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Abstract. This study investigates the capability of a deep learning approach, employing a multi-head attention mechanism 10 

within a deep neural network (DNN) framework, aimed at refining the bias correction and downscaling process for the fifth 11 

generation European Centre for Medium-Range Weather Forecasts reanalysis rainfall datasets to provide local-scale daily 12 

rainfall data across Taiwan, a mountainous subtropical island. Leveraging gridded 5-km daily rainfall observations across 13 

Taiwan, the proposed DNN model, the Encoder-Decoder with multi-head Attention for auxiliary channels (EDA) model, can 14 

adeptly correct biases and downscale rainfall statistics from coarse-resolution reanalysis data by incorporating auxiliary inputs, 15 

such as surface wind information, and invariant data, such as high-resolution topography data. Our evaluation, centred on the 16 

distinct seasonal rainfall characteristics of Taiwan, uses mean rainfall patterns, rainfall statistics, extreme climate indices, and 17 

their interannual variation for the rainy seasons. The findings show the EDA model's ability to correct for overestimated low-18 

intensity rainfall and inaccurately positioned orographic rainfall in reanalysis datasets, achieving better accuracy than 19 

conventional quantile-mapping methods. Further analysis reveals the critical role of auxiliary information of surface winds 20 

used by the EDA to enhance the downscaling accuracy across various performance metrics. This study underscores the 21 

significant potential of DNN architectures for statistical bias correction and downscaling in regions with complex terrains, by 22 

effectively integrating auxiliary data to capture the interplay between synoptic and local circulations influenced by topography. 23 

 24 
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1 Introduction 27 

        The rising frequency and intensity of extreme events, particularly heavy rainfall, underscore the critical need for localized 28 

and applicable climate predictions to mitigate their impacts on society. Global Climate Models (GCMs) and Earth System 29 
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Models (ESMs) are instrumental in forecasting changes of extreme events in future climate scenarios, based on varied 30 

projections of radiative forcing and human influence. However, these models generally operate with a spatial resolution around 31 

100 kilometres, which is insufficient for detailed assessments of climate risks and the development of effective adaptation and 32 

mitigation strategies for local communities. To address the gap, the process of downscaling is often employed for refining 33 

coarse-scale information from GCMs and ESMs into the fine-scale statistics of critical surface variables, such as rainfall and 34 

temperature, thereby making them applicable to localized contexts.        35 

         The field of climate downscaling is currently dominated by two primary methodologies: dynamical and statistical 36 

downscaling (Maraun et al., 2010). Dynamical downscaling leverages high-resolution regional climate models to simulate 37 

local-scale climate variability, proving particularly beneficial in capturing extreme rainfall events when higher resolution 38 

models are employed (Westra et al., 2014). Despite its advantages, the dynamical downscaling method demands significant 39 

computational resources and struggles to encapsulate uncertainties across extensive ensemble simulations. Statistical 40 

downscaling, conversely, constructs empirical relationships between coarse-resolution variables from GCMs and local-scale 41 

surface variables, helping the application of climate projections at a more granular level (Maraun and Widmann, 2018). Among 42 

them, the Model Output Statistics (MOS) method is particularly valued for its straightforward approach, requiring no prior 43 

knowledge for the selection of predictors or regions. It utilizes GCM outputs directly to train statistical models, emulating the 44 

relationship between model outputs and observational data. This method primarily focuses on adjusting the rainfall distribution 45 

to align more closely with observations, thereby correcting systematic errors found in GCMs. However, limitations and 46 

disparities exist across various MOS techniques, each with unique strengths and weaknesses (Soares et al., 2019; Maraun and 47 

Widmann, 2018; Vogel et al., 2023). Thus, the selection of downscaling and bias correction methods needs a comprehensive 48 

understanding of the specific climate phenomena and the capabilities of the parent models (Maraun et al., 2017). 49 

        Recent advancements in deep learning (LeCun et al., 2015), particularly Convolutional Neural Networks (CNNs; Lecun 50 

et al., 1998), have garnered attention in climate science due to their success in finding patterns within data, paralleling tasks in 51 

climate research field (Reichstein et al., 2019). Inspired by super-resolution techniques in computer vision, which enhance 52 

image detail from low-resolution inputs (Dong et al., 2014), applications in climate science have demonstrated the potential of 53 

deep learning models to refine spatial resolution on pure-resolution approaches, which utilizing coarsen version of high-54 

resolution ground truth data to train their model, like the DeepSD model  by Vandal et al., (2017), and other variants for regions 55 

like India (Kumar et al., 2021) and southeastern United States (Wang et al., 2021), as well as the continental United States 56 

(Sha et al., 2020) . However, these studies primarily addressed the upscaling aspect, leaving room for improvement in bias 57 

correction. Addressing the comprehensive challenge of both upsampling and bias correction, the literature reveals a diverse 58 

array of deep neural network (DNN) applications. Notably, the integration of skip connections within the encoder-decoder 59 

architecture, as seen in the YNet model developed by Liu et al. (2020), is a significant advancement. This model shows 60 

enhanced efficiency and flexibility over DeepSD by incorporating orographic data, thus addressing daily rainfall statistics 61 

downscaling from GCMs with 100 km resolution across the Continental United States. The versatility of DNN architectures 62 
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enables the exploration of using various climate variables and their interactions as the input for downscaling tasks, including 63 

the univariate rainfall variables (Liu et al., 2020; Vandal et al., 2017; Wang et al., 2021; Rocha Rodrigues et al., 2018; Saha 64 

and Ravela, 2022), with surface variables (Oyama et al., 2023; Sun and Tang, 2020), with covariance between rainfall and 65 

free-tropospheric variables (Wang et al., 2023), and multiple atmospheric fields (Harris et al., 2022; Price and Rasp, 2022; 66 

Baño-Medina et al., 2021, 2020; Adewoyin et al., 2021; Sun and Lan, 2021). This broad spectrum of research underscores the 67 

profound potential and flexibility of DNNs in tackling the intricate problems of climate downscaling, offering paths forward 68 

in both resolution enhancement and bias correction. 69 

        This study would like to take the advantage of DNNs to enhance the downscaling and bias correction process, particularly 70 

addressing the challenge of orographic rainfall bias. This bias, a common issue in regions with complex terrain, results from 71 

the misplacement of rainfall in GCMs due to insufficient grid resolution to accurately model local circulations affected by 72 

orographic lifting and the biases arising from the physical parameterization of rainfall processes (Maraun and Widmann, 2015; 73 

Cannon et al., 2015). Taiwan's topography is marked by a series of major mountains reaching elevations of up to 4,000 meters, 74 

stretching in a north-south direction across a compact longitudinal span of 200 kilometres. This unique geographical setting 75 

makes the island an ideal site for our research (Fig. 1). The intricate landscape results in pronounced geographical variations, 76 

shaped by the interplay between East Asian monsoonal flows and the island's topography. Through extensive observational 77 

studies, the rainfall seasons in Taiwan have been categorized, taking into account the dominant rainfall systems within the 78 

monsoon. Especially in summer, the Meiyu frontal system and typhoons greatly shape the seasonal rainfall and the patterns of 79 

extreme rainfall in Taiwan. Such detailed understanding provides a comprehensive framework for exploring the effectiveness 80 

of downscaling methods under different rainfall regimes (Chen and Chen, 2003; Henny et al., 2021). 81 

         Drawing inspiration from the YNet model and its incorporation of attention mechanisms to predict daily rainfall patterns 82 

over Taiwan, Chiang et al. (2024) demonstrated the advantages of including bias correction and downscaling components 83 

within their DNN model, noting improved performance in terms of prediction skills, RMSE, and correlation. However, their 84 

approach to dataset partitioning through random choice was identified as suboptimal for climate downscaling applications, 85 

which are typically oriented towards future projections. Additionally, their model showed a tendency to prioritize the prediction 86 

of weak rainfall events over more extreme rainfall events, likely a consequence of employing mean square error (MSE) as the 87 

loss function. Building on the insights of their work, our study introduces an advanced DNN model, the Encoder-Decoder with 88 

multi-head Attention layers for auxiliary channels (EDA), designed to enhance feature extraction capabilities through the 89 

inclusion of multiple auxiliary channels. We also propose a revision to the loss function, adopting weighted MSE to better 90 

capture the nuances of extreme rainfall events. Furthermore, we have refined the training and validation procedures by opting 91 

for partitioning based on consecutive years, ensuring a more suitable approach for the specific needs of climate downscaling 92 

applications. This methodological enhancement aims to more accurately model and predict the intricate patterns of rainfall in 93 

Taiwan, addressing both the challenges of orographic rainfall bias and the broader demands of climate downscaling. 94 
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        To address our research goal, we have designed a training and evaluation framework that aligns with the principles of 95 

univariate downscaling of rainfall within the MOS framework, incorporating surface winds and topography as auxiliary 96 

datasets. We employ the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis 97 

(ERA5; Hersbach et al., 2020) dataset, with a spatial resolution of 0.25°, as the input data, and use local-scale gridded 98 

observations in Taiwan with a 5km resolution as the ground truth. This approach primarily targets model biases—specifically 99 

those arising from the coarser resolution of model grids and the rainfall parameterization—rather than biases associated with 100 

the large-scale environmental representations in GCMs. Our methodology is tailored for future climate downscaling rather 101 

than nowcasting, with a specific focus on daily temporal resolution to enhance the relevance of this approach for climate-102 

related applications. 103 

        The upcoming sections of this paper are structured as follows: Session 2 will outline the methodology employed in this 104 

study, detailing the data sources for training and evaluation, along with the architecture of the proposed DNN model. Session 105 

3 will present a comparative analysis of the BCSD and EDA models, focusing on their ability to simulate mean rainfall patterns, 106 

extreme rainfall indices, rainfall statistics of selected observational stations, and interannual variation of extreme indices across 107 

five distinct seasonal rainfall regimes. Session 4 will give a summary of our results and delve into the broader implications for 108 

future research and practical applications in the field of climate downscaling. 109 

2 Methodology 110 

2.1 Data 111 

        In this research, our downscaling model utilizes daily rainfall data from two key sources: the fifth-generation European 112 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset (ERA5; Hersbach et al., 2020), which offers 113 

coarse-resolution input with 25 km grids, and the high-resolution observed gridded daily rainfall data for Taiwan. The latter is 114 

provided by the Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP; Lin et al., 115 

2022), featuring 5 km grids. This setup allows us to test the model's efficacy by using ERA5's broader-scale data as input to 116 

predict more localized rainfall patterns, with the TCCIP data serving as a high-resolution ground truth for validation. 117 

        The ERA5 dataset, developed by the ECMWF, merges cutting-edge global weather modelling with an extensive array of 118 

observational data through sophisticated data assimilation techniques. Although its underlying modelling resolution stands at 119 

9 km, ERA5 provides atmospheric variables, including rainfall, at a coarser 25 km horizontal resolution. This dataset is noted 120 

for its overall reliability in rainfall monitoring against observational networks. However, its broader resolution and the inherent 121 

biases from its parameterization approach can introduce discrepancies, particularly in areas where the interplay between 122 

synoptic weather patterns and topography is pronounced (Rivoire et al., 2021). To capture these complex interactions, our 123 

model, EDA, incorporates ERA5-derived daily aggregated rainfall and 10-meter height wind data as inputs. This daily 124 
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aggregation is meticulously compiled from ERA5's hourly rainfall data, ensuring a detailed representation of daily rainfall 125 

patterns for our analysis. 126 

        The ground truth TCCIP dataset is constructed from observations collected by a comprehensive network of 2,203 stations 127 

across Taiwan. These stations, operated by various Taiwanese agencies such as the Central Weather Administration, Civil 128 

Aeronautics Administration, and others, contribute to a rich dataset that has facilitated extensive climate studies, including 129 

extreme rainfall trend analysis (Tung et al., 2022; Henny et al., 2023, 2021). Objective analysis, employing Gaussian latent 130 

variables, is applied to transform station-based measurements into the gridded format (Weng and Yang, 2018). Our study uses 131 

data spanning from 1960 to 2020. The resolution of 5 km in TCCIP dataset is well-suited for county-scale climate impact 132 

assessments in Taiwan. 133 

        Our study zeroes in on the geographical area of Taiwan (22°N-25°N, 120°E-122°E) as delineated in the ERA5 dataset, 134 

with a specific focus on the island's land regions for the purpose of training and validating our models against the TCCIP 135 

dataset. To enhance our analysis, we integrated a topographical dataset for the Taiwan region, provided by the GIS centre at 136 

Academia Sinica, Taiwan. This dataset uses the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer 137 

(ASTER) Global Digital Elevation Model (GDEM), a collaborative product from Japan’s Ministry of Economy, Trade, and 138 

Industry and NASA (NASA/METI/Japan Space systems and US/Japan ASTER Science Team, 2019). Originally detailed at a 139 

20-meter resolution, this topography data was regridded to a 5-km resolution to better match the TCCIP rainfall data's 140 

resolution, facilitating a more aligned analysis. 141 

2.2 Training and Validating Procedure 142 

        Statistical downscaling fundamentally aims to establish relationships between the expected value of local-scale 143 

predictands Y, based on large-scale predictors X, as outlined by X (Maraun et al., 2010). This relationship can be expressed 144 

as follows. 145 

𝐸(𝑌|𝑋) = 𝑓(𝑋,𝛳) 146 

where 𝛳 represents adjustable parameters within the downscaling framework. In our study, Y denotes the TCCIP rainfall data 147 

of 5 km, and X refers to the ERA5 rainfall data of 25 km. 148 

        For the training, validation, and testing phases, we segmented the data into three distinct periods. The training dataset 149 

spans from 1960 to 2014, the validation dataset covers the years 2015 to 2017, and the test dataset encompasses the period 150 

from 2018 to 2020. With a total of 22,281 daily precipitation records, the data is divided such that 80% is allocated for training, 151 

10% for validation, and the remaining 10% for testing. This separation into distinct sets for testing and validation enables us 152 

to more accurately assess the model's predictive uncertainties across varying data regimes. Our choice of temporal division is 153 

designed to mimic typical practices in climate science, aiming for forecasts of future climate changes in a sequential manner 154 

rather than employing the random splitting commonly used in data science fields. 155 
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        The training protocol for our model includes a series of preprocessing steps designed to optimize the input data for 156 

effective learning. These steps encompass a log1p transformation to adjust for the skewness in the distribution of the data 157 

values, particularly beneficial for precipitation data. Moreover, we normalize various data variables to ensure consistency 158 

across the dataset: precipitation, temperature, and humidity data are normalized to a [0,1] range, whereas wind vector data at 159 

10 meters height is normalized to a [-1, 1] range. This normalization strategy facilitates the model's learning process by 160 

enhancing convergence rates, promoting generalization capabilities, optimizing performance, and reducing the model's 161 

sensitivity to initial parameter settings. These improvements collectively contribute to an increase in the model's computational 162 

efficiency and predictive accuracy. 163 

2.3 Model Structure: Encoder-Decoder with multi-head Attention layers for auxiliary channels (EDA) 164 

          The proposed model here, termed the Encoder-Decoder with multi-head Attention (EDA), evolves from the framework 165 

established by Chiang et al. (2024), comprising two main components: an encoder and an encoder. The innovation in our 166 

model primarily lies within the encoder, where we have replaced traditional convolutional layers with multi-head attention 167 

layers and fully connected layers derived from the Transformer architecture (Vaswani et al., 2017). Unlike conventional neural 168 

networks that rely on recurrent or convolutional layers, the Transformer architecture is built entirely around attention 169 

mechanisms, facilitating direct modelling of dependencies regardless of their distance in the input data. This capability is 170 

pivotal for our model, allowing it to simultaneously process the entire dataset and enabling each grid point to evaluate its 171 

relationship with all others. This approach not only captures the intricate interdependencies characteristic of climate variables 172 

but also introduces flexibility in handling input data of varying sizes. By projecting inputs into a feature space where the 173 

attention mechanism operates, the model accommodates a broader range of auxiliary data from the climate system, enhancing 174 

its adaptability and applicability. 175 

        Figure 3 depicts the architecture of the EDA, showcasing the neural network's hidden layers. The encoder plays a crucial 176 

role in extracting representative features and patterns from climate variables, as well as understanding the spatial relationships 177 

among grid points. This is accomplished by initially transforming the input data—comprising flattened, multi-variable climate 178 

information—into high-dimensional vector representations. Subsequently, the encoder utilizes a multi-head attention 179 

mechanism to uncover latent patterns within these vectors, where the diversity of patterns detected is directly proportional to 180 

the number of attention heads employed. Through this mechanism, the model effectively identifies and emphasizes areas of 181 

significant correlation or importance across the grid, enabling each attention head to capture unique facets of the data's structure 182 

at lower resolution. 183 

        In the design of the decoder component of our model, we have maintained a CNN structure. Decoder part is designed 184 

flexibly that one could implement the desired sub-model for combining the intermediate outputs from the encoder with the 185 

topography data and performing a one-step upscaling. As for the downscaling process, the intermediate outputs from the 186 

encoder are transitioned to the decoder, which are initially reshaped into two-dimensional gridded data before being processed 187 
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by the decoder. This step ensures the model to rearrange and to reform the spatial relationships between data points and 188 

prepares for concatenating with topography data also for achieving higher resolution. In our case, we have adopted Image 189 

Super-Resolution Using Deep Convolutional Networks (Dong et al., 2014) and Enhanced Super-Resolution CNN (Shi et al., 190 

2016) to capture the non-linear mapping to high-resolution rainfall. 191 

        For our downscaling task, it is achieved through a one-step upscaling layer using pixel shuffling, an interpolation 192 

technique from Enhanced Super-Resolution CNN (Shi et al., 2016), which, when combined with geographical data, enables 193 

the model to learn the complex interactions between precipitation and elevation, such as orographic rainfall effects. Together, 194 

these elements enable the decoder to meticulously process and enhance the data, ensuring the generation of detailed and 195 

accurate high-resolution climate predictions. This approach significantly contributes to the local interactions between 196 

topography and feature maps, aiding in the precise downscaling of climate data. 197 

          Implementation is carried out within the TensorFlow framework, leveraging its robust capabilities for efficient model 198 

training and optimization. The training batch size is set to 64, and the training duration is capped at a maximum of 1,000 199 

epochs, incorporating an early stopping mechanism activated if there is no improvement in the loss function for 60 consecutive 200 

epochs. Our model employs a weighted mean square error (WMSE) as the loss function as follows: 201 

𝑊𝑀𝑆𝐸 =
1

𝐻𝑊
∑ ∑ [𝛾𝑌𝑖�̂�(𝑌𝑖�̂� − 𝑌𝑖𝑗)

2
+ (1 − 𝛾)(𝑌𝑖�̂� − 𝑌𝑖𝑗)

2
]𝑊

𝑗=1
𝐻
𝑖=1 , 𝛾 ∈ [0,1], 202 

where H and W are the height and width, 𝑌𝑖𝑗  is the prediction and 𝑌𝑖�̂� is the corresponding ground truth. This approach allows 203 

for the imposition of greater penalties on errors in regions characterized by high rainfall, addressing the critical need for 204 

accuracy in predicting extreme weather events. The training regime is executed in a supervised manner, with an initial focus 205 

on training the encoder using low-resolution observational data. Subsequent to this phase, the encoder is frozen, and the 206 

encoder is trained on high-resolution data, a strategy designed to fine-tune the model's ability to perform accurate downscaling 207 

and bias correction. 208 

        Optimization is achieved through the use of the Adam Optimizer, set with a learning rate of 10
−4

, to adjust model 209 

parameters effectively during the training process. Training is performed on an NVIDIA®  Tesla V100 GPU, a choice that 210 

significantly enhances computational efficiency, allowing the entire training process to be completed in just over 10 hours. 211 

This setup ensures that the model is both accurately and efficiently trained to meet the demands of precise climate data 212 

downscaling. 213 

 214 

2.4 Baseline Downscaling Methods: Bias Correction Spatial Disaggregation method (BCSD) 215 

        For benchmarking within the univariate downscaling framework in our study, we have adopted the Bias Correction Spatial 216 

Disaggregation (BCSD) method as our comparative baseline. Developed by Wood et al. (2002), BCSD merges spatial and 217 

temporal disaggregation for downscaling with a quantile mapping (QM)-based technique for bias correction, designed to align 218 

the modelled data distribution with the observed distribution over corresponding periods effectively. This method is notable 219 
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for its capability to maintain the mean percentile of data distribution efficiently, its computational effectiveness, and its 220 

independence from requiring prior specific information, making it widely used in regional studies (Bürger et al., 2013; Cannon 221 

et al., 2015; Maraun et al., 2010), including that focused on Taiwan by TCCIP (Lin et al., 2023).  However, BCSD, as a 222 

representative QM downscaling method, shares common challenges associated with QM-type methods, including potential 223 

shifts on the tails of the distribution, the incapability to correct misrepresenting location bias in coarse-resolution datasets 224 

(Maraun and Widmann, 2018; Maraun et al., 2017; Maraun and Widmann, 2015), as well as the challenge in preserving long-225 

term climate trends within the data (Cannon et al., 2015).  226 

         In our current implementation of BCSD, we have omitted the original design of the temporal disaggregation step for 227 

converting monthly-resolved data into a daily time scale and adopt a step with daily rainfall data in line with the methodologies 228 

of recent studies (Thrasher et al., 2012; Vandal et al., 2019). For other details, we adhere closely to the methodological 229 

framework for statistical downscaling in Taiwan with CMIP6 models, as outlined by Lin et al. (2023), including the 3 steps 230 

below: 231 

1. First, the ERA5 rainfall data is bilinearly interpolated onto the TCCIP data grid, transitioning from 25km to 5km 232 

grids to align with the TCCIP dataset's fine-scale resolution.  233 

2. Subsequently, employing a 31-day time window centred around the target day for each grid point, we construct the 234 

cumulative distribution function (CDF) in a manner that effectively captures the climatological distribution, using 235 

61 years of TCCIP gridded rainfall data. A bin width of 15%, determined through empirical testing, is applied in 236 

constructing the CDF for each grid point.  237 

3. The final step is to adjust the interpolated coarse-resolution rainfall data to the observational rainfall's corresponding 238 

CDF quantiles using the QM method.  239 

2.5 Evaluation Metrics 240 

        Here, we have listed model metrics that we used in understanding the performance of downscaling methods. We first 241 

examine the season mean over the 5 raining seasons in Taiwan and evaluate the performance of spatial pattern based on 242 

Pearson’s correlation (CORR) and root mean square error (RMSE) of spatial pattern over Taiwan. 243 

        To quantify the performance of rainfall extremes of downscaling methods, we have also used the extreme indices 244 

developed by the joint Expert Team on Climate Change Detection and Indices (ETCCDI) of the WMO Commission for 245 

Climatology and World Climate Research Programme Climate Variability and Predictability project (Karl et al., 1999; Frich 246 

et al., 2002; Zhang et al., 2011), which are widely used in many studies about extreme events, including in several IPCC reports 247 

(Sillmann et al., 2013). For the following definition of extreme indices, we have let RRij as the daily rainfall amount on day i 248 

in period j. Then the extreme indices defined as follows: 249 

● RX1day (Monthly maximum 1-day precipitation): RX1dayj = max (RRij) for a period j. 250 
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● CDD (Maximum length of consecutive days with RR<1mm): The largest number of consecutive days when RRij <  1 251 

mm      of each day i in period j.  252 

● SDII (Simple precipitation intensity index): Given wet days defined as days with RR > 1 mm in period j and W as 253 

the number of wet days in period j, the SDIIj is defined as 𝑆𝐷𝐼𝐼𝑗 = ∑ 𝑅𝑅𝑤𝑗/𝑊
𝑤=𝑊
𝑤=1 . 254 

● RX10mm (annual count of days when RRij ≥ 10 mm): The number of rainy days when daily RRij > 10 mm in period 255 

j. 256 

A complete set of climate indices used in the observations are listed in Appendix. 257 

3 Results 258 

3.1 Seasonal Rainfall Mean for 5 Seasons in Taiwan 259 

        Figure 1a illustrates the topographical contours of Taiwan, utilizing the ASTER GDEM dataset to delineate the elevation. 260 

We especially emphasize two predominant mountain ranges, Xue Mountain (XM) and Central Mountain (CM), on the figure. 261 

These ranges, oriented from the south to the north, exhibit elevations exceeding 2000 meters, can strongly interact with 262 

synoptic systems to have critical impact on rainfall patterns across the island. 263 

        Figure 1b delineates the annual rainfall cycle of Taiwan using daily data from the TCCIP, highlighting the distinct 264 

seasonal variations in rainfall across climatology, test, and validation periods. Taiwan's rainfall distribution exhibits five clear 265 

seasons: spring, the first and second rainy seasons, autumn, and winter, each closely associated with the East Asian (EA) 266 

monsoon system. Season-specific rainfall patterns, as identified in prior climatological studies and summarized in Table 1, 267 

mark each of these periods (Chou et al. 2009). Climatologically, rainfall intensifies in March with the onset of spring, escalating 268 

to an average of 15 mm/day across the island during the first and second rainy seasons of summer (illustrated by the black line 269 

in Fig.1b). However, notable fluctuations are observed during these rainy seasons, with daily extreme rainfall exceeding 30 270 

mm/day during the passage of the Meiyu front in the first rainy season, and reaching up to 50 mm/day during typhoon or low-271 

pressure system activities in the second rainy season (depicted by red and purple lines in Fig.1b). This pronounced variability 272 

underscores the dynamic nature of Taiwan's rainfall patterns across its distinct seasons. 273 

        Figure 1c presents the spatial distribution of mean rainfall across Taiwan's five distinct rainy seasons in climatology.        274 

In spring, as the subtropical high over the northwest Pacific shifts north-westward, cold frontal systems introduce rainfall to 275 

northwestern Taiwan, particularly affecting the southern slopes of Xue Mountain (Fig.1b). Summer in Taiwan is characterized 276 

by two distinct peak rainfall periods, known as the first and second rainy seasons, driven by monsoonal south-westerly flows 277 

that carry moisture from the tropics. The first rainy season sees significant rainfall, with daily averages up to 30 mm, especially 278 

on the southwestern slopes of the Central Mountain (Fig. 1c). Additionally, a prominent rainfall hotspot forms in the central 279 

western part of Taiwan, a continuation of the spring rainfall pattern, largely due to Meiyu frontal systems. These systems, 280 

extended east-west bands of rain, are noted for their mesoscale convective activity. The second rainy season is defined by 281 
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typhoon-driven rainfall, enhancing the moisture brought by the south-westerly flow. Typhoons, emerging from the tropical 282 

Pacific and advancing from the east, deliver substantial rainfall to the eastern slopes of the central mountain (Fig. 1d). As 283 

autumn arrives, the monsoon circulation alters, with prevailing winds becoming northeasterly and increasing rainfall on eastern 284 

Taiwan's windward slopes (Fig. 1e). During winter, the focus of rainfall shifts to northeastern Taiwan, marking a seasonal 285 

transition in precipitation patterns (Fig. 1f).         286 

        Figure 3 compares the seasonal mean rainfall across the five seasons between ERA5 reanalysis, BCSD, and our EDA 287 

model. The ERA5 reanalysis demonstrates a notable displacement in the spring, inaccurately positioning the maximum rainfall 288 

over eastern Taiwan (Fig.3a). Both BCSD and EDA model successfully correct this bias, realigning the maximum rainfall to 289 

northwestern Taiwan where local orography enhances upslope rainfall, with a bias residual of less than 2 mm/day (Fig.3b, 3c). 290 

The 1st wet season poses challenges for ERA5, which overestimates rainfall on the eastern side and near the western coast of 291 

Taiwan (Fig.3a). In contrast, observed TCCIP rainfall predominantly occurs over the southwestern foothills of the Central 292 

Mountain (Fig.1). Both BCSD and EDA model adjust this bias, redirecting rainfall to the southwestern part of Taiwan, 293 

particularly over the southwestern foothills of the Central Mountain. The EDA model, however, shows a superior performance, 294 

capturing the rainfall magnitude of 15 mm/day along the mountain and peaking at 20 mm/day at the southern tip of Taiwan. 295 

In the second wet season in summer, while ERA5 accurately locates the southwestern rainfall maximum, it overestimates 296 

rainfall in northern Taiwan (Fig. 3a). Both BCSD and EDA model implement crucial adjustments, effectively delineating the 297 

contrast between the drier northern Taiwan and the wetter southwestern Taiwan (Fig.3b, 3c). During the autumn and winter 298 

seasons, ERA5 predicts excessive rainfall on the eastern side of the Central Mountain (Fig.3a), in contrast to observed rainfall 299 

hotspots that are predominantly located on the windward side of the Central Mountain. (Fig.1) BCSD and EDA demonstrate 300 

comparable skill in amending this bias in these seasons (Fig.3b, 3c), attributed to ERA5's enhanced ability to depict the rainfall 301 

pattern during winter, which aligns more closely with the moisture inflow associated with the northeasterly monsoonal flow, 302 

typically resulting in a more uniform rainfall distribution. 303 

3.2 ETCCDI Extreme Indices 304 

        We analysed climate extreme indices as recommended by the Expert Team on Climate Change Detection and Indices 305 

(ETCCDI) using rainfall data from TCCIP, BCSD, and our EDA model. This analysis includes the maximum 1-day rainfall 306 

(RX1day; Fig.4), the number of days with intense rainfall exceeding 10 mm (RX10mm; Fig.5), and the longest stretch of 307 

consecutive dry days (CDD; Fig.6). Additional results for other ETCCDI indices are presented in the Appendix. In the 308 

meantime, the CORR and RMSE of each model and TCCIP observations are summarized in Table 4 for the ETCCDI indices. 309 

        Figure 4 illustrates the climatological distribution of maximum 1-day rainfall (RX1day) across five rainy seasons within 310 

the test period. During spring, the maximum of RX1day is predominantly observed over the northwest and on the southern 311 

edge of Xue Mountain (approximately 24˚N-24.5˚N), with RX1day values reaching up to 60 mm/day. In the summer's wet 312 

seasons, RX1day values exceed 100 mm/day, with peaks up to 300 mm/day observed on the southwest slope of the Central 313 
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Mountain. The magnitude of RX1day over the Xue Mountain diminishes gradually, with rainfall shifting towards the eastern 314 

slope of the Central Mountain, where it is influenced by typhoon-related rainfall from the tropical Pacific (Fig.4a). Both BCSD 315 

and EDA models exhibit comparable performances in spring, fall, and winter—seasons characterized by less extreme rainfall 316 

events. During the two wet seasons in summer, notably, both models tend to underestimate the extreme rainfall over the 317 

southwest slope of the Central Mountain, with discrepancies of up to 50 mm/day in summer seasons (Figs. 4b, 4c). Nonetheless, 318 

the EDA model displays a more random-like distribution of RX1day across southwest Taiwan, compared with the dry bias 319 

over the southwestern Taiwan indicating a wider dry bias. Furthermore, EDA demonstrates a better capability to capture the 320 

rainfall over the eastern side of Taiwan in 1st wet season and northern Taiwan in Fall, compared to BCSD, suggesting a more 321 

accurate representation of rainfall extremes during the typhoon seasons (Figs. 4b, 4c). 322 

        Figure 5 displays the spatial distribution of days experiencing rainfall exceeding 10 mm (RX10mm) as recorded by TCCIP 323 

and contrasts the predictive discrepancies between BCSD and EDA during the test period. RX10mm is a critical measure for 324 

identifying days characterized by significant rainfall. Consistent with the overall mean rainfall distribution, the bulk of rainy 325 

days is concentrated during the first and second summer seasons, notably on the western slopes of the Central Mountain. 326 

Rainfall in the northeastern and eastern parts of Taiwan begins in fall and continues through winter (Fig.5a). Throughout the 327 

five seasons, BCSD tends to slightly underestimate the frequency of rainy days, a tendency mirrored by the EDA model. 328 

Notably, during the first wet season, BCSD shows a marked underestimation, missing rainy days by up to 10 days across the 329 

central mountains, particularly near the southern tip of Xue Mountain. This discrepancy arises as the ERA5 reanalysis 330 

inaccurately captures rainfall locations during the first wet season, challenging BCSD's ability to identify significant rainfall 331 

events despite its effectiveness in adjusting mean rainfall levels (Fig.5b). A similar pattern of underestimation by BCSD is 332 

observed for RX10mm hotspots in the northeastern part of Taiwan during fall and winter. However, the EDA model manages 333 

to mitigate BCSD's dry bias to a considerable extent, though it still portrays a drier Yilan region compared to observations 334 

(Fig. 1a). 335 

        Figure 6 delineates the spatial distribution of consecutive dry days (CDD) throughout the five rainy seasons. According 336 

to observations, CDD typically averages about 10 days during the rainy seasons of spring and summer, with a peak in fall 337 

across western Taiwan. This trend continues into winter when CDD can extend up to 20 days in southern Taiwan (Fig.6a). The 338 

bias exhibited by BCSD varies across different seasons (Fig.6b). In spring, BCSD appears to overpredict rainfall in southern 339 

Taiwan, which results in an underprediction of CDD. During the summer's wet seasons, BCSD consistently overestimates 340 

CDD throughout Taiwan. In fall, BCSD's predictions overestimate CDD in northeastern Taiwan and similarly overestimate 341 

CDD in western Taiwan. Winter, generally a dry season for western Taiwan, sees BCSD overestimating CDD in west-central 342 

Taiwan while underestimating it in the southwest. By contrast, the EDA model demonstrates a markedly lower bias in spring, 343 

summer, and winter, more closely aligning with the observed CDD patterns. However, it tends to underestimate CDD during 344 

fall, indicating a nuanced yet imperfect prediction capability for dry periods throughout the seasons. Comparisons using CORR 345 

(correlation coefficient) and RMSE (root mean square error) metrics further underscore the EDA model's superior performance 346 
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across all seasons, with the notable exception of the second wet season during summer (Table 4). The challenge in accurately 347 

modelling this season may stem from the substantial contribution of typhoon-related rainfall, which, due to its somewhat 348 

stochastic nature compared with other seasons, complicates the precise prediction of rainfall distribution. 349 

 350 

3.3 Rainfall Statistics of CWA Stations 351 

        The Central Weather Administration (CWA) of Taiwan operates an extensive network of observation stations across the 352 

island, situated in densely populated areas and critical topographical points. Our analysis focused on rainfall data from the 353 

three selected CWA stations, Tainan, Taichung, and Alishan, showcasing the climatological rainfall statistics during the two 354 

summer rainy seasons (Fig.7). Tainan and Taichung, located in southern and central Taiwan respectively, represent two urban 355 

cities on the plains, whereas Alishan is positioned on mountain slopes at an elevation of 1500 meters, providing insights into 356 

the impact of elevation on rainfall patterns. During the first wet season of summer, our analysis highlights a consistent issue 357 

with the ERA5 reanalysis: the overprediction of low-intensity rainfall events (less than 5 mm/day) across all stations (Fig.7a, 358 

7b). This pattern illustrates the constraints of coarse-resolution models like ERA5, which tend to miss capturing extreme 359 

rainfall events and favour the forecasting of more frequent, yet milder, rainfall. In contrast, the EDA model shows considerable 360 

improvement in mitigating this bias for overly frequent, weak rainfall (under 5 mm/day). Additionally, the EDA model more 361 

accurately adjusts for heavy rainfall events (over 50 mm/day), especially at the Alishan station, a location significantly 362 

influenced by orographic rainfall. Here, the EDA model's performance is notably superior compared to the other stations. 363 

        For the second wet season, rainfall distribution among the urban stations, Tainan and Taichung, becomes more consistent, 364 

yet the EDA model maintains its precision in correcting both low (< 5 mm/day) and high (> 50 mm/day) rainfall categories 365 

(Fig.7a, 7b). Like in the first wet season, the EDA model's corrections are particularly effective at the Alishan station, 366 

successfully addressing the wet bias noted in the ERA5 reanalysis. On the other hand, the BCSD method tends to excel in 367 

adjusting rainfall within the mid-range spectrum, around 10 mm/day, accurately reflecting the average rainfall percentile for 368 

all three stations. However, it tends to overestimate the frequency of weak rainfall events even with correction from ERA5 369 

statistics. 370 

        In summary, while the BCSD method adeptly adjusts mid-range rainfall amounts, the EDA model stands out for its ability 371 

to accurately correct rainfall across the spectrum, significantly improving the representation of both minimal and intense 372 

rainfall events. This distinction underlines the EDA model's capability to address biases in rainfall statistics, showcasing its 373 

effectiveness in capturing the complexities of rainfall patterns across different terrains and seasons. 374 

 375 
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3.4 Interannual Variations of Mean Rainfall and Rainfall Extremes 376 

        We examined the interannual variation in mean rainfall and extreme indices for the summer seasons, utilizing data from 377 

TCCIP, ERA5, BCSD, and the EDA model, as depicted in Figure 8. Our analysis, spanning from 2015 to 2020, includes both 378 

testing and validation phases. In the first wet season, TCCIP observations identify two significant peaks in mean rainfall for 379 

2017 and 2019, which are not detected by the ERA5 reanalysis. This lack of detection in ERA5 is mirrored in the BCSD 380 

method, displaying a similar downward trend in both mean rainfall and the RX1day index (Fig.8a, 8b). However, when ERA5 381 

does capture variations in the RX10mm and CDD indices, BCSD shows interannual variation alignment with TCCIP data 382 

(Fig.8c, 8d). Conversely, the EDA model more faithfully represents the interannual variability observed in the TCCIP dataset, 383 

covering both mean rainfall and extreme rainfall indices (Fig.8d). During the second wet season, characterized by typhoon-384 

induced rainfall, ERA5 more accurately reflects the interannual changes in island-wide mean rainfall, resulting in comparable 385 

performance between EDA and BCSD (Fig.8a, 8b, 8c). Notably, the EDA model is better in portraying days of CDD more 386 

accurately than BCSD, which tends to underestimate the total count of CDD days significantly (Fig.8d). This superior 387 

performance of the EDA model is corroborated by correlation and RMSE metrics presented in Table 4 and aligns with rainfall 388 

statistics depicted in Figure 7. In essence, the EDA model provides a more precise depiction of interannual rainfall variations 389 

and extreme indices, particularly in correcting the misrepresented variability during the first wet Meiyu season by ERA5. It 390 

matches the BCSD model in capturing rainfall extremes and offers a more accurate distribution of CDD, thereby enhancing 391 

the model’s ability to predict a wide range of rainfall and drought patterns accurately. 392 

 393 

3.5 Extreme Rainfall Event Cases during 2018-2020 394 

          We selected three extreme rainfall events characterized by the highest island-wide daily rainfall occurrences, to evaluate 395 

the EDA model's ability to capture the extreme rainfall events. Figure 9 illustrates these rainfall events during the test period 396 

from 2018 to 2020. The first event, on May 22, 2020, saw intense rainfall up to 500 mm/day on the southwest side of Taiwan 397 

(Fig.9a). This event resulted from multi-scaled interactions involving a strong south-westerly monsoon flow, a southwest 398 

vortex, and a potent Meiyu front, which collectively triggered heavy rainfall on the windward slope of the Central Mountain 399 

(Chien and Chiu, 2024, 2023). While the ERA5 reanalysis depicted a relatively uniform rainfall distribution across Taiwan 400 

with a magnitude of only 100 mm/day (Fig.9b), both BCSD and EDA accurately identified the rainfall peak at the southern tip 401 

of the Xue Mountains, with EDA pinpointing the maximum around 22.5˚N but overestimating the intensity to 600 mm/day 402 

compared to the observed 500 mm/day (Fig.9c, 9d). 403 

        The second significant rainfall event occurred on August 23 and 24, 2018, linked to a tropical depression, as depicted in 404 

Figure 9a. This system made landfall in southern Taiwan on August 23 and proceeded to the Taiwan Strait by August 24; a 405 

movement observed in the ERA5 reanalysis surface circulations (Fig.9b). The depression's interaction with the existing strong 406 

south-westerly flow resulted in enhanced moisture transport into southwestern Taiwan, focusing heavy rainfall on the 407 
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windward slopes of Ali Mountain and the Central Mountain, where rainfall peaks reached up to 300 mm/day (Fig.9a; National 408 

Science and Technology Center for Disaster Reduction, 2019). A key difference in the rainfall downscaled by the two models 409 

is evident in BCSD's adherence to the coarse resolution of ERA5, which fails to capture the spatial variability characteristic of 410 

extreme rainfall events (Figs.9b, 9c). Notably, BCSD mimics ERA5 reanalysis by generating increased rainfall over central 411 

Taiwan (~24˚N) on both days and weaker rainfall on August 24 over southwestern Taiwan (Fig.9c). In contrast, the EDA 412 

model more accurately delineates the rain-affected regions in alignment with the topography for both days, offering a clearer 413 

north-south differentiation between dry and wet areas. 414 

        The third event, occurring on August 24, 2019, involved the severe tropical storm Bailu making a brief landfall at the 415 

southern tip of Taiwan before moving towards the Taiwan Strait. This event resulted in significant rainfall across the eastern 416 

part of the Central Mountain as Bailu (2019) approached (Fig. 9a). ERA5 reanalysis captured the rainfall on the eastern side 417 

of the Central Mountain as the storm neared but tended to overestimate rainfall on the western slope of the Central Mountain 418 

and Ali Mountain, likely due to its coarse resolution (Fig.9b). This overestimation by ERA5 was similarly reflected in the 419 

BCSD model, which inaccurately extended rainfall coverage too far westward, encroaching into the southern part of the Central 420 

Mountain area (Fig.9c). Conversely, the EDA model delineated the precise boundaries of the windward rainfall events, offering 421 

a more accurate representation of the interactions between the storm’s dynamics and Taiwan’s topography (Fig.9d). However, 422 

upon closer examination, the EDA model’s rainfall pattern appears smoother compared to the TCCIP rainfall, indicating a 423 

limitation in capturing the localized, cell-like structures of rainfall, particularly on the northeastern part of Taiwan (Fig.9d).         424 

        In summary, the EDA model proves to be particularly adept at replicating extreme rainfall events that arise from the 425 

complex interactions between landscape and synoptic weather circulations. This capability is evident not only across average 426 

seasonal scales but also in accurately depicting the nuances of extreme rainfall events, underscoring its advanced performance 427 

and utility in forecasting and analysing rainfall patterns influenced by topographical features. 428 

 429 

3.6 Sensitivity experiments with hyperparameters and training/validation periods 430 

3.6.1 Impacts of using Surface Winds as Input 431 

        To assess the significance of incorporating surface wind data into our model, we conducted an additional experiment 432 

using only rainfall data as input, referred to as EDA_PR (Table 5). This experiment aimed to evaluate the model's performance 433 

in accurately capturing seasonal mean rainfall, particularly in areas known for rainfall hotspots arising from the interaction 434 

between monsoonal winds and topography. Figure 10 illustrates the discrepancies between EDA_PR and TCCIP observations 435 

regarding mean rainfall and climate extreme indices. Figure 10a reveals that mean rainfall is significantly underestimated by 436 

EDA_PR when relying solely on ERA5 rainfall data as input, especially in windward slope areas associated with rainfall 437 

maxima. This outcome indicates that the model's ability to replicate accurate rainfall magnitudes heavily relies on surface wind 438 

data. Further analysis of extreme indices with EDA_PR, as presented in Figures 10b and 10c for RX10mm and CDD, 439 
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respectively, aligns with the observations on mean rainfall. The spatial frequency of days experiencing RX10mm is notably 440 

reduced, by up to 10 days, particularly during the first and second wet seasons (Fig.10b). This reduction highlights the impact 441 

of surface wind information on the occurrence of intense rainfall events. Conversely, predictions of CDD days with the 442 

EDA_PR model exhibit varied adjustments when excluding wind data (Fig.10c). During spring, the second wet season, and 443 

winter, CDD is generally underestimated across the island. However, for the first wet season and fall, EDA_PR overestimates 444 

CDD in coastal plains but underestimates it in mountainous regions during fall. Tables 3 and 4 provide a summary of the 445 

CORR and RMSE for EDA_PR, revealing a consistent decline in model performance across most seasons and extreme indices 446 

when compared to the full EDA model. This decline underscores the critical role of surface wind data in enhancing the 447 

proposed model's predictive accuracy and its ability to capture the nuances of rainfall patterns influenced by local surface 448 

circulations. 449 

3.6.2 Differences between Validation and Test Periods 450 

        In this section, we delve into the disparities between the test and validation periods, serving as a basis for validation and 451 

illuminating potential challenges in rainfall data sampling. Figure S1 delineates the seasonal mean rainfall distribution during 452 

the validation period, highlighting notable variances across seasons, particularly in the second wet season where typhoon-453 

induced rainfall significantly influences the mean seasonal rainfall and rainfall events. From the data science perspective, the 454 

predictability of typhoon rainfall is heavily contingent on its trajectories, suggesting that the typhoon rainfall samples in the 455 

training dataset may not adequately represent the characteristics of typhoon rainfall in the test and validation periods (cf. Fig.3 456 

and Fig.S1). This discrepancy poses a greater challenge for predictions based on historical rainfall data along with predicting 457 

future changes of typhoon seasons on local scales, adding more uncertainties when estimating future changes of typhoon 458 

rainfall on local communities. 459 

        Table 3 and Table 4 further illustrate the fluctuating performance in terms of CORR and RMSE between the test and 460 

validation periods, especially concerning extreme indices. This observation aligns with findings from many previous 461 

downscaling studies, which underscore the necessity of incorporating stochastic elements into downscaling methods to account 462 

for the uncertainties associated with the randomness of rainfall extremes (e.g. Palmer, 2022). Echoing the suggestions of 463 

numerous studies, adopting reinforcement neural networks, such as generative adversarial networks, could offer a promising 464 

solution for capturing the small-scale variability inherent in rainfall extreme (Harris et al., 2022; Price and Rasp, 2022; Oyama 465 

et al., 2023). These advanced modelling techniques may provide a more nuanced understanding and prediction capability for 466 

the complex dynamics of extreme rainfall events. 467 

4 Discussion and Summary 468 

        Our study underscores the potential of the proposed DNN model with multi-head attention mechanism, the EDA, to 469 

enhance univariate rainfall downscaling, specifically in accurately transitioning coarse-resolution rainfall data to a finer, local-470 
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scale resolution by incorporating auxiliary topographical and surface circulation data. By utilizing the ERA5 reanalysis as 471 

input, our primary focus was on mitigating the biases associated with orographic rainfall —a common challenge arising from 472 

the limited resolution and parameterization of global models. Taiwan, with its extensive network of rainfall observations and 473 

a diverse climate characterized by significant orographic influence on precipitation patterns, offered an ideal setting for this 474 

study. This choice allowed for a thorough assessment of the EDA model's capacity to detect and correct biases and variability 475 

in daily rainfall data, showcasing their potential in enhancing the accuracy of downscaling methodologies in regions with 476 

complex climatic and topographical dynamics. 477 

        Our comprehensive analysis, encompassing evaluations of seasonal rainfall, ETCCDI extreme indices, and their internal 478 

variations, underscores the EDA model's proficiency in correcting rainfall biases from the ERA5 reanalysis across various 479 

seasons. Its performance, in terms of correlation (CORR) and root mean square error (RMSE) across seasonal rainfall and 480 

climate extreme index patterns, is on par with that of the BCSD method, especially in seasonal mean pattern. Upon closer 481 

examination, however, the EDA model exhibits superior capabilities in amending the overly frequent occurrences of weak 482 

rainfall and in accurately addressing instances of heavy rainfall identified in the TCCIP observations, outperforming the BCSD 483 

method in these respects. This enhanced performance is particularly notable during the first and second wet seasons in Taiwan,      484 

characterized by extreme rainfall events. The EDA model's improved adjustments are evident in climate extreme indices that 485 

capture both ends of the rainfall spectrum, such as CDD and rainfall exceeding 10 mm (RX10mm), thanks to the incorporation 486 

of surface circulation data. Additionally, the EDA model surpasses the BCSD method in predicting interannual variations of 487 

seasonal rainfall and climate extremes, areas where the BCSD method struggles, especially when the parent ERA5 data 488 

inaccurately represents rainfall variability. 489 

        Our research sets itself apart by deploying a DNN model tailored to Taiwan's distinct climate characteristics, marked by 490 

its intricate weather systems and pronounced topographical impact on rainfall distribution. This approach proves effective in 491 

addressing the limitations associated with QM-type methods, such as the artificial adjustment of rainfall extremes and 492 

inaccuracies in rainfall location due to complex terrain (Maraun and Widmann, 2018). Our application of a DNN model for 493 

downscaling not only validates the effectiveness of DL models in refining downscaling methods for climate purposes but also 494 

underscores their flexibility to incorporate auxiliary data. Our analysis of rainfall pattern and statistics shows that this inclusion 495 

is crucial for representing the intricate rainfall pattern determined by dynamics between topography and atmospheric 496 

circulations. Parallel to our focus on climate downscaling, Hsu et al. (2024) found that a CNN-based model excels in amending 497 

rainfall patterns for weather forecast datasets on an hourly basis across Taiwan. Moreover, Mardani et al. (2024) showcased 498 

the effectiveness of combining U-net with a diffusion model for enhancing the downscaling of kilometer-scale surface 499 

variables in Taiwan, mimicking the output of data-assimilated regional climate models. The findings from our study and their 500 

studies open new avenues for advancing downscaling techniques, especially in areas like Taiwan where precise rainfall 501 

forecasting is essential for managing water resources and preparing for emergencies. 502 
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        Our future research works are oriented along two primary trajectories. Firstly, we plan to leverage our comprehensive 503 

understanding of Taiwan's rainy seasons, derived from detailed observational studies, to refine our identification of rainfall 504 

characteristics that are most precisely captured by the EDA model. Acknowledging the room for enhancement in terms of 505 

model explainability, we are set to investigate novel methodologies to unravel the DNN model's learning mechanisms. This 506 

initiative aims to elevate the transparency of the model, illuminating the underpinnings of its predictions and enriching our 507 

insight into the model's intrinsic biases. Secondly, having established the EDA model's proficiency in translating coarse-508 

resolution reanalysis biases into accurate local-scale rainfall predictions, our next objective is to broaden our analysis to 509 

encompass a wider range of realistic applications that involve significant large-scale biases. Our approach involves diversifying 510 

beyond univariate rainfall forecasts to include additional climate variables, thereby enriching the model's downscaling 511 

capabilities. This approach will be informed by existing research that has successfully employed an array of both free-512 

tropospheric and surface variables as predictors for regional downscaling (Baño-Medina et al., 2021, 2020; Doury et al., 2023). 513 

We intend to initiate this expansion by applying selected CMIP6 models for climate downscaling, aiming to generate precise 514 

local-scale climate projections for Taiwan, by harnessing data from East Asia or potentially global reanalysis. Through these 515 

focused lines of inquiry, we anticipate making substantial contributions to the precision of climate downscaling techniques 516 

and the broader understanding of regional climate dynamics. 517 
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 683 

Name resolution Time period Variables 

ERA5 reanalysis 0.25˚x0.25˚ global 1960-2020 10m U, V (m/s), rainfall 

(mm/day) 

TCCIP daily rainfall 0.05˚x0.05˚ Taiwan land 1960-2020 Rainfall (mm/day) 

Topography data of 

Taiwan 

0.01˚x0.01˚ Taiwan land static Altitude (meter) 

Table 1: Data range for training and ground truth dataset over Taiwan. 684 

 685 

Name Time period 

Spring Feb 15th-May 15th 

Summer 1st wet season May 16th-July 24th 

Summer 2nd wet season  July 25th-September 27th  

Autumn September 28th -December 1st  

Winter December 2nd -February 14th 

Table 2: Definition of 5 raining seasons of Taiwan based on previous climatological studies (Chou et al., 2009). 686 

 687 

  Spring  1st-wet  2nd-wet  Fall  Winter  

  
CORR 

(RMSE) 
test validation test validation test validation test validation test validation 

meanR bcsd 0.93(0.74) 0.95(0.67) 0.93(2.97) 0.92(2.24) 0.94(1.75) 0.93(1.59) 0.97(1.50) 0.94(1.61) 0.95(1.42) 0.97(0.74) 

 EDA 0.91(0.76) 0.94(0.77) 0.94(1.79) 0.93(1.77) 0.94(2.05) 0.89(2.12) 0.90(1.91) 0.91(1.78) 0.87(1.56) 0.89(0.93) 

 EDA_PR 0.87(1.25) 0.93(1.49) 0.91(4.78) 0.90(5.09) 0.91(4.30) 0.81(3.90) 0.94(2.73) 0.87(2.99) 0.91(2.24) 0.93(1.44) 

 688 

Table 3: Performance metrics for mean rainfall for 5 rainy seasons in Taiwan. 689 

  690 

https://doi.org/10.5194/egusphere-2024-1022
Preprint. Discussion started: 29 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

24 

 

  Spring  1st-wet  2nd-wet  Fall  Winter  

  
CORR 

(RMSE) 
test validation test validation test validation test validation test validation 

RX10m

m 
bcsd 0.87(1.10) 0.91(1.12) 0.85(4.61) 0.90(2.38) 0.90(2.39) 0.82(2.12) 0.97(2.56) 0.96(1.93) 0.94(2.54) 0.93(2.21) 

 EDA 0.85(0.83) 0.93(0.86) 0.93(2.53) 0.90(2.64) 0.92(2.62) 0.87(2.19) 0.93(2.33) 0.91(1.92) 0.90(2.23) 0.88(1.48) 

 EDA_PR 0.80(1.40) 0.90(1.68) 0.89(7.49) 0.81(6.98) 0.86(6.46) 0.77(4.47) 0.94(3.91) 0.93(2.97) 0.91(3.47) 0.85(2.83) 

CDD bcsd 0.72(4.37) 0.85(4.37) 0.56(5.70) 0.57(5.70) 0.68(5.42) 0.67(6.07) 0.88(8.73) 0.88(5.55) 0.79(6.61) 0.78(7.27) 

 EDA 0.77(2.67) 0.88(2.90) 0.57(4.33) 0.71(4.15) 0.76(4.20) 0.60(3.83) 0.92(6.07) 0.88(4.10) 0.83(4.96) 0.81(5.20) 

 EDA_PR 0.65(3.67) 0.85(3.29) 0.60(5.05) 0.61(5.06) 0.61(4.62) 0.63(3.81) 0.86(7.55) 0.83(4.85) 0.75(5.88) 0.76(5.83) 

RX1day bcsd 0.83(11.76) 0.91(8.73) 0.87(39.59) 0.70(60.16) 0.85(37.54) 0.90(42.64) 0.89(20.17) 0.86(28.85) 0.85(19.04) 0.82(12.61) 

 EDA 0.90(6.78) 0.92(6.23) 0.84(37.87) 0.84(38.99) 0.87(36.26) 0.83(57.23) 0.88(19.52) 0.86(27.97) 0.76(12.19) 0.82(6.63) 

 EDA_PR 0.77(15.17) 0.86(14.17) 0.75(61.19) 0.67(86.92) 0.78(66.28) 0.74(83.55) 0.82(26.83) 0.66(49.52) 0.70(20.75) 0.77(14.54) 

 691 

Table 4: Performance metrics for selected extreme indices for 5 rainy seasons in Taiwan. All the metrics are compared with 692 

the 5-km grids of the TCCIP observational rainfall. 693 

 694 

 695 

Model names inputs Output 

EDA_PR ERA5-rainfall rainfall 

EDA ERA5-rainfall, 10m winds rainfall 

Table 5: List of EDA models trained with rainfall-only and both rainfall and surface winds. 696 
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Figure 1: (a) Taiwan's topography and six observational stations, highlighting Xue Mountain (XM) and Central Mountain 

(CM). (b) the annual rainfall cycle using the TCCIP dataset, comparing the climatological mean (black), test period (red), 

and validation period (purple). (c) mean rainfall (mm/day) from TCCIP and mean near-surface streamline of winds from 

ERA5 across Taiwan's five seasons during the test period. Elevation contours at 1000 meters and 2000 meters are 

represented by thick black lines, and the boundaries of each county in Taiwan are depicted with fine black lines. 

 698 
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 700 

Figure 2: Model architecture of the Encoder-Decoder with Multi-Head Attention for Auxiliary Channels (EDA) Model. ‘N’ 701 

represents an adjustable parameter that dictates the repetition frequency of model components. Data dimensions at each layer 702 

are annotated, with ‘b’ indicating the batch size utilized. 703 
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  705 

(a)  

 
(b) 

 
(c) 

 
 
Figure 3: Mean rainfall distribution of 5 rainy seasons defined in Table 1 with units of mm/day during test period (2017/12/13-

2020/12/31). (a) ERA5 reanalysis, (b) BCSD downscaled rainfall from ERA5, and (c) EDA downscaled rainfall from ERA5.  Elevation 

contours at 1000 meters and 2000 meters are represented by thick black lines, and the boundaries of each county in Taiwan are depicted 

with fine black lines. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4: (a) Spatial distribution of RX1day index from TCCIP observations and downscaled bias in (b) BCSD and (c) EDA 

model during test period (2017/12/13-2020/12/31). Elevation contours at 1000 meters and 2000 meters are represented by 

thick black lines, and the boundaries of each county in Taiwan are depicted with fine black lines. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5: (a) Spatial distribution of RX10mm index from TCCIP observations and downscaled bias in (b) BCSD and (c) 

EDA model during test period (2017/12/13-2020/12/31). Elevation contours at 1000 meters and 2000 meters are represented 

by thick black lines, and the boundaries of each county in Taiwan are depicted with fine black lines. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6: Spatial distribution of CDD index from (a) TCCIP observations and downscaled bias with (b) BCSD and (c) EDA 

model during test period (2017/12/13-2020/12/31). Elevation contours at 1000 meters and 2000 meters are represented by 

thick black lines, and the boundaries of each county in Taiwan are depicted with fine black lines. 
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Figure 7: Rainfall distribution for selected Central Weather Administration (CWA) observational stations during (a) the 

first wet season and (b) the second wet season. For the summer seasons, stations located on the western plains and 

mountains, including Tainan Station, Taichung Station, and Alishan Station, are featured. The arrangement of the stations 

in the figure follows a north-to-south order, based on the latitudinal positions of their locations, with stations positioned 

from top to bottom accordingly (Figure 1a). 
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Figure 8: Interannual variation of island-wide mean rainfall and selected extreme indices based on TCCIP observations 

(blue), ERA5 (red), and EDA (green), and BCSD (black) for the (a,b) mean, (c,d) RX1day, (e,f) RX10mm, and (g,h) CDD 

indices. From left to right, columns indicate the 1st wet season and the 2nd wet seasons during validation and test period. 
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(d) 

 

 

Figure 9: Daily rainfall distribution of the 3 extreme rainfall events based on TCCIP daily rainfall during test period 

(2017/12/13-2020/12/31). Here we choose 4 days from the rainfall ranking of the highest 5 days of island-wide rainfall 

average during this period. From left to right, they are May 22, 2020, August 24, 2018, August 23, 2018, and August 24, 

2019. From the synoptic analysis of these rainfall days shows the May 22, 2020 event is related to a Meiyu frontal system, 

the event of August 23-24, 2018 is related to a tropical low-pressure system, and August 24, 2019 is related to Typhoon 

Bailu. (a) for TCCIP data set, (b) for ERA5 reanalysis, (c) BCSD downscaling method, and (d) for EDA downscaling model. 

Elevation contours at 1000 meters and 2000 meters are represented by thick black lines, and the boundaries of each county 

in Taiwan are depicted with fine black lines.  
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(a) 

 

(b) 

 

(c) 

 

Figure 10: Spatial distribution of downscaled rainfall based on EDA model structure but with only rainfall as the input for 

5 rainy seasons in Taiwan. (a) mean rainfall, (b) RX10mm, and (c) CDD difference from TCCIP during test period 

(2017/12/13-2020/12/31).  
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