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Abstract 12 

Quantitative mapping of minerals in rock thin sections delivers data on mineral abundance, size, and spatial 13 

arrangement that are useful for many geoscience and engineering disciplines. Although automated methods for 14 

mapping mineralogy exist, these are often expensive, associated with proprietary software, or require 15 

programming skills, which limits their usage. Here we present a free, open-source method for automated 16 

mineralogy mapping from energy dispersive spectroscopy (EDS) scans of rock thin sections. This method uses a 17 

random forest machine learning image classification algorithm within the QGIS geographic information system 18 

and Orfeo Toolbox, which are both free and open source. To demonstrate the utility of this method, we apply it to 19 

14 rock thin sections from the well-studied Rio Blanco tonalite lithology of Puerto Rico. Measurements of 20 

mineral abundance inferred from our method compare favourably to previous measurements of mineral 21 

abundance inferred from X-ray diffraction and point counts on thin sections. The model-generated mineral maps 22 

agree with independent, manually-delineated mineral maps at a mean rate of 95%, with accuracies as high as 23 

96% for the most abundant mineral (plagioclase) and as low as 72% for the least abundant mineral (apatite) in 24 

these samples. We show that the default random forest hyperparameters (i.e., tuneable settings that control 25 

behaviour) in Orfeo Toolbox yielded high accuracy in the model-generated mineral maps, and we demonstrate 26 

how users can determine the sensitivity of the mineral maps to hyperparameter values and input features. These 27 

results show that this method can be used to generate accurate maps of major minerals in rock thin sections using 28 

entirely free and open-source applications.   29 

   30 

1 Introduction 31 
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Minerals are the fundamental units of rocks and many engineered materials (Perkins, 2020; Callister and 32 

Rethwisch, 2020). Improving the quantification of mineral properties is a longstanding research objective in 33 

industry and academic research (Pirrie and Rollinson, 2011), given the importance of mineral properties in 34 

chemical weathering (e.g., Hilton and West, 2020), rock damage (e.g., Shen et al., 2019; Xu et al., 2022), 35 

planetary evolution (e.g., Hazen et al., 2008), crustal deformation (e.g., Burgmann and Dresen, 2008), and 36 

nutrient supply (e.g., Callahan et al., 2022). Quantitative automated mineralogy, the computerized mapping of 37 

minerals across a sample, results in measurements of mineral modal abundance, mineral grain size and shape, and 38 

the spatial arrangement of minerals amongst one another (Sutherland et al., 1988; Sutherland & Gottlieb, 1991; 39 

Gu, 2003; Schulz et al., 2020). Modal abundance is useful because it can yield information on the sedimentary 40 

and tectonic environments in which the rock formed (Harlov et al., 1998; Hupp and Donovan, 2018), while the 41 

spatial arrangement of minerals in a rock, termed rock fabric, can yield further data on mechanical anisotropy and 42 

paleo-environmental conditions during the rock’s formation and metamorphism (Přikryl, 2006; Bjørlykke, 2014). 43 

Simultaneous quantification of modal mineralogy and detailed mapping of the spatial arrangement of minerals in 44 

an automated manner, or automated mineralogy, is thus a key tool for investigating many geologic processes. 45 

Wide adoption of automated mineralogy techniques are limited by the prohibitive cost or programming skills 46 

required to use many automated mineralogy software applications, so this technique has been mostly restricted to 47 

ore characterization, resource processing, and petroleum geology (Nikonow and Rammlmair, 2017; Schulz et al., 48 

2020).  49 

 50 

In practice, automated mineralogy methods use a combination of image analysis and classification methods to 51 

identify minerals from elemental composition data (or their derivatives), which can be collected with a variety of 52 

analytical methods, including energy dispersive X-ray spectroscopy (EDS), micro-X-ray fluorescence (μ-XRF), 53 

and laser-induced breakdown spectroscopy (LIBS) (Nikonow et al., 2019). Automated mineralogy is being 54 

slowly adopted by researchers outside of resource extraction for combined modal analysis of bulk mineralogy, 55 

estimates of grain size distribution, and mineral association (Han et al., 2022), which can be useful in a variety of 56 

disciplines such as petrology, applied geochemistry, and rock mechanics (Sajid et al., 2016; Elghali et al., 2018; 57 

Rafiei et al., 2020).  58 

 59 

Automated mineralogy from EDS with the aid of back-scattered electron (BSE) imaging has been developing 60 

since the 1980s and has grown alongside advances in scanning electron microscopy (SEM) and image processing 61 

algorithms (Miller et al., 1983; Fandrich et al., 2007). Commercial automated mineralogy systems are available 62 
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as integrated hardware-software systems or as standalone software packages which are combined with scanning 63 

electron microscopes (Schulz et al., 2020). Some systems only work with certain scanning electron microscopes 64 

and detectors from the same company QEMSCAN (Gottlieb et al., 2000), FEI-MLA (Fandrich et al., 2007), and 65 

TESCAN TIMA-X (Hrstka et al., 2018). Others are purely software-based solutions which are integrated with 66 

various SEMs: ZEISS Mineralogic, Oxford AZTecMineral, and Thermo-Scientific MAPS Mineralogy. The price 67 

of hardware and software upgrades required to accommodate these systems renders them cost prohibitive to 68 

many labs outside the resource extraction industry (Nikonow and Rammlmair, 2017). All systems have some 69 

general ability to classify EDS spectra based on a database of pre-defined and/or customizable mineral spectra 70 

standards (Schulz et al., 2020). Since the underlying software is proprietary, no source code is available for these 71 

systems, and details on how they use spectra to classify minerals are sparse to non-existent (Kuelen et al., 2020). 72 

Furthermore, the accuracy of mineral prediction from these systems has rarely been quantified (Blannin et al., 73 

2021). 74 

 75 

To date, several open-source (i.e., source code is available and modifiable) automated mineralogy solutions have 76 

been implemented. Ortolano et al. (2014, 2018) predicted modal mineralogy and mapped minerals from a 77 

multistep workflow involving principal component analysis, maximum likelihood classification, and multi-linear 78 

regression performed on EDS or WDS spectral data using the Python extension within ArcGIS. Li et al. (2021) 79 

used a variety of legacy machine-learning and deep-learning models to classify minerals in oil reservoir rocks 80 

using mineral maps generated from proprietary software as training data. In terms of image classification, deep-81 

learning methods are state of the art but currently require the user to be relatively adept at programming and 82 

knowledgeable of the computer vision principles employed (Khan et al., 2018; Zhang et al., 2019). A method that 83 

requires little to no programming ability would allow more users to benefit from automated mineralogy data. An 84 

example of this approach is XMapTools by Lanari et al. (2014), a graphical, open-source automated mineralogy 85 

solution with multiple machine-learning classification algorithms within a standalone, MATLAB-based 86 

environment. 87 

 88 

Random forest (RF) classification is a supervised classification algorithm (i.e., the user generates training data) in 89 

which an ensemble of decision trees produces a majority vote that assigns a thematic classification to unknown 90 

data (Breiman, 2001). Each decision tree within the ensemble is trained on a random sample of the training data 91 

using only a set number of random features at each branch (Cutler et al., 2011). During prediction, for each 92 

decision tree, unknown data traverses a sequence of rule-based branches which culminate in the assignation of a 93 
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predicted class (Breiman, 2001). Each tree gets one vote for each pixel; the predicted class with the most votes is 94 

assigned to the unknown data. There are several reasons why RF classification is useful for automated 95 

mineralogy mapping. It is well suited for accommodating unbalanced training data and nonparametric data 96 

distributions (Maxwell et al., 2018), which are common in rock samples due to large differences in relative 97 

mineral abundances and elemental intensities (Ahrens, 1954). In addition, recent work showed that RF 98 

classification performed better than other legacy machine-learning algorithms (e.g., support-vector machines; 99 

Hearst et al., 1998) in mineral classification of reservoir rocks (Li et al., 2021).  100 

 101 

The main goal of this study is to present a new, user-friendly quantitative automated mineralogy method that we 102 

developed and implemented within QGIS, a free and open-source geographic information system. Unlike 103 

previous methods, the method presented here uses only freely available and open-source applications, and it 104 

requires no programming by the user. We use the free and open-source Orfeo Toolbox plugin for QGIS 105 

(Grizonnet et al., 2017) to predict thin-section scale bulk mineralogy from EDS elemental intensity data using a 106 

RF image classifier (Breiman, 2001). Situating the workflow within a GIS environment has advantages over 107 

standalone programs such as direct access to raster and vector manipulation and analysis tools and database 108 

management (Tarquini and Favalli, 2010; Berrezueta et al., 2019). Furthermore, we present an overview of the 109 

automated mineralogy method and apply it to a set of rock samples from the Rio Blanco tonalite to demonstrate 110 

the method’s utility. By outlining an easy-to-use and open-source solution, we intend to provide an automated 111 

mineralogy method to a broader community of users.  112 

 113 

2 Overview of the method 114 

 115 

The goal of our automated mineralogy method is to produce quantitative mineralogy maps of rock thin sections 116 

solely from EDS data acquired using a SEM. Here in Section 2, we briefly summarize each step needed to reach a 117 

predicted mineral map. In Section 3, we demonstrate how to use the method by applying it to a set of rock thin 118 

sections, during which we elaborate on the choices users need to make and the functions they need to use during 119 

each step. We also provide a detailed step-by-step guide in the supplementary information (Reed et al., 2024).  120 

 121 

The starting point for this method is elemental rasters derived from EDS-generated scans of rock thin sections. 122 

For the purposes of our method, we take these scans as already measured and in hand. Generating such scans 123 

requires preparing thin sections and analyzing them with a scanning electron microscope, both of which are done 124 
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by established procedures (Goldstein et al., 2018). The necessary output from such scans are rasters of elemental 125 

intensity (counts/eV), one for each element of interest (e.g., Ca, Na, K, etc.). After the EDS elemental intensity 126 

rasters have been generated, all the remaining steps in the method are conducted in QGIS. No programming is 127 

required in any step. Instead, users need only be familiar with QGIS and their samples. 128 

 129 

The first step involves importing the raw elemental intensity rasters into QGIS with no coordinate reference 130 

system (Fig. 1a). This also involves compiling a list of all the minerals that will be mapped in the thin section, 131 

which can be assessed based on prior knowledge, literature, and examination of EDS spectra. Our method is not 132 

viable for those thin sections from completely unknown lithologies that resist efforts to identify minerals under 133 

the microscope and/or manual examination of EDS data. As we describe in Section 4, we recommend restricting 134 

this to minerals with sufficiently high abundance (>0.1%) to be adequately trained upon. For those workers that 135 

require high accuracy in very low abundance minerals, our method is not advisable. 136 

 137 

The second step is to smooth the raw elemental intensity rasters (Fig. 1b). This is useful because EDS-generated 138 

elemental intensity rasters are subject to noise, which can arise through electron beam interactions with the 139 

sample (Goldstein et al., 2018). As we describe in Section 4.3, we found that this smoothing step was best done 140 

with a 7-pixel radius circular mean filter, in which each pixel is assigned the mean value of the surrounding 141 

pixels in a circular window (Gonzalez and Woods, 2018). We performed this on intensity rasters from the 142 

example samples we applied our method to in Section 3. For this, we used the free and open-source System for 143 

Automated Geoscientific Analyses (SAGA) plugin for QGIS (Conrad et al., 2015).  144 

 145 

The third step is to gather the smoothed elemental intensity rasters into a virtual raster, a type of container for 146 

multiple rasters, with one band for each element of interest (Fig. 1c). For example, if the user chooses to import 147 

elemental intensity rasters for six elements, as we did in the application of this method to our samples in Section 148 

3, this will result in a virtual raster with six bands. For this, we used the Geospatial Data Abstraction Library 149 

(GDAL/OGR contributors, 2022), which is a standard library in QGIS. 150 

 151 

The fourth step is to train a RF image classification model on the virtual raster (Fig. 1d). This requires generating 152 

a large number (~hundreds) of small polygons on the virtual raster. Each of these small polygons must lie within 153 

a single mineral, which the user must identify and assign to the polygon. Collectively, these small polygons must 154 

cover all the minerals of interest in the thin section in sufficient number to train the RF model. If the user wishes 155 
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to assess the accuracy of the RF-predicted mineral map to a manually mapped portion of the thin section, we 156 

recommend restricting the location of these small training polygons to a relatively small portion of the thin 157 

section (~10-20% by area). This will ensure that other portions of the thin section can be mapped manually to 158 

compare against the RF-predicted mineral map. If the user does not wish to conduct such an accuracy assessment 159 

after the RF-predicted mineral map is complete, then these small training polygons can be generated anywhere 160 

across the entire thin section.  161 

 162 

After the RF model has been trained, the fifth step is to apply the trained RF model to the entire virtual raster 163 

(Fig. 1e). During this step, the RF model assigns a mineral class to every pixel in the virtual raster, which yields a 164 

mineral map for the entire thin section. For these RF modeling steps, we used the free, open-source Orfeo 165 

Toolbox plugin for QGIS (Grizonnet et al., 2017). 166 

 167 

The sixth and final step is to denoise the RF-generated mineral map (Fig. 1f). For this, we applied a circular 168 

majority filter using the SAGA plugin for QGIS, in which each pixel is assigned the modal value of the 169 

surrounding pixels in a circular window (Gonzalez and Woods, 2018). As we describe in Section 4.3, we found 170 

that this was best done with a 10-pixel radius majority filter in the example samples we applied this to in Section 171 

3. This eliminates most isolated pixels within larger groups of pixels of a uniform predicted mineral and rare 172 

pixels that were not classified due to voting ties (Ortolano et al., 2018; Nikonow et al., 2019)  173 

 174 

At this stage, the RF-predicted mineral map is complete. It can now be examined or manipulated according to the 175 

user’s needs. For instance, the mineral map can be converted from a raster to a vector form to facilitate 176 

measurement of mineral grain size and other properties (Section 5.2). 177 

 178 
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Figure 1. Example application of the automated mineralogy method. (a) Step 1: Import raw elemental 

intensity rasters (Ca, Na, Mg, Fe, K and Ti) into QGIS. Here, the rasters shown are for the thin-section 

sample 1-13a. The zoomed-in view of the Ca raster exemplifies the short-wavelength noise in the 

elemental rasters. (b) Step 2: Smooth each elemental intensity raster with a circular mean filter. The 

zoomed-in view shows that this filter has eliminated much of the short-wavelength noise that was in the 

raw elemental rasters. (c) Step 3: Create a virtual raster by combining the smoothed elemental rasters 

into a single image container with bands for each element. The white circle shows the area within 

which polygons were generated to train the random forest (RF) model in Step 4. (d) Step 4: Within the 

training area boundary in the virtual raster (large white circle, as in Step 3), draw a series of small 

polygons (here, small white circles). Each polygon must lie within a single known mineral, and 

collectively these small polygons must sample all mineral of interest (here, plagioclase feldspar, quartz, 

hornblende, biotite, potassium feldspar, Fe-Ti oxides, apatite, and chlorite). These polygons collect the 

pixel-level data on which the RF model will be trained. (e) Step 5: Apply the trained RF model to the 

entire sample to create a thin section-scale mineral map. (f) Step 6: Smooth the RF-predicted mineral 

map with a circular majority filter. 

 179 

 180 

3 Application of the method 181 

 182 

3.1 Preparation of rock thin sections from the Luquillo Critical Zone Observatory 183 

To demonstrate the utility of the method described in Section 2, we applied it to 14 thin sections of Rio Blanco 184 

tonalite from the Luquillo Critical Zone Observatory (LCZO) in Puerto Rico, United States, a site that has been 185 

the subject of substantial research on the weathering of igneous rocks into saprolite and soil (White et al., 1998; 186 

Riebe et al., 2003; Stallard and Murphy, 2012; Brocard et al., 2023). The lithology is a phaneritic, plutonic 187 

igneous rock with some evidence of low-grade hydrothermal alteration (Speer, 1984). The Rio Blanco tonalite 188 

provides an ideal case study because mineral abundance has been characterized previously via quantitative X-ray 189 

diffraction (XRD) and point counting modal analysis (i.e., systematic manual identification and counting under 190 

microscope; Ingersoll et al., 1984), which indicated the rock consists of plagioclase feldspar (andesine), quartz, 191 

biotite, hornblende, potassium feldspar, magnetite, apatite, and chlorite (Murphy et al., 1998; Buss et al., 2008; 192 

Ferrier et al., 2010).  193 
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 194 

To ready the samples for EDS, 14 petrographic thin sections were prepared on 27 x 46 mm glass slides from 195 

bedrock core quarters collected from the Rio Icacos catchment within the LCZO (Comas et al., 2019). The 196 

samples ranged in area from 34.7 to 139.5 mm2. Four samples are composed of weathered rock nearer to the 197 

surface while the rest are more pristine bedrock (Orlando et al., 2016). From each core depth, two thin sections 198 

were prepared in vertical and horizontal orientations. Our own preliminary optical microscopy observations 199 

revealed that these samples contained abundant plagioclase, quartz, hornblende, and biotite, which is consistent 200 

with previous modal analyses (Murphy et al., 1998; Buss et al., 2008). 201 

 202 

3.2 Measuring elemental intensity in thin sections with energy dispersive spectroscopy 203 

Each thin section was mapped with energy dispersive X-ray spectroscopy (EDS) using a Hitachi S-3400 VP-204 

SEM with a thermionic tungsten electron source equipped with an Oxford Instruments X-Act 10 mm2 silicon drift 205 

detector receiving X-rays across 2048 spectral bands. The EDS detector acquires a spectrum showing the energy 206 

and intensity of characteristic X-rays emitted from the sample to determine the atomic composition of the sample 207 

within the analysis volume of the primary beam (Goldstein et al., 2018). For the measurements on our thin 208 

sections, the instrument and accompanying software produced full thin-section elemental intensity maps 209 

(counts/eV) at a resolution of 4 μm/pixel, which was determined by the beam step size. EDS data were acquired 210 

with accelerating voltage of 15 kV and beam current of ~10 nA. EDS process time (also known as ‘time constant’ 211 

by some manufacturers) was 4, which is an intermediate value that balances acquisition time and data quality. 212 

EDS acquisition time was ~3.5 hours for each thin section.  213 

 214 

From the EDS analysis application included with this instrument (AZtec), we exported six TIF files for each 215 

sample (Fig. 1a) consisting of full-resolution elemental intensity rasters for the elements of interest (Ca, Na, K, 216 

Mg, Fe and Ti). These rasters contain the X-ray counts of elemental intensity at each pixel and have a mean size 217 

of over 20 megapixels over the 14 studied thin sections. We selected these elements because they are present in 218 

varying abundance in the minerals within the Rio Blanco tonalite and, hence, are useful for distinguishing among 219 

the minerals in these samples. For example, K, Mg, Fe, and Ti are present at high abundance in biotite (Dong et 220 

al., 1999) but are present at low abundance in other major minerals in this lithology (e.g., plagioclase feldspar, 221 

quartz). Our initial attempts at classification showed that the inclusion of rasters of Si and Al had no effect on 222 

classification accuracy, so we did not include them here.  223 

 224 
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This method requires a list of minerals present in the samples for both training of and prediction by the RF 225 

models (Steps 4 and 5 in Section 2). Such a list can be obtained in a variety of ways, including prior studies of 226 

qualitative mineralogy of the host lithology or mineral identification from optical microscopy on the sample thin 227 

sections. For the 14 samples analyzed here, we generated a list of minerals by inspecting the EDS-generated X-228 

ray spectral data within Oxford AZtec, a proprietary software package integrated with the SEM that we used to 229 

measure EDS scans of our samples. From these spectra we identified plagioclase feldspar, quartz, hornblende, 230 

biotite, potassium feldspar, Fe-Ti oxides (predominantly magnetite-titanomagnetite), and apatite as mineral 231 

classes for the RF models (Section 3.3). For those without offline access to a full EDS environment, some 232 

systems such as Oxford AZtec allow for the full export of data into text or binary formats, which can be accessed 233 

with free and open-source tools (e.g., HDFView or NIST DTSA-II). Due to trace abundance (Murphy et al., 234 

1998), other minerals present in the samples like epidote and titanite lacked an adequate number of trainable 235 

examples, so were neglected or combined with an associated mineral, Fe-Ti, respectively. For reference, the 236 

mean abundance of apatite, the lowest abundance mineral we trained, was ~0.1%. We recommend that minerals 237 

present at abundances lower than this be omitted or combined with the understanding that overall accuracy is 238 

most likely being negatively impacted in a minor way. 239 

 240 

3.3 Smoothing and virtualization of the elemental intensity rasters 241 

We smoothed each elemental intensity raster with a 7-pixel radius circular mean filter using SAGA’s Simple 242 

Filter tool to eliminate noise in the EDS data. We chose this filter size because it optimized the accuracy 243 

calculated during the training and validation of the RF model. We test the sensitivity of this choice in Section 4.3. 244 

We then used the GDAL gdalbuildvrt command within QGIS to group the smoothed elemental intensity rasters 245 

into a virtual raster dataset, in which each elemental raster is represented as a separate band. A virtual raster is a 246 

container for multiple rasters that encodes metadata such as file locations and other attributes in extended markup 247 

language (XML) (McInerney and Kempeneers, 2014). Opening and processing virtual raster datasets requires 248 

less computer resources as the underlying rasters are only accessed when required. 249 

 250 

3.4 Training random forest models for mineral classification 251 

Before a RF model can be tasked with assigning a mineral class to every pixel in an entire thin section, it must 252 

first be trained upon the minerals in the thin section. On each of the virtual rasters for the 14 thin sections, we 253 

selected an area encompassing less than ~15% of the total thin-section sample area within which we trained the 254 

model. We selected training areas that represented all minerals as well as possible, so that each mineral would 255 
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receive an adequate amount of training data for each mineral. Selecting a small training area in the thin section is 256 

useful because it enables users to test the accuracy of the trained model on other areas of the thin section, if 257 

desired. This is not a necessary step in the method, but in Section 4 we show how such accuracy tests can be done 258 

on other portions of the thin sections. 259 

 260 

For each mineral within the training area, we manually generated hundreds of circular polygons upon the virtual 261 

raster using the knowledge gained previously from examining the EDS spectra (Fig. 1). A single training polygon 262 

within the training area collects all pixel values contained within it from each elemental intensity raster 263 

composing the virtual raster. Labelling this polygon as a single mineral, effectively labels every pixel value 264 

contained within it as that mineral. We note that during this training step, the user should take care not to 265 

misidentify or neglect training upon abundant minerals, which could have a detrimental effect on the 266 

classification accuracy. To prevent this outcome, we used all available elemental rasters to verify that training 267 

polygons were within the bounds of the identified mineral. For a few thin sections, multiple subareas composed 268 

the training area to incorporate enough data on less abundant minerals like apatite. Because each training polygon 269 

encompassed pixel-level data for all bands from the virtual raster, the training datasets were large (>105 pixel-270 

level samples for each thin section). Hundreds to thousands of pixel-level training samples per class are generally 271 

considered sufficient for RF models (Cutler et al., 2012). Training samples per mineral were highly unbalanced 272 

(i.e., some minerals covered many more pixels than others) due to the high abundances of quartz and plagioclase 273 

relative to those of minor mineral like apatite. Orfeo Toolbox handles this potential problem automatically by 274 

randomly selecting samples at a rate relative to the size of the smallest class, ensuring that the minority classes 275 

like apatite have an equal probability of being drawn into a sample subset used to construct an individual decision 276 

tree.  277 

 278 

Using the training data obtained from the virtual raster for each thin section, we trained RF image classification 279 

models using the TrainImagesClassifier function in Orfeo Toolbox. In this function, users must select 280 

hyperparameter values for the RF model, which are tuneable parameters that control model behaviour. In 281 

machine learning, hyperparameters define the general behaviour of a model, and are distinct from model 282 

parameters, which are learned through training. For more details about RF machine learning models 283 

hyperparameters, see the review in Probst et al. (2019). We used the default hyperparameter values pre-selected 284 

in Orfeo Toolbox (Table 1) for the models employed for our final predicted mineral maps.  285 

 286 
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A measure of model accuracy is automatically calculated by the TrainImagesClassifier function at this step using 287 

unseen training data, which can be useful to examine before proceeding as to ensure that the RF model is 288 

operating correctly. The accuracy metric we focus on in this study is the F1 score (Equation 3), which is the 289 

harmonic mean of the precision metric (Equation 1) and the recall metric (Equation 2). This is a useful measure 290 

of the accuracy of RF-predicted minerals because it penalizes false positives and false negatives while rewarding 291 

true positives and neglecting true negatives (Chinchor and Sundheim, 1993), which can be very plentiful for low 292 

abundance minerals. 293 

 294 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(1) 

 295 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(2) 

 296 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 297 

In the application of Equations 1-3 to mineral maps, a true positive is defined as pixel-level agreement on the 298 

presence of a given mineral between the model prediction and unused training data, which the algorithm holds 299 

out from training for the purpose of calculating metrics such as the F1 score. Similarly, a true negative is 300 

agreement on the absence of a given mineral class. False positives and false negatives are disagreements on the 301 

presence and absence of a given mineral class, respectively. Application of the default hyperparameters to our 302 

samples yielded very high F1 scores (~0.99). This gave us confidence that the predicted mineral maps generated 303 

using the default hyperparameters were near optimal for comparison with manually delineated test maps 304 

(described in Section 4.1).  305 

 306 

Table 1. Default hyperparameter values for Orfeo Toolbox RF machine learning model and typical values 

according to Probst et al. (2019). 

Parameter name Orfeo Toolbox value Typical value(s) 

Maximum number of trees in the forest 100 500-1000 

Maximum depth of tree 5 N/A 

Size of the randomly selected subset of features at each tree node (number of features)1/2 (number of features)1/2 



13 
 

Minimum number of samples at each node 10 N/A 

 307 

 308 

We applied each trained model to its corresponding virtual raster to predict a single mineral class at each pixel, 309 

except in the case of ensemble voting ties, in which case no mineral class was assigned to that pixel. This resulted 310 

in mineral maps at the same resolution as the virtual rasters (~4 μm).  311 

 312 

3.5 Using the random forest models to generate mineral maps 313 

In our application of the trained RF models to our thin sections, the models calculated the entire thin-section scale 314 

mineral maps in a under a minute using a desktop computer (4 GHz processor; 64 GB memory). Figure 1 shows 315 

an example of one of these mineral maps.  316 

 317 

After a thin section’s mineral map has been generated, it is trivial to calculate the abundance of each mineral by 318 

counting pixels. Figure 2 shows the abundance of each mineral across all 14 samples with the error given by the 319 

mean F1 scores of the minerals. It also reveals relatively little variation in each mineral’s abundance among the 320 

14 samples, which is consistent with previous observations of the Rio Blanco tonalite. The RF-predicted mineral 321 

abundances compare well with those measured from modal analysis via point counting on BSE imagery (Buss et 322 

al., 2008) and via quantitative XRD (Ferrier et al., 2010). Buss et al. (2008) measured average areal abundances 323 

of 19.9% and 49.3% for quartz and plagioclase, respectively, comparable to the RF-predicted average abundances 324 

of 22.8 ± 1.0% and 55.8 ± 2.3% (± error from mean F1 scores) on our 14 thin sections. The combined abundance 325 

of hornblende and biotite (‘Fe-silicates’) measured by Buss et al. (2008) was 24%, which is close to the 326 

maximum RF-predicted abundance of ‘Fe-silicates’ among our 14 samples (25.0 ± 1.5%). Using common values 327 

for molar masses (M mol-1) and densities (M L-3), the XRD-based abundances (converted to areal abundance) 328 

from Ferrier et al. (2010) for quartz, plagioclase, and hornblende were 24%, 62%, and 14%, respectively, while 329 

the RF-predicted mineral maps yielded 22.8 ± 1.0%, 55.8 ± 2.3%, and 10.4 ± 0.7%, respectively. When quartz, 330 

plagioclase, and alkali feldspar abundances are normalized for usage with a Quartz-Alkali Feldspar-Plagioclase-331 

Feldspathoid diagram (Le Maitre, 2002), the RF-predicted abundances for each mineral demonstrated that all thin 332 

sections can be classified as tonalite, matching the name of the lithology.  333 

 334 

 335 
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Figure 2. Areal abundance for all 14 samples of the Rio Blanco tonalite. Error bars stem from mean F1 

scores for each individual minerals from test map comparisons (see Section 4.1). Data from the analyses of 

the Rio Blanco tonalite in Buss et al. (2008) and Ferrier et al. (2010) included for reference. 

 336 

4. Discussion: Accuracy of random forest-predicted mineral maps and sensitivity analyses 337 

 338 

4.1 Accuracy of random forest-predicted mineral maps 339 

Before applying the trained RF models to the full thin sections, we manually mapped the mineralogy of a small 340 

section for three representative samples (6-3a, 16-2a, and 1-13a) to assess the accuracy of the model-generated 341 

mineral maps. We refer to these manually delineated mineral maps as “test maps”. These test maps were 342 

manually delineated as vector polygons for all mineral classes using the elemental intensity rasters for guidance. 343 

For example, when mapping a grain of potassium feldspar, we determined the boundaries of the grain with 344 

filtered and unfiltered rasters of K as well as combined intensity rasters of multiple elements. We consider these 345 

maps to be ‘ground truth’ data, which are never perfect representations of reality (Foody, 2024), but, nonetheless, 346 

may serve to compare the performance of this method to the extremely slow process of manually mapping grain 347 

boundaries. We then rasterized the manually-delineated vector maps, which resulted in the classification of every 348 

pixel within the test maps as one of the eight minerals. The test maps averaged over 1 million pixels in size.  349 
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 350 

We compared the same section of the predicted mineral maps to the test maps using a frequency-weighted F1 351 

score (Equation 4) to gauge the average accuracy for all mineral classes. To calculate a frequency-weighted F1 352 

score, the F1 score for the ith class (F1 scorei) is weighted by the class frequency (wi), which is the proportion of 353 

pixels of class i to the total number of pixels in the test map. Here, N is the number of mineral classes. 354 

 355 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  ෍ 𝑤௜

ே

௜ୀଵ

𝐹1 𝑠𝑐𝑜𝑟𝑒௜  
(4) 

 356 

We clipped the portion of the predicted mineral map overlapping the test map from the full map for each of the 357 

three thin sections with a test map. From these two rasters, we calculated the frequency-weighted F1 score. 358 

 359 

The RF-generated mineral maps in Section 3 exhibited high accuracy. For the three thin sections that were 360 

mapped both manually and by the RF-based method in Section 2, the mean frequency-weighted F1 score among 361 

the three thin sections was 0.948 ± 0.002, meaning that nearly 95% of the pixels in the RF-predicted maps agreed 362 

with those in the manually delineated maps (Table 2). The accuracy varied among minerals. The four most 363 

abundant minerals (plagioclase, quartz, hornblende, and biotite) all have mean F1 scores of 0.94 to 0.96, while 364 

apatite, the least abundant mineral, had the lowest mean F1 score of 0.72. A closer look at the precision and recall 365 

metrics for apatite show that mean recall scores (0.62) were lower than mean precision (0.91). This indicates that 366 

the models correctly predicted apatite when attempted but the models often neglected to predict apatite. Because 367 

apatite is rare and appears as small inclusions in our samples, less training data was collected for it than for other 368 

minerals in each sample. This can result in class imbalances in training data, which, for rare mineral classes (in 369 

our case, apatite), can produce scenarios in which the model does not try to predict the mineral class, as the 370 

diversity of training data for rare classes (in our case, apatite) remains relatively low (He and Garcia, 2009). 371 

Abundance and the mean F1 score were not always linked; for example, Fe-Ti oxides were low in abundance 372 

(~1%) but registered a mean F1 score of 0.91.  373 

 374 

Figure 3 shows an example of an RF-predicted mineral map with misclassified pixels shown in red. This 375 

illustrates a key point: the accuracy of the RF-predicted mineral maps is not spatially uniform. Most pixels that 376 

diverge from manual classification occur at grain boundaries where elemental compositions shift abruptly in 377 
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space. By contrast, in mineral grain interiors, divergent pixels are far less common. This indicates that the 378 

accuracy of RF-predicted mineralogy in grain interiors is higher than the F1 scores in Table 2.   379 

 380 

A combined confusion matrix for pixel-level comparisons from every test and predicted map showed the most 381 

common divergent classification was chlorite for biotite. This is likely because biotite and chlorite have similar 382 

elemental compositions and because they often share a grain boundary (chlorite is a product of hydrothermal 383 

alteration of biotite), which means they are more prone to disagreement along grain boundaries. Among the major 384 

 

Figure 3. (a) Predicted mineral map for sample 6-3a, showing the location of the manually delineated 

test map, which we used to check accuracy. (b) Predicted mineral map for the test area. Red color 

signifies where pixels in the predicted map diverge from the manually delineated test map. This shows 

that most divergent pixels are at mineral grain boundaries. 
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minerals, our models divergently classified potassium feldspar as plagioclase feldspar most often, likely because 385 

many potassium feldspar grains in the Rio Blanco tonalite contain small amounts of Na, like plagioclase.  386 

 387 

Figure 4 shows close agreement between the RF-predicted abundance and the manually mapped abundance in the 388 

test areas, with a mean difference for a given mineral of 0.45 ± 0.02% across the three test maps. So, although 389 

some predicted pixels were misaligned spatially, the RF-predicted mineral abundances agree well with manual 390 

estimates derived from the test maps. 391 

 

Figure 4. RF model-predicted mineral abundance vs. manually mapped mineral abundance in the test areas of 

the three samples with test maps. The dashed line is a 1:1 line. Although there was some spatial mismatch 

around the edge of mineral grains (e.g., Fig. 3), the RF-predicted modal abundances agree well with 

abundances inferred from manual mapping in the test areas. 

 392 

 393 

Table 2. Mean F1 scores (accuracy metric) for mineral 

classes among the three test maps (Fig. 4), based on 

comparison of automated mineralogy maps to manually 

delineated mineralogy maps. 

Mineral Mean F1 score 
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All classes (frequency-weighted) 0.95 

Plagioclase feldspar 0.96 

Quartz 0.94 

Hornblende 0.94 

Biotite 0.94 

Potassium feldspar 0.88 

Fe-Ti oxides 0.91 

Chlorite 0.79 

Apatite 0.72 

 394 

4.2 Sensitivity of mineral maps to random forest hyperparameters and input features 395 

In our application of the method in Section 2 to the 14 samples in Section 3, we used a set of default values for 396 

three RF hyperparameters: maximum tree depth, number of trees, and minimum sample size per node. Reviews 397 

of hyperparameter tuning on RF models have shown that the number of trees and the minimum number of classes 398 

per node can have a large effect on classification accuracy (Probst et al., 2019). In this section we gauge the 399 

sensitivity of our results to hyperparameter values and input features. 400 

 401 

Orfeo Toolbox does not contain a facility for hyperparameter tuning in QGIS, so we developed a workflow to 402 

undertake our own hyperparameter optimization outside of QGIS in Python. This is not a necessary step in the 403 

method, but we have included this code in the Supplement for users who wish to conduct their own 404 

hyperparameter optimization. We began by converting the smoothed elemental intensity image data in the three 405 

training areas within the manually delineated test maps into NumPy arrays (Harris et al., 2020) using a 406 

combination of three Python libraries: rasterio (Gillies et al., 2019), geopandas (Jordahl et al., 2020), and shapely 407 

(Gillies et al., 2022). We then used the implementation of the RF classifier from the machine-learning package 408 

scikit-learn (Predregosa et al., 2011) for both hyperparameter optimization using a randomized five-fold cross 409 

validation (Breiman and Spector, 1992) and derivation of feature importance using permutation testing (Breiman, 410 

2001). Through these operations we seek to find optimal hyperparameters and test the importance of input 411 

features (here, elements), respectively.  412 

 413 

We used the scikit-learn RandomizedGridCV function to systematically test the sensitivity of the output mineral 414 

maps to the RF hyperparameter values. To do this, we trained 100 unique RF models across a range of maximum 415 
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tree depth (1-100), number of trees (10-2000), and minimum sample size per node (5-25). These hyperparameters 416 

are common between the Orfeo Toolbox and scikit-learn implementations of the RF classifier. We used five-fold 417 

cross-validation, in which each randomly selected set of hyperparameters is used to train the same model five 418 

times while sampling different portions of the training data (Breiman and Spector, 1992). We report the best fit 419 

parameters and resultant accuracy in terms of the frequency-weighted F1 score upon comparison to the test maps 420 

using these optimized parameters.  421 

 422 

Orfeo Toolbox has not yet incorporated a capacity to derive feature importance scores. Feature importance in RF 423 

classification is calculated by permutation testing, which is the extent to which an accuracy metric declines if a 424 

single input feature’s unused training data is randomly altered during the training process and validation process 425 

(Breiman, 2001; Guo et al., 2011). We used the sci-kit learn function permutation_importance to assess 426 

importance using the frequency-weighted F1 score. We report the feature importance for the three samples with 427 

manually delineated test maps and discuss their implications. 428 

 429 

Tuning the hyperparameters in scikit-learn showed that both a higher maximum tree depth and number of trees 430 

may be optimal for our RF models, while the minimum sample for splitting was more variable (Table 3). Using 431 

these optimized RF hyperparameters within Orfeo Toolbox yielded a mean frequency-weighted F1 score of 0.95 432 

when comparing the three samples with manually delineated test maps, which is the same F1 score realized by 433 

using the default hyperparameters. As the two implementations of the RF classifier are somewhat different in 434 

terms of available hyperparameters, the comparison is imperfect but does provide a check to see if the default 435 

hyperparameters could be improved upon. That an optimized set of hyperparameters delivered very little to no 436 

increase in accuracy is unsurprising as RF models are known to perform well with little to no tuning if reasonable 437 

hyperparameter values are initially used (Maxwell et al., 2018). Unless low F1 scores are realized during Step 4, 438 

it is our recommendation that the default RF hyperparameters in Orfeo Toolbox be used. 439 

 440 

 441 

Table 3. Optimal RF hyperparameters from five-fold cross validation 

performed using sci-kit learn. 

Sample Maximum tree 

depth 

Number of 

trees 

Minimum sample for 

split 
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1-13a 73 1685 25 

6-3a 94 1371 5 

16-2a 73 1581 5 

 442 

 443 

Feature importance, as determined through permutation testing, showed that both K and Mg were the most 444 

important features for our scikit-learn trained models with mean decreases in accuracy based on frequency-445 

weighted F1 scores derived from the training and validation process on unused data of 0.29 for both elements 446 

(Fig. 5). Ti was relatively unimportant with a very small, slightly positive value, implying it could be omitted. 447 

Although Ti is present within biotite and Fe-Ti oxides in our samples, Ti showed little to no decrease in mean 448 

accuracy as both biotite and Fe-Ti oxides can be classified using other elements. We tested whether our feature 449 

importance scores were pertinent to models in Orfeo Toolbox by leaving out, in turn, K, Mg, and Ti during 450 

training and validation process. Excluding K decreased mean F1 scores due to the degradation of potassium 451 

feldspar, biotite, and chlorite accuracy. In contrast, omitting Mg did not decrease F1 scores, showing that a 452 

feature importance score does not directly translate to decreased model accuracy upon omission (Cutler et al., 453 

2011). Leaving out Ti had little effect on F1 scores. If a user of our method is unsure whether an element could 454 

be a truly important feature, omitting an important element from the training process by creating virtual rasters 455 

without that element should yield a notable degradation in training F1 scores. 456 

 457 

 458 
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Figure 5. Feature importance from scikit-learn using permutation testing for all six input elements for 

the three samples with test maps. Mean accuracy decrease is the change in the F1 score due to 

randomly changing feature data in the unused portion of the training data during the validation process. 

In Orfeo Toolbox, training models that omitted K degraded F1 scores while those that omitted Mg 

yielded little change, indicating that feature importance score does not always directly map onto model 

accuracy and that some experimentation with input features (elements) during the training phase is 

warranted.     

 459 

4.3 Sensitivity of mineral maps to filter sizes 460 

In our application of this method to our samples, we applied a circular, 7-pixel radius mean filter to the EDS-461 

generated elemental intensity rasters (Step 2 in Section 2), and we applied a circular, 10-pixel radius majority 462 

filter to the output mineral maps (Step 6). To quantify the sensitivity of the output mineral maps to these “hidden” 463 

parameters, we generated a series of RF models across a range of mean filter radii for the elemental intensity 464 

rasters (no filter, 2, 5, 7, 10, and 20 pixels) and a range of majority filter radii (no filter, 2, 5, 7, 10, and 20 pixels). 465 

For the three thin sections with manually delineated mineral maps, we calculated the frequency-weighted F1 466 

score of the entire thin section by comparing each of the RF-predicted mineral maps to the manually delineated 467 

test maps.  468 

 469 
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Figure 6 reveals that both the mean filter and the majority filter affect the accuracy of the predicted mineral maps. 470 

The largest impact on the accuracy, as measured by F1 score, was in the application of any mean filter at all to 471 

the input elemental intensity rasters. The left panel in Fig. 6 shows that applying no mean filter to the elemental 472 

intensity rasters produced low F1 scores (0.52-0.69) for all models and all samples, regardless of the size of the 473 

majority filter. Accuracy increased with mean filter radius up to 5 and 7 pixels, which yielded high F1 scores at 474 

all majority filter sizes (0.91-0.96) due to the elimination of spurious inclusions within larger mineral grains 475 

(middle panels in Fig. 6). Beyond that size, accuracy decreased slightly with higher mean filter radius, with lower 476 

F1 scores at radii of 10 pixels (F1 scores of 0.90-0.95) and 20 pixels (0.87-0.89). This implies an intermediate 477 

optimal mean filter radius of 5-7 pixels for these samples. 478 

 479 

Accuracy was sensitive to the size of the majority filter, particularly for models that applied no mean filter or a 480 

small (2-pixel radius) mean filter to the input elemental intensity rasters (Fig. 6). For the models that applied a 481 

mean filter of any size, accuracy was lower at small majority filter radii (0 or 2 pixels) and large radii (20 pixels) 482 

than at intermediate majority filter radii (5-10 pixels). At the largest radii, the RF-predicted mineral grains begin 483 

to lose shape, becoming more circular. Thus, accuracy was maximized at intermediate majority filter radii of 5-7 484 

pixels, just as it was at intermediate mean filter radii. Excluding plagioclase and quartz (which generally do not 485 

occur as isolated grains), the three samples with test maps (6-3a, 1-13a, and 16-2a) have a median grain area of 486 

~0.005 mm2 (n = 5188 mineral grains across all three samples) while the 5-7-pixel radii filters have areas of 487 

~0.001 mm2 and ~0.002 mm2, respectively. These optimal sizes most likely result from a mix of the initial EDS 488 

pixel resolution and data quality and the types and sizes of minerals in the thin section (Lanari et al., 2014; 489 

Ortolano et al., 2018), so we recommend that users experiment to find the optimum filter sizes for their samples.     490 

 491 

 492 
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Figure 6. Accuracy of the output mineral maps (as quantified by frequency-weighted mean F1 scores) 

for combinations of mean filter and majority filter sizes for the three samples with test maps. Each 

section is a single mean filter size. The most accurate mineral maps (i.e., those with the highest F1 

scores) were generated using a 5- or 7-pixel radius mean filter combined with a 5- or 7-pixel radius 

majority filter.  

 493 

5 Discussion: Advantages, utility, and limitations 494 

 495 

5.1 Advantages of this open-source automated mineralogy method 496 

Situating our workflow in a free and open-source GIS environment confers several practical benefits. Both Orfeo 497 

Toolbox and QGIS are frequently updated with source code that can be examined and modified, unlike many 498 

proprietary hardware/software systems (Keulen et al., 2020). Orfeo Toolbox and QGIS each have extensive 499 

documentation and user forums monitored by the developers, which can aid in addressing user issues (Raza and 500 

Capretz, 2015). Incorporating open-source software into scientific methods fosters transparency and 501 

reproducibility as the software is widely accessible and more easily scrutinized (Ramachandran et al., 2021). As 502 

both Orfeo Toolbox and QGIS are ongoing efforts with active contributing communities, our no-code workflow 503 

is tied to software that is not likely to fall into disrepair or unavailability, unlike much open-source scientific 504 

software (Coelho et al., 2020). Furthermore, both Orfeo Toolbox and QGIS are available for all major operating 505 

systems, Windows, macOS (Intel), and Linux, so this factor does not limit accessibility. Orfeo Toolbox will 506 

likely continue to incorporate new state-of-the-art machine-learning algorithms. For example, Orfeo Toolbox has 507 
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recently been unofficially extended to utilize the Google TensorFlow library (Abadi et al., 2016) to perform deep-508 

learning tasks on remote sensing imagery (Cresson, 2018, 2022). There are also efforts to develop open-source 509 

scanning electron microscope systems and attendant software such as the NanoMi project (Malac et al., 2022). 510 

All of this means that automated mineralogy methods are likely to become more popular and accessible.   511 

 512 

We expect that a broad range of geoscientists will be capable of using this GIS-based method, since many 513 

geoscience undergraduate programs incorporate GIS into courses (Marra et al., 2017). It requires no 514 

programming skill to obtain mineral maps, thereby eliminating a potential barrier for use (Bowlick et al., 2016). 515 

Since the workflow takes place within a GIS environment, the input elemental intensity rasters could easily be 516 

processed in other ways besides the mean smoothing filter that we applied here, such as edge-detection filtering 517 

or elemental intensity ratioing. Creation of optimal input features, so-called feature engineering, is fostered by the 518 

many QGIS frontends that interface with SAGA GIS and GDAL raster manipulation programs. Our method does 519 

not require a corresponding plugin for Orfeo Toolbox/QGIS, but much of it could be automated from the Orfeo 520 

Toolbox/QGIS Python API or as QGIS console commands, if desired. Input parameters for image filters and 521 

hyperparameters for the RF models can be saved as JavaScript Object Notation (JSON) files, which can be 522 

loaded in later, overcoming some of the reproducibility issues inherent in workflows using graphical user 523 

interfaces (Brundson, 2016).  524 

 525 

5.2 Illustration of the utility of random forest-generated mineral maps 526 

There are many potential uses for thin section-scale mineral maps once they have been generated. Converting the 527 

mineral maps into vector form allows for the calculation of derived parameters such as median grain area for 528 

minerals that occur as single grains (e.g., biotite), distance between grains of a mineral, and the types of minerals 529 

surrounding a grain or grains in the case of abundant, connected minerals like plagioclase and quartz. This type of 530 

data is normally generated by proprietary automated mineralogy systems but could aid in geoscience disciplines 531 

beyond ore geology or petroleum geology (Han et al., 2022). An illustrative example is in the analysis of grain-532 

scale properties of biotite. This is of wide interest because oxidation of ferrous Fe in biotite drives expansion of 533 

biotite grains, which generates stresses in the surrounding rock that may be large enough to fracture the rock 534 

(Fletcher et al., 2006; Goodfellow et al., 2016; Goodfellow and Hilley, 2022). To the extent that biotite expansion 535 

promotes generation of regolith from bedrock, it may even influence the km-scale evolution of mountainous 536 

topography (Wahrhaftig, 1965; Xu et al., 2022). In granitic rocks, numerical modelling has shown that biotite 537 

abundance influences the accrual of microscale damage (Shen et al., 2019) and weathering profile development is 538 
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partially guided by biotite crystal size (Goodfellow and Hilley, 2022). These are two properties that can be 539 

directly measured in our thin section-scale mineral maps.  540 

 541 

To obtain such mineral maps in some previous studies, researchers have often engaged in manual or semi-542 

automated characterizations of sample mineral properties (Buss et al., 2008; Ündül, 2016). These workflows are 543 

often tailored for a single study (e.g., Goodfellow et al., 2016). Methods that are based on generalizable 544 

workflows involving automated mineralogy methods such as the one presented in this study could enhance 545 

comparability between studies. Since we converted the predicted mineral maps into a vector (polygon) form 546 

within QGIS, we could use built-in functions to gather large amounts of data on grain neighbours or perform 547 

grain size measurements. As we discuss in Section 5.3, classified biotite ‘grains’ may contain multiple bordering 548 

crystals of the same mineral as our EDS input data, and the resultant classification cannot differentiate boundaries 549 

by elements alone (Lanari et al., 2014). As biotites are relatively isolated from each other in our thin sections, 550 

these measurements serve as a reasonable indicator of true biotite properties. For example, the 20 largest biotite 551 

grains in samples 1-1a and 6-3b comprise 80% and 94% of the total biotite area, respectively (Fig. 7a-b). The 552 

median grain area of these 20 biotite grains in sample 1-1a is 0.60 mm2, several times larger than that in sample 553 

6-3b (0.19 mm2; Fig. 7c).  554 

 555 

We can also use raster morphology operations on the mineral maps to measure distances between classified 556 

minerals. In analog and numerical experiments that impose stress on granitic rocks (Tapponier and Brace, 1976; 557 

Li et al., 2003; Mahboudi et al., 2012), biotite grains can act as preferential origination points for microfractures, 558 

but biotite can also arrest propagation of microfractures arising from neighboring grains. Thus, the distance 559 

between biotite grains may be an important, yet rarely measured property. In the example of the two samples in 560 

Fig. 7, biotite grains have similar median distances from one another but different probability distributions of 561 

distances between biotite grains, particularly in the long tail of the distributions at larger distances (Fig. 7e). We 562 

can also extract the composition of neighbouring grains surrounding biotite (Fig. 7f), which reveal that chlorite is 563 

much more abundant near biotite relative to the rest of the thin section. Data like these can be useful for those 564 

studying the impacts of different grain-grain contacts on stress response during rock mechanics experiments (e.g., 565 

Aligholi et al., 2019), which has shown that some mineral interactions can have an outsized influence on the 566 

development of fractures and failure. In sum, the data in Fig. 7 illustrate the potential power of RF-generated 567 

mineral maps to improve quantitative in-situ investigations of biotite weathering (Behrens et al., 2021) and form 568 

the basis for more realistic models of biotite-driven rock damage (Shen et al., 2019). 569 
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 570 

 

Figure 7. Example of quantities that can be obtained from mineral maps generated by the automated method in 

this study. (a-b). Colours highlight biotite grains identified in the RF-generated mineral maps in thin sections 1-

1a (blue) and 6-3b (orange). (c-f). Biotite properties extracted from predicted maps for the 20 largest biotite 

grains in each sample. These data could help inform numerical models of microcrack generation and allow for 

quantitative comparisons between different samples or lithologies (e.g., Shen et al., 2019). (c) Boxplot of biotite 

grain area (mm2) for the 20 largest biotite grains for both samples. (d) Boxplot of number of grains surrounding 

the largest 20 biotite grains. (e) Normalized frequency distribution of distances between biotite pixels (not 

including those inside a biotite grain). (f) Composition of neighbours as a fraction of perimeter. 

 571 

 572 

5.3 Limitations 573 

Our method’s greatest asset is that it can generate thin section-scale mineral maps without requiring the use of 574 

propriety software or a background in programming. Its most important limitation is that it is most accurate if the 575 

user trains a RF model for every thin section sample. Using a RF model that was trained on one sample to predict 576 

mineral maps for another sample can yield mineral maps that accurately map minerals in some areas but 577 
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inaccurately in others. For example, when we applied a RF model that was trained on sample 16-2a to sample 6-578 

3a, apatite abundance was overpredicted by a factor of 5 possibly due to 6-3a having some highly calcic zones 579 

within plagioclase grains. So, for the most accurate results, we recommend training each thin section separately. 580 

 581 

A second limitation is that this method tends to be less accurate at identifying low abundance minerals. Unlike 582 

some proprietary automated mineralogy software systems, our method does not use predefined EDS spectra to 583 

identify minerals. Instead, our method trains RF models on the samples themselves, which means that each 584 

mineral of interest must be abundant enough to properly train the RF model. The relatively low F1 scores of the 585 

lower abundance minerals in our samples (Table 2) suggest that the minimum abundance required to train a RF 586 

model is larger for minerals with small grain size (e.g., in the case of apatite) and a lack of compositional 587 

distinction (e.g., in the case of chlorite). Minerals must be resolvable by the EDS data, so collecting EDS data 588 

with a field-emission-gun SEM at higher resolution (~0.1 μm) could improve mineral classification in rocks with 589 

finer grain size distributions (Han et al., 2022). 590 

 591 

A final limitation is that mineral grains that border mineral grains of the same mineral appear to the RF model as 592 

regions of the same mineral and, hence, can be classified as a single mineral grain, rather than two grains. This is 593 

a common issue shared with other automated mineralogy methods (Lanari et al., 2014; Hrtska et al., 2019), and it 594 

can affect inferred probability distributions of mineral grain size of those mineral if not properly accounted for.  595 

 596 

6. Conclusions 597 

The main contribution of this study is a new automated method for obtaining mineral maps from EDS scans of 598 

rock thin sections. This method is implemented within a free and open-source GIS application, uses free and 599 

open-source plugins for RF image classification, and requires no programming. To demonstrate the utility of this 600 

method, we trained RF models on EDS scans of 14 thin-section samples of a well-studied, plutonic igneous rock. 601 

The resulting model-predicted mineral maps compare well with manually delineated mineralogy maps, with 95% 602 

of pixels on the mineral maps predicted correctly. With regards to the most abundant minerals in the Rio Blanco 603 

tonalite, plagioclase feldspar and quartz, the models attained 96% and 94% accuracy, respectively.  604 

 605 

We utilized scikit-learn’s implementation of the RF classifier to search for optimal RF hyperparameters and to 606 

test input feature (element) importance. We saw no increase in accuracy using optimal hyperparameters found in 607 

scikit-learn when used within Orfeo Toolbox, so we recommend using the default hyperparameters. We did see 608 
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that an important input feature, K, did lower accuracy when not included in Orfeo Toolbox-based models, so 609 

some level of experimentation with input features during the training step is warranted. We also tested to see if 610 

our pre- and post-processing steps had a large influence on accuracy by using different sizes of mean and 611 

majority filters. An absence of filtering and excessively large filters led to lower accuracy while filters in the 612 

range of 5-10 pixels for both mean and majority filters led to higher accuracy. 613 

 614 

Situating the workflow within a free and open-source GIS environment confers distinct advantages. Open source 615 

extends benefits such as source code availability, extensive documentation, and accessibility. Moreover, as the 616 

workflow is within a GIS environment, the application is likely to be familiar to a range of geoscientists. Also, all 617 

the available tools (e.g., different types of image filters) within the GIS allow for easy input feature 618 

experimentation. The mineral maps from our method proved highly accurate when compared to manually-619 

delineated maps, and estimates of mineral abundance compared well to previous estimates from the literature for 620 

our sample lithology. Many of the measured quantities produced by proprietary automated mineralogy systems 621 

are obtainable once predicted mineral maps are converted to vector datasets. These measurements, such as 622 

median grain size and amount of grain neighbours, can be useful to researchers studying microscale damage 623 

processes that arise through rock weathering or rock mechanics experiments. We hope that this method will be 624 

useful for researchers who wish to obtain rapid, automated mineralogy maps of thin sections. 625 

 626 

Code and Data availability 627 

The manuscript supplement containing the code for analysis and visualizations is available through a Zenodo 628 

repository (https://zenodo.org/doi/10.5281/zenodo.10912627; Reed et al., 2024). The supplement also contains 629 

data (smoothed elemental intensity rasters, training polygons, and test maps) for the three thin sections with 630 

manually delineated test maps. 631 
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