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Abstract

Quantitative mapping of minerals in rock thin sections delivers data on mineral abundance, size, and spatial 

arrangement that are useful for many geoscience and engineering disciplines. Although automated methods for 

mapping mineralogy exist, these are often expensive, associated with proprietary software, or require 

programming skills, which limits their usage. Here we present a free, open-source method for automated 

mineralogy mapping from energy dispersive spectroscopy (EDS) scans of rock thin sections. This method uses a 

random forest machine learning image classification algorithm within the QGIS geographic information system 

and Orfeo Toolbox, which are both free and open source. To demonstrate the utility of this method, we apply it to

14 rock thin sections from the well-studied Rio Blanco tonalite lithology of Puerto Rico. Measurements of 

mineral abundance inferred from our method compare favourably to previous measurements of mineral 

abundance inferred from X-ray diffraction and point counts on thin sections. The model-generated mineral maps 

agree with independent, manually-delineated mineral maps at a mean rate of 95%, with accuracies as high as 

96% for the most abundant phase (plagioclase) and as low as 72% for the least abundant phase (apatite) in these 

samples. We show that the default random forest hyperparameters in Orfeo Toolbox yielded high accuracy in the 

model-generated mineral maps, and we demonstrate how users can determine the sensitivity of the mineral maps 

to hyperparameter values and input features. These results show that this method can be used to generate accurate

maps of major mineral phases in rock thin sections using entirely free and open-source applications.  

  

1 Introduction
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Minerals are the fundamental units of rocks and many engineered materials (Perkins, 2020; Callister and 

Rethwisch, 2020). Improving the quantification of mineral properties is a longstanding research objective in 

industry and academic research (Pirrie and Rollinson, 2011), given the importance of mineral properties in 

chemical weathering (e.g., Hilton and West, 2020), rock damage (e.g., Shen et al., 2019; Xu et al., 2022), 

planetary evolution (e.g., Hazen et al., 2008), crustal deformation (e.g., Burgmann and Dresen, 2008), and 

nutrient supply (e.g., Callahan et al., 2022). Quantitative mineralogy, the mapping of mineral phases across a 

sample, results in measurements of mineral modal abundance, mineral grain size and shape, and the spatial 

arrangement of minerals amongst one another (Schulz et al., 2020). Modal abundance is useful because it can 

yield information on the sedimentary and tectonic environments in which the rock formed (Harlov et al., 1998; 

Hupp and Donovan, 2018), while the spatial arrangement of minerals in a rock, termed rock fabric, can yield 

further data on mechanical anisotropy and paleo-environmental conditions during the rock’s formation and 

metamorphism (Přikryl, 2006; Bjørlykke, 2014). Simultaneous quantification of modal mineralogy and detailed 

mapping of the spatial arrangement of minerals in an automated manner, or automated mineralogy, is thus a key 

tool for investigating many geologic processes. Wide adoption of automated mineralogy techniques are limited 

by the prohibitive cost or programming skills required to use many automated mineralogy software applications, 

so this technique has been mostly restricted to ore characterization, resource processing, and petroleum geology 

(Nikonow and Rammlmair, 2017; Schulz et al., 2020). 

In practice, automated mineralogy methods use a combination of image analysis and classification methods to 

identify mineral phases from elemental composition data (or their derivatives), which can be collected with a 

variety of analytical methods, including energy dispersive X-ray spectroscopy (EDS), wavelength dispersive X-

ray spectrometry (WDS), micro-X-ray fluorescence (μ-XRF), and laser-ablation inductively-coupled mass 

spectroscopy (LA-ICP-MS) (Nikonow et al., 2019). Automated mineralogy is being slowly adopted by 

researchers outside of resource extraction for combined modal analysis of bulk mineralogy, estimates of grain 

size distribution, and mineral association (Han et al., 2022), which can be useful in a variety of disciplines such 

as petrology, applied geochemistry, and rock mechanics (Sajid et al., 2016; Elghali et al., 2018; Rafiei et al., 

2020). 

Automated mineralogy from EDS with the aid of back-scattered electron (BSE) imaging has been developing 

since the 1980s and has grown alongside advances in scanning electron microscopy (SEM) and image processing 

algorithms (Miller et al., 1983; Fandrich et al., 2007). Commercial automated mineralogy systems are available 
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as integrated hardware-software systems or as standalone software packages which are combined with scanning 

electron microscopes (Schulz et al., 2020). Some systems only work with certain scanning electron microscopes 

and detectors from the same company QEMSCAN (Gottlieb et al., 2000), FEI-MLA (Fandrich et al., 2007), and 

TESCAN TIMA-X (Hrstka et al., 2018). Others are purely software-based solutions which are integrated with 

various SEMs: ZEISS Mineralogic, Oxford AZTecMineral, and Thermo-Scientific MAPS Mineralogy. The price 

of hardware and software upgrades required to accommodate these systems renders them cost prohibitive to 

many labs outside the resource extraction industry (Nikonow and Rammlmair, 2017). All systems have some 

general ability to classify EDS spectra based on a database of pre-defined and/or customizable mineral spectra 

standards (Schulz et al., 2020). Since the underlying software is proprietary, no source code is available for these 

systems, and details on how they use spectra to classify mineral phases are sparse to non-existent (Kuelen et al., 

2020). Furthermore, the accuracy of mineral phase prediction from these systems has rarely been quantified 

(Blannin et al., 2021).

To date, several open-source (i.e., source code is available and modifiable) automated mineralogy solutions have 

been implemented. Ortolano et al. (2014, 2018) predicted mineralogy from a multistep workflow involving 

principal component analysis, maximum likelihood classification, and multi-linear regression performed on EDS 

or WDS spectral data using the Python extension within ArcGIS. Li et al. (2021) used a variety of legacy 

machine-learning and deep-learning models to classify minerals in oil reservoir rocks using mineral maps 

generated from proprietary software as training data. In terms of image classification, deep-learning methods are 

state of the art but currently require the user to be relatively adept at programming and knowledgeable of the 

computer vision principles employed (Khan et al., 2018; Zhang et al., 2019). A method that requires little to no 

programming ability would allow more users to benefit from automated mineralogy data. An example of this 

approach is XMapTools by Lanari et al. (2014), a graphical, open-source automated mineralogy solution with 

multiple machine-learning classification algorithms within a standalone, MATLAB-based environment.

The main goal of this study is to present a new, user-friendly quantitative automated mineralogy method that we 

developed and implemented within QGIS, a free and open-source geographic information system. Nikonow and 

Rammlmair (2017) previously showed success in adapting the proprietary remote-sensing package ENVI to do 

automated mineralogy using μ-XRF data. Here, we use the free and open-source Orfeo Toolbox plugin for QGIS 

(Grizonnet et al., 2017) to predict thin-section scale bulk mineralogy from EDS elemental intensity data using a 

random forest (RF) image classifier (Breiman, 2001). Random forest classification is a supervised classification 
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algorithm (i.e., the user generates training data) in which an ensemble of decision trees produces a majority vote 

that assigns a thematic classification to unknown data (Breiman, 2001). Each decision tree within the ensemble is

trained on a random sampling of the training data using only a set number of random features at each branch 

(Cutler et al., 2011). During prediction, for each decision tree, unknown data traverses a sequence of rule-based 

branches which culminate in the assignation of a predicted class (Breiman, 2001). Each tree gets one vote for 

each pixel; the predicted class with the most votes is assigned to the unknown data. There are several reasons 

why RF classification is useful for automated mineralogy mapping. It is well suited for accommodating 

unbalanced training data and nonparametric data distributions (Maxwell et al., 2018), which are common in rock 

samples due to large differences in relative mineral abundances and elemental intensities (Ahrens, 1954). In 

addition, recent work showed that RF classification performed better than other legacy machine-learning 

algorithms (e.g., support-vector machines; Hearst et al., 1998) in mineral classification of reservoir rocks (Li et 

al., 2021). 

Unlike previous methods, the method presented here uses only freely available and open-source applications, and

it requires no programming on the part of the user. Situating the workflow within a GIS environment has 

advantages over standalone programs such as direct access to raster and vector manipulation and analysis tools 

and database management (Tarquini and Favalli, 2010; Berrezueta et al., 2019). In the remainder of this study, we

present an overview of the automated mineralogy method and apply it to a set of rock samples from the Rio 

Blanco tonalite to demonstrate the method’s utility. By outlining an easy-to-use and open-source solution, we 

hope this method provides a tool for automated mineralogy to a broader community of users. 

2 Overview of the method

The goal of our automated mineralogy method is to produce quantitative mineralogy maps of rock thin sections 

solely from EDS data. Here in Section 2, we briefly summarize each step needed to reach a predicted mineral 

map. In Section 3, we demonstrate how to use the method by applying it to a set of rock thin sections, during 

which we elaborate on the choices users need to make and the functions they need to use during each step. We 

also provide a detailed step-by-step guide in the supplementary information (Reed et al., 2024). 

The starting point for this method is EDS-generated scans of rock thin sections. For the purposes of our method, 

we take these scans as already measured and in hand. Generating such scans requires preparing thin sections and 
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analyzing them with a scanning electron microscope, both of which are done by established procedures 

(Goldstein et al., 2018). The necessary output from such scans are rasters of elemental intensity (counts/eV), one 

for each element of interest (e.g., Ca, Na, K, etc.). After the EDS elemental intensity rasters have been generated, 

all the remaining steps in the method are conducted in QGIS. No programming is required in any step. Instead, 

users need only be familiar with QGIS and their samples.

The first step is to ensure all the necessary information is in place. This involves importing the raw elemental 

intensity rasters into QGIS with no coordinate reference system (Fig. 1a). This also involves compiling a list of 

all the mineral phases that will be mapped in the thin section, which can be assessed based on prior knowledge, 

literature, and examination of EDS spectra. As we describe in Section 4, we recommend restricting this to 

mineral phases with sufficiently high abundance to be accurately mapped.

The second step is to smooth the raw elemental intensity rasters (Fig. 1b. This is useful because EDS-generated 

elemental intensity rasters are subject to noise, which can arise through electron beam interactions with the 

sample and incorrect spectral peak identification by the EDS software (Goldstein et al., 2018). As we describe in 

Section 4.3, we found that this smoothing step was best done with a 7-pixel radius circular mean filter. Here, a 

mean filter is an image processing operation where a circular sliding window with a fixed radius surrounding a 

center pixel moves across an input raster one pixel at time and, in an output raster, assigns a mean value to the 

center pixel based on the surrounding pixels (Gonzalez and Woods, 2017). We performed this on intensity rasters

from the example samples we applied our method to in Section 3. For this, we used the free and open-source 

System for Automated Geoscientific Analyses (SAGA) plugin for QGIS (Conrad et al., 2015). 

The third step is to gather the smoothed elemental intensity rasters into a virtual raster with one band for each 

element of interest (Fig. 1c). For example, if the user chooses to import elemental intensity rasters for six 

elements, as we did in the application of this method to our samples in Section 3, this will result in a virtual raster

with six bands. For this, we used the Geospatial Data Abstraction Library (GDAL/OGR contributors, 2022), 

which is a standard library in QGIS.

The fourth step is to train a RF image classification model on the virtual raster (Fig. 1d). This requires generating 

a large number (~hundreds) of small polygons on the virtual raster. Each of these small polygons must lie within 

a single mineral phase, which the user must identify and assign to the polygon. Collectively, these small polygons
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must cover all the mineral phases of interest in the thin section in sufficient number to train the RF model. If the 

user wishes to assess the accuracy of the RF-predicted mineral map to a manually mapped portion of the thin 

section after the method is complete, we recommend restricting the location of these small training polygons to a 

relatively small portion of the thin section (~10-20%). This will ensure that other portions of the thin section can 

be mapped manually to compare against the RF-predicted mineral map. If the user does not wish to conduct such 

an accuracy assessment after the RF-predicted mineral map is complete, then these small training polygons can 

be generated anywhere across the entire thin section. 

After the RF model has been trained, the fifth step is to apply the trained RF model to the entire virtual raster 

(Fig. 1e). During this step, the RF model assigns a mineral phase to every pixel in the virtual raster, which yields 

a mineral map for the entire thin section. For these RF modeling steps, we used the free, open-source Orfeo 

Toolbox plugin for QGIS (Grizonnet et al., 2017).

The sixth and final step is to denoise the RF-generated mineral map (Fig. 1f). For this, we applied a circular 

majority filter using the SAGA plugin for QGIS. A majority filter is akin to the mean filter described above but 

assigns the modal value of the surrounding pixels to the pixel in the output raster at the center sliding window 

(Gonzalez and Woods, 2017). As we describe in Section 4.3, we found that this was best done with a 10-pixel 

radius majority filter in the example samples we applied this to in Section 3. This eliminates most isolated pixels 

within larger groups of pixels of a uniform predicted mineral phase and rare pixels that were not classified due to 

voting ties (Ortolano et al., 2018; Nikonow et al., 2019) 

At this stage, the RF-predicted mineral map is complete. It can now be interrogated or manipulated according to 

the user’s needs. For instance, the mineral map can be converted from a raster to a vector form to facilitate 

measurement of mineral grain size and other properties (Section 5.2).
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Figure 1. Example application of the automated mineralogy method. (a) Step 1: Import raw elemental 

intensity rasters (Ca, Na, Mg, Fe, K and Ti) into QGIS. Here, the rasters shown are for the thin-section 

sample 1-13a. The zoomed-in view of the Ca raster exemplifies the short-wavelength noise in the 

elemental rasters. (b) Step 2: Smooth each elemental intensity raster with a circular mean filter. The 

zoomed-in view shows that this filter has eliminated much of the short-wavelength noise that was in the

raw elemental rasters. (c) Step 3: Create a virtual raster by combining the smoothed elemental rasters 

into a single image container with bands for each element. The white circle shows the area within 

which polygons were generated to train the random forest (RF) model in Step 4. (d) Step 4: Within the 

training area boundary in the virtual raster (large white circle, as in Step 3), draw a series of small 

polygons (here, small white circles). Each polygon must lie within a single known mineral phase, and 

collectively these small polygons must sample all mineral phases of interest (here, plagioclase feldspar,

quartz, hornblende, biotite, potassium feldspar, Fe-Ti oxides, apatite, and chlorite). These polygons 

collect the pixel-level data on which the RF model will be trained. (e) Step 5: Apply the trained RF 

model to the entire sample to create a thin section-scale mineral map. (f) Step 6: Smooth the RF-

predicted mineral map with a circular majority filter.

3 Application of the method

3.1 Preparation of rock thin sections from the Luquillo Critical Zone Observatory

To demonstrate the utility of the method described in Section 2, we applied it to 14 thin sections of Rio Blanco 

tonalite from the Luquillo Critical Zone Observatory (LCZO) in Puerto Rico, United States, a site that has been 

the subject of substantial research on the weathering of igneous rocks into saprolite and soil (White et al., 1998; 

Riebe et al., 2003; Stallard and Murphy, 2012; Brocard et al., 2023). The lithology is a phaneritic, plutonic 

igneous rock with some evidence of low-grade hydrothermal alteration (Speer, 1984). The Rio Blanco tonalite 

provides an ideal case study because mineral abundance has been characterized previously via quantitative X-ray 

diffraction (XRD) and point counting modal analysis (i.e., systematic manual identification and counting under 

microscope; Ingersoll et al., 1984), which indicated the rock consists of plagioclase feldspar (andesine), quartz, 

biotite, hornblende, potassium feldspar, magnetite, apatite, and chlorite (Murphy et al., 1998; Buss et al., 2008; 

Ferrier et al., 2010). 
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To ready the samples for EDS, 14 petrographic thin sections were prepared on 27 x 46 mm glass slides from 

bedrock core quarters collected from the Rio Icacos catchment within the LCZO (Comas et al., 2019). The 

samples ranged in area from 34.7 to 139.5 mm2. Four samples are composed of weathered rock nearer to the 

surface while the rest are more pristine bedrock (Orlando et al., 2016). From each core depth, two thin sections 

were prepared in vertical and horizontal orientations. Our own preliminary optical microscopy observations 

revealed that these samples contained abundant plagioclase, quartz, hornblende, and biotite, which is consistent 

with previous modal analyses (Murphy et al., 1998; Buss et al., 2008).

3.2 Measuring elemental intensity in thin sections with energy dispersive spectroscopy

Each thin section was mapped with energy dispersive X-ray spectroscopy (EDS) using a Hitachi S-3400 VP-

SEM with a thermionic tungsten electron source equipped with an Oxford Instruments X-Act 10 mm2 silicon drift

detector receiving X-rays across 2048 spectral bands. The EDS detector acquires a spectrum showing the energy 

and intensity of characteristic X-rays emitted from the sample to determine the atomic composition of the sample 

within the analysis volume of the primary beam (Goldstein et al., 2018). For our measurements on our thin 

sections, the beam step size and magnification resulted in full thin-section elemental intensity maps (counts/eV) 

at a resolution of 4 μm/pixel. EDS data were acquired with accelerating voltage of 15 kV and beam current of 

~10 nA. Dwell time per beam step, which governs the amount of time the detector counts X-rays, was 200 ms 

(Newberry and Ritchie, 2013a). EDS acquisition time was ~3.5 hours for each thin section. 

From the EDS analysis application included with this instrument (AZtec), we exported six TIF files for each 

sample (Fig. 1a) consisting of full-resolution elemental intensity rasters for the elements of interest (Ca, Na, K, 

Mg, Fe and Ti). These rasters contain the X-ray counts of elemental intensity at each pixel and have a mean size 

of over 20 megapixels over the 14 study thin sections. We selected these elements because they are present in 

varying abundance in the mineral phases within the Rio Blanco tonalite, and hence are useful for distinguishing 

among the mineral phases in these samples. For example, K, Mg, Fe, and Ti are present at high abundance in 

biotite (Dong et al., 1999) but are present at low abundance in other major mineral phases in this lithology (e.g., 

plagioclase feldspar, quartz). Our initial attempts at classification showed that the inclusion of rasters of Si and Al

had no effect on classification accuracy, so we did not include them here. 
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This method requires a list of mineral phases present in the samples for both training of and prediction by the RF 

models (Steps 4 and 5 in Section 2). Such a list can be obtained in a variety of ways, including prior studies of 

qualitative mineralogy of the host lithology or mineral identification from optical microscopy on the sample thin 

sections. For the 14 samples analyzed here, we generated a list of mineral phases by inspecting the EDS-

generated X-ray spectral data within Oxford AZtec, a proprietary software package integrated with the SEM that 

we used to measure EDS scans of our samples. From these spectra we identified plagioclase feldspar, quartz, 

hornblende, biotite, potassium feldspar, Fe-Ti oxides (predominantly magnetite-titanomagnetite), and apatite as 

mineral phase classes for the RF models (Section 3.3). For those without offline access to a full EDS 

environment, some systems such as Oxford AZtec allow for the full export of data into text or binary formats, 

which can be accessed with free and open-source tools (e.g., HDFView or NIST DTSA-II). Due to trace 

abundance (Murphy et al., 1998), other minerals present in the samples like epidote and titanite lacked an 

adequate number of trainable examples, so were neglected or combined with an associated phase, Fe-Ti, 

respectively. For reference, the mean abundance of apatite, the lowest abundance mineral phase we trained, was 

~0.1%. We recommend that phases present at abundances lower than this be omitted or combined.  

3.3 Smoothing and virtualization of the elemental intensity rasters

We smoothed each elemental intensity raster with a 7-pixel radius circular mean filter using SAGA’s Simple 

Filter tool to eliminate noise in the EDS data. We chose this filter size because it optimized the accuracy 

calculated during the training and validation of the RF model. We test the sensitivity of this choice in Section 4.3.

We then used the GDAL gdalbuildvrt command within QGIS to group the smoothed elemental intensity rasters 

into a virtual raster dataset, in which each elemental raster is represented as a separate band. A virtual raster is a 

container for multiple rasters that encodes metadata such as file locations and other attributes in extended markup

language (XML) (McInerney and Kempeneers, 2014). Opening and processing virtual raster datasets requires 

less computer resources as the underlying rasters are only accessed when required.

3.4 Training random forest models for mineral classification

Before a RF model can be tasked with assigning a mineral phase to every pixel in an entire thin section, it must 

first be trained upon the mineral phases in the thin section. On each of the virtual rasters for the 14 thin sections, 

we selected an area encompassing less than ~15% of the total thin-section sample area within which we trained 

the model. We selected training areas that represented all mineral phases as well as possible, so that each phase 

would receive an adequate amount of training data for each phase. Selecting a small training area in the thin 

10

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

https://doi.org/10.5194/egusphere-2024-1017
Preprint. Discussion started: 9 April 2024
c© Author(s) 2024. CC BY 4.0 License.



section is useful because it enables users to test the accuracy of the trained model on other areas of the thin 

section, if desired. This is not a necessary step in the method, but in Section 4 we show how such accuracy tests 

can be done on other portions of the thin sections.

For each mineral phase within the training area, we manually generated hundreds of circular polygons upon the 

virtual raster using the knowledge gained previously from examining the EDS spectra (Fig. 1). A single training 

polygon within the training area collects all pixel values contained within it from each elemental intensity raster 

composing the virtual raster. This polygon is then labelled as a single mineral phase, effectively labelling every 

pixel value contained within it to that mineral phase. For a few thin sections, multiple subareas composed the 

training area to incorporate enough data on less abundant minerals like apatite. Because each training polygon 

encompassed pixel-level data for all bands from the virtual raster, the training datasets were large (>105 pixel-

level samples for each thin section). Training samples per mineral phase were highly unbalanced (i.e., some 

mineral phases covered many more pixels than others) due to the high abundances of quartz and plagioclase 

relative to those of minor mineral phases like apatite. Orfeo Toolbox handles this potential problem automatically

by randomly selecting samples at a rate relative to the size of the smallest class, ensuring that the minority classes

like apatite have an equal probability of being drawn into a sample subset used to construct an individual decision

tree. 

Using the training data obtained from the virtual raster for each thin section, we trained RF image classification 

models using the TrainImagesClassifier function in Orfeo Toolbox. In this function, users must select 

hyperparameter values for the RF model. In machine learning, hyperparameters define the general behaviour of a 

model, and are distinct from model parameters, which are learned through training. For more details about RF 

machine learning models hyperparameters, see the review in Probst et al. (2019). We used the default 

hyperparameter values (Table 1) for the models employed for our final predicted mineral maps. 

A measure of model accuracy is automatically calculated by the TrainImagesClassifier function at this step using 

unseen training data, which can be useful to examine before proceeding as to ensure that the RF model is 

operating correctly. The accuracy metric we focus on in this study is the F1 score (Equation 3), which is the 

harmonic mean of the precision metric (Equation 1) and the recall metric (Equation 2). This is a useful measure 

of the accuracy of RF-predicted mineralogy because it penalizes false positives and false negatives while 
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rewarding true positives and neglecting true negatives (Chinchor and Sundheim, 1993), which can be very 

plentiful for low abundance phases.

Precision= True positivesTrue positives+False positives (1)

Recall= True positivesTrue positives+False negatives (2)

F 1score=
2(Precision)(Recall )Precision+Recall (3)

In the application of Equations 1-3 to mineral maps, a true positive is defined as pixel-level agreement on the 

presence of a given mineral phase between the model prediction and unused training data, which the algorithm 

holds out from training for the purpose of calculating metrics such as the F1 score. Similarly, a true negative is 

agreement on the absence of a given mineral phase. False positives and false negatives are disagreements on the 

presence and absence of a given mineral phase, respectively. Application of the default hyperparameters to our 

samples yielded very high F1 scores (~0.99). This gave us confidence that the predicted mineral maps generated 

using the default hyperparameters were near optimal for comparison with manually delineated test maps 

(described in Section 4.1). 

Table 1. Default hyperparameter values for Orfeo Toolbox RF machine learning 

model.

Parameter name Value

Maximum number of trees in the forest 100

Maximum depth of tree 5

Size of the randomly selected subset of features at each 

tree node

(number of features)1/2

Minimum number of samples at each node 10
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We applied each trained model to its corresponding virtual raster to predict a single mineral phase at each pixel, 

except in the case of ensemble voting ties, in which case no phase was assigned to that pixel. This resulted in 

mineral maps at the same resolution as the virtual rasters (~4 μm). 

3.5 Using the random forest models to generate mineral maps

In our application of the trained RF models to our thin sections, the models calculated the entire thin-section scale

mineral maps in a under a minute using a desktop computer (4 GHz processor; 64 GB memory). Figure 1 shows 

an example of one of these mineral maps. 

After a thin section’s mineral map has been generated, it is trivial to calculate the abundance of each mineral 

phase by counting pixels. Figure 2 shows the abundance of each mineral phase across all 14 samples with the 

error given by the mean F1 scores of the minerals. It also reveals relatively little variation in each mineral phase’s

abundance among the 14 samples, which is consistent with previous observations of the Rio Blanco tonalite. The 

RF-predicted mineral abundances compare well with those measured from modal analysis via point counting on 

BSE imagery (Buss et al., 2008) and via quantitative XRD (Ferrier et al., 2010). Buss et al. (2008) measured 

average areal abundances of 19.9% and 49.3% for quartz and plagioclase, respectively, comparable to the RF-

predicted average abundances of 22.8 ± 1.0% and 55.8 ± 2.3% (± error from mean F1 scores) on our 14 thin 

sections. The combined abundance of hornblende and biotite (‘Fe-silicates’) measured by Buss et al. (2008) was 

24%, which is close to the maximum RF-predicted abundance of ‘Fe-silicates’ among our 14 samples (25.0 ± 

1.5%). Using common values for molar masses (M mol-1) and densities (M L-3), the XRD-based abundances 

(converted to areal abundance) from Ferrier et al. (2010) for quartz, plagioclase, and hornblende were 24%, 62%, 

and 14%, respectively, while the RF-predicted mineral maps yielded 22.8 ± 1.0%, 55.8 ± 2.3%, and 10.4 ± 0.7%, 

respectively. When quartz, plagioclase, and alkali feldspar abundances are normalized for usage with a Quartz-

Alkali Feldspar-Plagioclase-Feldspathoid diagram (Le Maitre, 2002), the RF-predicted abundances for each 

mineral phase demonstrated that all samples can be classified as tonalite, matching the name of the lithology. 
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Figure 2. Areal abundance for all 14 samples of the Rio Blanco tonalite. Error bars stem from mean F1 

scores for each individual mineral phase from test map comparisons (see Section 4.1).  

4. Accuracy of random forest-predicted mineral maps and sensitivity analyses

4.1 Accuracy of random forest-predicted mineral maps

Before applying the trained RF models to the full thin sections, we manually mapped the mineralogy of a small 

section for three samples (6-3a, 16-2a, and 1-13a) to assess the accuracy of the model-generated mineral maps. 

We refer to these manually delineated mineral maps as “test maps”. These test maps were manually delineated as 

vector polygons for all mineral phases using the elemental intensity rasters for guidance. For example, when 

mapping a grain of potassium feldspar, we determined the boundaries of the grain with filtered and unfiltered 

rasters of K as well as combined intensity rasters of multiple elements. We consider these maps to be ‘ground 

truth’ data, which are never perfect representations of reality (Foody, 2024), but, nonetheless, may serve to 

compare the performance of this method to the extremely slow process of manually mapping grain boundaries. 

We then rasterized the manually-delineated vector maps, which resulted in the classification of every pixel within

the test maps as one of the eight mineral phases. The test maps averaged over 1 million pixels in size. 
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We compared the same section of the predicted mineral maps to the test maps using a frequency-weighted F1 

score (Equation 4) to gauge the average accuracy for all mineral phases. To calculate a frequency-weighted F1 

score, the F1 score for the ith class (F1 scorei) is weighted by the class frequency (wi), which is the proportion of 

pixels of class i to the total number of pixels in the test map. Here, N is the number of mineral phases.

Frequency −weighted F 1score=∑i=1N w i F 1score i (4)

We clipped the portion of the predicted mineral map overlapping the test map from the full map for each of the 

three thin sections with a test map. From these two rasters, we calculated the frequency-weighted F1 score.

How accurate were the RF-generated mineral maps in Section 3? For the three thin sections that were mapped 

both manually and by the RF-based method in Section 2, the mean frequency-weighted F1 score among the three 

thin sections was 0.948 ± 0.002, meaning that nearly 95% of the pixels in the RF-predicted maps agreed with 

those in the manually delineated maps (Table 2). The accuracy varied among mineral phases. The four most 

abundant mineral phases (plagioclase, quartz, hornblende, and biotite) all have mean F1 scores of 0.94 to 0.96, 

while apatite, the least abundant mineral phase, had the lowest mean F1 score of 0.72. A closer look at the 

precision and recall metrics for apatite show that mean recall scores (0.62) were lower than mean precision 

(0.91). This indicates that the models correctly predicted apatite when attempted but the models often neglected 

to predict apatite. Abundance and the mean F1 score of a phase were not always linked; for example, Fe-Ti 

oxides were low in abundance (~1%) but registered a mean F1 score of 0.91. 

Figure 3 shows an example of an RF-predicted mineral map with misclassified pixels shown in red. This 

illustrates a key point: the accuracy of the RF-predicted mineral maps is not spatially uniform. Most pixels that 

diverge from manual classification occur at grain boundaries where elemental compositions shift abruptly in 

space. By contrast, in mineral grain interiors, divergent pixels are far less common. This indicates that the 

accuracy of RF-predicted mineralogy in grain interiors is higher than the F1 scores in Table 2.  
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Figure 3. (a) Predicted mineral map for sample 6-3a, showing the location of the manually delineated 

test map, which we used to check accuracy. (b) Predicted mineral map for the test area. Red color 

signifies where pixels in the predicted map diverge from the manually delineated test map. This shows 

that most divergent pixels are at mineral grain boundaries.

A combined confusion matrix for pixel-level comparisons from every test and predicted map showed the most 

common divergent classification was chlorite for biotite. This is likely because biotite and chlorite have similar 

elemental compositions and because they often share a grain boundary (chlorite is a product of hydrothermal 

alteration of biotite), which means they are more prone to disagreement along grain boundaries. Among the major

minerals, our models divergently classified potassium feldspar as plagioclase feldspar most often, likely because 

many potassium feldspar grains in the Rio Blanco tonalite contain small amounts of Na, like plagioclase. 

16

372

373

374

375

376

377

378

379

https://doi.org/10.5194/egusphere-2024-1017
Preprint. Discussion started: 9 April 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4 shows close agreement between the RF-predicted abundance and the manually mapped abundance in the

test areas, with a mean difference for a given phase of 0.45 ± 0.02% across the three test maps. So, although some

predicted pixels were misaligned spatially, the RF-predicted mineral abundances agree well with manual 

estimates derived from the test maps.

Figure 4. RF model-predicted mineral abundance vs. manually mapped mineral abundance in the test areas of 

the three samples with test maps. The dashed line is a 1:1 line. Although there was some spatial mismatch 

around the edge of mineral grains (e.g., Fig. 3), the RF-predicted modal abundances agree well with 

abundances inferred from manual mapping in the test areas.

Table 2. Mean F1 scores (accuracy metric) for mineral 

phases among the three test maps (Fig. 4), based on 

comparison of automated mineralogy maps to manually 

delineated mineralogy maps.

Mineral Mean F1 score

All phases (frequency-weighted) 0.95

Plagioclase feldspar 0.96

Quartz 0.94

Hornblende 0.94
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Biotite 0.94

Potassium feldspar 0.88

Fe-Ti oxides 0.91

Chlorite 0.79

Apatite 0.72

4.2 Sensitivity of mineral maps to random forest hyperparameters and input features

In our application of the method in Section 2 to the 14 samples in Section 3, we used a set of default values for 

three RF hyperparameters: maximum tree depth, number of trees, and minimum sample size per node. Reviews 

of hyperparameter tuning on RF models have shown that the number of trees and the minimum number of classes

per node can have a large effect on classification accuracy (Probst et al., 2019). How sensitive are the output 

mineral maps to the user’s choice of these hyperparameter values? 

Orfeo Toolbox does not contain a facility for hyperparameter tuning in QGIS, so we developed a workflow to 

undertake our own hyperparameter optimization outside of QGIS in Python. This is not a necessary step in the 

method, but we have included this code in the Supplement for users who wish to conduct their own 

hyperparameter optimization. We began by converting the smoothed elemental intensity image data in the three 

training areas within the manually delineated test maps into NumPy arrays (Harris et al., 2020) using a 

combination of three Python libraries: rasterio (Gillies et al., 2019), geopandas (Jordahl et al., 2020), and shapely 

(Gillies et al., 2022). We then used the implementation of the RF classifier from the machine-learning package 

scikit-learn (Predregosa et al., 2011) for both hyperparameter optimization using a randomized five-fold cross 

validation (Breiman and Spector, 1992) and derivation of feature importance using permutation testing (Breiman,

2001). Through these operations we seek to find optimal hyperparameters and test the importance of input 

features (here, elements), respectively. 

We used the scikit-learn RandomizedGridCV function to systematically test the sensitivity of the output mineral 

maps to the RF hyperparameter values. To do this, we trained 100 unique RF models across a range of maximum 

tree depth (1-100), number of trees (10-2000), and minimum sample size per node (5-25). These hyperparameters

are common between the Orfeo Toolbox and scikit-learn implementations of the RF classifier. We used five-fold 

cross-validation, in which each randomly selected set of hyperparameters is used to train the same model five 
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times while sampling different portions of the training data (Breiman and Spector, 1992). We report the best fit 

parameters and resultant accuracy in terms of the frequency-weighted F1 score upon comparison to the test maps 

using these optimized parameters. 

Orfeo Toolbox has not yet incorporated a capacity to derive feature importance scores. Feature importance in RF 

classification is calculated by permutation testing, which is the extent to which an accuracy metric declines if a 

single input feature’s unused training data is randomly altered during the training process and validation process 

(Breiman, 2001; Guo et al., 2011). We used the sci-kit learn function permutation_importance to assess 

importance using the frequency-weighted F1 score. We report the feature importance for the three samples with 

manually delineated test maps and discuss their implications.

Tuning the hyperparameters in scikit-learn showed that both a higher maximum tree depth and number of trees 

may be optimal for our RF models, while the minimum sample for splitting was more variable (Table 3). Using 

these optimized RF hyperparameters within Orfeo Toolbox yielded a mean frequency-weighted F1 score of 0.95 

when comparing the three samples with manually delineated test maps, which is the same F1 score realized by 

using the default hyperparameters. As the two implementations of the RF classifier are somewhat different in 

terms of available hyperparameters, the comparison is imperfect, but does provide a check to see if the default 

hyperparameters could be improved upon. That an optimized set of hyperparameters delivered very little to no 

increase in accuracy is unsurprising as RF models are known to perform well with little to no tuning if reasonable

hyperparameter values are initially used (Maxwell et al., 2018). Unless low F1 scores are realized during Step 4, 

it is our recommendation that the default RF hyperparameters in Orfeo Toolbox be used.

Table 3. Optimal RF hyperparameters from five-fold cross validation 

performed using sci-kit learn.

Sampl

e

Maximum tree

depth

Number of

trees

Minimum sample for

split

1-13a 73 1685 25

6-3a 94 1371 5

16-2a 73 1581 5

19

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

https://doi.org/10.5194/egusphere-2024-1017
Preprint. Discussion started: 9 April 2024
c© Author(s) 2024. CC BY 4.0 License.



Feature importance, as determined through permutation testing, showed that both K and Mg were the most 

important features for our scikit-learn trained models with mean decreases in accuracy based on frequency-

weighted F1 scores derived from the training and validation process on unused data of 0.29 for both elements 

(Fig. 5). Ti was relatively unimportant with a very small, slightly positive value, implying it could be omitted. 

Although Ti is present within biotite and Fe-Ti oxides in our samples, Ti showed little to no decrease in mean 

accuracy as both biotite and Fe-Ti oxides can be classified using other elements. We tested whether our feature 

importance scores were pertinent to models in Orfeo Toolbox by leaving out, in turn, K, Mg, and Ti during 

training and validation process. Excluding K decreased mean F1 scores due to the degradation of potassium 

feldspar, biotite, and chlorite accuracy. In contrast, omitting Mg did not decrease F1 scores, showing that a 

feature importance score does not directly translate to decreased model accuracy upon omission (Cutler et al., 

2011). Leaving out Ti had little effect on F1 scores. If a user of our method is unsure whether an element could 

be a truly important feature, omitting an important element from the training process by creating virtual rasters 

without that element should yield a notable degradation in training F1 scores.

Figure 5. Feature importance from scikit-learn using permutation testing for all six input elements for 

the three samples with test maps. Mean accuracy decrease is the change in the F1 score due to 
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randomly changing feature data in the unused portion of the training data during the validation process.

In Orfeo Toolbox, training models that omitted K degraded F1 scores while those that omitted Mg 

yielded little change, indicating that feature importance score does not always directly map onto model 

accuracy and that some experimentation with input features (elements) during the training phase is 

warranted.    

4.3 Sensitivity of mineral maps to filter sizes

In our application of this method to our samples, we applied a circular, 7-pixel radius mean filter to the EDS-

generated elemental intensity rasters (Step 2 in Section 2), and we applied a circular, 10-pixel radius majority 

filter to the output mineral maps (Step 6). To quantify the sensitivity of the output mineral maps to these 

“hidden” parameters, we generated a series of RF models across a range of mean filter radii for the elemental 

intensity rasters (no filter, 2, 5, 7, 10, and 20 pixels) and a range of majority filter radii (no filter, 2, 5, 7, 10, and 

20 pixels). For the three thin sections with manually delineated mineral maps, we calculated the frequency-

weighted F1 score of the entire thin section by comparing each of the RF-predicted mineral maps to the manually

delineated test maps. 

Figure 6 reveals that both the mean filter and the majority filter affect the accuracy of the predicted mineral maps.

The largest impact on the accuracy, as measured by F1 score, was in the application of any mean filter at all to 

the input elemental intensity rasters. The left panel in Fig. 6 shows that applying no mean filter to the elemental 

intensity rasters produced low F1 scores (0.52-0.69) for all models and all samples, regardless of the size of the 

majority filter. Accuracy increased with mean filter radius up to 5 and 7 pixels, which yielded high F1 scores at 

all majority filter sizes (0.91-0.96) due to the elimination of spurious inclusions within larger mineral grains 

(middle panels in Fig. 6). Beyond that size, accuracy decreased slightly with higher mean filter radius, with lower

F1 scores at radii of 10 pixels (F1 scores of 0.90-0.95) and 20 pixels (0.87-0.89). This implies an intermediate 

optimal mean filter radius of 5-7 pixels for these samples.

Accuracy was sensitive to the size of the majority filter, particularly for models that applied no mean filter or a 

small (2-pixel radius) mean filter to the input elemental intensity rasters (Fig. 6). For the models that applied a 

mean filter of any size, accuracy was lower at small majority filter radii (0 or 2 pixels) and large radii (20 pixels) 

than at intermediate majority filter radii (5-10 pixels). At the largest radii, the RF-predicted mineral grains begin 

to lose shape, becoming more circular. Thus, accuracy was maximized at intermediate majority filter radii of 5-7 
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pixels, just as it was at intermediate mean filter radii. Excluding plagioclase and quartz (which generally do not 

occur as isolated grains), the three samples with test maps (6-3a, 1-13a, and 16-2a) have a median grain area of 

~0.005 mm2 (n = 5188 mineral grains across all three samples) while the 5-7-pixel radii filters have areas of 

~0.001 mm2 and ~0.002 mm2, respectively. These optimal sizes most likely result from a mix of the initial EDS 

pixel resolution and data quality and the types and sizes of minerals in the thin section (Lanari et al., 2014; 

Ortolano et al., 2018), so we recommend that users experiment to find the optimum filter sizes for their samples.  

Figure 6. Accuracy of the output mineral maps (as quantified by frequency-weighted mean F1 scores) 

for combinations of mean filter and majority filter sizes for the three samples with test maps. Each 

section is a single mean filter size. The most accurate mineral maps (i.e., those with the highest F1 

scores) were generated using a 5- or 7-pixel radius mean filter combined with a 5- or 7-pixel radius 

majority filter. 

5 Discussion

5.1 Advantages of this open-source automated mineralogy method

Situating our workflow in a free and open-source GIS environment confers several practical benefits. Both Orfeo 

Toolbox and QGIS are frequently updated with source code that can be examined and modified, unlike many 
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proprietary hardware/software systems (Keulen et al., 2020). Orfeo Toolbox and QGIS each have extensive 

documentation and user forums monitored by the developers, which can aid in addressing user issues (Raza and 

Capretz, 2015). Incorporating open-source software into scientific methods fosters transparency and 

reproducibility as the software is widely accessible and more easily scrutinized (Ramachandran et al., 2021). As 

both Orfeo Toolbox and QGIS are ongoing efforts with active contributing communities, our no-code workflow 

is tied to software that is not likely to fall into disrepair or unavailability, unlike much open-source scientific 

software (Coelho et al., 2020). Furthermore, both Orfeo Toolbox and QGIS are available for all major operating 

systems, Windows, macOS (Intel), and Linux, so this factor does not limit accessibility. Orfeo Toolbox will 

likely continue to incorporate new state-of-the-art, machine-learning algorithms. For example, Orfeo Toolbox has

recently been unofficially extended to utilize the Google TensorFlow library (Abadi et al., 2016) to perform deep-

learning tasks on remote sensing imagery (Cresson, 2018, 2022). There are also efforts to develop open-source 

scanning electron microscope systems and attendant software such as the NanoMi project (Malac et al., 2022). 

All of this means that automated mineralogy methods are likely to become more popular and accessible.  

We expect that a broad range of geoscientists will be capable of using this GIS-based method, since many 

geoscience undergraduate programs incorporate GIS into courses (Marra et al., 2017). It requires no 

programming skill to obtain mineral maps, thereby eliminating a potential barrier for use (Bowlick et al., 2016). 

Since the workflow takes place within a GIS environment, the input elemental intensity rasters could easily be 

processed in other ways besides the mean smoothing filter that we applied here, such as edge-detection filtering 

or elemental intensity ratioing. Creation of optimal input features, so-called feature engineering, is fostered by the

many QGIS frontends that interface with SAGA GIS and GDAL raster manipulation programs. Our method does 

not require a corresponding plugin for Orfeo Toolbox/QGIS, but much of it could be automated from the Orfeo 

Toolbox/QGIS Python API or as QGIS console commands, if desired. Input parameters for image filters and 

hyperparameters for the RF models can be saved as JavaScript Object Notation (JSON) files, which can be 

loaded in later, overcoming some of the reproducibility issues inherent in workflows using graphical user 

interfaces (Brundson, 2016). 

5.2 Illustration of the utility of random forest-generated mineral maps

There are many potential uses for thin section-scale mineral maps once they have been generated. Converting the 

mineral maps into vector form allows for the calculation of derived parameters such as median grain area for 

minerals that occur as single grains (e.g., biotite), distance between grains of a mineral, and the types of minerals 
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surrounding a grain or grains in the case of abundant, connected minerals like plagioclase and quartz. This type of

data is normally generated by proprietary automated mineralogy systems but could aid in geoscience disciplines 

beyond ore geology or petroleum geology (Han et al., 2022). An illustrative example is in the analysis of grain-

scale properties of biotite. This is of wide interest because oxidation of ferrous Fe in biotite drives expansion of 

biotite grains, which generates stresses in the surrounding rock that may be large enough to fracture the rock 

(Fletcher et al., 2006; Goodfellow et al., 2016; Goodfellow and Hilley, 2022). To the extent that biotite expansion

promotes generation of regolith from bedrock, it may even influence the km-scale evolution of mountainous 

topography (Wahrhaftig, 1965; Xu et al., 2022). In granitic rocks, numerical modelling has shown that biotite 

abundance influences the accrual of microscale damage (Shen et al., 2019) and weathering profile development is

partially guided by biotite crystal size (Goodfellow and Hilley, 2022). These are two properties that can be 

directly measured in our thin section-scale mineral maps. 

To obtain such mineral maps in some previous studies, researchers have often engaged in manual or semi-

automated characterizations of sample mineral properties (Buss et al., 2008; Ündül, 2016). These workflows are 

often tailored for a single study (e.g., Goodfellow et al., 2016). Methods that are based on generalizable 

workflows involving automated mineralogy methods such as the one presented in this study could enhance 

comparability between studies. Since we converted the predicted mineral maps into a vector (polygon) form 

within QGIS, we could use built-in functions to gather large amounts of data on grain neighbours or perform 

grain size measurements. For example, the 20 largest biotite grains in samples 1-1a and 6-3b comprise 80% and 

94% of the total biotite area, respectively (Fig. 7a-b). The median grain area of these 20 biotite grains in sample 

1-1a is 0.60 mm2, several times larger than that in sample 6-3b (0.19 mm2; Fig. 7c). 

We can also use raster morphology operations on the mineral maps to measure distances between mineral phases.

In analog and numerical experiments that impose stress on granitic rocks (Tapponier and Brace, 1976; Li et al., 

2003; Mahboudi et al., 2012), biotite grains can act as preferential origination points for microfractures, but 

biotite can also arrest propagation of microfractures arising from neighboring grains. Thus, the distance between 

biotite grains may be an important, yet rarely measured property. In the example of the two samples in Fig. 7, 

biotite grains have similar median distances from one another but different probability distributions of distances 

between biotite grains, particularly in the long tail of the distributions at larger distances (Fig. 7e). We can also 

extract the composition of neighbouring grains surrounding biotite (Fig. 7f), which reveal that chlorite is much 

more abundant near biotite relative to the rest of the thin section. Data like these can be useful for those studying 
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the impacts of different grain-grain contacts on stress response during rock mechanics experiments (e.g., Aligholi

et al., 2019), which has shown that some mineral interactions can have an outsized influence on the development 

of fractures and failure. In sum, the data in Fig. 7 illustrate the potential power of RF-generated mineral maps to 

improve quantitative in-situ investigations of biotite weathering (Behrens et al., 2021) and form the basis for 

more realistic models of biotite-driven rock damage (Shen et al., 2019).

Figure 7. Example of quantities that can be obtained from mineral maps generated by the automated method in 

this study. (a-b). Colours highlight biotite grains identified in the RF-generated mineral maps in thin sections 1-

1a (blue) and 6-3b (orange). (c-f). Biotite properties extracted from predicted maps for the 20 largest biotite 

grains in each sample. These data could help inform numerical models of microcrack generation and allow for 

quantitative comparisons between different samples or lithologies (e.g., Shen et al., 2019). (c) Boxplot of biotite

grain area (mm2) for the 20 largest biotite grains for both samples. (d) Boxplot of number of grains surrounding 

the largest 20 biotite grains. (e) Normalized frequency distribution of distances between biotite pixels (not 

including those inside a biotite grain). (f) Composition of neighbours as a fraction of perimeter.
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5.3 Limitations

Our method’s greatest asset is that it can generate thin section-scale mineral maps without requiring the use of 

propriety software or a background in programming. Its most important limitation is that it is most accurate if the 

user trains a RF model for every thin section sample. Using a RF model that was trained on one sample to predict

mineral maps for another sample can yield mineral maps that accurately map mineral phases in some areas but 

inaccurately in others. For example, when we applied a RF model that was trained on sample 16-2a to sample 6-

3a, apatite abundance was overpredicted by a factor of 5 possibly due to 6-3a having some highly calcic zones 

within plagioclase grains. So, for the most accurate results, we recommend training each thin section separately.

A second limitation is that this method tends to be less accurate at identifying low abundance phases. Unlike 

some proprietary automated mineralogy software systems, our method does not use predefined EDS spectra to 

identify mineral phases. Instead, our method trains RF models on the samples themselves, which means that each

mineral phase of interest must be abundant enough to properly train the RF model. The relatively low F1 scores 

of the lower abundance phases in our samples (Table 2) suggest that the minimum abundance required to train a 

RF model is larger for minerals with small grain size (e.g., in the case of apatite) and a lack of compositional 

distinction (e.g., in the case of chlorite). Mineral phases must be resolvable by the EDS data, so collecting EDS 

data with a field-emission-gun SEM at higher resolution (~0.1 μm) could improve mineral classification in rocks 

with finer grain size distributions (Han et al., 2022).

A final limitation is that mineral grains that border mineral grains of the same phase appear to the RF model as 

regions of the same mineral, and hence can be classified as a single mineral grain, rather than two grains. This is 

a common issue shared with other automated mineralogy methods (Lanari et al., 2014; Hrtska et al., 2019), and it 

can affect inferred probability distributions of mineral grain size of those mineral phases if not properly 

accounted for. 

6. Conclusions

The main contribution of this study is a new automated method for obtaining mineral maps from EDS scans of 

rock thin sections. This method is implemented within a free and open-source GIS application, uses free and 

open-source plugins for RF image classification, and requires no programming. To demonstrate the utility of this 

method, we trained RF models on EDS scans of 14 thin-section samples of a well-studied, plutonic igneous rock. 

The resulting model-predicted mineral maps compare well with manually delineated mineralogy maps, with 95% 
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of pixels on the mineral maps predicted correctly. With regards to the most abundant minerals in the Rio Blanco 

tonalite, plagioclase feldspar and quartz, the models attained 96% and 94% accuracy, respectively. 

We utilized scikit-learn’s implementation of the RF classifier to search for optimal RF hyperparameters and to 

test input feature (element) importance. We saw no increase in accuracy using optimal hyperparameters found in 

scikit-learn when used within Orfeo Toolbox, so we recommend using the default hyperparameters. We did see 

that an important input feature, K, did lower accuracy when not included in Orfeo Toolbox-based models, so 

some level of experimentation with input features during the training step is warranted. We also tested to see if 

our pre- and post-processing steps had a large influence on accuracy by using different sizes of mean and 

majority filters. An absence of filtering and excessively large filters led to lower accuracy while filters in the 

range of 5-10 pixels for both mean and majority filters led to higher accuracy.

Situating the workflow within a free and open-source GIS environment confers distinct advantages. Open source 

extends benefits such as source code availability, extensive documentation, and accessibility. Moreover, as the 

workflow is within a GIS environment, the application is likely to be familiar to a range of geoscientists. Also, all

the available tools (e.g., different types of image filters) within the GIS allow for easy input feature 

experimentation. The mineral maps from our method proved highly accurate when compared to manually-

delineated maps, and estimates of mineral abundance compared well to previous estimates from the literature for 

our sample lithology. Many of the measured quantities produced by proprietary automated mineralogy systems 

are obtainable once predicted mineral maps are converted to vector datasets. These measurements, such as 

median grain size and amount of grain neighbours, can be useful to researchers studying microscale damage 

processes that arise through rock weathering or rock mechanics experiments. We hope that this method will be 

useful for researchers who wish to obtain rapid, automated mineralogy maps of thin sections.

Code and Data availability

The manuscript supplement containing the code for analysis and visualizations is available through a Zenodo 

repository (https://zenodo.org/doi/10.5281/zenodo.10912627; Reed et al., 2024). The supplement also contains 

data (smoothed elemental intensity rasters, training polygons, and test maps) for the three thin sections with 

manually delineated test maps.
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