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                                         Replies to Referee’s Comments 

We are grateful to the reviewers for their constructive comments, which helped us to 

improve the manuscript. A point-by-point reply to each comment can be found below: 

reviewer comments are shown in italic; our responses are shown as plain text and text 

passages from the manuscript are shown in blue. In the following, line numbers refer to 

the revised version of the manuscript with tracked changes. 

 

Response to Reviewer #1 

********************************************* 

This paper uses aerosol concentrations from simulations with one global model as input to 

machine learning algorithms in order to provide classification of aerosol regimes under 

preindustrial, present-day and future emissions. The paper is mostly well-written and 

structured, and the underlying methodology sound. However, in the current version the 

statements and conclusions give very limited novel information and added value to the 

literature and scientific community, and I also question the usefulness of the method in the 

context of assessing the influence of projected anthropogenic emission changes. 

Improvements are needed to make the manuscript suitable for publication. 

Response: We thank the reviewer for their many careful remarks on our study. Please find 

below our replies to the issues raised.  

While the use of concept of aerosol regimes does provide a different view on future aerosols 

than AOD, PM2.5, individual species, etc (of which there have been several studies), the 

paper at the moment provides many statements, descriptions and conclusions that are well-

known and shown in previous literature and/or simply follow directly from the underlying 

emissions that are used as input to the model. The classification method itself was also well 

documented in L22. Statements such as “suggesting a general reduction of aerosol and 

aerosol precursor emissions in line with the underlying assumptions in these scenarios.” 

seems rather circular and given that there is no change in climate in these model runs, really 

only says that emissions have been properly read into the model and that the classification 

method works also for different emissions than those used in L22. Another example is “This 

trend agrees with the temporal development of the corresponding aerosol regimes.” – when 

in fact this trend drives the corresponding aerosol regime change. The “emission analysis” 

also appears a bit simplistic. At the very least, revisions of the abstract, results and 

conclusions are needed to emphasize what’s important/new knowledge from this paper, incl. 

e.g. comparing the usefulness of this ML approach and clustering with other model based 

assessments, and acknowledge how this work supports/complements other published work 

looking at future aerosol. There is some discussion of previous studies, but it cites only two 

rather old papers. 

Response (major comment #1): We agree that some statements in the manuscript could be 

misinterpreted. The intention of this study is to identify dominant patterns of aerosol regimes 

based on global model simulations of aerosol properties for different time slices. The 

emission analysis aims to link the contribution of specific emission components and sectors to 

the aerosol changes for selected representative cases. However, we disagree with the 
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reviewer, that the conclusions of our study can be drawn by analyzing the emission data only 

because our aerosol simulations include representations of the aerosol number concentration, 

size distribution and composition resolving several different aerosol modes, based on detailed 

three-dimensional simulations of the chemistry of aerosol precursor gases, aerosols 

microphysics and long-range transport (as explained in the Methodology Section 2.1). This is 

of high relevance since such kind of data is required to properly describe the details of the 

global aerosol population and this can only be provided by a global model simulating all the 

relevant processes. The clustering is based on multiple simulated aerosol properties rather 

than just the emission of primary aerosols and aerosol precursor gases provided by the 

emission inventories: the emitted precursors undergo different processes and transformations 

in the model to form secondary aerosol which, in addition to primary aerosol, is our subject of 

interest, rather than the precursors. Hence, this work goes beyond the simple analysis of 

emissions. We have addressed the above comments accordingly and added corresponding 

clarifications to the manuscript:  

• The abstract has been revised according to the reviewer´s suggestions as follows: 

“Aerosols play an important role in the Earth system, but their impact on cloud 

properties and the resulting radiative forcing of climate remains highly uncertain. The 

large temporal and spatial variability of a number of aerosols properties and the choice 

of different ‘pre-industrial’ reference years prevent a concise understanding of basic 

underlying patterns and trends in aerosols and their impacts on clouds and radiation. In 

this study, we characterize the spatial patterns and long-term evolution of lower 

tropospheric aerosols (in terms of regimes) by clustering multiple instead of single 

aerosol properties from preindustrial times to the year 2050 under three different 

Shared Socioeconomic Pathway (SSP) scenarios. The clustering is based on a 

combination of statistic-based machine learning algorithms and output from 

emissions-driven global aerosol model simulations, which do not consider the effects 

of climate change statistic-based machine learning algorithms. Our analysis suggests 

that in comparison with the present-day case, lower tropospheric aerosol regimes 

during preindustrial times are mostly represented by regimes of comparatively clean 

conditions whereby marked differences between the years 1750 and 1850 emerge due 

to the growing influence of agriculture and other anthropogenic activities in 1850. Key 

aspects of the spatial distribution and extent of the aerosol regimes identified in year 

2050 differ compared to pre-industrial and present-day, with significant variations 

resulting from the emission scenario investigated. In 2050, the low emission SSP1-1.9 

scenario is the only scenario where the spatial distribution and extent of the aerosol 

regimes very closely resembles preindustrial conditions whereby the similarity is 

greater compared to 1850 than 1750. The aerosol regimes for 2050 under SSP3-7.0 

closely resemble present-day conditions, but there are some notable regional 

differences: developed countries tend to shift towards cleaner conditions in future, 

while the opposite is the case for developing countries. The aerosol regimes for 2050 

under SSP2-4.5 represent an intermediate stage between preindustrial times and 

present-day. Further analysis indicates a north/south difference in the clean 

background regime during preindustrial times, and close resemblance of pre-industrial 

aerosol conditions in the marine regime to present-day conditions in the Southern 

Hemispheric ocean. Not considering the effects of climate change is expected to cause 

uncertainties in the size and extent of the identified aerosol regimes but not the general 

regime patterns, due to a dominating influence of emissions rather than climate change 

in most cases. Overall, our study allows to extract a clear and condensed picture of the 

spatial extent and distribution of aerosols for different time periods and emission 

scenarios and to summarize these in terms of aerosol regimes. The approach and 
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findings of this study can be used for designing targeted measurements of different 

preindustrial-like conditions, and for tailored air pollution mitigation measures in 

specific regions.”. 

• To address the issue of climate-change-induced vs. emission-driven changes, a brief 

discussion of the study by Li H. et al. (2022, not to be confused with our previous 

publication L22) on the future PM2.5 mass concentrations has been included in the 

introduction (line 65): “Li H. et al. (2022) estimated future PM2.5 mass concentrations 

(aggregated mass of particles less than 2.5 μm in diameter) by applying a Random 

Forest regression method to global atmospheric chemistry model results and CMIP6 

multi-model climate projections. Their study suggests that under low- and medium-

emission scenarios (SSP1-2.6 and SSP2-4.5) PM2.5 mass concentration decreases by 

about 40% in East Asia, 20−35% in South Asia, and 15−25% in Europe and North 

America in 2100 compared to present-day, and that the changes are mainly due to the 

emission reductions. Only in a high-end radiative forcing scenario (SSP 5-8.5), there is 

a comparable contribution of changes in climate and emissions to future PM2.5 

changes over many regions on the Earth (e.g. East Asia, South Asia, Europe and North 

America).” Additional discussions on climate change effects have also been included 

in the manuscript (see our response to the major comment #5 below regarding the 

limitation of the fixed meteorology). 

• The conclusions are modified similarly as the abstract: please refer to the changes in 

the Summary and Outlook section of the revised manuscript. 

We further elaborate on the issue of the emission analysis below, when addressing the 

corresponding specific comments.  

One question that arises is how sensitive the classifications, and the subsequent conclusions, 

are to the model input used? We know that global models have a widespread in simulated 

aerosol distributions and an extension of the is work that would bring added value is to 

consider multi-model data, e.g. from CMIP6. E.g. can robust regimes be identified for 

present-day and future scenarios? The authors should consider adding a multi-model 

perspective here, either for both present-day and future, or just present-day – or at the very 

least discuss this. 

Response (major comment #2): We understand the point about the sensitivity of our method 

to the input model data used for the clustering and appreciate the suggestion about the CMIP6 

multi-model data, but we consider this kind of analysis beyond the scope of this study because 

our current analysis makes use of 7 different aerosol properties from the EMAC model output 

and not all of these properties are available from CMIP6 model simulations. This is the case, 

for instance, for the particle number concentrations and the particle size distributions. As 

shown in Figs. 3 and 4 in the manuscript (pasted below for convenience), several of the 

identified regimes are controlled and determined by particle number concentrations, which 

allows us to distinguish different regimes that are dominated by the same aerosol types but 

differ in terms of their magnitudes. For example, this allows us to distinguish between four 

different Continental regimes (Fig. 3), and between Arctic and Antarctic background sub-

regimes using the secondary classification shown in Fig. 4. 

Another advantage of using the EMAC output is our long-term experience with developing 

and evaluating this model, which facilitates the interpretation of the results, as we know in 

detail how the aerosol processes are represented in this model. Using CMIP6 multi-model 

output would make such interpretation much more challenging. Finally, we note that the 

simulations used here were performed in nudged mode, which provides a more accurate 
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representation of the meteorology compared to CMIP6-type free-running climate simulations, 

at least for present-day conditions. This is very important for the representation of specific 

aerosol properties, especially for the wind-driven aerosol species like mineral dust and sea-

salt, which are relevant for the identification of specific regimes. Nevertheless, an extension 

of the current study to a different set of model data is certainly an interesting aspect and we 

suggest this as a future step. We revised the Summary and Outlook Sections as follows (line 

650): “Neglecting the effects of climate change is expected to cause uncertainties in the size 

and extent of the identified regimes (especially for polluted regimes under SSP3-7.0 

scenario), but the major conclusions drawn in this study will likely be unaffected, due to a 

dominating influence of emissions than climate change as suggested by previous studies.  The 

consideration of both climate and emission changes for the corresponding time periods could 

be the subject of a follow-up study, which may also address the sensitivity of our results to the 

input model data considered in the clustering. Here we focused on simulation data from the 

EMAC model, but the same approach could be applied, for example, to the CMIP6 model 

output, although it may need to be adapted to the availability of the aerosol properties used to 

drive the machine learning algorithms.”. 

 

Fig. 3 from the manuscript: Internal aerosol properties of the primary classification aerosol regimes. 
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Fig. 4 from the manuscript: Results of the secondary classification for the background regime. 

 

 

The classification is also a bit of a black box. While the point of the method is that the 

classification criteria is not known a priori, understanding the distinctions is important for 

further application. E.g. what is the criterium for calling something level 1 vs 4. This, 

combined with the naming, will in my view very much limit the relevance for policy-

making/mitigation –which is one of the important applications the authors point out. It should 

be made clearer here (and at least to a reader who is not a ML expert) how the classification 

is done, e.g. what is the criteria for transitioning to a lower level continental airmass? What’s 

the role of composition vs. mass concentration vs. number concentration – can level 1 

continental air in fact be very differently composed in different time periods if emissions of 

different species change differently? If so, that would have subsequent implications for the 

climate effects, which would not be easily extracted. For policy relevance, could the different 

levels be related to e.g. air quality indices. 

Response (major comment #3): Fig. 3 in the manuscript (also shown above for convenience) 

is the key to answer these questions. Understanding the standardization process is the key to 

understand Fig. 3.  

Unlike the more-complex deep learning algorithm, like for instance the neural networks, the 

statistics-based machine learning algorithms (e.g. K-means and Random Forest) applied here 

are relatively simple and it is possible to reconstruct what these algorithms are doing. K-

means performs the classification based on the variances of a dataset, i.e. it divides the dataset 

into K (number of clusters) equal-variances clusters based on the implemented equal-variance 

classification criterion. This results in the distinct characteristics of the identified regimes 

shown in the box plot of Fig. 3. This box plots contains indeed the detailed information on 

composition, mass concentration, Aitken- and accumulation-mode number concentration of 

each regime, as the reviewer is asking.  

Keeping in mind that the data are standardized, the highest standardized value for a specific 

aerosol parameter represents its global maximum and the lowest standardized value represents 
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its global minimum, because the standardization process normalizes values of different 

aerosol properties to the same order of magnitude, while conserving the underlying 

distribution of these aerosol properties. The different colors represent different aerosol 

properties (see the legend). Their values in specific regimes are represented in the box plot 

style, that is, a higher standardized value corresponds to a higher mass or number 

concentration in that regime. The naming of the regimes is admittedly subjective and needs to 

be interpreted together with Fig. 3. The term ‘level’ corresponds to different magnitudes of 

aerosol mass and number concentrations, ranging from low to high. Mapping our levels of the 

continental regimes to air quality indices would be a worthwhile future attempt to make our 

data directly usable by policy makers. In our previous study (L22), which addressed only 

present-day conditions, the terms ‘slightly polluted’ or ‘moderately polluted’ were used 

instead of the term ‘level’. But in the present study we also investigate preindustrial 

conditions, for which the term ‘polluted’ does not sound appropriate. Therefore, we changed 

the naming to ‘level’ to define different levels of aerosol mass and number concentrations.   

To address the points raised by the reviewer, the following text has been added to the 

manuscript when introducing Fig. 3 at line 289: “Fig. 3 shows comprehensive and integrated 

information on the present-day regime characteristics in terms of individual aerosol properties 

as classified by means of by K-means. In our approach, these K-means classification results 

also serve as a learning criterion for the Random Forest classification for other time periods. 

The different colors in Fig. 3 represent the different aerosol properties considered in this 

study. The y-axis shows their standardized values, with a higher (lower) standardized value 

corresponding to a higher (lower) aerosol mass and number concentration (i.e. the 

standardization process normalizes values of different aerosol properties to the same order of 

magnitude, while conserving the underlying distribution of these aerosol properties). The 

standardized values are also used to define the different pollution levels in the continental and 

dust-dominated clusters. The Random Forest algorithm learns from value ranges and the 

relative importance of the considered aerosol properties for each regime (regime 

characteristic), and then maps the pre-industrial and 2050 aerosol properties to the identified 

regimes. The same regime identified during pre-industrial times and 2050 represents the same 

conditions as the present-day regime (evaluated in the Fig. S1). We recall that the simulations 

analyzed here only consider the impact of changing emissions, while the impact of climate 

change is neglected.  This might affect the size and extent of pre-industrial and future regimes 

to a certain extent but it should not change the classification substantially, since previous 

studies suggested a distinctively larger importance of emission changes than climate change 

for the evolution of the lower tropospheric aerosol (see detailed discussions in Sect. 4).”. 

Another implication of the coarse aerosol regime approach is that a lot of detail is hidden. 

For instance, most of Africa is classified as dust-dominated and biogenic/biomass burning. In 

contrast, scenarios for anthropogenic emissions exhibit a wide range in future evolutions, 

which has significant implications for climate and air quality, but is not at all captured here. 

What is the authors’ view on this? This draws into question the usefulness of such coarse 

classifications and I think the authors need to spend some more time justifying why their 

approach provides what they call a “clear and condensed” picture. 

Response (major comment #4): As explained in our response to the previous comments, we 

use an integrated way to visualize information on the globally most-prominent aerosol 

characteristics. More details within the respective regimes can be identified by means of the 

secondary classification. Some examples of this are provided in the manuscript. 
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We agree that this could have been explained better in the original manuscript and we have 

added further explanations to clarify this. An additional paragraph in Sect. 4 (line 575) 

explains our statement about the ‘clear and condensed picture’: “This study uses an innovative 

way to assess and integrate information from multiple aerosol properties. Unlike the 

traditional single variable model assessments, which consider only one specific aerosol 

property for different time slices, we condense information from seven key aerosol properties 

into a single parameter (the regime index) and then assess the development of this parameter 

through time. In this way we identify regimes in the present-day lower troposphere with 

distinct characteristics (e.g., clean, dust-dominated, polluted, etc.). Moreover, using the 

present-day regime characteristics as a reference, we can compare the present-day case with 

other time slices to identify similarities and differences. If these comparisons among time 

slices were conducted for each aerosol property individually, the diverse and complex patterns 

for different aerosol properties would complicate the interpretation and make it more difficult 

to derive key information and draw general conclusions.”.   

Another limitation is the fixed meteorology. The authors do talk about this, saying that “it 

would hamper the separation of their respective impacts, further complicating the 

interpretation of results and the applicability of the proposed method.” In my view, this is 

where ML could be of added value, i.e. application of the algorithm to a more complex data 

set. While this is likely not possible here, a perhaps more important implication is that not 

having changing climate has implications for the aerosol load and composition in both future 

and pre-industrial times and requires more care than currently taken when talking about 

changes from the pre-industrial. For instance, studies have shown an increase in the dust 

loading and analysis of CMIP6 data have looked at possible feedbacks on natural aerosols. 

The authors should include a better discussion of such work and possible implications of 

these findings for their results. 

Response (major comment #5): We thank the referee for bringing this up and agree that this 

has not been sufficiently discussed in the original manuscript. We have included a detailed 

discussion about the possible influence of meteorology and climate change on aerosols (line 

538) as follows: “The question is how this assumption could influence the results presented in 

this study. Previous studies show that climate change could affect dimethyl-sulfide (DMS) 

production (Bopp et al. 2003, Zhao et al. 2024), mineral dust (Kok et al. 2023), sea salt 

(Struthers, et al. 2013), PM2.5 and aerosol optical depth (IPCC, 2022). These influences of 

climate change on natural emissions are not considered in our study, with the intention to 

clearly attribute the differences within the time slices and scenarios to the underlying 

emissions. Nevertheless, the influence of climate change on aerosols could be important and 

further studies are needed to investigate the relevance of this effect on the patterns of the 

identified aerosol regimes. However, previous studies suggested a stronger influence of 

emission changes on aerosols than climate change. Lacressonnière et al. (2016) investigated 

PM mass concentrations over Europe in a +2 °C warming world and demonstrated that the 

decrease of PM mass concentrations over Europe is mainly associated with emission 

reductions. Cholakian et al. (2019) investigated climatic drivers and their effect on PM10 

components in Europe and the Mediterranean Sea and demonstrated that anthropogenic 

emission changes overshadow changes caused by climate for both regions. Li H. et al (2022) 

evaluated the contributions of emission changes and climate change to the projection of PM2.5 

in 2100 and suggests that under clean emission scenarios (SSP1-2.6 and SSP2-4.5), the PM2.5 

reduction in 2100 is due to emission reductions, while for a high pollution scenario (SSP5-

8.5) an approximately equal contribution of emission changes and climate change to PM2.5 

mass concentrations for specific world regions (e.g. South America, Asia) was identified. 

These studies support the validity of our conclusions drawn for pre-industrial times and under 
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the two clean emission scenarios for 2050. However, our results for the regimes in 2050 under 

SSP3-7.0 may be subject to uncertainties due to neglected climate change effects, although 

here we focus on the year 2050, when the climate change effects in scenarios of high pollution 

are smaller than in 2100 (e.g. Fig SPM.8 in IPCC 2021 Summary for Policymakers), and the 

high emission scenario SSP3-7.0 which we address in this study is cleaner than SSP5-8.5 

investigated by Li H. et al. (2022). In summary, the effect of climate change is suggested to be 

less important than the emission changes for the aerosol regimes investigated in our study. 

The missing climate change effects might still result in uncertainties in the size and extent of 

the regimes, but will likely not change their general patterns.  Hence, the major conclusions of 

this study are unlikely to change when climate change is considered.”. 

The authors also discuss differences between 1750 and 1850: given the large uncertainties, I 

question the robustness of any conclusion drawn for this time period and the authors may 

want to acknowledge that more clearly. 

Response (major comment #6): The debate whether using 1750 or 1850 as a reference for 

pre-industrial times is ongoing in the literature, as we noted in the Introduction (line 45). Our 

study highlights that there are likely differences in aerosol conditions between 1750 and 1850. 

We used CMIP6 emission inventory to drive our simulations, since it is a well-established and 

widely used dataset. 

Specific comments: 

Section 3.2: why is transport singled out here from other non-transport emissions when this 

paper has no transport focus? In many cases there are little or no emissions and hence 

extracting only this sector does not help inform the changes. 

Response: Indeed, the paper has no transport focus, but the simulations on which we based 

the analysis stem from an assessment of the global impact of the emissions of the transport 

sector on aerosol and climate (Righi et al., 2023) and one motivation for our study is to 

develop a method, which could later be applied to analyze regions where transport emissions 

could have a large impact. This is because the emission patterns of transport are peculiar with 

respect to the other anthropogenic sectors: shipping, for instance, is the only anthropogenic 

source over the ocean and looking at this sector can help to interpret the marine regimes. Even 

an information about little or no emissions from transport sectors could be useful to interpret 

the changes across the different time slices. 

Section 3.2: it would be helpful to have regions named rather than Rx. 

Response: We have included regions names in Fig. 7 for more clarity, but we would prefer to 

keep the names R1a R1b, R2a R2b, R3a R3b because they specify three distinct groups, each 

containing two different regions a and b which are discussed together in the text.  

Line 461: “transport sector shows the largest contribution to the total emissions in these 

regions, followed by the contributions from the transport sector” Well of course, you have not 

separated out any other anthropogenic sector… This statement gives no useful information. 

Response:  See our reply to a similar comment above, about our motivation to separate 

transport from the other anthropogenic sectors. 
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Line 423: “Most of the processes driving the anthropogenic aerosol changes will be 

addressed by the analysis of these species” – what is meant by the word processes here? The 

reference is to the emissions documentation paper so I assume it’s related to “processes” 

leading to emission changes – but could be misunderstood to involve also interactions 

between different species through atm. chemistry when emissions change (e.g. SOA formation 

changes when OC/POA emissions change). Moreover, this statement is probably true but 

that’s because you have not change in climate, which should be specified. Perhaps rephrase. 

Response: This is indeed a confusing sentence. We thank the reviewer for pointing this out. 

The sentence (line 469) is modified to: “Most of the emission-related anthropogenic aerosol 

changes will be addressed by the analysis of these species, which are representative for 

secondary aerosol formed from precursor gases and for primary aerosols. This type of 

analysis is possible because the simulations consider only emission-driven changes and 

neglect climate change effects on the analysed aerosol properties.”. 

Line 450: “The different pathways of emission changes in R2a and R2b can explain why R2a 

remains in the polluted regimes in 2050, while R2b shifts to a clean aerosol regime under 

SSP1-1.9” – can explain? What are the other possible explanations in this model study? 

Response: This sentence simply summarizes the considerations expressed in the previous 

sentences: since we neglect the effect of climate change, we can clearly attribute the 

differences within the three scenario cases to the underlying emissions. If we had considered 

both changes in climate and emissions, the interpretation of this results would be a challenge.  

Line 457-459: “The emission comparisons for both regions (Fig. 7f and g) show that the 

emission maxima of NOx, SO2 and BC occur at present-day, while emissions for NH3 

increase up to 20% in 2050 under the most pessimistic SSP3-7.0 scenario. However, the 

maximum aerosol emissions generally peak at present-day.” Emissions in North America and 

Europe declined prior to 2015, so this is not accurate but appears to be the case because you 

don’t show the full time series. 

Response: Correct, thanks for pointing this out. We have modified these sentences (line 505) 

to: “By addressing the considered time periods, the emission comparisons for both regions 

(Fig. 7f and g) show that the emission maxima of NOx, SO2 and BC occur at present-day, 

while emissions for NH3 increase up to 20% by 2050 under the most pessimistic SSP3-7.0 

scenario. However, as we have not analyzed the full time series, the maximum aerosol 

emissions could peak before or after present-day.”. 

Line 479: “This, however, is less critical in the context of this study, due to the 

standardization process.” I don’t understand this statement. If you classify or standardize 

something that is not representative of the real world, how is that OK or not important? 

Response: The standardization changes the values of the input data but preserves the 

underlying geographical distributions of aerosol properties, which is what matters for the 

applied machine learning algorithms. The role of standardization has been systematically 

investigated and explained in our previous study (L22, see Section 4.1): basically, the 

standardization process removes the differences in value magnitudes and units from different 

aerosol properties while preserving the distributions of these aerosol properties, as shown by 

this figure from L22 comparing the probability density functions for several aerosol properties 

before and after standardization:  
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Probability density functions (PDFs) of selected aerosol properties (rows) derived from their global 

lower-tropospheric distributions in the raw (unscaled) data (left column) and after applying the 

standardization (right column). Adapted from Fig. 7 in L22. 

With regard to the distribution of aerosol properties, it is stated in the manuscript (line 529) 

that “The classification algorithm is based on assessing large-scale distribution patterns of 

aerosol properties and previous studies showed that these patterns are usually well captured 

by global models (Koch et al., 2009; Mann et al., 2014; Aquila et al., 2011; Koffi et al., 2015; 

Kaiser et al., 2019; Beer et al., 2020).”. 

Line 504: If referring to the dataset used in this study, then “huge and complex” seems a bit 

of an overstatement… 

Response: We agree with this comment and deleted ‘huge’ from the manuscript. However, 

this method can also be applied to even larger and more complex datasets. 

Line 506: given the list of co-authors I can see why aircraft engines are selected as an 

example, however, I struggle a bit with this example since the authors point. Given the coarse 

nature (in space and time) of the classification approach, how would the data be used in 

engine life cycle modeling? And how would this better come from this study than all the other 

studies focusing on aerosol composition, with a full 3D spatial distribution? 

Response: This example was inspired by a recent collaboration with an aviation industry 

partner, where we provided a dataset based on the condensed analyses of aerosol regimes, as 

an alternative to the full output from the global model simulations. The clustered dataset has 

proven useful to the aviation industry partner for pre-classification of engine damage potential 

in specific regions and engine lifecycle modelling. 

Standardized input Raw input 
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 Response to Reviewer #2 

********************************************* 

In this study, the authors improve and apply an aerosol regime analysis published previously 

(Li et al. 2022, L22) to past and future simulations of aerosols in the ECHAM-MESSY climate 

model. They find that cleaner regimes dominated in 1750 and 1850 and may dominate again 

in the future depending on the emission scenario. 

Response: We appreciate the supportive comments and constructive suggestions from the 

reviewer. Please find our replies to the issues raised below.  

The paper is well written, and figures illustrate the discussion well. However, the study 

suffers from only quantifying the emission-driven changes in aerosol regimes, not looking at 

climate-driven changes. This limitation has two consequences that severely reduces the 

insights gained by the study: 

• First, there is little point in performing a regime analysis, or even in running a climate 

model. All the information is already in the emissions. This is particularly obvious in 

section 3.2, which reaches the same conclusions as the preceding sections but based 

on emissions only. 

• Second, focusing on emissions leads to the probably very misleading conclusion that 

some future scenarios lead back to preindustrial conditions. That is unlikely: oceans 

will have warmed, soils and forests will have changed, bare soils will have expanded 

or shrunk, droughts and other weather extremes will be more frequent. All those 

changes will affect emissions from land- and ocean-based biogenic aerosols, biomass-

burning aerosols, mineral dust, thus affecting the aerosol regimes, as noted in L22 

and lines 136. 

Response (Major comment #1): Thank you for this comment. Regarding the first point, we 

do not agree with the statement that the regime analysis could have been done by only using 

the emission data. Aerosol-chemistry model simulations provide much more insight into the 

details of the global aerosol population than analyses of emissions of aerosol precursor gases 

and primary aerosol species alone. Our aerosol simulations include representations of the 

aerosol number concentration, size distribution and composition resolving several different 

aerosol modes, based on detailed three-dimensional calculations of the chemistry of aerosol 

precursor gases, aerosol microphysics and long-range transport (as explained in the 

Methodology Section 2.1). Despite being driven by emissions of primary aerosols and aerosol 

precursors, the resulting atmospheric aerosol concentrations are strongly influenced by 

atmospheric transport and by chemical and microphysical processes. The emitted precursors 

undergo different processes and transformations in the model to form secondary aerosols. In 

addition, the simulations provide highly-relevant information on the number concentration, 

composition, and size distributions of different aerosol modes, which is not provided by 

emission data, but is essential for evaluating aerosol effects on climate and air quality.  Our 

clustering method is based on multiple simulated aerosol properties rather than just the 

emission of primary aerosols and aerosol precursor gases. For the above reasons, this cannot 

be achieved by analyzing emission data alone. Hence, this work goes beyond the simple 

analysis of emissions. The motivation of the emission analyses performed in the manuscript is 

to explain which emission sectors most likely contribute to the changes in aerosols for the 

given example regions, but cannot be a replacement of the detailed global model experiments. 
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For the second point, we thank the referee for bringing this up and agree that this has not been 

sufficiently discussed in the original manuscript. We have included a detailed discussion on 

the possible impact of the missing influences of climate change on our results, and motivated 

the validity of our results under this assumption. Please refer to our reply to the major 

comment #5 of Reviewer 1, who raised a similar concern. We have also modified the Abstract 

and Summary and Outlook section to include this aspect in this study (see our reply to major 

comment #1 of Reviewer 1).  

Still, there are insights to be gained from an emission-only focus, which is why I recommend 

major revisions. A possible way to address the criticisms above could be to: 

• Connect changes in emissions in a given region to changes in aerosol regimes over a 

wider area. That would involve merging section 3.2 with the rest of the analysis. 

• Clearly acknowledge and flag the key limitation of the study in the abstract and add a 

long discussion to section 4, to elaborate on how climate feedbacks might alter the 

conclusions. There is an increasing body of work on climate-driven aerosol feedbacks. 

Chapters 6 (and perhaps 7) of the IPCC AR6 is a good starting point. 

Response (Major comment #2): We are grateful to the reviewer for these suggestions. 

Regarding the first point on connecting changes in emissions to changes in aerosol regimes 

over a wider area, we discussed this possibility but we think it is not feasible here. Depending 

on the considered time period, a specific aerosol regime appears in different locations and its 

size and extent may vary. Some regimes are missing in certain time periods, e.g., the most 

polluted continental regime in SSP2-4.5 and SSP3-7.0 in 2050 is missing in the pre-industrial 

cases. Moreover, we think that presenting both regime and emission analyses together might 

overload this section and impair the readability. Hence, we prefer to first present the aerosol 

regimes and the emission analysis afterwards in a dedicated section. 

Regarding the second point, we modified the abstract to better highlight the motivation and 

the limitations of our study (see our reply to major comment #1 of Reviewer 1). We also 

added a brief review of the relevant literature on the topic of climate- vs. emission-driven 

changes and included a detailed discussion of the possible impact of climate change on our 

analysis in Sect. 4, also in reply to a similar comment by Reviewer 1: “The question is how 

this assumption could influence the results presented in this study. Previous studies show that 

climate change could affect dimethyl-sulfide (DMS) production (Bopp et al. 2003, Zhao et al. 

2024), mineral dust (Kok et al. 2023), sea salt (Struthers, et al. 2013), PM2.5 and aerosol 

optical depth (IPCC, 2022). These influences of climate change on natural emissions are not 

considered in our study, with the intention to clearly attribute the differences within the time 

slices and scenarios to the underlying emissions. Nevertheless, the influence of climate 

change on aerosols could be important and further studies are needed to investigate the 

relevance of this effect on the patterns of the identified aerosol regimes. However, previous 

studies suggested a stronger influence of emission changes on aerosols than climate change. 

Lacressonnière et al. (2016) investigated PM mass concentrations over Europe in a +2 °C 

warming world and demonstrated that the decrease of PM mass concentrations over Europe is 

mainly associated with emission reductions. Cholakian et al. (2019) investigated climatic 

drivers and their effect on PM10 components in Europe and the Mediterranean Sea and 

demonstrated that anthropogenic emission changes overshadow changes caused by climate for 

both regions. Li H. et al (2022) evaluated the contributions of emission changes and climate 

change to the projection of PM2.5 in 2100 and suggests that under clean emission scenarios 

(SSP1-2.6 and SSP2-4.5), the PM2.5 reduction in 2100 is due to emission reductions, while for 

a high pollution scenario (SSP5-8.5) an approximately equal contribution of emission changes 
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and climate change to PM2.5 mass concentrations for specific world regions (e.g. South 

America, Asia) was identified. These studies support the validity of our conclusions drawn for 

pre-industrial times and under the two clean emission scenarios for 2050. However, our 

results for the regimes in 2050 under SSP3-7.0 may be subject to uncertainties due to 

neglected climate change effects, although here we focus on the year 2050, when the climate 

change effects in scenarios of high pollution are smaller than in 2100 (e.g. Fig SPM.8 in IPCC 

2021 Summary for Policymakers), and the high emission scenario SSP3-7.0 which we address 

in this study is cleaner than SSP5-8.5 investigated by Li H. et al. (2022). In summary, the 

effect of climate change is suggested to be less important than the emission changes for the 

aerosol regimes investigated in our study. The missing climate change effects might still 

result in uncertainties in the size and extent of the regimes, but will likely not change their 

general patterns.  Hence, the major conclusions of this study are unlikely to change when 

climate change is considered.”. 

Another point of concern comes from Section 2.3. I can just about understand why present-

day clusters cannot be used to analyse regimes at other points in time, but there are two 

aspects that I do not understand: 

• First, how does applying a random forest helps? As stated in the introduction, there 

are few pristine regions in the present day, and they are limited to the aerosols that 

happen to be emitted in those regions. Don’t you necessarily end up extrapolating out 

of your training dataset when applying the learning to other times? 

• Second, why did you choose present day as the reference? As stated in the 

introduction, the reference is normally preindustrial, with some variations as to which 

year or period is used in practice. And, linking to the previous point, how much does 

the period used for training matter in terms of regime identification? 

Response (Major comment #3): Thank you for these comments. 

Regarding the first point, we performed the clustering in the described way to be able to 

identify present-day aerosol regimes that show similar conditions as in the pre-industrial case. 

To achieve comparability between clusters from different time slices we apply a combination 

of K-means and Random Forest. Random Forest learns the classification criterion from an 

existing training dataset, i.e. the seven aerosol properties and their regime index under 

present-day conditions, and then applies the learned criterion to other datasets to find 

comparable conditions under pre-industrial and future conditions. As stated by the reviewer, 

this approach could be critical if, for instance, the distribution of pre-industrial regimes was 

fundamentally different than in the present-day case. To address this issue, we analyzed the 

regime distribution by K-means for the single time slice PI-1850 (see Fig. below). Although 

the classified PI-1850 regimes are not directly comparable to our reference training data-set 

REF-2015, the regime distribution is similar and no new features are emerging, which do not 

appear in the present-day case. 
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Regime distribution resulting by the K-means classification for the single time slice PI-1850.  

 

An alternative to the combination of K-means and Random Forest would be to analyze all 

time slices using a combined dataset with K-means. This approach would also lead to 

comparable regimes across the time periods, but the drawback would be that the classification 

results would change whenever a new time period or scenario, that is not included in the 

present study, is considered. 

The reasons for using Random Forest in combination with K-means have been described in 

the original manuscript in the Introduction (line 99) “The clustering method used in L22, 

however, was designed for a single time slice and cannot be used for different time periods, as 

it would lead to incomparable regimes due to the different aerosol conditions in different time 

periods. More specifically, aerosol conditions during preindustrial times do not agree with the 

present-day, due to additional contributions from anthropogenic emissions. For our current 

study, we therefore additionally include the supervised Random Forest machine learning 

algorithm (Ho 1995, Breiman 2001). As a supervised method, the Random Forest algorithm 

can be trained using data for one specific time slice and applied to all other time slices. In this 

way, all time slices are analyzed consistently and the temporal evolution of the aerosol 

regimes can be studied.” and in Sect. 2.3 in the Methodology section (line 208) “The analysis 

and classification approach applied in this study is based on the K-Means algorithm as in L22 

and further extended by the Random Forest algorithm. The latter is required due to the equal 

variance criterion implemented in the K-means algorithm (Hartigan and Wong, 1979), which 

would lead to the identification of incomparable regimes across the different time periods 

when performing K-means classification for each time period independently. Furthermore, 

applying K-means to a combined dataset of all the different time periods would lead to 

comparable regimes across all time periods, but the classification results change whenever a 

new time period or scenario is considered. To overcome these limitations, we developed a 

two-step approach using a combination of K-means and Random Forest, which is outlined 

schematically in Fig. 1.”.  
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For better clarity, we have added the following text to the respective paragraph in the 

Introduction: (line 102) “K-means performs the classification based on individual data 

variances using an equal variance criterion for classification. Assuming the same number of 

regimes (K=9) to be generated for present-day and preindustrial times, the variances of the 

preindustrial regimes and their characteristics would be different from the present-day case 

due to the different values in the aerosol datasets. This would lead to an incomparability of 

regimes for different time slices.”. A further explanation has been added to Sect. 2.3: (line 

210) “… which would divide the datasets based on their individual variances and would 

therefore lead to …”. 

Regarding the second point, we note that in contrast to a radiative forcing assessment, where 

the change in radiative forcing is usually calculated between pre-industrial and present-day, 

our study compares different aerosol conditions and any time slice can be used as a reference. 

Since our simulations are nudged towards present-day climate, the simulation of present-day 

is more accurate than simulations of other time slices, which justifies the choice. Using the 

preindustrial case as reference might also cause problems, since some present-day conditions 

do not occur in the pre-industrial case, e.g. the most polluted regimes are missing in pre-

industrial times. Moreover, it is unclear which year to use as a preindustrial reference (1750 or 

1850).  

To clarify this, the following statement has been added to the Methodology section where the 

present-day (reference) analysis is explained (line 227): “Present-day conditions are selected 

as our reference for the following reasons. First, our simulations are constrained by present-

day climate, so the simulation for the present-day case are likely more accurate than 

simulations of other time slices. Second, present-day emissions are more reliable than those 

for past and future conditions. Third, the pre-industrial cases are not fully representative of 

present-day aerosol conditions, thus using the preindustrial case as a reference, the regime 

classification for the present-day and 2050 might be incomplete.”. 

 

Other comments: 

Lines 114-115: Could note that the IPCC AR6 uses 1750 as a preindustrial reference to 

assess radiative forcing, but uses 1850-1900 for other aspects, like surface temperature 

change. 

Response: Thanks for pointing this out. We have added the following statement to Sect. 2.1 

(line 132): “The IPCC Sixth Assessment Report (AR6) uses 1750 as a pre-industrial reference 

to assess radiative forcing, but uses 1850-1900 for other aspects, e.g. surface temperature 

change.” 

Line 126: “proven” is too strong a word since you do not define what “properly” means. 

Model skill depends on the level of detail of the comparison, and on the purpose. 

Response: Agree, we have replaced “proven” with “shown”. 

Line 132: Would be useful to say here that the time slices are 10-year long. That information 

only appears on line 149, which is a bit late. 
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Response: Good point. We have added this sentence in Sect. 2.1 (line 152): “The time slices 

are simulated for a duration of 10-years and the climatological means of the 10-years 

simulation are considered for the respective time slices.” 

Line 149: So learning is done on annual means only? Wouldn’t you get more information 

when using seasonal or monthly means, given the large seasonality of many aerosol types? 

Response: Yes, the learning is done on multi-annual means (climatological means).  

We indeed investigated the inclusion of seasonal data into the classification for our previous 

study (L22), but this turned out to be not working, due to the equal-variance criterion applied 

by the K-means clustering, which also excludes the use of K-means for different time slices 

and necessitates the introduction of Random Forest in this study as explained above. We refer 

to L22 for a detailed explanation on why we did not use seasonal data: “Beyond the analysis 

of multiannual means, we attempted to classify global climatological seasonal data that 

include the variability in the time dimension concerning the four seasons. This attempt 

resulted in complications in the classification across the four seasons, since in many cases the 

seasonal variations are larger than the differences between the specific clusters, which leads to 

large changes in the characteristics of the clusters and their spatial extent from season to 

season. This shows that the K-means method discussed here does not work well for analyzing 

the data variability across time and space simultaneously, as the interpretation of the resulting 

classification would be challenging. To overcome this limitation, we removed the variability 

in the time dimension in this study by considering multi-year averages of the model output, 

thereby setting a focus on classifying the spatial distribution of long-term climatological 

aerosol regimes. Possible inter-annual and seasonal variability of aerosol properties could 

alternatively be discussed on the basis of the climatological regimes analyzing the internal 

temporal changes of aerosol properties within the climatological clusters obtained by K-

means”.     

Line 208: It would be useful to summarise here the regimes according to L22, and especially 

what “level” means in, for example, “dust dominated level 1”. That information is partly 

given is section 3.1, which is late. 

Response: We thank the reviewer for this suggestion. We have added this information in the 

Introduction (line 89), as follows: “The lower tropospheric aerosol regimes, as identified in 

L22, comprise a background regime (occurring in polar regions), two oceanic regimes, with 

the northern oceanic regime being more polluted than the southern one, two dust regimes, 

with one being strongly dust dominated and the other representing a mixture of dust and other 

pollutants, two biomass burning/biogenic regimes, with one comprising fresh aerosol and 

another one including more aged particles, and three continental regimes including weakly, 

moderately, and enhanced polluted conditions.”.   

Lines 315-317: It would be good to remind the reader that the impact of climate change is not 

considered here, because this kind of conclusion would probably change if climate feedbacks 

onto aerosol emissions were included. 

Response: Good point. We have added this at the end of the paragraph (line 356): “It needs to 

be noted that the impact of climate change is not considered here. The possible influence of 

climate change effects on the presented results is discussed in Sect. 4.”. 



17 
 

Line 361: What is the meaning of having two different regimes for the Arctic and 

Antarctic?  It seems to be purely related to magnitude, rather than changes in composition. 

Response: The difference between Arctic and Antarctic can be explained by the lower left 

panel (boxplot) of Fig. 4. The values of simulated mineral dust, black carbon, sulfate-nitrate-

ammonium, particulate organic matter, sea salt and particle number in the accumulation mode 

are higher in the Arctic than in the Antarctic, but the values of particle number in the Aitken 

mode is higher in the Antarctic than in the Arctic. This has been added to the text for more 

clarity (line 406): “A possible explanation for this difference could be the influence of long-

range transport of pollutants to the Arctic and new particle formation being favored under the 

very clean conditions over the Antarctic”. 

Line 490-494: That section needs to be more critical of the emission datasets. This is 

especially true of biomass-burning and biogenic emissions. We do not know what they were in 

preindustrial conditions (see for example Marlon et al. 2016) and the future climate-driven 

changes are unlikely to be properly represented in the CMIP emission datasets. Those 

uncertainties are crucial to some of the conclusions of the paper, for example paragraph 284-

299. 

Response: We thank the reviewer for this important comment and fully agree with this 

argument. We have included the following statement to this paragraph (line 568) “Caution is 

required when using biomass-burning and biogenic emission datasets. A reliable 

representation of biomass-burning and biogenic emissions during pre-industrial times is not 

available (e.g. Marlon et al. 2016), and future climate-driven changes are unlikely to be 

properly represented in the CMIP6 emission inventory used to drive the simulations analysed 

here. This uncertainty might affect our conclusions regarding biomass-burning and biogenic 

regimes in terms of their size and extent during pre-industrial times and in the future.”. 

 Technical comments: 

• Line 161: evaluating -> evaluation 

Response: fixed, thanks for spotting. 
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