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Abstract. Diffusion limits the survival of climate signals on ice-corethe water stable isotopes in ice sheetsic records. Diffusive 

smoothing acts not only on annual signals near the surface, but also on long time-scale signals at depth as they shorten to 10 

decimetres or centimetres. Short-circuiting of the slow diffusion in crystal grains by fast diffusion along liquid veins can 

explain the “excess diffusion” found on some ice-core isotopic records. But direct experimental evidence is lacking whether 

this mechanism operates as theorised;; current  theories of the short-circuiting also under-explore the role of diffusion along 

grain boundaries. The nonuniform patterns of isotopice concentration deviation δ across crystal grains induced by the short-

circuiting offer a testable prediction of these theories. Here, we extend the modelling for grain boundaries (as well as veins) 15 

and calculate these patterns for different grain-boundary diffusivities and thicknesses, temperatures, and vein-water flow 

velocities. Two isotopic patterns are shown to prevail in ice of millimetre grain size: (i) an axisymmetric “pole” pattern with 

excursions in δ centred on triple junctions, in the case of thin, low-diffusivity grain boundaries; (ii) a “spoke” pattern with 

excursions around triple junctions showing the impression of grain boundaries, when these are thick and highly diffusive. The 

excursions have widths ~ 0.10–0.550 % of the grain radius and variations in δ ~ 10–2 to 10–1 of the bulk isotopic signal for 20 

both oxygen and deuterium , which set the minimum required measurement capability needed for laser-ablation mapping to 

detect the patternsm. We examine how the predicted patterns vary with depth through a bulk-signal wavelength to suggest an 

experimental procedure,  –  based on laser-ablation mapping,  – of testing ice-core samples for these signatures of isotopic 

short-circuiting. Because our model accounts for veins and grain boundaries, its predicted enhancement factor (quantifying the 

level of excess diffusion) characterises the bulk-ice isotopic diffusivity more comprehensively than past studies. 25 
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1    Introduction 

The water stable isotope records (δ18O, δD) in polar ice cores contain diverse palaeoclimatic signals. Owing to isotopic 

diffusion in firn and ice, signals at the decimetre and centimetre or shorter scales experience pronounced smoothing as they 

descend the ice column. This postdepositional process limits the integrity and resolution of climatic information at different 

depths. The smoothing rate needs to be known for recovering the original (e.g. annual) δ -variations at the surface by “back 35 

diffusing” an isotopic record (Johnsen, 1977), for reconstructing surface temperatures in the past from spectrally-derived 

diffusion lengths (Gkinis et al., 2014), and for predicting how deep climatic signals of different time scales survive into an ice 

core (e.g. Grisart et al., 2022). The last aspect, which matters particularly for long records, is of major interest to the ongoing 

ice-coring campaigns at Little Dome C, East Antarctica, which aim to retrieve ice reaching back ≈~ 1–1.5 Ma (see the Beyond 

EPICA - Oldest Ice project and the Million Year Ice Core project webpages).. 40 

“Excess diffusion” in the ice below the firn is a key concern in this subject. Analysis of the GRIP (Greenland Ice Core 

Project) ice core by Johnsen et al. (1997, 2000) showed that the annual δ18O signals in the Holocene section of this core decay 

≈~ 10–30 times faster than expected from the self-diffusion rate measured in single ice crystals (Ramseier, 1967), implying a 

large enhancement of the bulk-ice isotopic diffusivity above the monocrystalline diffusivity. Theories put forward to explain 

this excess diffusion invoke short-circuiting – the idea that, in polycrystalline ice, fast diffusion in the network of liquid veins 45 

(located at triple junctions) and along grain boundaries bypasses the slow diffusion within ice grains to cause the enhancement. 

After Nye (1998) made pioneering calculations to show that the presence of veins causes excess diffusion by short-circuiting, 

Johnsen et al. (2000) adapted the firn isotope diffusion model of Whillans and Grootes (1985) to gauge the separate 

contributions of grain boundaries and veins to the mechanism. Later, Rempel and Wettlaufer (2003) refined Nye’s model to 

account for the finite isotopic diffusivity of the vein water; they calculated the diffusivity enhancement in ice at ≈ –32 °C as a 50 

function of signal wavelength, grain size, and vein radius. In a recent study, Ng (2023) extended the Nye–Rempel–Wettlaufer 

framework to show that water flow in the veins amplifies excess diffusion, and that vein-water flow velocities of ~ 101–102 m 

yr–1 yield a ten to hundred fold enhancement, able to explain the GRIP findings and sections of ice with anomalously high 

diffusion lengths found in the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core by Pol et al. (2010) 

and found in the WAIS (West Antarctic Ice Sheet) Divide ice core by Jones et al. (20178) – which these authors interpreted as 55 

signs of excess diffusion, potentially caused by the short-circuiting mechanism. As pointed out by Ng (2023), the modulation 

of isotopic diffusion by vein-water flow means that the decay of climate signals at each ice-core site depends on the hydrology 

and connectivity of veins down the ice column, as well as the ice temperature, grain and vein sizes, and recrystallisation 

processes affecting these geometries.  

Here, we take the modelling of excess diffusion in a new direction to enable a critical research gap to be addressed. 60 

Besides those records displaying signs of excess diffusion (accelerated signal decay or anomalous diffusion lengths) and 

motivating the theories in the first place, no direct observations have been made to show that isotopic short-circuiting actually 

operates. Independent evidence is needed to verify the mechanism at the grain scale, for ice-core samples deemed affected by 
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excess diffusion, and for polycrystalline ice generally. One way of testing the theories is to compare their predicted signal 

smoothing rate against the rate measured in ice doped with isotopic signals, but the slowness of diffusion makes such 65 

experiments prohibitively long at low temperature. Another A different laboratory-based approach, proposed herein, is to 

analyse ice affected by excess diffusion to look for the distinct grain-scale isotopic variations which the theories predict to 

result from short-circuiting. For instance, the theories of Nye (1998), Rempel and Wettlaufer (2003) and Ng (2023) – capturing 

the isotopic exchange between veins and ice and ignoringin the absence of grain boundaries – imply axisymmetric patterns of 

δ around veins, which may be used for this purpose. Knowledge of these patterns is prerequisite to testing for short-circuiting 70 

this way. The knowledgeIt also  helps researchers who are developing techniques of making high-resolution isotopic 

measurements on ice, who currently lack information on how strong or weak the grain-scale variations in δ might be. Predicting 

their variety of isotopic patterns thus forms the main goal of this paper, although we leave the laboratory work testing to future 

studies. 

To simulate realistic isotopic patterns, we go beyond the past theoriesNye (1998), Johnsen et al. (2000), Rempel and 75 

Wettlaufer (2003) and Ng (2023)  by formulating a continuum model that includes grain boundaries, coupling diffusion across 

all three components: ice, veins, and grain boundaries. This integrated model is necessary,, as we wish to test the four theories 

collectively, and, and eachnone of them is missing some elementssufficiently complete ( (e.g., Johnsen et al. (2000) did not 

couple together veins and grain boundaries, whereas the other theories neglected grain boundaries)). However, we mean to 

examine the short-circuiting conceived in these theories, so we do not build more sophistication into the model to account for 80 

every conceivable process in polycrystalline ice. We are not trying to advance a new theory to describe isotopic diffusion in 

the most realisticcomplete manner possible. 

The model geometry, which remains simplified, allows us to explore the combined effect of veins and grain boundaries 

on the bulk-ice isotopic diffusivity. An outstanding question in this regard is whether diffusion along grain boundaries matters 

in ice with glaciological grain sizes (~ mm). Their effect on the bulk diffusivity is assumed to be significant in ultra fine-85 

grained ice with ≈~ 10–30 nm sized crystals (Lu et al., 2009), where grain-boundary surfaces have a high volumetric density 

(Jones et al. 2017). In contrast, for glacier ice, a much weaker effect may be suspected based on the calculations of Johnsen et 

al. (2000), who estimated that the grain boundaries in the GRIP Holocene ice (mean grain diameter ≈ 3 mm) need to be 

unrealistically thick (50 nm) to explain the observed excess diffusion, even if they are liquid films with the high isotopic 

diffusivity of water. Studying this question with a fully-coupled model has not been done before and forms our second goal. 90 

We compute the enhancement factor f for ice of millimetre grain size at –32 °C and –52 °C (which approximate the upper 

column temperatures at the GRIP and EPICA core sites, respectively) for different grain-boundary properties and vein-water 

flow velocities. 

Including grain boundaries in the modelling brings challenges. Most obviously, the grain-boundary thickness c and grain-

boundary diffusivity Db need to be specified; but as we will elaborate in Sect. 2, these parameters are not well constrained. In 95 

our calculations, we cover potential scenarios by experimenting with different assumptions for c and Db in a sensitivity 
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analysis. Another issue is that the model geometry does not permit analytical solution, unlike in the theories of Nye (1998), 

Rempel and Wettlaufer (2003), and Ng (2023). We tackle this by developing a bespoke numerical solution method.  

The paper is organised as follows. Section. 2 details our model formulation and our solution method. Section. 3 presents 

the computed isotopic patterns and enhancement factors for a range of parameters, including the end-member cases of thick, 100 

diffusive and thin, non-diffusive grain boundaries and intermediate scenarios. In Sect. 4, we discuss the prospects of detecting 

the isotopic signatures of excess diffusion in laboratory measurements on ice, focussing on techniques based on laser-ablation 

sampling (e.g. Malegiannaki et al., 2023). Readers keen to see the predicted patterns are advised to turn to Figs. 4–11. Those 

seeking to compute the diffusivity enhancement factor for conditions not covered by us can find our numerical code in the 

repository linked to the paper.  105 

The importance of testing the theories cannot be understated, and several points are worth emphasising in this connection 

before we start. Given the idea of querying the short-circuiting mechanism, we do not claim that the modelled patterns will 

necessarily be found – or found at the predicted amplitudes – during grain-scale testing of ice. And while the mechanism has 

not been experimentally confirmed, ice-core studies seeking to understand excess diffusion on specific isotopic records should 

not automatically invoke it as if it is firmly established. With those core sections showing excess diffusion at GRIP, EPICA 110 

Dome C and WAIS Divide, their explanation by means of vein or grain-boundary short-circuiting remains plausible, but 

tentative, and the causal factors (e.g. why excess diffusion apparently occurs in those sections and not others) are unclear. In 

terms of probing the origin of excess diffusion at those sites, the most advanced analyses to date are probably the ones by Jones 

et al. (2017) and Ng (2023), who used the enhancement factor based onfrom the short-circuiting whento calculateing isotopic 

diffusion lengths to inform hypotheses for about the cause. We refer the reader to these studies for more details on this subject. 115 

2    Mathematical model 

2.1 Model geometry 

We use the set-up in Fig. 1a – adapted from Nye (1998), Rempel and Wettlaufer (2003) and Ng (2023), which represents ice 

crystal grains surrounding a vein by a vertical annular cylinder, in a ≤ r ≤ b, where r is the radial coordinate, a is the vein 

radius (~ μm), and b approximates the mean grain radius (~ mm). The water vein is kept liquid by dissolved ionic impurities, 120 

which lower the melting point (Mulvaney et al., 1988; Nye, 1991; Mader, 1992b). We consider depth-varying isotopic signals 

in the bulk ice, with z denoting depth. For a list of mathematical symbols used in this paper, see Table A1 in the Appendix. 

Grain boundaries leading from the vein are modelled as planes of thickness c (≪ a) at θ = 0, L, and 2L, where θ is the 

azimuth and L = 2π/3. Introducing them makes the problem non-axisymmetric, but their periodicity means that it suffices to 

solve the model in 0 ≤ θ ≤ L.  125 

In plan view, the cylinder approximates a unit cell centred upon triple junctions in ice whose structure is idealised as 

honeycomb-like (Fig. 1b). In this picture, the radius b reaches out roughly half-way along each grain boundary or to the middle  
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Figure 1. (a) Model geometry for calculating coupled isotopic diffusion in ice, vein, and grain boundaries near a triple junction. (b) 130 

Approximate view of what the cell in panel (a) represents in polycrystalline ice with hexagonal grains.  

 

of grains; for convenience, we refer to r ≈ b at either location as the “interior”. AsLike in the original theories of Nye (1998), 

Rempel and Wettlaufer (2003) and Ng (2023), our extended model geometry still idealises many aspects of the real system: 

(1) It ignores the detailed vein cross-section, which consists of three convex walls (Nye, 1989; Mader, 1992a; Ng, 2021), 135 

although their small length-scale implieswill perturbations only to only the local isotopic concentrations near r = a. (2) VThe 

veins and grain boundaries are assumed stationary, rather than migrating under recrystallisation processes. (3) Horizontal or 

near-horizontal veins and grain boundaries are disregarded, so; thus the model does not account for additional short-circuiting 

arising from these boundaries, which will canmay distort the isotopic patterns near them and influencaffecte the enhancement 

factor. We discuss the last two limitations in more detail in Sect. 4. 140 

 

2.2 Material properties 

Prior to modelling signal evolution, we consider the isotopic diffusivities in the three components (ice, vein -water, grain 

boundaries) and the grain-boundary thickness and, where relevant, explain values chosen for simulations. All diffusivities 

discussed here – referring to molecular diffusion – are applicable to the transport of oxygen and deuterium. 145 

For the isotopic diffusivity in ice or “solid diffusivity” Ds, we use Ramseier’s (1967) formula for self-diffusion in single 

ice crystals: 

,       (1) 

in which T denotes temperature in Kelvin. For the isotopic diffusivity in vein -water or “liquid diffusivity” Dv, we use the 

composite exponential formula: 150 
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    (2) 

This formula was derived by Ng (2023) by fitting self-diffusivity data between –12.8 C and –60.8 C, which Xu et al. (2016) 

obtained by modelling crystal-growth rates measured in laboratory experiments. Eqnuation. (2) is consistent with the 

established formula of Gillen et al. (1972) for T down to –31 C but covers a greater temperature range. Figure. 2 plots Eqns. 

(1) and (2). These formulas do not account for pressure dependence, which should cause only a minor correction under the 155 

glaciostatic overburden in ice sheets (a few % on Dv; Prielmeier et al., 1988), nor the influence of dissolved impurities, whose 

characterisation is presently very limited. Thus, Ds and Dv might vary from the formulas. However, the temperature 

dependences shown in Fig. 2 should be robust, and departures from the formulas by a few times (e.g. see uncertainty for Ds 

indicated by Lu et al. (2009) in their Fig. 8) or even an order of magnitude are much smaller than the diffusivity contrast Dv/Ds 

~ 106, which governs the qualitative interactions during vein short-circuiting. 160 

What of the grain-boundary diffusivity Db and thickness c? The physico-chemical influences on these parameters are 

poorly understood across the range of ice-core temperatures (≈~ 0 to –55 C); their values are uncertain and lack reliable 

formulas. Several empirical and theoretical constraints come to our rescue, as detailed below. But first we sketch more 

background on the grain-boundary properties of ice, as a step towards explaining our choices for these parameters. 

Grain boundaries are disordered interfaces between crystals. Determining their properties experimentally is difficult 165 

because the microscopic scale concerned often means that often a property can only be inferred from bulk measurements that 

mix crystal and grain-boundary effects (e.g. Lu et al., 2007). In ice, the grain-boundary thickness must be at least several times 

crystal lattice spacing (O–O distance: 0.276 nm; Hobbs, 1974) but . It may be higher in the presence of impurities (Thomson 

et al., 2013) but is generally expected to depend in complex ways onbe much higher in the presence of impurity type and 

concentrationies (Benatov and Wettlaufer, 2004). Premelting occurs at high temperature (Dash et al., 2006): that is, grain 170 

boundaries thicken and start to exhibit quasi-liquid behaviour near the melting point Tm as this is approached from below, at 

Tm – T = 0 to ~10 K. Grain-boundary premelting in ice has been studied by (i) theoretical modelling of the forces and 

thermodynamics controlling the premelted film thickness (Wettlaufer, 1999; Benatov and Wettlaufer, 2004), (ii) laboratory 

measurements of the film thickness under different conditions (Thomson et al., 2013), and (iii) classical molecular dynamical 

simulations (e.g. Moreira et al., 2018). Premelting in ice diminishes beyond a few C below Tm and is expected to be negligible 175 

below ~ –10 C. For instance, Lu et al. (2007, 2009) argued from experimental results for Db (reported below) that premelting 

does not occur below –2 C in pure ice, although it starts to occur at ≈ –8 C in ice doped with HCl at 0.04% by mass (≈ 0.01 

M bulk concentration). On the other hand, the notion of premelted grain boundaries features in Johnsen et al.’s (2000) and 

Rempel and Wettlaufer’s (2003) theories of excess diffusion, even though their analyses considered much colder ice. Johnsen 
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et al. (2000), particularly, referred to the grain boundaries in ice at T = –32 C as “supercooled water films” and took the liquid 180 

diffusivity Dv at that temperature  

    

Figure 2. Arrhenius plot of the isotopic diffusivities Ds (ice), Dv (vein water)  and Db (grain boundaries). The curves for Ds and Dv come 

from Eqs. (1) and (2). Blue dashed curve plots Gillen et al.’s (1972) relation for Dv. Blue cross locates the diffusivity used by Johnsen et al. 

(2000) (Sect. 2.2)see text). On the left, the composite barBox and whiskers at –2 C (blackbar: likely range; whiskerswhite: maximal range) 185 

and the inclined grey bandblack line (dashed box: ucentral value with uncertainty range) plot indicate the laboratory-based estimates for Db 

of Lu et al. (2007) and Lu et al. (2009), respectively. The star cross plots Db at 250 K from from molecular dynamical simulation (Yagasaki 

et al., 2020). To pose Black circles show the values of Db for modelling at –32 and –52 Cexperimented in our modelling, also listed in Table 

1, we extrapolate . the trend of Lu et al.’s (2009) results to those temperatures and expand the uncertainty to form two sets of grain-boundary 

diffusivities (circles; values in Table 2), which we address by using descriptive labels (grey wording). GThe grey lines indicate the same 190 

system of referring toreferencinring tog the size of Db at other temperatures through them., constructed from the trend of the grey band, 

convey our descriptive diffusivity scale   (Sect. 3).  

 

(1.87 × 10–10 m2 s–1, blue cross in Fig. 2) as the grain-boundary diffusivity Db in calculations. As we will see, this estimate for 

Db is probably too high. 195 
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The question whether grain boundaries in ice are watery or more like disrupted solid lattice has bearing on where isotope 

fractionation (during phase change) is envisaged to occur in the system – whether . at (1) the transition between them and the 

crystal lattice within the grain interior, or (2) where they meet the vein. If one assumes grain boundaries to be liquid, then 

fractionation occurs at the liquid-to-solid phase change at location 1, not at location 2, where there is no phase change. If one 

envisages them to be solid, closely resembling crystal lattice, then fractionation occurs at location 2 and not (or negligibly) at 200 

location 1. In our model, we assume the former scenario because our simulations explore temperatures far below the premelting 

regime, making tIn our model, we assume fractionation where grain boundaries meet the vein, not where they transition into 

crystal lattice. Thhe reverse assumptionlatter scenario seems less plausible ( the fractionation coefficients will be described in 

Sect. 2.3). because our simulations explore temperatures far below the premelting regime. Note, however, that the question is 

unsettled given the lack of experimental determination, and: fractionation may occur at both places in reality (, e.g., in a hybrid 205 

scenario where grain boundaries have microstructural properties intermediate between solid and liquid).  

We turn to the parameter choices, treating grain-boundary thickness c first. Information comes from two studiessources. 

Thomson et al. (2013) used optical scattering to measure c in ice at T ≈ –1.5 C with different dissolved impurity concentrations 

(NaCl) and different grain-boundary orientations. The impurity concentration at grain boundaries was estimated from the bulk 

concentration as it cannot be measured directly. They found c from 1 to 8 nm, generally increasing with the impurity level 210 

(this factor promotes interfacial molecular disorder) forat different crystal misorientation angles. For T < –1.5 C, no 

experimental measurements of c have been made so far, but molecular-scale dynamical simulations give offer a handle on c. 

Yagasaki et al. (2020) used the TIP4P/Ice model to study molecular transport at grain boundaries in impurity-free ice at 250 

K (≈ –23 C) and found c ~ 1 nm under a variety of conditions. Given these studies, we choose three values of c for our 

modelling: 1 nm, 5 nm and 10 nm (Table 1). The highest value accounts for the possibility of thick grain boundaries resulting 215 

from high impurity levels. 

For the grain-boundary diffusivity Db, we rely on on guidance from the experimental results of Lu et al. (2007, 2009), 

which are the only results available to date on ice. For T from –18 C to –1 C, these authors determined that Db lies 

intermediate between Ds and Dv (Fig. 2), several orders of magnitude from each of them (Fig. 2) and showing an Arrhenius 

dependence with an activation energy of ≈ 69 kJ mol–1. Their experiments measured the inter-diffusivity Deff of H and D in 220 

nanocrystalline sandwiches of H2O/D2O/H2O ice by monitoring the reaction zones at the interfaces with thermal desorption 

spectroscopy, a technique that ablates the ice with laser and analyses the vapour composition. They estimated Db from Deff by 

a model inversion based on the Hart–Mortlock equation (Deff as a linear combination of the compon-component diffusivities, 

weighted by the component volume fractions). In their 2007 study, conducted at –2 C, their Db estimate spans 3 orders of 

magnitude, although they suggested a  225 

 

Table 1: Grain-boundary thicknessesIsotopic diffusivities (in m2 s–1) used  Table 2: Isotopic diffusivities (in m2 s–1) used in 

our modelling. At each 
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investigated  in our modelling..    At each temperature, we investigate study five values of the grain-boundary 

diffusivity, Db. diffusivity, Db. 230 
 

 

 
T = –32 C  T = –52 C 

Dv 1.65 × 10–10  7.08 × 10–12 

 
1.5 × 10–11  7 × 10–13 

 1.5 × 10–12  7 × 10–14 

Db 1.5 × 10–13 

1.5 × 10–14 

 7 × 10–15 

7 × 10–16 

 1.5 × 10–15  7 × 10–17 

Ds 9.83 × 10–17  6.60 × 10–18 

 

 

 235 

 

 

 

 

 240 

 

 

component diffusivities, weighted by the component volume fractions). In their 2007 study, conducted at –2 C, their Db 

estimate spans 3 orders of magnitude, although they suggested a likely range of 1–2 orders (bar and whiskers, Fig. likely range 

of 1–2 orders (vertical bar, Fig. 2). Their 2009 study extended the measurements of Db down to –18 C (sloping black, yielding 245 

Description c (nm) 

Thin 1 

Intermediate 5 

ThickLow 10 

 
Description T = –32 C T = –52 C 

Dv  1.65 × 10–10 7.08 × 10–12 

 
High 1.5 × 10–11 7 × 10–13 

 Medium-high 1.5 × 10–12 7 × 10–14 

Db Medium 

Medium-low 

1.5 × 10–13 

1.5 × 10–14 

7 × 10–15 

7 × 10–16 

 Low 1.5 × 10–15 7 × 10–17 

Ds  9.83 × 10–17 6.60 × 10–18 
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the black line, for Db in Fig. 2), , with an order of magnitude uncertainty on either side (grey band), finding for Db.  an 

Arrhenius-type temperature dependence with an activation energy of ≈ 69 kJ mol–1. 

Below –18 C, Db has not been experimentally measured. To pose Db values at –32 and –52 C for our modelling, we 

extrapolate their estimatesd range for Db of Lu et al. (2009) down down the Arrhenius trend (Fig. 2), assuming the same 

activation energy and Db to lie between Ds and Dv at lower temperatures.. This approach finds support in the modelled value 250 

of Db at 250 K from Yagasaki et al. (2020) (star, Fig. 2). However,But we widen the uncertainty range of the Lu et al. (2009) 

estimates by an order of magnitude, because (i) the Hart–Mortlock equation crudely approximates the bulk diffusivity1, and 

the version of the equation used in their inversion ignores the presence of veins, and (ii) they showed that doping the ice with 

HCL increased Deff by ≈~ 20 times above the pure-ice value, indicating that dissolved impurities can raise Db substantially. 

Uncertainties in their inversion from assumptions about the grain-boundary width are discussed by Lu et al. (2007) also. Based 255 

on the extrapolation, we We choose two sets of five values for Db (circles, Fig. 2): one set for –32 C and the other set for –52 

C, as listed in Table 2. In each set, which spans a generous range for sensitivity analysis, the middle three values of Db 

represent direct extrapolations of the laboratory measurements and the uncertainty range of Lu et al. (2009). The lowest and 

highest values, respectively, mimic the more extreme scenarios of coupled diffusion yields results near the no-grain-boundary 

limit and of ; the highest value mimics scenarios of high impurity concentration at grain boundaries (ice-core samples can be 260 

very variable in these). For convenience, we refer to the values in each set as low, medium-low, medium, medium-high, and 

high (Fig. 2, Table 2). This descriptive scale for Db is applicable to other temperatures (grey lines in Fig. 2) on the basis of the 

assumed trend.  We explore select values of Db and c in this paper, given the impracticality of covering a large number of 

parameter combinations when computing isotopic patterns and enhancement factors. 

That Db is bracketed by Ds and Dv corroborates insights from classical molecular dynamical simulations. Moreira et al. 265 

(2018) found that a few degrees below Tm, the simulated molecular transport along premelted grain boundaries resembles 

diffusion in glassy systems and is sub-diffusive in character (with mean-square displacement of molecules ~ tγ, where t denotes 

time and γ < 1), reflecting lateral confinement of the grain boundaries by adjacent crystal lattice. The grain boundaries at 250 

K simulated by Yagasaki et al. (2020) structurally resemble low-density liquid water. Besides estimating a corresponding value 

for Db, Yagasaki et al. (2020) these authors studied diffusion along triple junctions, finding a diffusivity of 3.4Db for them. We 270 

cannot adopt this as the vein diffusivity Dv, because their model does not recognise water-filled veins at triple junctions, whose 

presence in ice has been confirmed by optical (Mader, 1992a) and nuclear magnetic resonance (Brox et al., 2015) methods. 

 

 

2.3 Continuum formulation 275 

 
1 That the Hart–Mortlock equation may only roughly approximate the bulk/effective diffusivity in some applications has been recognised 

(e.g. Lundy, 1978). Moreover, for the coupled diffusion studied here, our results (Sect. 3.2) imply a bulk diffusivity varying with signal 

wavelength, not what the Hart–Mortlock equation would predict. 
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For the system in Fig. 1, let us denote the concentrations of a trace isotope (18O or D) in the ice, vein, and grain boundaries by 

Ns(r, θ, z, t), Nv(z, t), and Nb(r, z, t), respectively, where t is time. We assume Nv to be independent of r and θ, and Nb to be 

uniform across the grain-boundary thickness. The concentrations satisfy the conservation equations 

      (3) 

    (4) 280 

      (5) 

where w is the vein-flow velocity in the downward (z-) direction, and other symbols have been introduced. These equations 

account for isotopic exchange across the vein wall, between grain boundaries and vein, and between grain boundaries and ice. 

Respectively, t (the second-last term in Eq. (4),  the last term two terms in Eq. (54), and the final term in Eq. (5)and the last 

term in Eq. (4) – which are source terms in those equations – describe the isotope fluxes leaving the ice radially and azimuthally, 285 

and grain boundaries radially). The factor 3 sums flux contributions to the vein from all directions. Taylor dispersion along the 

vein is ignored as the corresponding Péclet number (≲ 10–1) would only raise the vein liquid diffusivity by < 0.1%. We specify 

the boundary conditions ∂Ns/∂r = ∂Nb/∂r = 0 at r = b (zero gradient in the interior) and anticipate ∂Ns/∂θ = 0 at r = a, because 

the vein wall at different azimuths contacts the same vein isotopic concentration. Rotational periodicity implies solution 

symmetry in 0 ≤ θ ≤ L about L/2. 290 

Deriving a model for the isotopic deviation δ follows Rempel and Wettlaufer’s (2003) method. If Ns0, Nv0 and Nb0 are the 

number densities of the major isotope (16O or H) in the three components, then equilibrium fractionation at the vein wall and 

at the vein-end of grain boundaries yields αNv/Nv0 = Ns|r = a/Ns0 = Nb|r = a/Nb0, where α  1 is the fractionation coefficient. F 

ollowing Rempel and Wettlaufer (2003), we assume equilibrium fractionation here. Following them also, we wishall set α = 

1, which seems to be a plausible approximation because α(18O/16O) ≈ 1.0029 and α(D/H) ≈ 1.021 at 0 C (O’Neil, 1968; 295 

Árnason, 1969; Lehmann and Siegenthaler, 1991), but note that the temperature dependence of α in T < 0 C for either 

element is unknown2. We assume no fractionation on the side -walls of grain boundaries (Sect. 2.2), so Nb = Ns|θ = 0 in r ≥ a. 

By rewriting Eqs. (4) and (5) in terms of Ns (with Nv0  Nb0   Ns0 taken as constant), eliminating their time derivatives with 

Eq. (3), and using the definition  

 
2 We have not found published values of  (for the liquid–solid phase change) in T < 0, certainly not at –32 and –52 C. It is unsurprising 

that laboratory measurements of  have not been made at the strongly-depressed melting temperatures specific to the vein system. 
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         (6) 300 

we obtain the diffusion equation 

       (7) 

with the boundary conditions 

        (8) 

  (9) 305 

    (10) 

(the analogous boundary condition at θ = L is automatically met, given the solution symmetry). The boundary conditions in 

Eqs. (9) and (10), derived from Eqs. (4) and (5),  encapsulate advection and diffusion along the vein and diffusion within the 

grain-boundary planes. The (the analogous boundary condition at θ = L is met automatically met, given the solution symmetry). 

We have introduced the thinness parameter 310 

          (11) 

which measures the grain-boundary thickness scaled to the vein radius. The parameters 

       (12) 

quantify the diffusivity contrasts of water to ice and grain boundary to ice, respectively. As noted in Sect. 2.2, typically βv  

106 (Fig. 2); βb (< βv) is also large, but depends on the chosen grain-boundary diffusivity. Notice one cannot lump all grain-315 

boundary properties into a single parameter (e.g. the diffusivity–thickness product cDb or ε(βb + 1)) in this model. 

The partial differential equation problem for δ in Eqs. (7) to (10) is linear. To quantify signal decay, we follow the past 

theories and study how sinusoidal signals of different wavelength λ – or wavenumber kz = 2π/λ – smooth out in time (Nye, 

1998; Rempel and Wettlaufer, 2003; Ng, 2023) by posing the trial solution 

        (13) 320 
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where ζ = ζR + iζI is a complex decay-rate parameter. The enhancement factor measuring the level of excess diffusion is given 

by the ratio of the signal decay rate DsζR in Eq. (13) to the baseline decay rate Dskz
2 in monocrystalline ice (ice without grain 

boundaries and veins). On defining ζR = kz
2 + kr

2, the enhancement factor is 

2

2
1 r

z

k
f

k
= + .          (14) 

In Eq. (13), the function H(r, θ) = HR + iHI determines the spatial pattern of isotopic signals in three dimensions (3D). At depth 325 

z, Re[Hexp(ikzz)] gives their amplitude across the annular sector 0 ≤ θ ≤ L, a ≤ r ≤ b, and the section-mean isotopic signal 

(ignoring the exponential time decay factor) is  

    

   (15) 

The phase angle  = tan–1(HI/HR) + kzz – DsIt of Tthe  sinuisoidal signalss at different  radii and azimuths have the phase angle 330 

 = tan–1(HI/HR) + kzz – DsζIt. Therefore, shows when ζI is non-zero, thea signalst they migrate at the velocity ζIDs/kz downward 

in the z-directionat the velocity IDs/kz. 
 

2.4 Scaled model 

When addressing isotopic patterns later, it will be useful to reference the features on them (e.g. size or radial position) to the 335 

grain radius b. To facilitate this, we non-dimensionalise the model by letting  

*
r

r
b

= ,          (16) 

at the same time scaling other variables as follows: 

   (17) 

The scaled model equivalent to Eqs. (7) to (10) is then 340 

       (18a) 

        (18b) 

  (18c) 

    (18d) 
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where we have dropped the stars for convenience (we work with dimensionless variables from now on). The parameter 345 

          (19) 

is the dimensionless vein radius (c ≪ a ≪ b in glacier ice translates to εξ ≪ ξ ≪ 1), and 

          (20) 

is a Péclet number measuring the importance of vein-flow driven advection relative to solid-state diffusion. The trial solution 

in Eq. (13) becomes 350 

        (21) 

while Eq. (14) for the enhancement factor f is unchanged under the scaling. 

 

2.5 Eigenvalue problem 

It remains to solve for the pattern H(r, θ) for signals of any wavenumber kz. Substituting δ from Eq. (21) into Eq. (18) leads to  355 

       (22) 

with the boundary conditions 

        (23) 

   (24) 

   (25) 360 

Here, we have defined 

          (26) 

and introduced the parameters 

      (27) 

Equationss. (24) and (25) may be further simplified by using Eq. (22) to reduce the number of high-order derivatives; thus, we 365 

find 
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     (28) 

and 

     (29) 

Equations. (22), (23), (28) and (29) need to be solved to determine the isotopic patterns. They constitute a homogeneous 370 

boundary value problem for H with the eigenvalue s2, whose real part kr
2 leads to the enhancement factor (see Eqs. (26) and 

(14)) and whose imaginary part ζI is non-zero if the vein -water flows (w, χ ≠ 0); thus, vein-water flow).  causes the signals to 

migrate in the same direction, as in Ng’s (2023) model. The slowest-decaying eigenmode (with minimum Re(s2) > 0) yields 

the desired pattern, as . the other eigenmodes decay faster, leaving this mode to be observed in long time. The problem is non-

trivial because of mixed boundary conditions at the vein wall and the grain boundaries. Solution by the separation of variables 375 

H = H1(r)H2(θ) couldan exploit the periodicity in θ for H2; equivalently, one couldan take the cosine transform azimuthally 

(e.g. √2/L∫ H cos(nθ/L)dθ
L

0
) and the Hankel transform in the radial direction. However, we find that analytic solution does 

not seem feasible by these conventional approaches – a fundamental obstacle being mismatch between the Fourier kernel of 

the grain-boundary condition in Eq. (29) and the Hankel kernel of the differential operator in Eq. (22). We therefore solve the 

problem numerically. Readers not interested in the associated details (Sect. 2.6) might skip on to the finalast paragraph of Sect. 380 

2.63. 

 

2.6 Numerical method 

We use the pseudo-spectral method, employing Chebyshev collocation in the θ-direction to achieve “spectral accuracy” in 

approximating the solution (Boyd, 2000; Trethethen, 2000). Although the angular periodicity suggests using trigonometric 385 

basis functions instead (i.e. Fourier spectral method), the corresponding approximation lacks spectral accuracy and converges 

much more slowly than Chebyshev polynomials, as H is nonsmooth (with discontinuous gradient) across the grain boundaries. 

We use the finite-difference approximation in the radial direction. 

The solution on each grain boundary can be written as G(r) ≡ H(r, 0). This enables us to work with alternative variables, 

by splitting H into the sum 390 

         (30) 

where the field F represents variations in the ice sector unnot accounted for by G. Usefully, F is zero along the grain boundaries 

and on the vein wall (as ∂H/∂θ = 0 there). The decomposition converts Eqs. (22) and (23) to the partial differential equation 
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       (31) 

with the homogeneous boundary conditions 395 

     (32) 

Meanwhile, Eqs. (29) and (28) become the ordinary differential equation 

       (33) 

with boundary conditions at the vein wall and in the grain interior given by 

      (34) 400 

          (35) 

We have used the prime (/subscript) notation to denote ordinary (/partial) derivatives above. The differential equations for G 

and F are coupled via their source terms. 

Because the vein short-circuits diffusion in the ice, we expect the solution to vary rapidly just outside the vein wall and 

slowly in the grain interior, notably away from grain boundaries. To resolve the variations near r = ξ (vein wall) with sufficient 405 

grid points, without over-introducing grid points in the interior (which slows numerical computation), we make a change of 

the radial variable 

        (36) 

The interior and the vein wall are located at R = 1 and R = Rmax = 1 – lnξ, respectively (Fig. 3a). 

Next, we set up the Chebyshev collocation points 410 

       (37) 

choosing 

          (38) 

such that the interval x = [–1, 1] maps onto the angular range θ = [0, L] of the sector (Fig. 3b, c). With these transformations, 

the coupled problem for F and G becomes 415 
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Figure 3. Elements of the mixed spectral–finite difference numerical method. (a) Radial coordinate transformation used to increase spatial 

resolution near the vein. (b) Numerical grid for F(R, x). Filled dots indicate solution points; open circles, zero boundary values. (c) The same 

grid points on the ice domain. Panels (b) and (c) are illustrative; we use many more grid points (N = 100, J = 201) than shown. 420 

    (39a) 

conditionsC’s:  
1

0R R
F

=
= ,             Boundary 

( ,  1) 0F R x = ± = ,     max( ,  ) 0F R x = ,     (39b) 

and 

       (40a) 425 

         Boundary 

conditionsC’s:  

max

1

232

2 max 1 max max2

1

1
d ( ) ( ) ( )

2
R R R

pp
F x p G R p G R s G R

Lx =

-

é ùæ ö÷ê úç ¢+ + + =÷ç ÷ê ú÷çè øê úë û
ò  ,    (1) 0G¢ = .     (40b) 

 

We have written these results with s2 on the right-hand side to facilitate the eigenvalue calculation. 430 

The method proceeds by discretising the x-axis with the Chebyshev points and the R-axis as J equidistant points (Fig. 3b) 

and using the spectral differentiation matrix of Trefethen (2000; p.53) and finite differencing to compute derivatives in these 

respective directions. With F zero on three edges of the solution domain, there are (N–1)(J–1) unknowns in Fn, j and J unknowns 

in Gj, for n = 0, 1, 2 …, N and j = 1, 2 …, J. The scheme converts Eqs. (39) and (40) into a system of linear equations Mv = 

s2v, where the solution eigenvector (a column vector) 435 

v = [  F1,1  F1,2 … F1,J–1     F2,1  F2,2 … F2,J–1     F3,1  F3,2 … F3,J–1   …   FN–1,1 FN–1,2 … FN–1,J–1    G1  G2 … GJ  ]T        (41) 
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has (N–1)(J–1) + J elements, and M is a sparse-banded matrix (detailed in Section S1 and Fig. S1 in the Supplement). After 

using the MATLAB function eig to compute s2 from M, we find v corresponding to the slowest-decaying eigenmode and put 

Fn, j and Gj back in cylindrical polar coordinates to build the solution H. Our computation used N = 100 and J = 201 points, 

and we checked for numerical convergence and convergence at small diminishing grain-boundary thickness c towards Ng’s 440 

(2023) analytic solution,  (for which describes the vein-only system without grain boundaries).  

All isotopic patterns reported below display H after it has been regridded at a constant θ-spacing by Lagrange 

interpolation from the Chebyshev grid values, normalised by the value of H at r = 1, θ = L/2 in the grain interior, and copied 

from 0 ≤ θ ≤ L into the other sectors to fill the ice annulus. At r = 1, θ = L/2, a position which we call the “mid-grain interior”, 

the vertical sinusoidal signal in δ has maximum amplitude because diffusion short-circuiting subdues the signal amplitude 445 

more strongly elsewhere, especially near the vein and grain boundaries. Consequently, the mid-grain interior signal closely 

approximates and has a slightly higher amplitude than the bulk vertical isotopic signal in Eq. (15) (derived throughby horizontal 

averaging at different depths) or, equivalently, the signal, as measured by ice-core continuous flow analysis (CFA) (Kaufmann 

et al., 2008; Bigler et al., 2011). The normalisation thus puts our pattern amplitudes in Sect. 3.1 in a dimensionless unit, scaled 

((approximately)) to the bulk vertical signal. It allows the absolute amplitude of the δ-variations of the predicted patterns to be 450 

inferred for any bulk-signal amplitude.  

 

 

 

3    Results and analysis 455 

We proceed to examine computed isotopic patterns (Sect. 3.1) and bulk-diffusivity enhancement factors (Sect. 3.2) for different 

model parameters. In our model runs, we set the vein and grain sizes at a = 1 μm and b = 1 mm and assume the fractionation 

coefficient α = 1, so the results can be compared with those of Rempel and Wettlaufer (2003) and Ng (2023) and applied to 

either δ18O or δD. Using precise fractionation coefficients at 0 C (≈ 1.00293 for oxygen, ≈ 1.021 for hydrogen; Sect. 2.3) 

changes the results numerically in a minor way that does not alter our qualitative findings. We will report only briefly on the 460 

qualitative effects of changing a and b, which were examined in more detail by Rempel and Wettlaufer (2003). 

There are 30 parameter combinations from the choices of temperatures T (–32 C, –52 C), grain-boundary thicknesses 

c (1, 5, 10 nm; Table 1), and grain-boundary diffusivities Db (Table 21), and grain-boundary thicknesses (c = 1, 5, 10 nm). For 

each combination, we compute results for signal wavelengths λ across the range 0.005–0.15 m and different vein-water flow 

velocities w in 0–50 m yr–1 when T = –32 C and 0–5 m yr–1 when –52 C. These ranges.  enable study of the enhancement 465 

factor f as a function of λ and w in Sect. 3.2. Note that w at ice-core sites is unknown and has not been measured (Ng, 2023). 

We chose the w-ranges here based on flow velocities of ~ 101 m yr–1 in microns-thick veins that Nye and Frank (1973) estimated 
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in their theory of water percolation in ice sheets, and the expectation that blockage or disconnection of the vein network (e.g. 

by dust particles) can drastically reduce w.  

In Sect. 3.1, weWe analyse selected runs below to highlight the effect of grain-scale short-circuiting on the isotopic 470 

patterns, focussing on results for λ = 10 cm. This wavelength is chosen for illustration because (i) short signals at λ  ⁓ 10–

30 cm are common on the isotopic records from polar ice cores, (ii) the shortest surviving signals (despite stronger diffusive 

smoothing at smaller λ) are of interest, and (iii) some signals with  λ as short as 10 cm are found on the high-resolution (5 

mm) records from the WAIS Divide (δ18O and δD; Jones et al., 2017) and South Pole (δ17O, δ18O and δD; Steig et al., 

2021). Perusing other ice-core datasets, we do not find signals at λ  ≤ 10 cm on the NGRIP δ18O record (Gkinis et al., 2014; 475 

5 cm resolution), whereas the GRIP δ18O record (Johnsen et al., 1997; 55 cm resolution) and EPICA Dome C δD record 

(Grisart et al., 2022; 11 cm resolution) are too coarse for discerning signals at λ  ≈ 10 cm. However, the Dye-3 ice core 

exhibits annual variations in δ18O and δD as short as a few centimetres (Vinther et al., 2006; down to ≈ 2 cm in their Fig. 6, 

and ≈ 5 cm in their Fig. 5).   

. For ease of describing When addressing grain-boundary properties below, we use the qualitative descriptors for Db and 480 

c introduced earlier (Fig. 2; Tables 1 and 2). refer to the choices of Db at each temperature as low, medium-low, medium, 

medium-high, and high (see descriptive scale in Fig. 2) and the choices of c as thin, intermedate, and thick. Not all parameter 

combinations will be analysed below for their isotopic patterns, (e.g. not the patterns for medium-low Db, which typically 

resemble and fall between the low and medium Db cases). As we shall see, the more interesting pattern transitions occur as Db 

varies from medium to high. 485 

 

 

 

 

3.1 Isotopic patterns in 3D  490 

3.1.1 Archetypal patterns at –32 C: effects of grain-boundary properties and vein-water flow 

Figure 4 shows the predicted patterns at T = –32 C, λ = 102 cm, and w = 0, for three runs with intermediate (5 nm thick) grain 

boundaries having high, medium-high and medium diffusivities. They illustrate the change from an axisymmetric “pole” 

pattern to a “3-spoke” pattern as Db increases, which is one of our key findings. (We use t. he word “spoke” by analogy to the 

radial elements of a bicycle wheel;, and “pole” refers to a central peak without such elements.) In each panel, the colour charts 495 

show the dimensionless variations in δ – i.e. Re[H(r, θ)exp(ikzz)] after normalisation by H(1, L/2) (Sects. 2.3 & 2.6) – at three 

depths in the range spanning 1λ. We are looking down the cylindrical domain in Fig. 1a and taking horizontal slices of its 

isotopic deviation, analogous to cuts perpendicular to a vertical triple junction in ice. The far-left plot shows the depth profiles 

of  isotopic variations in at the mid-grain interior (r = 1, θ = L/2; black curve), and grain-boundary interior (r = 1, θ = 0; blue) 
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and along the vein (red). The first profile always has unit amplitude under the normalisation; in these runs, the latter two 500 

profiles have amplitudes very slightly less than 1,, so they obscure the first profile when plotted. To emphasise where fast 

changes occur on each pattern, the colour scale is always fitted to its maximal range of variations, and we use one of two colour 

schemes depending on whether δ at the vein is higher or lower than δ  in the interior. Note that the isotopic signals decay in 

time following Eqs. (13) and (21), and the patterns occur on a background (mean) isotopic concentration that would first be 

subtracted when studying real ice samples.  505 

First we analyse Fig. 4b – the medium-high diffusivity run – to explain salient features and how the patterns relate to the 

short-circuiting. This solution overall shows what the axisymmetric theories (Nye, 1998; Rempel and Wettlaufer, 2003; Ng, 

2023) predict, with isotopes diffusing radially towards the vein (e.g. at z = z1, z3), up and down along the vein, and back into 

ice and radially outwards (z2). As in those theories, these exchanges bypass slow solid diffusion in the ice to cause excess 

diffusion and accelerates the signal decay – the computed enhancement factor f is 2.42 70 (> 1) – and they induce radial 510 

variations in δ that are the most rapid immediately outside the vein. These δ-excursions cause the pole (z2) and hole reverse-

pole (z1, z3) patterns, which respectively reflect the role of the vein as a source and sink of isotopes in different horizontal 

sections in the short-circuiting.  

The distinct  vertical stretchesdepth intervals where isotopes diffuse radially inwards and outwards (are identified by 

where δ in the ice exceeds δ in the vein, and  and vice versa) are, as indicated by white and grey bars by boxes byon the far-515 

left plot. In each  intervalstretch, the patterns’ strength (magnitude of their horizontal isotopic variations) varies with depth 

according to the difference in δ between the vein and interior. But the patterns themselves hardly change with depth, except 

very near the stretch transitions where the difference in δ between vein and interior changes sign (i.e. transitions between the 

bars). This near-invariance arises because λ ≫ b, so that, away from these transitions, vertical gradients in δ are much smaller 

than horizontal gradients in the system, and the diffusion problems  520 

 
Formatted: Indent: First line:  0.75 cm



21 

 



22 

 

 

Figure 4. Horizontal isotopic patterns computed in three model runs with T = –32 C, λ  = 102 cm, c = 5 nm, w = 0 m yr–1, and Db = (a) 1.5 

× 10–11 m2 s–1, (b) 1.5 × 10–12 m2 s–1 , (c) 1.5 × 10–13 m2 s–1, compiled by sampling the δ-variations in the annular domain of Fig. 1a at three 525 

depths (z1, z2, z3). The colour charts reach out to the ice grain radius; the vein at centre is too small to be visible. One of two colour schemes 

is used, depending on whether δ at the vein exceeds δ in the grain interior or vice versa. In each run, the δ-variations have been normalised 

by the value of δ in the mid-grain interior at z = 0 (Sect. 2.6), so the colour-scale numbering and amplitudes are dimensionless. At far left 

in each panel, the curves show the the depth profiles of  the δ-variations at three sites – the vein wall (red), grain-boundary interior (blue), 

and three sites – mid-grain interior (black), grain-boundary interior (blue), and  vein wall (red) – over a signal wavelength. T (note that the 530 

black curves in (b) and (c) are overlain by the bluelatter two curves, having amplitudes only slightly less than the red curve in these runs, are 

overlain by the red curve..) White and grey bars indicate the vertical stretchesdistinct depth intervals where the vein-versus-interior difference 

in δ has the same sign. The enhancement factors in these runs are f = (a) 3.2237, (b) 2.7042, and (c) 2.2064, respectively.  

determining the pattern at different depths are similar3. At these transitions, as where the vein-to-interior difference in δ  

switches sign, the pattern flips from a pole to a hole reverse pole or the other way. Movie S1 shows the complete pattern 535 

 
3 Mathematically, λ ≫ b (dimensionally) translates to kz ≪ 1 and p1 ≪ 1 in the scaled model of Sects. 2.4 and 2.5, so that Eqs. (22) to (25) 

for H approximate a boundary value problem with terms representing vertical gradients neglected. Near where the isotopic pattern changes 

polarity, this approximation does not holdbreaks down because H  0 and those terms become comparable to the radial and azimuthal 

gradients. 
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evolution over 1λ. The stable “archetypal patterns” in the white and grey depth intervals are paired, with the same form but 

oppositely signed, so hereafter 

hereafter we write “pole” for both poles and holesreverse poles. Detailed examination shows that within a narrow distance 

about each transition, the pattern evolves continuously, with a pole weakening to zero strength and reversing sign. This 

behaviour is not resolved in Movie S1 but can be gauged from its dynamic colour ranges. 540 

The poles in Fig. 4b are not axisymmetric: they exhibit deformities reflecting the grain boundaries, whose impression is 

faint in this case. In contrast, Fig. 4a (high-diffusivity run, where Db is ten-fold) shows a much stronger grain-boundary imprint 

that causes 3-spoke patterns. Here, the vein plays a similar short-circuiting role in the short-circuiting as before; the archetypal 

patterns again flip where the vein-to-interior difference in δ switches signacross transitions. But isotopes also diffuse from 

the ice to grain boundaries and along them to the vein (vice versa at other depths), and diffusion occurs vertically within the 545 

grain boundaries. Fast diffusion along them extend the poles to form the spokes and cause extra short-circuiting across the ice-

crystal sectors, which raises the excess diffusion (f = 3.2237). The 3D isotopic field is more complex than in the run of Fig. 

4b. Azimuthual variations are evident from the spoke patterns, which indicate and  difference inthe δ-difference between the 

ice interior and grain-boundary interior (black and blue curves, Fig. 4a). The strongest azimuthal gradients occur just outside 

the vein on either side ofnext to grain boundaries, so lateral short-circuiting dominates near each ice sector’s apex. The 550 

increased short-circuiting also reduces the vein-to-interior difference in δ compared to the last run (see colour-scale 

numbering).. 

Going the other way, lowering Db to medium diffusivity (Fig. 4c) suppresses the grain-boundary imprint and shrinks the 

poles, which still show corners but only at tiny radius. These changes are expected given the diminishing short-circuiting 

contribution ofdiffusion along the grain boundaries. Indeed,Although this solution (with f = 2.20) thus closely approximates 555 

the axisymmetric solution of Rempel and Wettlaufer (2003) and Ng (2023), its f-value (2.64) is slightly less than what they 

found (2.65) for , the same conditions in the absence of grain where f = 2.11 in the absence of grain boundaries under the same 

conditions (see Ng’s Fig. 3a). the solid diffusivity Ds. Their solution is approached even more closely if we reduce Db to 

medium-low or low, towards the solid diffusivity Ds. For the interested reader, Movies S2 and S3 document the depth-evolving 

isotopic patterns in the runs of Fig. 4a and 4c. 560 
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Figure 5. Archetypal isotopic patterns computed in two model runs assuming T = –32 C, λ  = 102 cm, c = 10 nm, w = 0 m yr–1, and Db = 565 

(a) 1.5 × 10–11 m2 s–1 and (b) 1.5 × 10–12 m2 s–1, sampled at the same depths as those in Fig. 4 (z1, z2, and z3), and shown with the scheme used 

there. The enhancement factors in these runs are f = (a) 3.934.06 and (b) 2.7755, respectively. 

 

 

 570 

boundaries; this is found also the case if Db is further reduced to medium-low or low. In other words, as we increase Db from 

the solid  

diffusivity Ds, f decreases before rising. The initial decrease is due to radial short-circuiting of the ice near crystal apices by 

the grain boundaries, which reduces the radial gradents in isotopic concentration there, and thus the vein’s short-circuiting 

effect;  – we will see more drastic examples of this behaviour shortly (Fig. 6). For the interested reader, Movies S2 and S3 575 

document the depth-evolving isotopic patterns in the runs of Fig. 4a and 4c. 

Next we vary the grain boundary thickness c. Figure 5 presents archetypal patterns in two runs at –32 C assuming thick 

grain boundaries (c = 10 nm) of high and medium-high diffusivities. Compared to the runs in Fig. 4a and b, which used the 

same Db values, these patterns have more developed grain-boundary imprints and enlarged central excursions, and the 

associated enhancement factors are higher. As expected, thickening the grain boundaries here has a similar effect as raising Db 580 

in terms of enhancing grain-boundary short-circuiting, so the transition from a pole to 3-spoke pattern occurs at lower 

diffusivity. We experimented also with thin grain boundaries (c = 1 nm), finding in this case that that this shifts the pole-to-

spoke transition shifts to higher diffusivity instead. The corresponding archetypal patterns will feature in Fig. 910 described 

later. 

 585 
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All experiments so far assume no vein-water flow, so their vertical isotopic variations at different positions (r, θ) have 

identical phase,  = 0 are in phase (Fig. 4, curves). What if w  0? Figure 6 shows the results of four runs assuming intermediate 

and thick grain-boundaries with high and medium-high diffusivities, where we set w to 5 m yr–1, leaving other parameters 

unchanged. Ng (2023) explained 

 590 

 

Figure 6. Archetypal isotopic patterns computed in four runs with T = –32 C, λ = 10 cm, w = 5 m yr–1 (downward vein-water flow), and the 

grain-boundary properties (a) Db = 1.5 × 10–11 m2 s–1, c = 5 nm; (b) Db = 1.5 × 10–12 m2 s–1, c = 5 nm; (c) Db = 1.5 × 10–11 m2 s–1, c = 10 nm; 

(d) Db = 1.5 × 10–12 m2 s–1, c = 10 nm. The layout of Fig. 4 is used, but only the depths z2 and z3 are sampled, and we omit the colour range 

on each pattern, which is defined by the difference between the vertical isotopic profiles (curves at far left) for the vein wall (red), grain-595 

boundary interior (blue), and mid-grain interior (black); the black curves are overlain by the blue curves in these runs. As in Fig. 4, allthe 

signal amplitudes are dimensionless.  The enhancement factors in these runs are f = (a) 4.56, (b) 5.96, (c) 4.97, and (d) 5.33. 
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Figure 7. (a) Map of signal phase angle  at z = 0 in the experiment of Fig. 6a. Corresponding radial transects of (b, c) the real (Re) and 600 

imaginary  (Im) parts of the normalised solution H and of (d)  at z = 0, on θ = 0 (black; i.e. grain boundary) and θ = π/3 (red). The lLocation 

lines in (a) and the curves in the other panels use the same colour coding.   

 

that vein-water flow displaces the vein signal against the interior signal to induce a “shear layer” of phase-shifted isotopic 

variations outside the vein wall. In turn, the shear layer generates strong radial gradients in isotopic concentration in the ice 605 

near the vein, amplifying the diffusive isotope exchange between ice and vein to raise the level of excess diffusion. Figure 6 

shows the vein signal displaced in all four runs. Each solution still has two transitions where the vein-to-interior difference in 

δ switches, and paired archetypal patterns in occupying equal two stretches of equal depth intervalslength, within 1λ.  The 

archetypal patterns closely resemble the ones found earlier (cf. Figs. 4a, b & 5) because the vein-flow induced shear layers 

cause only subtle changes to them. Figure 7 depicts the shear layer on a map of  for the run in Fig. 6a, showing also the radial 610 

transects of H at θ = 0 and L/2. TheA non-zero imaginary part to H causesimplies a phase shift that reachinges ≈ –153 by the 

vein in this run. Unlike in Ng’s (2023) axisymmetric) theory, the shear layer here is triangular (non-circular) in planform due 

to lateral short-circuiting by the grain-boundaries, so isotopic transport in 3D is complicated by both vein-water flow and the 

grain boundaries’ presence.  

All four experiments in Fig. 6 confirm the amplification of excess diffusion by w anticipated by Ng’s study: at each 615 

combination of c and Db,: f is higher than in the runs where w = 0 (cf. Figs. 4a–b and 5). . Three effects involving the shear 

layer are noteworthy. First, Fig. 6 shows that at fixed c, f is actually reduced as Db increases from medium-high to high. This 

arises from grain-boundary short-circuiting of the ice-crystal apices, which, in these runs, limits the radial isotopic gradients 

of the shear layers so much that the reduced exchange between vein and ice offsets the enhanced exchange between grain 

boundaries and ice. Specifically, the higher is Db, the weaker are those gradients at w = 5 m yr–1, so the lower is f. This 620 

behaviour, which is observed in other runs with vein-water flow (e.g. f-values in red in Figs. 9 and 10 later), will be revisited 

in Sect. 3.2.  

Actually, their archetypal patterns closely resemble the ones found earlier, because the vein-flow induced shear layer 

causes only subtle changes to them (cf. Figs. 4a, b & 5)Second,, but the vertical phase shifts between the vein and interior 

signals increase the amplitude difference between these signals at most depths, and so markedly strengthen the isotopic patterns 625 

(e.g (e.g. . compare the curves in Fig. 6b curves in Fig. 6a, bto those in; cf. Fig. 4a, b). Vein-water flow thus makes the patterns 

easier to detect, even though it affects their form only in minor ways. 
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 630 
 

Figure 8. Transitory isotopic patterns from (a, b, d) three of the runs in Fig. 6 (see reference labels there) and (c) a run with T = –32 C, λ = 

102 cm, w = 5 m yr–1, c = 15 nm, and Db = 1.5 × 10–13 m2 s–1. These patterns have low amplitudes because they occur near transition points 

in z across which the vein-to-interior difference in δ switches sign. As before, the colour scales are dimensionless. 

 635 

water flow thus makes the patterns easier to detect, even though it affects their form only in minor ways. Additional runs at w 

> 5 m yr–1 (not reported) show further increase in the phase shifts and pattern amplitudes with w. Note that higher pattern 

amplitudes also result from shorter signal wavelength (e.g. Figs. S2 and S3 in Sect. S2, which show repeats of the runs in Figs. 

4 and 6 for λ  = 2 cm) or larger grain size (e.g. Figs. S6 and S7 in Sect. S4, which show repeats of the same runs for b = 5 

mm), but how λ  and b affect the anatomy of the 3D isotopic fields iswill not be analysed extensively herein. 640 
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Third, wWhen w  0, the phase variations also cause unusual patterns to appear in the narrow transitions across which an 

archetypal pattern (pole or spoke type) evolves to its opposite form. Figure 8 shows examples of these patterns, taken from the 

last runs and an extra run assuming at medium Db. They include “wheels” with notable azimuthal variations mid-way along 

grain boundaries (near θ = 0, L, and 2L at r ≈ 1) and “halos” where isotopic concentration varies with radius non-monotonically. 

Although we mention them for completeness, we expect to see find them rarely in measurements, because their small 645 

amplitudes likeprobably fall below the measurement sensitivity and the sampling has to be made at precisely the right depth 

against the bulk signal. 

Surface and thin sections on real ice will often cross triple junctions at oblique angles to their axes, yielding distorted 

isotopic patterns for them. Figure 9 exemplifies potential patterns that may result, made by sampling the solutions in Figs. 4a 

and 6a–b at tilts of 10, 30, and 55 from the horizontal (Movies S4–S7 show how they evolve as the azimuth of the section-650 

normal varies). While this examination stretches our use of an idealised model geometry that ignores the irregular shape of 

real grain boundaries and triple junctions (e.g. neighbouring junctions in real ice typically differ in orientation), the examples 

suggest that some pole and spokes may still have visible impressions at moderate tilt. Generally though, only some triple 

junctions on a given section may show archetypal patterns or their distorted relatives.  

 655 

 

Figure 9. Isotopic patterns compiled by sampling several solutions in Figs. 4 and 6 at non-zero tilt from the horizontal (constant z in our 

model), with the sampled sections meeting z = z2 at r = 0. The tilt angle, tilt-axis azimuth and model run are indicated in each case. 

3.1.2 Pattern continuum at different temperatures 

Returning to the archetypal patterns, we summarise and elaborate on the insights gained so far on them with the aid of Fig. 660 

910, which puts them on the c–Db parameter space. The pattern type at –32 C depends on the relative amount of vein and 

grain-boundary short-circuiting. Thin, non-diffusive grain-boundaries give a pole pattern, since the short-circuiting is done 

mostly by the vein. The axisymmetric solution is reproduced at the no-grain-boundary limit c → 0 (dimensionlessly, ε → 0) 

or when Db → Ds  
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Figure 910. Dependence of archetypal patterns on grain-boundary diffusivity Db and thickness c at –32 C for signals with the wavelength λ 

= 102 cm. Key on the right locates the four values of Db as black filled circles on the scheme of Fig. 2. Numbers in green give the 

corresponding diffusivity contrasts βb. The isotopic patterns shown and the enhancement factors f in black are for w = 0. Bracketed in red 670 

also are the f-values when vein water flows at w = 5 m yr–1, which produces patterns that are only slightly different from the ones shown 

(e.g. Fig. 6 and Fig. S4).  

 

 

Db → Ds (grain boundaries having with the solid diffusivity; βb → 0). Thick, diffusive grain boundaries give 3-spoke patterns, 675 

as they serve as radial extensions of the vein in the 3D isotopic exchange; the higher is c or Db, the more developed are the 

spokes. On the pattern continuum at –32 C, tThe pole-to-spoke transition at –32 C at –32 C occurs roughly at medium-high 

Db – higher if the grain boundary is thinner. Figure 10 9 also indicates that a ten-fold increase in c or Db leads to what looks 

likealmost the same pattern, suggesting the thickess–diffusivity product entirely determines the pattern. However, our model 

analysis (Sect. 2.3) shows that cDb (or ε(βb + 1)) isn’t the sole control; c and Db also act independently, which is why the ten-680 

fold increases do not give identical enhancement factors.  

How about other temperatures? Calculations at –52 C for 10-cm long signals reveal a similar array of archetypal pole 

and spoke patterns on the parameter space (Fig. 10; cf. Fig. 9). Vein-water flow again modifies these patterns slightly (Fig. 

S53) but increases their amplitude and detectability strongly (we find this at other temperatures). That the pattern arrays for –
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52 and –32 C bear close resemblance is unsurprising, because the diffusivity contrast βb = Db/Ds – 1 predominantly determines 685 

the pattern 
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 690 

Figure 101. Dependence of archetypal patterns on Db and c at T = –52 C and λ = 102 cm. The layout of Fig. 910 is used here. The isotopic 

patterns shown and the enhancement factors f in black are for w = 0. Bracketed in red also are the f-values for vein-water flow at w = 0.5 m 

yr–1, which produces patterns that are only slightly different from the ones shown (Fig. S52).  

 

the pattern at each thickness c, and because our Db values for the two temperatures lie at similar distances above the solid-695 

diffusivity curve (Fig. 2) and convert to similar βb values (Figs. 910 and 101). The liquid diffusivity Dv also influences the 

patterns, but v varies weakly with T, as Dv(T) and Ds(T) have similar slopes on the Arrhenius plot slopes (Fig. 2). These 

considerations mean that we can predict the isotopic pattern at any temperature from Db and c, by calculating βb – or gauging 

it with Fig. 2 – and then consulting the arrays in Figs. 910 and 101. For example, at –42 C, for grain-boundaries with Db = 

10–14 m2 s–1, Eqs. (1) and (12) give βb ≈ 400, while in Fig. 2 these T–Db data plot between the grey lines labelled medium-low 700 

and medium in Fig. 2low on the grey band extrapolated to –42 C (i.e. extension of the Lu et al. (2009) diffusivity range; Sect. 

2.2). Both evaluations put the grain-boundary diffusivity between medium-low and medium on our descriptive scale, below 

the third row of patterns in Figs. 910 and 101, so we predict a pole pattern (regardless of the grain-boundary thickness). An 

interesting corollary is that isotopic patterns observed in real ice can be used to infer grain-boundary properties (Sect. 4.1). 

Hitherto, we have focussed on using the results at λ  = 10 cm to elucidate underlying interactions and pattern controls. 705 

For longer signals of other wavelengths at the centimetre and decimetre scalesignals, we find the similiar effects of Db and c 
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on the archetypal patterns to be qualitatively unchang; ede.g. see Figs. S2 and S3 for results at λ  = 2 cm. The patterns are 

weakly sensitive to λ for the reason given earlier (footnote 3)earlier. When λ ≫ b, as is typical for  isotopic signals a few 

centimetres or longer in ice sheets, the diffusion problem describing isotopic variationsfor δ at different depths (within a signal 

wavelength) is similar, dominated by horizontal concentration gradients, with terms representing vertical gradients being 710 

negligible (footnote 2). Note that our results in this section show that a given isotopic pattern does not indicate a fixed 

enhancement factor, as it can form under different conditions (T, λ, and Db and c combinations). 

3.1.3 On pattern detectability 

 

We end theis section with a  a few remarks related usefulto   pattern detection , in preparation for the work in (Sect. 4.1). Since 715 

the patterns in Figs. 4 to 109 are based on the normalised H, their δ-variation in absolute terms iswill be given by their scaled 

dimensionless amplitude, as shown by the colour scales or  the the difference between the vein and grain-interior isotopic 

profilesred and black curves, multiplied by the true amplitude of the bulk vertical bulk  signal. This scaling conversion applies 

to both oxygen and deuterium. For instance, if the bulk signal (in δ18O or δD) is 10‰ peak-to-peak, then the pattern scaled 

ampli-tudes of the patterns in Fig. 4b, ≈ 0.00512–0.00715, translate to δ- variations ≈ 0.0256–0.0375‰ if the bulk signal is 720 

10‰ peak-to-peak, whereas t. he much higher pattern amplitudes in the runs with vein-water flow in Figs. 6b and 6d, ≈ 0.1, 

translate to ≈ 0.5‰. Each result here This is both an approximation and an underestimatione, because the bulk signal (i.e. 

section-mean signal in Eq. (15)) always has a scaled amplitude ≲ 1 if short-circuiting operates(see the end of Sect. 2.6); w. 

We do not quantify the approximation exactly as it . We do not calculate the exact conversions here, varies with given thean 

infinite variety of  patterns.   725 

The δ-excursions of the patterns reported above have widths ~ 10–50% of the grain radius b. Although we do not study 

grain-size effects extensively, additional runs show that this qualitative finding holds at b = 5 mm (Figs. S6–S9); thus, the δ-

excursions are wider (dimensionally) in coarse-grained ice. However, the pattern forms shift nearer the pole end of the pole-

to-spoke continuum as b increases (Figs. S6–S9). This is predicted by the scaled model (Sect. 2.4), where a larger b has no 

effect on βb (the dominant control on pattern type; Sect. 3.1.2), reduces the dimensionless signal wavelength (the pattern is 730 

weakly sensitive to this), raises the Péclet number χ (the flow-induced shear layer doesn’t strongly alter the pattern; Sect. 

3.1.1), and reduces the thinness ξ and εξ of the vein and grain boundaries, and thus their short-circuiting efficiency: this 

causes the shift.  

Finally, surface and thin sections on real ice will often cross triple junctions at oblique angles to their axes, yielding 

distorted isotopic patterns for them. Figure 11 exemplifies potential outcomes, made by sampling the solutions in Figs. 4a and 735 

6a–b at tilts of 5, 10, 25, and 50 from the horizontal (Movies S4–S7 show how they evolve as the azimuth of the section-

normal varies). While this examination stretches our use of an idealised model geometry, which ignores the irregular shape of 

real grain boundaries and triple junctions (e.g. neighbouring junctions in real ice typically differ in orientation), these examples 
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suggest that pole and spokes may still have visible impressions at moderate tilt. Generally though, on a given section, only 

some triple junctions have low or moderate tilts; other junctions with high tilts will have unrecognisable isotopic patterns. 740 

 

 

Figure 11. Isotopic patterns compiled by sampling several solutions in Figs. 4 and 6 at non-zero tilt from the horizontal (constant z in our 

model), with the sampled sections meeting z = z2 at r = 0. The tilt angle, tilt-axis azimuth and model run are indicated in each case. As before, 

the colour scales are dimensionless. 745 

 

3.2 Enhancement factor on bulk-ice diffusivity 

Of interest also is how much the presence of grain boundaries affects the enhancement factor f measuring the excess diffusion 

(and acceleration of signal smoothing) above the rate due to single-monocrystalline diffusion. Here, wWe study this by 

examining the computed surfaces of f as functions of vein-water flow velocity w and signal wavelength λ. 750 

Ng (2023) reported the surfaces f (w, λ) at T = –32 and –52 C for the axisymmetric (vein-only) system when a = 1 μm 

and b = 1 mm, which we reproduce in Fig. 12a and 12e as contour maps. Our computed surfaces accounting for grain 

boundaries all show the same valley form as these maps, with f increasing with λ and w. Thus, vein-water flow amplifies 

excess diffusion in our system with grain boundaries (by an amount independent of whether the flow is up or down), as in the 

vein-only system. Although not analysed herein, Oour model also predicts known trends of f against the vein and grain sizes 755 

– f increases with a and decreases with b (Rempel and Wettlaufer, 2003), which reflects the way these parameters control the 

efficiency and density of short-circuiting elements (Ng, 2023). Notably, a larger b increases these elements’ spacing relative 

to the signal wavelength, and so reduces the short-circuiting and f towards 1 (no excess diffusion) asymptotically; this 

dependence is shown in Fig. 4 of Rempel and Wettlaufer (2003) for the vein-only system. Although we do not characterise the 

dependence in our system fully, model runs at b from= 1 to 5 mm in 1-mm increments confirm a similar behaviour (Figs. S10 760 

and S11, , Sect. S4). Furthermore, our system exhibits (i) lower f at –52 C than –32 C when w = 0 and (ii) stronger modulation 

of f by w in colder ice (hence this is why our experiments at –52 C use lower vein-flow velocities; e.g. compare the f-values 

in Fig. 101 resulting from w = 0.5 m yr–1 to those in Fig. 910 from w = 5 m yr–1). These aspects have been explained by Ng 

(2023) with scaling arguments that we do not repeat here.  
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We focus instead on how the surface f(w, λ) deforms when we introduce grain boundaries and vary their diffusivity. 765 

Figure 12b–d and f–h present the results at –32 and –52 C for intermediate grain boundaries with medium, medium-high and 

high Db. The results are shown as difference maps Δf(w, λ) referenced to the surfaces in Fig. 12a and 12e, because we find 

     

 

Figure 12. Impact of the presence and diffusivity (Db) of grain boundaries on the level of excess diffusion for different vein-flow velocities 770 

w and signal wavelengths λ at –32C and –52 C when c = 5 nm. (a, e) Contour maps of enhancement factor f(w, λ) for the vein-only system 

without grain boundaries; data from Ng (2023). (b–d) f(w, λ) reported as contour maps of the difference Δf from (a), for our system at –32 

C when the grain boundaries have medium, medium-high, and high diffusivities. (f–h) Ditto for –52 C, but referenced to (e).  

 

 775 

visualising the changes by comparing different sets of contours of f more difficult.4 (Our computed surfaces at low Db differ 

negligibly from Fig. 12a and 12e and could equally serve as references.) On the difference maps, the interesting feature is the 

wedges of negative Δf straddling the w = 0 axis. They indicate unexpected reductions in f caused by the grain- boundary 

diffusionies when vein-water flows. The reductions increase in magnitude with Db and λ, occur at relatively low vein-water 

velocities in  ≳ 2.5 cm, and persist to higher vein-water velocities the longer is the signal. Between each pair of wedges is a 780 

narrow ridge at w ≈ 0 where Δf  ≳ 0, which matches our finding in Sect. 3.1 that f typically iincreases with the degree of grain-

boundary short-circuiting at zero vein flow (e.g. f-values in black in Figs. 910 and 101). Outside the wedges, Δf is positive and 

increases steeply with , w., and Db.  

 
4 Our computed surfaces at low Db differ from Fig. 12a and 12e negligibly and could equally serve as the references. 
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For the surfaces f(w, λ, w), these differences mean that grain-boundary short-circuiting flattens their valley bottom – 

(reducing f there compared to the vein-only case ) for signals longer than ≈ 2.5 cm, while it raises f only at sufficiently high 785 

vein-flow velocities and for signals shorter than  2.5 cm – in the areas outside the wedges. BecauseAccordingly, our runs at 

λ  = 102 cm with vein-water flowfor any  w (Sect. 3.1) assume values of w inside the wedges, they predicted lessmore excess 

diffusion and lower f when Db is increased, whereas for longer signals near a decimetre, raising Db at w = 5 m yr–1 reduced f 

(see results for  = 8 cm in f-values in red in Figs. 9S3 and 10–S6). The mechanism was explained in Sect. 3.1 throughWe 

have study ofing ied the 3D isotopic fields and their phase variations: with to discern the mechanism, finding that when vein-790 

water flows, diffusion along grain boundaries suppresses the flow-induced concentration gradients (shear layer ) induced by 

radial the flow by short-circuiting of its concentration gradientsthe ice diffusion near the crystal apex. The outcome thus rests 

on a competition: at low    w, this effect overcomes the enhanced isotopic exchange between ice and vein due to the shear 

layer (so f decreases overall);, but it is out-competed by the latter only at high w (whereuponso f increases). The wedge shape 

arises because the mechanism is more effective for longer signals, which develop weaker shear layers at a given w. For 795 

completeness, we provide the computed grids of f in the paper’s repository and show in Fig. S1127 a companion version of 

Fig. 12 that plots f instead of Δf. 

In summary, although short-circuiting by thick or diffusive grain boundaries leaves stable 3-spoke signatures on isotopic 

patterns (Sect. 3.1), for decimetre-scale isotopic signals, it increases f only at zero or high vein-water velocities, not at 

intermediate velocitiesdoes not always increase f. Grain boundaries increase f at zero or high vein-water velocities, but do so 800 

only for short signals at low (non-zero) velocities. Thus, while the presence of grain boundaries or veins in glacier ice (b ~ 

mm) always causes an excess diffusion compared to the monocrystal, and while vein-water flow always increases itsthe level 

of excess diffusion compared to no flow, whether more diffusive grain boundaries amplify theits level has a mixed answer. 

However, this outcome does not affect the concept of using the grain-scale patterns to diagnose isotopic short-circuiting. 

4    Discussion 805 

4.1 Detecting isotopic patterns  

Our calculations establish isotopic patterns around triple junctions as an inevitable consequence of excess diffusion that 

operates by vein and/or grain boundary short-circuiting. This grain-scale prediction should be testable by laboratory 

measurements on ice samples. As highlighted inat the Introductionbeginning, we propose  looking for this grain-scale 

prediction in laboratory measurements on ice such tests are needed to testverify the Nye–Rempel–Wettlaufer genre of theories. 810 

Here we discuss this matter, drawing extensively on the results in Sect. 3.1. 

The crux is whether such tests reveal systematic excursions in δ around veins and grain -boundaries like the predicted 

archetypal patterns. Also relevant is whether pole or three-spoke patterns (or both) are found to prevail in natural ice, but the 

current level of knowledge about the of grain-boundary properties of ice precludes a clear expectation on this. Our results 

model predicts a pattern type depend-ent on grain-boundary diffusivity and thickness – higher Db and c favour spokes. 815 
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Particularly, medium-high to high Db on our descriptive range (Fig. 2) is needed for spokes (Figs. 9 10 and 10; also, Figs. S2–

S3 and S6–S91). This does not necessarily mean that spokes will be rarely observed, given substantial uncertainties about the 

extent to which impurities and crystallographic factors can affect Db and c (Sect. 2.2). Also, although the HCl bulk 

concentration (≈ 0.01 M) used by Lu et al. in their diffusivity measurements to explore the impurity effect is much higher than 

the typical concentration of Cl– in ice cores ( 1–10 M), natural ice contains myriad impurities. More likely, the any detected 820 

isotopic patterns might give us a handle to assess the grain-boundary properties. 

In terms of measurement technique, one based on laser-ablation (LA) sampling is promising. Bohleber et al. (2021) used 

LA-ICP-MS (laser ablation inductively-coupled plasma mass spectrometry) to map the elemental abundances (Na, Mg, Sr) on 

ice-core surface sections at 35 m resolution, gaining new insights into impurity localisation at grain boundaries; see review 

by Stoll et al. (2023) also. Importantly, Malegiannaki et al. (2023) have been innovating a system for mapping water isotope 825 

ratios in ice by coupling LA sampling with cavity ring down spectroscopy. The resulting isotopic maps will hopefully have a 

spatial resolution as good as LA-ICP-MS and measurement sensitivity and accuracy ion δ18O or δD sufficient for our 

proposed tests. On our simulated archetypal patterns atfor λ  =  102 cm, the δ-excursions have widths 10–50% of the grain 

radius for b = 1–5 mm ( (Sect. 3.1.3 and Sect. S4Figs. 10 and 11) and  amplitudes reaching ≈ 0.005–0.007 0.2 of the vertical 

bulk signal in the lessmore favourable cases without vein-water flow (Figs. 4 and 6); that is, ≈ 0.01–0.02‰ 1‰ if the bulk-830 

signal variation is 55‰ peak to peak. Thise conversion examplese values suggests achieving high sensitivity in δ to be the 

main obstacle for the LA-based technique to detect the patterns, while the technique should plausibly achieve sub-millimetre 

spatial resolution.  But, as noted in Sects. 3.1.3 and 3.1.1, the pattern amplitudes are higher by 15–20 timesan order of 

magnitude in those runs with vein-water flow (Fig. 6) and still higher at values of w greater than those experimented by us; 

they are also also higher  for larger grain radii (b > 1 mm) and shorter signals (λ  < 10 cm). Moreover, polar ice cores often 835 

exhibit decimetre-scale variations in δD of up to ~ 20–40‰, in contrast to a few ‰ in δ18O, owing to the different 

dependences of δD and δ18O of polar precipitation on condensation temperature (Dansgaard, 1964). The conversion example 

above thus may be conservative, and optimistically we think that a measurement sensitivity of  0.1‰ has thereasonable 

chance potential of detecting the stronger isotopic patterns, especially if one targets short, large-amplitude signals in δD in 

coarser-grained ice. ; that is 1‰ if the bulk-signal variation is 5‰ peak to peak. We think that measurement capabilities of  840 

0.1‰ or better and a few tens of microns are necessary to capture the patterns properly.  

For testing ice-core samples with this technique, our findings motivate mapping δ  on horizontal sections at different 

depths. Figure 13 sketches an experimental design. The bulk isotopic signal should first be determined – e.g. by continuous 

flow analysis (CFA) measurements of a vertical strip – to guide where to make horizontal sections. If w = 0, lLocations likely 

to yield stronger and more detectable isotopic patterns are the peaks and troughs of the bulk signal, away from its inflexions,. 845 

This is because a vein isotopic profile in phase with the bulk signal leads to the greatest pattern amplitude at those extrema, 

and when w = 0, the transitions where pattern extinction at the bulk-signal inflexions (dotted curve in Fig. 13), occurs lie at 

the inflexions, where the predicted archetypal patterns switch signas the extrema see the greatest pattern amplitude (Sect. 3.1; 
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Fig. 4). If, the ice experienced vein-water flowand because the extrema escape the transitions for all w,. This is in turnthen 

because vein-water flow displaces we expect the vein isotopic signals to be displaced in the direction of w, shifting the 850 

transitions back towards (not as farso as)  the extrema of the bulk signal gives weaker patterns than elsewhereat small w, and 

forward again at larger w (dashed-dotted curve in Fig. 13, also, Fig. 6Fig. 6; cf. Fig. 4); see also Ng (2023). Given the difficulty 

of constraining w at ice-core sites (see discussion by Ng (2023)) and other factors behind the shift (e.g. uncertain grain-

boundary properties in a sample),  the amount and direction of shift areis not known a priori, soand  placing key horizontal 

sections at several placesaway from – the bulk-signal extrema and inflexions and intermediate positions – are probably 855 

neededmay  to risk obtaireturning highlow-amplitude maps.  

The map of δ  from each horizontal section is processed by subtracting its section-mean value, to isolate variations for 

spotting patterns akin to the predicted ones. If 2D mapping is not possible, linear transects may be used to detect anomalies  in 

δ  across grain boundaries. Whether mapping in 1D or 2D, obtaining the grain-boundary network independently by LA-ICP- 

 860 

MS or other measurements is desirable. If multiple sections couldan be made, we suggest sampling across the bulk-signal 

wavelength to look for the predicted pattern sign reversal (associated with the depth intervals where isotopes diffuse towards 

and away from veins; Sect. 3.1) and to characterise how pattern amplitudes vary with depth. For ice affected by short-circuiting, 

our model predicts (i) same-signed patterns on each horizontal section (triple junctions all showing either higher or lower δ 

than away from them) and (ii) pattern amplitudes cycling vertically on half the bulk-signal wavelength. Indeed, firm evidence 865 

for isotopic short-circuiting includes finding these depth-dependent relationships, besides the archetypal patterns.  
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Figure 13. Experimental design for testing ice-core samples for the grain-scale signature of the isotopic short-circuiting causing excess 870 

diffusion. Horizontal sections are expected to show Horizontal sections anomalies in δ around triple junctions, whose amplitudes vary with 

depth in association with the bulk δ18O or δD signal. at the peaks and troughs of the bulk isotopic signal (e.g. 18O or D) are expected to 

show high-amplitude anomalies in  around triple junctions if the ice experienced no or negligible vein-water flow (w  0).L A laser-ablation 

measurement technique is used to map these anomalies, some of them resembling the computed patterns in Figs. 4–, 5, 6, and 8–11. If the 

ice experienced no or negligible vein-water flow (w  0), the pattern amplitudes are strongest,  at the peaks and troughs of the bulk 875 

signalsections, weaken  away from these peaks and troughs, would show weaker anomalies, and sectionsand are faintest at the signal 

inflexion points of the bulk signal (dotted curve), the faintest anomalies. If w > 0, the amplitude variations are shifted vertically (dashed-
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dotted curve) so that the patterns are weakest near the bulk-signal peaks and troughs (e.g. Fig. 6). Cartoons right of centre illustrate the 

polarity and amplitude of the mapped patterns for w = 0. ; Iimages at far right illustrate show how the patternsy might look in detail (in the 

case of spokes), on colour scales set to bracket their isotopic variations, after these have been non-dimensionalised by the bulk-signal 880 

amplitude.. Our results in Sect. 3.1 show that vein-water flow (w ≠ 0) would shift the vertical variation of pattern amplitude against the bulk 

signal.  

 

MS or other measurements is desirable. If multiple sections can be made, we suggest sampling at least at acrossboth the bulk-

signal wavelength peak and trough (Fig. 13) to look for the predicted pattern sign reversal (, associated with those depth 885 

intervals stretches where isotopes diffuse towards and away from veins in the short-circuiting;  (Sect. 3.1) .and  Additional 

sections can sample at quarter-wave locations (Fig. 13) or nearer the inflexions to characterise how pattern amplitudes vary 

with depth relative to the bulk signal. For ice affected by short-circuiting, our model predicts (i) same-signed patterns on each 

horizontal section (triple junctions all showing either higher or lower  than away from them) and (ii) pattern amplitudes 

cycling vertically on half the bulk-signal wavelength (phase shift between this cycle and the bulk signal would indicate vein-890 

water flow). Indeed, firm evidence for isotopic short-circuiting includes finding these depth-dependent relationships, besides 

the archetypal patterns.  

On maps of δ yielding successful detection, we expect to see more varieties of triple-junction patterns than simple poles 

and spokes – patterns with different shape, amplitudes (perhaps even some with opposite sign), distortion levels of distortion, 

and patterns unlike the archetypes. Reasons include (i) a non-sinusoidal bulk signal, (ii) anisotopy in the diffusivity Ds within 895 

crystals, (iii) curved grain boundaries and triple-junction angles deviating from 120 in real ice, (iv) textural variations in real 

ice (i.e. different vein diameters, grain sizes and shapes, and triple-junction axial orientations (Fig. 119) sampled by eachthe 

horizontal section;  – recall that our simulations used fixed a and b), and (v) “out of plane” effects of veins and grain boundaries 

slightly above and below the section (discussed later in Sect. 4.2), and (vi).  short-circuiting by subgrain boundaries (Sect. 4.2). 

Based on the computed pattern arrays in Figs. 910 and 101, thean observed assemblage of archetypal or near-archetypal 900 

patterns may allow us to gauge the short-circuiting regime: spoke- (/pole-) dominated assemblages would suggest thick, 

diffusive (/thin, non-diffusive) grain-boundaries. 

Vertical sections can also be mapped in the experiments. They will miss most (if not all) vertically-oriented triple 

junctions and hence not show our predicted patterns, but the out-of-plane effects on them may generate excursions near triple 

junctions (Sect. 4.2). RTaking random linear transects across ourthe charted computed patterns in Sect. 3.1 (e.g. Figs. 4 to 6) 905 

suggests that vertical sections will cross some of the  δ-excursions should occur around around some grain boundaries in 

affected ice samples. Again, our model predicts their amplitude to vary vertically in unison – not necessarily in phase – with 

the bulk signal.  

For isotopic maps from either vertical sections or a stack of horizontal sections, consistent phase relationship found 

between the pattern amplitudes and the bulk signal can be used to infer the direction and relative magnitude of vein-water flow 910 

(or its stagnancy). For an ice-core samples, this means the value of w experienced when it they wasere in-situ in the ice column. 
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Which ice-core samples should be tested? High on the list are those from the Holocene part of the GRIP core (Johnsen 

et al., 1997, 2000), ≈ 15–18 ka BP in the WAIS Divide core (Jones et al. 2017), and MIS 19 (≈ 3170 m) in the EPICA Dome 

C core (Pol et al., 2010), – given interpretation that they suffered excess diffusion (Sect. 1). O Specifically, our model suggests 

choosing samples carrying bulk δ-signals that are short (λ  as low as  few cm, if possible)) with high amplitude., as these 915 

promote strong patterns. But since diffusion – (especially excess diffusion –) damps short signals efficiently, ideal samples 

may be challengingdifficult to find, and we anticipate severe demands on the measurement sensitivity and the need to 

compromiseinge between amplitude and wavelength may be necessary. As pointed out above, coarser-grained ice may show 

stronger patterns with wider excursions that are easier to resolve; this suggests samples deep in the ice column. Therefore, 

samples dated to MIS 19 from EPICA Dome C (where b ≈ 6 mm; Fig. 8 of Ng (2023)) may be a good candidate; t. The high 920 

vein-water flow velocities ( 102 m2 yr–1) needed to model the diffusion lengths in that part of the core (Ng, 2023) also favours 

these samples. Separately, although the in-situ iceice-column temperature  of the samples and the time span of the bulk signal 

(e.g. whether it is annual, centennial, or millennial) do not matter in these tests for the occurrence of excess diffusion, samples 

with high dust or microparticle content are best avoided because blockage of veins (maybe grain boundaries also) hinders the 

theorised short-circuiting. We pause with these general ideas on sample selection here and leave dedicated considerations to 925 

future studies.  

It is equally important to test ice-core samples apparently unaffected by excess diffusion. Together with the (purportedly) 

affected samples, they may help us understand the origin and pattern of occurrence of excess diffusion in individual or different 

multiple cores. From the perspective of the Nye–Rempel–Wettlaufer framework, which includes Ng’s (2023) and our present 

model, it is in fact puzzling why excess diffusion occurs in a patchy manner – not everywhere – in ice cores. All three cores 930 

mentioned above have other sections depth intervals where the signal- decay rate (or diffusion lengths) can be explained with 

monocrystalline diffusivity – without invoking excess diffusion (Johnsen et al., 2000; Pol et al., 2010; Jones et al., 2017). Yet 

the short-circuiting theories predict f > 1 always, because veins and grain boundaries are always present. One possibility is that 

blocked or disconnected veins prevent excess diffusion on some intervalsstretches, whereas on other intervals stretches, 

dissolved impurities migrate to grain boundaries (e.g. Bohleber et al., 2021) and then to the veins, thickening them to switch 935 

turn on excess diffusion. A study that tests both unaffected and affected samples for grain-scale isotopic short-circuiting and 

maps their impuritimpurities y distribution simultaneously (e.g. with LA-ICP-MS) might shed light on the enigma. 

Artificial ice samples can also be tested also. ManufacturFabricating these with bulk isotopic signals may be non-trivial, 

and the long time for isotopic patterns to stabilise seems impractical (the time scale b2/Ds in Eq. (17) gives 16, 27, and 78 years 

at –5, –10, and –20 C, respectively, for b = 1 mm; longer for higher b) and may limit the insights to the transient stages of 940 

short-circuiting. 

 

 

4.2 Model limitations and extensions 
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Real isotopic patterns at the grain scale will be more varied and complex than predicted here because our model geometry is 945 

highly idealised: its cell-like regularity (Fig. 1) ignores grain size and shape variations, for instance (Sect. 4.1). Before 

finishing, we consider severaltwo important limitations of the model in this respect and how they may affect our findings. 

First, the true geometry has many non-vertical veins and grain boundaries. To gauge their effects in a more realistic 

model, one might try to add horizontal veins and grain boundaries to the model geometry. Ice with grain size b  mm will have 

many such elements in one λ (if λ  cm to dm). Spaced at intervals  b, they extend the diffusion pathways laterally from our 950 

system. We expect the associated δ-excursions, which modify the isotopic field near these elements, to be thin vertically, just 

as the radial (/azimuthual) excursions around veins (/grain boundaries) in our current model are thin. Between these new 

excursions, the field should resemble the one computed by us. Therefore, on a given horizontal mapsections of , we should 

still find triple-junction patterns in δ  like the predicted ones, for neighbouring grains crossed by itthe section near their waist 

(thick excursions from high c and Db might distort these patterns). But grains crossed near their top and bottom will show 955 

strongly-affected patterns, as their sampled junctions and boundaries lie near or within the new excursions. Consequently, real 

maps of δ will exhibit showvarious out-of-plane distortion due to horizontal and sub-horizontal veins and grain boundaries 

above and below the section. The impact of the (sub-) horizontal elements on the level of excess diffusion is harder to predict. 

They mayight increase the isotopic exchange between the veins and ice to raise f overall, or short-circuit the vertical system 

sufficiently to reduce f (we infergather this possibility from Sect. 3.2, where we saw diffusion along how grain boundaries 960 

weakening the flow-induced shear layer around veins). 

Second, veins and grain boundaries in the real system generally are not stationary as assumed but migrate continually. 

Their 3D motion willmust cause lopsided or asymmetric isotopic patterns. Modelling the outcome will requires quantifying 

the relative rates of isotopic-field evolution and this motion, accounting for the statistical distribution of vein and grain-

boundary velocities and impurity factors, which lies beyond the scope of this paper. 965 

Third, small-angle boundaries within crystals, i.e., sub-grain boundaries, may act as short-circuiting pathways that distort 

the isotopic patterns. In their experiments on ice with gaseous HCl, Dominé et al. (1994) and Thibert and Dominé (1997) 

interpreted measured depth profiles of the HCl concentration in single crystals for the occurrence of fast diffusion along these 

defects, using thisthis process to explain the high value and high scatter of apparent diffusivities in their samples. Dominé et 

al. (1994) estimated the HCl diffusivity along the small-angle boundaries (accounting for segregation of HCl there) at –5 to –970 

15 C to be  107 times greater than the “true” HCl diffusivity in the crystal lattice (away from the defects), which the two 

studies estimated to be probably around 10–16 m2 s–1 at –5  to –35 °C. Consequently, oConsequently, one could also conjecture 

fast diffusion of oxygen and deuterium isotopes along these same defects, which would extend the short-circuiting network of 

grain boundaries and veins further into crystals. ItsIts impact on the excess diffusion and the isotopic patterns would 

presumably depend on the density of small-angle boundaries. In exploring such conjecture, a key question of how well the 975 

findings for HCl translate to the water self-diffusion, and one way to investigate this is to repeat the experiments on water 

stable isotopes, instead of HCl. 
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These limitations apply also to the theories of excess diffusion by Nye (1998), Johnsen et al. (2000), Rempel and 

Wettlaufer (2003), and Ng (2023). Studies using the enhancement factor f from our model led by us or those studies to simulate 980 

signal evolution and diffusion-length profiles in ice cores should bear in mind the above limitationsm in mind, all of which 

apply equally also to the short-circuiting theories of excess diffusion ofby Nye (1998), Johnsen et al. (2000), Rempel and 

Wettlaufer (2003), and Ng (2023)..  

 In terms of building more realism and sophistication upon Nye’s original modelthese theories, we are near the end of the 

road with using simple analytical models to capture the coupled diffusion across ice, veins, and grain boundaries. Looking 985 

forward, overcoming the geometrical limitations in the mathematical description seems challenging and may require 

approximate approaches (e.g. using multiscale or homogenisation methods to derive bulk diffusivity) or direct numerical 

simulation dealing withtracking complex mobile interfaces. 

5    Conclusions  

If short-circuiting by diffusion in veins and grain- boundaryies short-circuiting is responsible for excess diffusion in ice, then 990 

isotopic imprints similar to our computed archetypal pole and spoke patterns will occur at the grain scale. The δ-excursion of 

each imprint reflects isotopic exchange between ice and the short-circuiting pathways, its polarity showing whether the 

pathways act as a sink or source of isotopes for the adjacent crystal lattice. For ice with grain radius b = 1 millimetre grain 

size,m, our model predicts excursions ~ 10–50 % of the grain radius – thus, at least 0.1 mm wide,  0.1b – 0.5b wide (~ 10–1 

mm), with δ-variations whose amplitude is proportional to tthe amplitude of the bulk isotopic signal and rangesing fromup to 995 

a fraction of ~  10–2  to 10–10.2 o of that signalits amplitude, but typically smaller. Mapping the isotopic patterns in detail 

probably requires a minimum instrumental sensitivity of  0.1‰ and a spatial resolution of a few tens of microns or better. 

Pattern detectability is improved in ice that carries short bulk signals with high amplitude, has a higher mean grain size, and  

experienced vein-water flow in the ice column, asbecause these factorsis promote stronger amplifies the excursions.  

These predictions motivate testing ice samples for these signatures of excess diffusion and the short-circuiting mechanism 1000 

by mapping their isotopic concentration at high resolution. Given ongoing development of laser-ablation measurement 

techniques by some workers, we outlined a laboratory scheme for conducting the tests on 2D sections of ice from ice cores, 

together with thoughts on sample selection (Sect. 4.1; Fig. 13). The proposed tests are independent from known ways of 

inferring excess diffusion from the signal-decay rates or estimated diffusion lengths on ice-core isotope profiles, which can 

diagnose its occurrence, but not itsthe underlying mechanism. 1005 

Our modelling elucidates the controls on the isotopic signatures. Although the isotopic diffusivity (Db) and thickness (c) 

of grain boundaries in ice are poorly constrained and may be highly variable, our results show that thin, non-diffusive grain 

boundaries yield pole patterns, whereas thick, diffusive grain boundaries (including those due to high impurity levels) yield 

spoke patterns. Figs. 910 and 101 show the predicted continuum of pattern types on the c–Db parameter space, which can be 
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used with the observed isotopic patterns in an ice sample to infer its grain-boundary properties in relative terms. The grain-1010 

boundary diffusivity affects the pattern via the parameter βb = Db/Ds – 1, in which Db and the monocrystalline diffusivity Ds 

both depend on temperature (Fig. 2). Our results also revise current estimates of the enhancement factor f that quantifyingies 

the excess diffusion above Ds. For the full system with veins and grain boundaries, vein-water flow is found to amplifiesy 

excess diffusion and increases f, as in the vein-only system (Ng, 2023). However, at a fixed (non-zero) vein-water flow velocity 

w, Tthe presence of grain boundaries can increase or reduce f compared to the vein-only system, depending on the vein-water 1015 

flow velocity wsignal wavelength; at sufficiently high w, f is increased at sufficiently high w for decimetre-scale or shorter 

signals (Sect. 34.2). The model predicts polycrystalline ice always to exhibit some excess diffusion (f > 1) unless the veins are 

network is blocked by solid particles or disconnected.      

In future extensions, it may be possible to  find ways of useing the assemblage of grain-scale isotopic patterns in ice 

samples to quantify their level of excess diffusion, and thus constrain their vein and grain-boundary properties. The proposed 1020 

laboratory tests and this avenue will help us understand why excess diffusion occurs on some partsections of ice cores and not 

others. 

 

Appendix A 

Table A1: Variables and parameters in our mathematical model.  1025 

 

Symbol Description [square brackets indicate values used in our calculations] 

 a Liquid-vein radius [1 μm] 

 b Mean grain radius [1 mm] 

 c Grain-boundary thickness [see Table 1 for values] 

 Db Grain-boundary (isotopic) diffusivity [see Table 2 for values] 

 Ds Isotopic diffusivity in ice or “solid diffusivity”; Eq. (1) 

 Dv Isotopic diffusivity in vein -water or “liquid diffusivity”; Eq. (2) 

 f Enhancement factor on isotopic diffusion rate 

F(r, θ) A part of the function H in the numerical method (Sect. 2.6) 

G(r) Radial function representing variation of H along grain boundaries 

H(r, θ)  Complex function encapsulating the isotopic pattern 

J Number of numerical grid points in the radial direction 

kz Signal wavenumber (= 2/λ) 

kr Parameter linked to wavenumber in the signal-decay calculation (Eq. (14)) 

L = 2π/3, the angle between grain boundaries 

M   Sparse-banded matrix in the numerical method (Sect. 2.6) 

N Number of numerical grid points in the azimuthal direction 
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Ns, Nv, Nb Concentrations of trace isotope (18O or D) in ice, vein, grain boundaries 

Ns0, Nv0, Nb0 Concentrations of major isotope (16O or H) in ice, vein, grain boundaries 

p1, p2, p3 Parameters used in the calculation of Sect. 2.5 

r Radial coordinate 

R Transformed radial variable 

Rmax Vein-wall position in the transformed radial variable 

s Square root of the eigenvalue s2 in the problem for H (Sect. 2.5) 

t Time 

T Temperature  

v Eigenvector in the numerical solution 

w Vein-flow velocity [values in 0–50 m yr–1 used in experiments] 

x Chebyshev collocation point positions in the spectral method 

z Depth 

α Fractionation coefficient,  [≈ 1 [see ; see Sect. 2.3 for information for 

information] 

βb Diffusivity contrast of grain boundary to ice (= Db/Ds – 1) 

βv Diffusivity contrast of water to ice (= Dv/Ds – 1) 

δ Isotopic deviation 

ε Dimensionless grain-boundary thickness (= c/a) 

ζ Complex decay-rate parameter 

 Azimuthal coordinate 

λ Signal wavelength (= 2π/kz) 

ξ Dimensionless vein radius or dimensionless radial position of vein wall (= a/b) 

 Phase angle of isotopic signal in the z-direction 

χ Péclet number (ratio of vein-flow advection to monocrystalline diffusion) 

 

Code and data availability 

The MATLAB code for solving the model equations and computed grids of the enhancement factor are archived at 

https://doi.org/10.15131/shef.data.xxxxxxxx. Use https://figshare.com/s/e42a421e53b02efdaa0f during the review stage. 1030 

Video supplement 

Movies S1–S7 are available at https://doi.org/10.15131/shef.data.xxxxxxxx. 

Please use https://figshare.com/s/37cfa936be37610f24e8 during the review stage. 
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Supplement 

Sections S1–S4, Movies S1–S7, and Figures S1–S1217 are available at https://doi.org/10.15131/shef.data.xxxxxxxx.  1035 

Please use https://figshare.com/s/37cfa936be37610f24e8 during the review stage. 
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