation using the CMIP6 ensemble (approximately 130 models) storage requirements are estimated at 780425

petabytes. Petascale storage requirements are inaccessible - or at the very least impractical - for most of the hydrological

community. However, expected simulation times are less daunting, total simulation time would approach three months on

the Dutch National Supercomputer. Although this would provide valuable information, it also means that hydrology is now

faced with the same issues current GCM’s face; namely that, while such simulations are possible, data storage becomes a

limitation (Schär et al., 2020). While solutions to the computational and storage limitations remain elusive; leveraging the430

recent trend towards cloud technologies for storing and disseminating earth science data is promising, yet the costs of these

services remain high (Beven et al., 2015). To this end, the hyper-resolution hydrology community can benefit by emulating

and drawing from the experiences of the remote sensing community who routinely depend on cloud computing and storage

facilities to effectively distribute large volumes of data to end users (Xu et al., 2022). Moreover, hyper-resolution physical based

models may also benefit from adopting similar model deployment and dissemination strategies which are common amongst the435

machine learning community. For example, making intermediary states (ie. yearly states) available to the public could allow

for more of the community to reproduce their required model outputs on the hardware available to them.
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4.2 Increasing resolution and model accuracy

By increasing the model resolution we should expect to have a better representation of hydrological systems. However, we

report mixed success when looking at the reproductions of different variables; below we discuss each of the evaluated variables.440

Global Water Budget and Total Water Storage

Total water storage anomalies did not respond drastically to increasing model resolution, yet there were small reductions in the

magnitude of error as modelling resolution is increased. This may be related to a more realistic distribution of water across the

landscape at finer resolutions. Yet correlations were worse for the 30 arc-minutes, followed by the 30 arc-seconds and best for

the 5 arc-minutes simulation. However, it is also important to note that benefits of higher resolutions may not be captured when445

using GRACE data to evaluate since the original resolution is at 30 arc-minutes and thus might by itself also capture a different

signature than produced by the high resolution simulations (Hoch et al., 2023). Partitioning between the major water reserves

differed in response to increasing model resolution, with a markedly larger value of evaporation and lower discharge at the

highest resolution. In comparison to other global models the 30 arc-seconds PCR-GLOBWB rates of evaporation are within

previously reported ranges (60 000 - 85 000 km3year−1) whereas runoff is slightly lower than previously reported (42 000450

- 66 000 km3year−1; Haddeland et al. (2011)). Interestingly, runoff is in line with a machine learning based estimate based

off of station based river discharge data (Ghiggi et al., 2019). Expected evaporation to precipitation ratios are around 60%

(Miralles et al., 2011), and for the 30 arc-minutes (57%) and 5 arc-minutes (56%) simulations this is the case. However, for the

30 arc-seconds resolution the evaporation to precipitation ratios is 69%, thus exceeding the expected value by approximately 9

percentage points.455

Soil Moisture and Evaporation

Overall, predictions of soil moisture did not show much improvement as resolution increased, when considering the KGE

scores. Differences do arise when the different components of the KGE scores are compared between the resolutions. The

correlation and variability between observed and modelled soil moisture values show improvements, whilst there the magnitude

of negative bias increase with increasing resolution. It is important to note that the bias and variability is largely dependent460

on the accuracy of forcing data and differences between simulations across resolutions could be a result of forcing and not

necessarily due to differences in the model. Nonetheless, the observation that the correlation and variability is better predicted

and the bias is less well predicted as resolution increases could be explained by a scenario where the model overestimates

evaporation, which in turn results in soils that are too dry. In congruence, the evaporation estimates at the 30 arc-seconds are

significantly worse than those of the lower resolutions and tend toward an overestimation in the 30 arc-seconds when compared465

to 5 and 30 arc-minutes resolution. It is feasibly that this could be due to difference in how the meteorological forcing are scaled

between the resolutions or the parameterization of the model that determines the rates of evaporation. As shown hereafter in

section 4.3, it is likely due to the combination of parameterization and forcing effects.

Snow Cover

Increasing resolution resulted in better spatial representation of snow cover, with the highest resolution presenting the highest470

accuracy. Increased accuracy is brought about by the reduction in instances where snow is simulate in absence of snow in
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observations a results directly related to increased resolution. Although differences are small when considering the global pic-

ture, improvements are most prominent in high elevation regions. These improvements are related to both increasing modelling

resolution or the introduction of lateral snow transport which prevents the formation of erroneous snow towers. Although not

the direct focus of this work, future studies should look at how snow can be better represented in global hydrological models475

by including process that are important in determining the water dynamics in ice and snow, especially when modelling at fine

spatial resolutions. For instance, the current PCR-GLOBWB does not have unique glacier implementations. Yet, glaciers have

been shown to locally and regionally important and including such processes do results in better predictions at larger scales

(Hanus et al., 2024; Wiersma et al., 2022). Similarly, work needs to be done to improve snow dynamics and move beyond the

simple snow melt model currently present in the model by including additionally processes which have also been shown to480

increase accuracy of predictions (Freudiger et al., 2017).

River Discharge

Predictions of river discharge improved markedly as modelling resolution increased. 30 arc-seconds displayed the most accu-

rate predictions of river discharge. The improvement in KGE values at higher resolution is mostly the result of a better timing of

the discharge peaks and troughs resulting in larger correlation coefficients (Fig. 10). Reductions in bias as resolution increases485

also contribute to improvement of river discharge; for the 30 arc-minutes and 5 arc-minutes resolution the model tends to over-

estimate river discharge, whilst the 30 arc-seconds results are underestimated. When considering that, for the 30 arc-seconds

resolution, discharge values are underestimated and in conjunction with the observation that evaporation is overestimated, the

question arises whether this increased evaporation leads to better estimates of river discharge by correcting for overestimation

in the coarser resolution. Indeed from the soil moisture and evaporation validations, we can conclude that an overestimation490

of evaporation may result in a better estimation of river discharge bias. A positive result from these evaluations is that smaller

catchments and catchments are higher elevations are now better represented by the model, a result directly related to increased

model resolution. Increased resolutions are known to better represent smaller catchments (Hoch et al., 2023; O’Neill et al.,

2021; Aerts et al., 2022).

In a broader sense a direct comparison with other global hydrological models are challenging given differences in validation495

approaches. Heinicke et al. (2024) reports that for 9 global hydrological models, the median KGE for daily river discharge

ranges from -0.43 to 0.46. The KGE scores presented by Heinicke et al. (2024) were based of 644 stations and comparison

to the 7 086 stations used in this study so direct comparison should be done with care, nonetheless it is encouraging to see

that even with the differences in validation approaches, the 5 arc-minutes (median KGE=0.1) and 30 arc-seconds (median

KGE=0.1) values are within range, even with a wider set of validation stations. Regarding other hyper-resolution hydrological500

models, the scores reported here are similar to that of wflow_sbm implemented over CONUS (median KGE=0.0) (Aerts et al.,

2022).
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4.3 Untangling Model Scaling and Forcing Downscaling Affects

The results above lend to the possibility the changes in forcing downscaling or parameterization in 30 arc-seconds model may

be responsible for the patterns we observe. Namely that overestimation in evaporation leads more accurate estimates of river505

discharge through correcting for an overestimation of river discharge in the 5 and 30 arc-minute simulation.

Table 4. Water balance components km3year−1 for 1985 - 2019 for a 30 arc-minutes, 5 arc-minutes, and 30 arc-seconds simulated by

PCR-GLOBWB over the European Continent. Values in parenthesis indicate the relative amounts in relation to precipitation as a percentage.

Resolution Downscaling Precipitation Evaporation Runoff Storage

5 arc-minutes
Old 6 532 3 601 (55%) 2 804 (43%) 127

New 6 937 4 002 (58%) 2 807 (40%) 127

30 arc-seconds
Old 6 377 4 468 (70%) 1 860 (30%) 49

New 6 779 4 947 (73%) 1 787 (26%) 44

In order to differentiate between the effects of the downscaling methodology and those related to model parameterization as

resolution increases, the 5 arc-minutes and 30 arc-seconds simulations, using the old and new downscaling method, were com-

pared over continental Europe and evaluated as above (Table 4 & Fig. 11). The fact that the new downscaling method provides

comparable results when comparing it to the old downscaling method at the same resolution, suggests that the differences in510

the model results are most likely attributable to model parameterization. One likely candidate is the way in which land cover

is handled within the model at the 30 arc-second resolution. For the 30 arc-minute and 5 arc-minute models, PCR-GLOBWB

allows for sub-grid variability in land cover type, where as in the 30 arc-seconds only the dominant land cover type is assumed

per grid cell (Table 1). This was done to reduce computation time by avoiding having to loop over land cover classes for each

time step. Since forests are often the predominant type, even in agricultural landscapes, and forests generally have higher evap-515

oration than crops, evaporation is likely overestimated through an inflated representation of forests in the model. To corroborate

this claim we conducted an post-hoc analysis which was aimed understanding which proportion of the model domain consists

of forests when using dominant land cover types compared to a fractional coverage. This analysis revealed that by expressing

land cover as a single dominant class per grid cell leads to a 13 percentage points (Appendix B1) inflation in the total area

covered by forests (∼ 50%) compared to when using the fractional cover (∼ 37%).520

To further evaluate the sensitivity of the water budget terms to changes in land cover parameterization, for a small test

region, we changed the land cover representation so that the entire region consisted of either forest, grasslands, or crops and

compared the water budget terms to a 5 arc-minute simulation with unchanged land cover representation (see appendix B2).

These simulations show that decreasing the relative abundance of forests within a domain will result in decreased rates of

evaporation and increased rates of runoff. However, although the results for this region are quite sensitive to land cover, it is525

unlikely that any combination of land covers will result in relative rates of evaporation and runoff similar to that of the coarser

resolutions. Thus suggests that there are further opportunities, besides land cover representation, responsible for the difference
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in water budgets between resolutions. For instance it may be that neither downscaling approach is capable of reproducing

meteorology accurately at the 30 arc-seconds resolution.

Our results suggest that global hydrological models need to incorporate land cover heterogeneity even at the sub-kilometre530

scale in search of better predictive capacity. In congruence to this observation, land cover representation has previously been

shown to be important in providing accurate predictions of hydrological states at the kilometre and even sub-kilometre res-

olution (Singh et al., 2015; Lazin et al., 2020). It is important to note that although needed for improving the accuracy of

predictions, incorporating sub-kilometre land cover heterogeneity would further increase computation times. In addition, it is

evident that the performance of high resolution horological models are hindered by the availability of accurate high resolution535

meteorological forcing, an observation that has previously been highlighted by more localised studies (Malle et al., 2024).

Figure 11. (a) KGE, (b) correlation component, (c) beta component, (d) alpha component calculated for daily river discharge from a 30

arc-minutes, 5 arc-minutes and 30 arc-seconds PCR-GLOBWB simulation from 1985 - 2019 for the European region. Values greater than

-0.41 (red line) indicate the value at which stations improves upon the mean flow benchmark (Knoben et al., 2019).

4.4 Global Hyper-resolution hydrological modelling: status and recommendations

Our work advances global hyper-resolution modelling and its application beyond the continental scale (Hoch et al., 2023;

O’Neill et al., 2021; Vergopolan et al., 2021; Chaney et al., 2021). We show that a hyper-resolution global hydrological model

is feasible given the computational limits currently in place. However, it also highlights that storage is expected to become a540

significant challenge as global hydrological modelling advances. This will create additional challenges when output data are

used for further analysis and when extracting point location time series in a computationally effective way.

The introduction of the climatology-centred downscaling method and ability to move frozen water stores laterally result

in more continuous and ultimately a more realistic representation of the hydrological cycle. Hoch et al. (2023) proposed that

enhancing the representation of additional physical processes at the kilometre scale could enhance the predictions. The findings545

presented in this study indicate that this is indeed true, although further efforts are required to further enhance the predictive
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capabilities. The importance of high resolution forcing data is well understood and it has been shown that hydrological predic-

tions become better when more high resolution data are used to force such models (Evin et al., 2024; Alfieri et al., 2022). Such

data is only available for limited regions of the world and obtaining global and spatially coherent high resolution forcing data

is a challenge that needs to be addressed if we are to have higher quality hydrological predictions at the global scale.550

Furthermore, as also shown by (Hoch et al., 2023) there are a number of epistemic uncertainty issues related to global

hydrological modelling that still need to be addressed. For instance we need a better representation of the land surface processes,

snow and ice processes as these processes play a dominant role at fine spatial resolution and can no longer be neglected or

captured in existing conceptual parametrization. At finer spatial resolution altitude effects start to play a key role in precipitation

totals, snow and ice formation, melt and evaporation and thus require fine resolution meteorological information if possible at555

the global scale.

On the other hand, moving to a higher resolution allows for a better match with in situ observations and more recently

released high resolution remote sensing products; the importance of scale commensurability between model outputs and that

of in situ observations has been highlighted by Beven et al. (2022). For instance, the caravan dataset which has 6 830 stations

for small river catchments (Kratzert et al., 2023), could be used to better underpin the accuracy of simulated river discharge560

values at higher resolution - as has been done for smaller scale studies (Aerts et al., 2023). Resolutions coarser than 30 arc-

seconds would not allow for the inclusion of these river catchments, given the disconnect between modelling resolution and

observed data station sizes. In addition, recent advances in remotely sensed high resolution soil moisture data will also be a

valuable resource for evaluating hyper-resolution simulations once their time series are sufficiently long (Brocca et al., 2024).

5 Conclusions565

The main goal of this study was to develop a unique global hyper-resolution hydrological model that covers a period of sev-

eral decades (1985 – 2019), expanding the current hyper-resolution hydrological models beyond continental boundaries. We

incorporated a novel downscaling approach and lateral movement of frozen water that ultimately yields more realistic repre-

sentations of the hydrological cycle. Yet, as resolution increased the model tended to over-estimate rates of total evaporation

which resulted in reductions in runoff. This suggests that additional processes that are relevant at the hyper resolution need570

further attention. Overall, the pursuit of hyper-resolution hydrological models are driven by the assumption that they will be

able to provide stake-holders with more local estimates of water resources; one promising result reported in this study is that

increased resolution is met with more accurate estimates of river discharge.

Data availability. To facilitate the use of data produced in this study we have archived monthly and annual aggregations of river discharge

on YODA, a research data management service of the Utrecht University, data can be found at https://doi.org/10.24416/UU01-Q6EDB2. We575

encourage readers to contact the corresponding author for additional model output.
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Appendix A: Spatial Distribution of Validation Stations

Figure A1. Map showing locations of stations used for validation of simulated soil moisture.

Figure A2. Map showing locations of stations used for validation of simulated total evaporation.
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Appendix B: Land Cover Representation Analysis

B1 Dominant vs Fractional

The model evaluation shows that relative rates of land evaporation are higher in the 30 arc-seconds simulation in comparison580

with the 5 arc-minute and 30 arc-minutes simulations. We postulate that this is due to the way that the model represents land

cover in the 30 arc-seconds simulation (Section 2.1 & 4.3). Given that the model we present here relies on the Global Land

Cover Characteristics (GLCC) database version 2.0 (Loveland et al., 2000), which is at the 30 arc-seconds resolution, we can

not directly test this assumption using the model input datasets. However, higher resolution land cover datasets are available

and as such we leveraged these to test our hypothesis that using dominant land cover types leads to a higher proportion of the585

model domain being represented by forests than if fractional land cover types were used.

Here we rely on the Dynamic Land Cover map (100m resolution) from the Copernicus Global Land Service (Buchhorn

et al., 2020) which provides both dominant land cover types and fractional land cover types at the 100m resolution. To test the

difference between dominant and fractional, we compared to percentage of total land cover represented by forest when using

the dominant land cover type compared to the fractional representation for the year 2019 (Buchhorn et al., 2020). When using590

the dominant land cover the total land area covered by forests amounts to 50% compared to when using fractional land cover

this number is much lower at 37%, a difference of 13 percentage points.

B2 Water Budget Sensitivity

In addition to the above analysis, we have also looked at how sensitive evaporation of the 30 arc-seconds simulation is to

land cover changes, for a small test region (Southern Alps). We assumed that the entire domain is covered by either forest,595

grassland or croplands. These three simulations were compared to the original configuration 30 arc-seconds and 5 arc-minutes

(as presented in the original manuscript).

Table B1. Water balance components km3year−1 for 1985 - 2019 for a 5 arc-minutes, and 30 arc-seconds, with varying landcover

parametrization, simulated by PCR-GLOBWB.

Simulation Land cover Precipitation Evaporation Runoff Evaporation/Precipitation Runoff/Precipitation

5 arc-minutes not applicable 208 76 126 0.36 0.60

30 arc-seconds

not applicable 228 120 99 0.53 0.43

Only Forest 228 130 89 0.57 0.39

Only Grassland 228 124 96 0.54 0.42

Only Crops 228 94 125 0.41 0.55

From this sensitivity test, we conclude that evaporation rates are indeed sensitive to changes in land cover representation,

however no changes will allow us to reach the same evaporation rates as for the 5 arc-minutes or ratio between evaporation

and precipitation. In addition the evaporation estimates we present are at the higher end of what can be expected (94 – 130600
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km3year−1). It also shows that no land cover configuration at the 30 arc-seconds resolution will not reproduce the values of

the 5 arc-minutes, since the maximum possible runoff values at the 30 arc-seconds (125 km3year−1) are still lower than what

is simulated by the 5 arc-minutes resolution (126 km3year−1). This also means that even by changing all land cover to crops

we can thus not achieve the same values as for the 5 arc-minutes model simulations.
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